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Abstract. We review properties of so-called special conformal Killing tensors
on a Riemannian manifold (Q, g) and the way they give rise to a Poisson-
Nijenhuis structure on the tangent bundle TQ. We then address the question
of generalizing this concept to a Finsler space, where the metric tensor field
comes from a regular Lagrangian function E, homogeneous of degree two in the
fibre coordinates on TQ. It is shown that when a symmetric type (1,1) tensor
field K along the tangent bundle projection τ : TQ → Q satisfies a differential
condition which is similar to the defining relation of special conformal Killing
tensors, there exists a direct recursive scheme again for first integrals of the
geodesic spray. Involutivity of such integrals, unfortunately, remains an open
problem.

1 Introduction: special conformal Killing tensors

The work presented here is inspired by the theory and applications of so-called special
conformal Killing tensors (or Benenti tensors) on a (pseudo-) Riemannian manifold. The
study of possible generalizations to Finsler manifolds should be seen as a first step to-
wards further generalizations to arbitrary metric tensor fields along the tangent bundle
projection (coming, for example, from the Hessian of a regular Lagrangian); the aim in
the end would be to arrive at a scheme which can cope with integrable or Hamilton-Jacobi
separable systems with non-quadratic integrals in involution, as opposed to the subclass
of Stäckel systems which is governed by special conformal Killing tensors. We start by
reviewing a number of essential features related to such tensors.

Let g be a (pseudo-) Riemannian metric on a manifold Q.

Definition. A symmetric tensor Jij determines a special conformal Killing tensor (or Be-
nenti tensor) w.r.t. g if its covariant derivatives with respect to the Levi-Civita connection

∗This contribution to the Coimbra Workshop is based on joint work with Fien Vermeire and Mike
Crampin

1



satisfy,
Jij|k = 1

2
(αigjk + αjgik), (1)

for some 1-form α. It follows that ∑
ijk

Jij|k =
∑
ijk

αigjk

i.e. J is a conformal Killing tensor. Further properties (referring to J as (1,1)-tensor:
J i

j = gikJkj) are that J is a conformal Killing tensor of gradient type,

α = df = d(tr J),

and has vanishing Nijenhuis torsion NJ , i.e.

[JX, JY ] + J2([X, Y ])− J([JX, Y ] + [X, JY ]) = 0, ∀X, Y ∈ X (Q).

Moreover, assuming J is non-singular, its cofactor tensor A:

A J = (det J)I

is itself a Killing tensor, so that F = 1
2
Aij(q)pipj is a quadratic first integral of the system

with Hamiltonian H = 1
2
gij(q)pipj on T ∗Q.

As said above, metrics admitting a special conformal Killing tensor determine a subclass
of Stäckel systems, i.e. orthogonal separable systems in the sense of Hamilton-Jacobi with
n quadratic integrals in involution. We briefly sketch how this works, beginning with the
integrability structures on T ∗Q and T ∗Q× IR, determined by J .

On T ∗Q, consider J̃ , the complete lift of J , which in coordinates is given by

J̃ = J i
j

(
∂

∂qi
⊗ dqj +

∂

∂pj

⊗ dpi

)
+ pk

(
∂Jk

i

∂qj
−

∂Jk
j

∂qi

)
∂

∂pi

⊗ dqj.

If ω = dθ denotes the standard symplectic structure and

ω1 = d(Jθ) = d(J i
jpidqj),

we have that
i
eJ(X)ω = iXω1 ∀X ∈ X (T ∗Q). (2)

It follows that J̃ is symmetric with respect to ω. Moreover, we have dω1 = 0 obviously, and
N

eJ = 0 as a result of NJ = 0. These are the properties which are sufficient to ensure that
a special conformal Killing tensor J on (Q, g) determines a Poisson-Nijenhuis structure

on T ∗Q with J̃ as recursion operator. In addition, we have the interesting relations

dd
eJh = d(tr J) ∧ dh, dd

eJ(tr J) = 0, (3)

which give rise to an extension of the two compatible Poisson structures to T ∗Q × IR.
Details about all of this can be found in [3].
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Observe that the special conformal Killing tensor J plays a kind of double role for the
complete integrability of H = 1

2
gijpipj. First of all, we have that J + sI is a special

conformal Killing tensor for all s, and thus gives rise to a family of corresponding Killing
tensors A(s), and in this way to a hierarchy of quadratic integrals. Secondly, the double
Poisson structure created by J truly helps to show that such integrals are in involution,
in fact with respect to both brackets (although other, more direct techniques for showing
involutivity may sometimes be successful as well, see e.g. [5]). Incidentally, the reference
just cited also addresses another important aspect of the integrals, namely their functional
independence, for which it is shown to be enough that the eigenvalues of J are different
at one point. To complete the construction of Stäckel systems then, one can proceed as
follows. For a function V on Q to be an admissible potential, it is necessary and sufficient
that V satisfies

dd
eJV = d(tr J) ∧ dV. (4)

Admissibility of V means that
h = 1

2
gijpipj + V

is still separable, and there are then suitable modifications of the first integrals of the
kinetic energy part which constitute an amended set of quadratic integrals in involution.
To avoid forgetting a number of interesting references concerning details and background
about these results, we limit ourselves to citing the excellent review paper [2] and refer
to the list of references therein.

2 A tangent bundle view of special conformal Killing

tensors

We explain some of the results from [4] here; understanding a Lagrangian perspective of
what precedes is essential for the generalization to Finsler spaces we have in mind.

Let (Q, g) as before be a pseudo-Riemannian manifold and consider the function L =
1
2
gij(q)u

iuj ∈ C∞(TQ). Then, TQ becomes a symplectic manifold via the Poincaré-
Cartan 2-form

ωL = dθL, with θL = S(dL) =
∂L

∂ui
dqi,

where S is the canonically defined ‘vertical endomorphism’ on TQ.

Consider then again a type (1,1) tensor field J on Q. The following is an interesting result
of [4]: it gives a concise, intrinsic characterization of special conformal Killing tensors,
directly in their type (1,1) appearance.

Theorem 1. J is a special conformal Killing tensor if and only if it is symmetric with
respect to g and satisfies the following relation for some function f ∈ C∞(Q):

∇J = 1
2
(T⊗ dHf −Xf ⊗ θL). (5)

Obviously, we have a bit of work to do here to explain the symbols in this formulation.
In principle, this whole formula is about tensor fields along the tangent bundle projection
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τ : TQ → Q, though some of its ingredients so far happen to live on the base manifold
Q. The operations which are being used rely on the (non-linear) connection associated to
a given second-order field Γ (here coming from the Euler-Lagrange equations of L). If we
express the coordinate representation of a general second-order field Γ as

Γ = ui ∂

∂qi
+ F i(q, u)

∂

∂ui
,

then the basis of horizontal vector fields Hi on TQ, defining the connection, is given by

Hi =
∂

∂qi
− Γj

i (q, u)
∂

∂uj
, with Γj

i = −1
2

∂F j

∂ui
.

We have
dHf = Hi(f)dqi and Xf g = −dHf.

T is the canonical vector field along τ (essentially the identity map on TQ), given by

T = ui ∂

∂qi
,

and ∇, finally, is the dynamical covariant derivative operator. It acts like Γ on functions
on TQ, and is further determined by ∇(∂/∂qi) = Γj

i∂/∂qj and by duality on dqj. Up to
now, however, f and J live on Q, so that in fact dHf = df and, taking into account that
we are in a situation where Γj

i = Γj
ik(q)u

k, we have (∇J)i
j = J i

j|ku
k. Observe that it easily

follows from (5), by taking a trace, that f = tr J .

If J is an arbitrary (1,1) tensor on Q, its vertical lift JV defines a kind of alternative
almost tangent structure on TQ, at least we have JV 2 = 0 and NJV = 0. Therefore, it
is a natural construction to let JV take over the role of S for the purpose of defining a
second 2-form and the subsequent construction of a type (1,1) tensor R on TQ. In other
words, natural tangent bundle constructions lead us to define R on TQ by

iR(X)d(S(dL)) = iXd(JV (dL)) ∀X ∈ X (TQ), (6)

and if NJ = 0 on Q (as in the case of a special conformal Killing tensor), we have NR = 0
on TQ as well, so that R becomes the recursion operator of a Poisson-Nijenhuis structure
on TQ. In fact, R is precisely the pullback of J̃ under the Legendre transform associated
to the given regular Lagrangian L.

3 Generalization: Finsler manifolds

Let (Q,E) now be a Finsler space, that is to say, E : TQ → IR is the square of a
Finsler function F , is homogeneous of degree two in the ui (E(0) = 0), and ωE = dθE is
non-degenerate on the slit tangent bundle TQ \ {0}.
Putting

gij(q, u) =
∂2E

∂ui∂uj
,
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we have a (0,2) tensor field along the tangent bundle projection τ , and consider its canon-
ical spray Γ on TQ \ {0} (i.e. the Euler-Lagrange equations of E). Note that in view of
the homogeneity,

E = 1
2
g(T,T) = 1

2
giju

iuj,

and we also have
∇g = 0, ∇T = 0.

It is then easy to deduce the following further properties:

∇E = Γ(E) = 0, dHE = 0, θE = T g, ∇θE = 0.

It may be worthwhile to make the following preliminary remark to avoid confusion. There
is a lively debate, often, in Finsler geometry, about the selection of the best possible linear
connection to replace the Levi-Civita connection of Riemannian geometry. Most of the
time, about four different possibilities are considered (see e.g. [1]), depending on whether
one wants the connection to be as metrical as possible, or whether one wants to eliminate
as much torsion as possible. We don’t need to enter into this debate here, because all we
need for deriving our main results in this section, is the dynamical covariant derivative
operator ∇, as it was specified in the preceding section: it comes from the non-linear
connection associated to any second-order differential equation field and acts on the full
algebra of tensor fields along the tangent bundle projection τ .

Inspired by the theorem of the preceding section, assume now that we have a type (1,1)
tensor K along τ , which is symmetric with respect to g, i.e. g(KX,Y ) = g(X, KY ), and
satisfies a relation of the form

∇K = 1
2
(T⊗ α−Xα ⊗ θE), (7)

for some 1-form α along τ , and with Xα defined by Xα g = −α. It would be quite natural
within this Finsler environment to assume that K is homogeneous of degree zero as well,
but as we will show now, such an extra assumption is not even required to arrive at a
quite remarkable hierarchy of first integrals for the canonical spray Γ.

An immediate consequence of (7), which follows from taking a trace, is that

α(T) = ∇ tr K.

As a result, if we put
h0 = k0 = E, k1 = 1

2
g(T, KT),

it is easy to show that also
h1 = k1 − E tr K

is a first integral. This is the start for the hierarchy of first integrals, for which we found
the following explicit recursive scheme. Define

kj = 1
2
g(T, KjT), and aj = 1

j
tr Kj, j = 1, 2, . . . .
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Lemma 1. From the fundamental assumption (7) on K, it follows that

∇aj = α(KjT), (8)

∇kj =

j∑
i=1

(∇ai) kj−i. (9)

Proof: It is easy to show by induction that (7) implies that

∇Kj+1 = 1
2

j∑
i=0

(Kiα⊗Kj−iT−KiθE ⊗Kj−iXα).

Taking a trace, (8) immediately follows. Moreover, since

∇kj = 1
2
g(T,∇Kj(T)),

a direct computation, using the formula for ∇Kj just derived, leads to (9).

Next, we introduce auxiliary functions φk, defined recursively by

φ1 = 0, φk = 1
2

k−1∑
i=1

aiak−i − 1
k

k−1∑
i=2

(k − i)φiak−i, k ≥ 2. (10)

Lemma 2. We have ∇φj =
∑j−1

l=1 al∇aj−l −
∑j−1

l=2 φl∇aj−l, j ≥ 2.

Proof: From φ2 = 1
2
a2

1, we get ∇φ2 = a1∇a1 and the property is clearly true for j = 2.
Assume it is valid for all j up to k − 1 and now act with ∇ on φk as defined by (10). We
get

∇φk =
k−1∑
i=1

ai∇ak−i − 1
k

k−1∑
i=2

(k − i)φi∇ak−i

− 1
k

k−1∑
i=2

(k − i)ak−i

i−1∑
l=1

al∇ai−l + 1
k

k−1∑
i=2

(k − i)ak−i

i−1∑
l=2

φl∇ai−l.

In order to collect coefficients of ∇aj, we put j = k− i in the second term on the right and
j = i− l in the last two terms (and adjust the summations). Moreover, we subsequently
interchange the two summations in those last two terms and split off one term to have
the common upper bound k − 3 for j. The result reads

∇φk =
k−1∑
i=1

ai∇ak−i − 1
k

k−2∑
j=1

j φk−j∇aj

− 1
k

k−3∑
j=1

∇aj

(
k−1∑

i=j+1

(k − i)ak−iai−j −
k−1∑

i=j+2

(k − i)ak−iφi−j

)
− 1

k
a2

1∇ak−2.
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In the terms between brackets, we now change i− j to l, thus getting(
k−j−1∑

l=1

(k − j − l)ak−j−l al −
k−j−1∑

l=2

(k − j − l)ak−j−l φl

)

which upon closer inspection can be seen to be equal to (k − j)φk−j. It is now a matter
of splitting off the term for j = k − 2 in the second sum on the right also, to see a few
cancellations presenting themselves, which then readily produce the desired result.

Finally, put bk = φk − ak and define

hl = kl +
l∑

i=1

bi kl−i, l ≥ 1. (11)

Theorem 2. Let K be a type (1,1) tensor along τ : TQ → Q, which is symmetric with
respect to the Finsler metric g and satisfies condition (7) for some α. Then the functions
hl are first integrals of the geodesic spray of the Finsler metric g, for all l.

Proof: From Lemma 1 we have, using also ∇k0 = 0,

∇hl =
l∑

i=1

(∇φi)kl−i +
l−1∑
i=1

bi

l−i∑
j=1

(∇aj)kl−i−j.

Putting m = i + j in the second term and interchanging the double summation, this
becomes

∇hl =
l∑

i=2

(
(∇φi) +

i−1∑
m=1

bm(∇ai−m)

)
kl−i + (∇φ1)kl−1.

This is clearly zero in view of φ1 = 0 and Lemma 2.

It is interesting to verify that one can rewrite the recursive formula for integrals in the
following alternative way:

hl = 1
2
g(T, BlT) with Bl = bl I + Bl−1K, B0 = I. (12)

Moreover, the bl turn out to be the coefficients of the characteristic polynomial of K:
indeed, if n is the dimension of Q, one can show that

det(λ I −K) =
n∑

i=0

biλ
n−i, (b0 = 1), (13)

which means that in particular bn = (−1)n det K.

Obviously, this whole construction applies in particular to the Riemannian case with the
assumption that K is a special conformal Killing tensor on Q; in fact, the expression (12)
looks like a direct generalization of a result of Benenti (see the first theorem in section 7
of [2]).
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The parallel with the Riemannian case goes further, in the sense that, if K is assumed to
be non-singular, there is again a first integral associated to the cofactor tensor. Observe,
by the way, that the quadratic integral F = 1

2
Aij(q)pipj referred to in section 1 for the

Riemannian case, can be written in a tangent bundle set-up in the coordinate free format
F = 1

2
g(AT,T), and this statement happens to extend to the Finslerian situation.

Theorem 3. Let g be a Finsler metric, and K a symmetric (1,1) tensor satisfying con-
dition (7). Then, if K is non-singular and A is its cofactor tensor, the function g(AT,T)
is a first integral of the geodesic spray.

Proof: We have that ∇A = ∇(det K)K−1 − (det K)K−1∇K K−1 and it is a general
property for a derivation of degree zero such as ∇ that ∇ log(det K) = tr(K−1∇K). It
follows that

∇(g(AT,T)) = g(∇A(T),T)

= (det K)
(

tr(K−1∇K) g(K−1T,T)− g(∇K K−1(T), K−1(T))
)
.

From the assumption (7) on K, it readily follows that tr(K−1∇K) = α(K−1(T)) and
g(∇K K−1(T), K−1(T)) = α(K−1(T))g(T, K−1T). Hence, ∇(g(AT,T)) = 0.

The hierarchy of first integrals derived above, can now be established via the cofactor
technique as well. Indeed, if K satisfies the fundamental condition (7), then so does
K + sI for all real values s. Its cofactor A(s) =

∑n−1
j=0 Aj+1s

j therefore gives rise to a
hierarchy of first integrals also.

In fact, we have

(K + sI)A(s) =
n−1∑
j=0

KAj+1s
j +

n∑
j=1

Ajs
j.

On the other hand, using (13) we get

det(K + sI) = (−1)n det((−s)I −K) =
n∑

i=0

(−1)ibis
n−i.

It follows that
An = I, and KA1 = (−1)nbnI,

which shows that A1 = A, while the other coefficients in the expansion of A(s) have to
satisfy the recursive relation

KAj+1 + Aj = (−1)n−jbn−jI, j = 1, . . . , n− 1.

Going down this scheme from top to bottom, it is easy to see that An−j = (−1)jBj, which
shows (see (12)) that the coefficients in the expansion of A(s) determine the same first
integrals hl up to sign. Notice that, in particular, A = A1 = (−1)n−1Bn−1, from which it
follows that

Bn = Bn−1K + bnI = (−1)n−1AK + (−1)n(det K)I = 0.

One can verify also that bn+1 ≡ 0. Hence, the sequence of first integrals actually terminates
with hn = 0 and the cofactor tensor A of K determines the last non-zero integral hn−1 in
the hierarchy.
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4 The problem of involutivity

We have not succeeded in coming anywhere near to proving that the integrals we obtained
in the previous section would be in involution with respect to the Poisson bracket associ-
ated to the symplectic form dωE. One would expect to have better chances if one could
use the tensor K for constructing a recursion tensor R of a Poisson-Nijenhuis structure
on TQ, just as in the Riemannian case. Observe that the construction (6) of R in the
Riemannian case in fact makes sense under much more general circumstances. Indeed,
the vertical lift JV remains well defined if we replace the basic tensor J on Q by a tensor
J along the projection τ , and the function L can be taken to be any regular Lagrangian
on a tangent bundle TQ. Such an R then is determined, through its action on vertical
and horizontal lifts of vector fields X along τ , by formulas of the form (see [6])

R(XV ) = (KX)
V

R(XH) = (KX)H + (UX)V

where K is the transpose of K (with respect to g) and K and U are defined by

g(KX,Y ) = DV

Y (JθL)(X)

g(UX, Y ) = dH(JθL)(X, Y ).

We refer to [6] for details about the vertical covariant derivative operator DV and the
horizontal exterior derivative dH in these determining equations.

If we think of such a construction in the Finslerian case under consideration, with L = E,
it is natural to assume that J is homogeneous of degree zero and then K has the same
property. If we then assume that this K satisfies the assumptions we needed for the
hierarchy of first integrals, namely K = K and the condition (7), then, unfortunately,
there is still no guarantee that NR = 0. Indeed, in the Finslerian case, although the
generically five different components of NR reduce to two, and these considerably simplify
further in view of the above assumptions on K, in the end we run out of luck and they
do not automatically vanish! Note in passing that the vertical and horizontal covariant
derivative operators which appear in the intrinsic characterization of the tensors K and U
above are associated, for the Finslerian case, to the Berwald connection. It is very unlikely,
however, that a different selection of horizontal subspaces to describe these tensors (i.e.
the choice of one of the other linear connections, familiar in Finsler geometry) might
have any effect on the problem of involutivity of the integrals. It further remains an
open problem whether there are different, more direct ways of obtaining some form of
involutivity. Also, the issue of functional independence of the integrals, as treated in [5]
for the Riemannian case, has not been addressed.
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