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Abstract

We extend the Skinner-Rusk formalism to field theories with nonholonomic and
vakonomic constraints. This framework is then used to study the relation between
both types of constraints.
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1 Introduction

During the last decade, field theories with nonholonomic constraints have been
studied from different points of view (see [3,18,10,11]). At the same time an
extensive study has been made of vakonomic methods in field theory (see
[8,1,2]). In this paper, we study the relation between both approaches, in
the case where the constraints are affine. Even though affine constraints are
admittedly rather exceptional in classical field theory, this case is nevertheless
quite interesting, as it allows a thorough comparison between vakonomic and
nonholonomic dynamics. Indeed, in this paper, we will follow the work of
Cortés et al. [5], who used the so-called formulation of Skinner and Rusk to
recast both models in a form which allows comparison more easily.

In [15,16], Skinner and Rusk reformulated the equations of motion of a me-
chanical system as a presymplectic system on TQ⊕T ∗Q. Their idea in studying
this first-order system was to obtain a common framework for both regular
and singular dynamics. Over the years, the framework of Skinner and Rusk
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was extended in many directions: for our purposes, the most important con-
tributions are [6,7], where the authors developed a Skinner-Rusk formalism
for classical field theories.

This formulation will be briefly recalled in section 2. In section 3, we will
then show how the vakonomic model can be described in the Skinner-Rusk
framework, and we will do the same thing for the nonholonomic dynamics in
section 4. Finally, in section 5 we propose a simple extension of a procedure
by Cortés et al. [5] to compare both formulations, and we prove that they are
equivalent in the case of integrable constraints.

2 Classical field theories

2.1 The bundle framework

Classical fields are modeled as sections of a fibre bundle π : Y → X of rank
m, with (n + 1)-dimensional orientable base space X. On X, we consider a
fixed volume form η. Throughout this paper, we will use a coordinate system
(xµ), µ = 1, . . . , n + 1, on X adapted to η, i.e. such that η ≡ dn+1x := dx1 ∧
· · · ∧ dxn+1. Furthermore, on Y a coordinate system (xµ, yA), A = 1, . . . ,m,
adapted to π is used.

Let
∧n+1

2 Y be the bundle of (n+ 1)-forms on Y satisfying the following prop-
erty:

α ∈ (
∧n+1

2 Y )y if iviwα = 0 for all v, w ∈ (V π)y.

In coordinates, an element α of
∧n+1

2 Y can be represented as α = pµAdyA ∧
dnxµ+pdn+1x. Hence, on

∧n+1
2 Y , we have a coordinate system (xµ, yA; pµA, p).

The bundle
∧n+1

2 Y is of fundamental interest in classical field theory, because
it can be equipped with a natural multisymplectic form, which is the general-
isation to higher degree of the symplectic form on a cotangent bundle. If we
introduce first the (n+ 1)-form Θ as

Θ(α)(v1, . . . , vn+1) = α(Tρ(v1), . . . , Tρ(vn+1)),

where v1, . . . , vn+1 ∈ Tα(
∧n+1

2 Y ) and where ρ :
∧n+1

2 Y → Y is the bundle
projection, then this multisymplectic form is defined by setting Ω := −dΘ
(see [4]).

The central stage for Skinner-Rusk theories is the product bundle J1π ×∧n+1
2 Y → Y . On this bundle, there exists a duality pairing 〈·, ·〉 : J1π ×∧n+1
2 Y → R, which is reminiscent of the obvious pairing by duality on

TQ⊕ T ∗Q, the bundle originally considered by Skinner and Rusk. This pair-
ing is defined as follows: let αy ∈ (

∧n+1
2 Y )y and j1

xφ ∈ J1π, such that
π1,0(j1

xφ) = y. Now, consider an (n + 1)-form α̃ on Y extending αy, i.e. such
that α̃(y) = αy. The pullback (φ∗α̃)(x) is then a form at x of maximal degree,
and hence a multiple a(x) of the volume form: (φ∗α̃)(x) = a(x)ηx. We now
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define the duality pairing as 〈
j1
xφ, α

〉
:= a(x). (1)

One can easily check that this definition is independent of the extension of α.
In coordinates, we have that a(x) = pµAy

A
µ + p.

2.2 Affine constraints

Throughout this paper, we consider mainly field theories with affine con-
straints. These constraints are modeled by considering a distribution D on
Y of corank k. The distribution D is said to be weakly horizontal (see [9,
p. 40]) if D is complementary to a subbundle of the vertical bundle V π. Note
that this implies that k ≤ m.

A weakly horizontal distribution determines an affine subspace C of J1π by
setting

C = {j1
xφ ∈ J1π : ImTxφ ⊂ Dφ(x)}.

If the annihilator of D is spanned by the linear independent 1-forms ψα =
AαAdyA+Aαµdxµ (α = 1, . . . , k), weak horizontality implies that the matrix AαA
has maximal rank k. In terms of these coordinate forms for ψα, C is determined
by the vanishing of the k(n+1) functions ψαµ = AαAy

A
µ +Aαµ. Conversely, it can

be seen that any affine subbundle C ↪→ J1π determines a weakly horizontal
distribution D on Y .

Let us go one step further, and assume moreover that there exists a fibration
τ : Y → Q of Y over a new manifold Q, which is fibered in turn over X (see
(2)). The constraint distribution D will then be taken to be the horizontal
distribution of a connection on τ . See the commutative diagram below:

Y
τ //

π

��

Q

π′
��~~

~~
~~

~~

X

(2)

Consider a system of bundle coordinates (xµ, ya) on Q, where µ = 1, . . . , n+ 1
and a = 1, . . . ,m − k, and assume as before that there exists bundle coordi-
nates on Y adapted to both π and τ , i.e. coordinates (xµ; ya, yα), collectively
denoted by (xµ, yA), such that τ is locally given by τ(xµ, yA) = (xµ, ya). In
nonholonomic mechanics, a similar setup was studied in [14].

The constraint distribution D will be taken to be the horizontal distribution
of a connection in the fibre bundle τ : Y → Q and hence D ⊕ V τ = TY .
Since V τ is a subbundle of V π, D is also weakly horizontal and determines a
submanifold C of J1π as before. Since the coefficient matrix AαA has maximal
rank k, there exists (locally at least) a basis of the annihilator D◦ spanned by

φα := dyα −Bα
a dya −Bα

µdxµ.
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This basis is generally more suited for our purposes.

Remark 1 If the distribution D is integrable, then Y is foliated by integral
submanifolds of D, in which case we say that the linear constraints are holo-
nomic. The theory of holonomic and linear nonholonomic constraints was also
treated in great detail in [10].

3 Skinner-Rusk formulation of vakonomic field theories

Let ι : C ↪→ J1π be a constraint submanifold of codimension k(n+ 1) in J1π,
locally annihilated by k(n + 1) functionally independent constraint functions
Ψα
µ, where α = 1, . . . , k and µ = 1, . . . , n + 1. Further on, C will be induced

by a weakly horizontal distribution as in section 2.2, but for now this is not
required. We assume that (π1,0)|C is a fibration, such that it is possible to
choose locally an adapted coordinate system (xµ; yA; yaµ, y

α
µ) on J1π, and func-

tions Φα
µ(xν , yA, yaν) such that C is locally determined by the following set of

k(n+ 1) equations:
yαµ − Φα

µ(xν , yA, yaν) = 0. (3)

Hence, (xµ; yA; yaµ) define coordinates on C. We now redefine Ψα
µ as yαµ −

Φα
µ(xν , yA, yaν); note that the zero level set of these functions is still C.

3.1 Direct derivation

The vakonomic approach to the constrained problem specified by a Lagrangian
L and a constraint manifold C consists of looking for extremals of the following
augmented Lagrangian: Lvak = L + λµαΨα

µ (see [12]), where the functions λµα
are Lagrange multipliers. In other words, we impose the constraints on the
space of sections where the action is defined, rather than on the variations, as
will be the case in nonholonomic field theory.

Let L̃ := ι∗L : C → R be the induced Lagrangian on C. By looking for ex-
tremals of the action associated to Lvak, and rewriting the resulting extremality
conditions in terms of L̃, we obtain the following vakonomic field equations :

d

dxµ

(
∂L̃

∂yaµ
− λνα

∂Φα
ν

∂yaµ

)
=
∂L̃

∂ya
− λνα

∂Φα
ν

∂ya
(4)

together with
dλµα
dxµ

=
∂L̃

∂yα
− λµβ

∂Φβ
µ

∂yα
and yαµ = Φα

µ. (5)

3.2 Skinner-Rusk formulation

Consider now the Cartesian product bundle πW0 : W0 := C × ∧n+1
2 Y → Y .

Define also the projection π0 : W0 → X by putting π0 = π ◦ πW0 . The given
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Lagrangian L induces a function Hvak, called generalized Hamiltonian, on W0,
defined as follows:

Hvak(j1
xφ, α) =

〈
j1φ, α

〉
− L̃(j1

xφ), for all (j1
xφ, α) ∈ (W0)y, (6)

where 〈·, ·〉 is the pairing between J1π and
∧n+1

2 Y defined in (1), and L̃ = ι∗L
is again the restriction of L to C. In coordinates, we haveHvak = pµay

a
µ+pµαΦα

µ+

p− L(xµ, yA, yaµ,Φ
α
µ).

The multisymplectic form Ω on
∧n+1

2 Y can be used, together with the gener-
alized Hamiltonian Hvak, to define a pre-multisymplectic form ΩHvak

on W0:

ΩHvak
= Ω + dHvak ∧ η.

In terms of this form, the Skinner-Rusk field equations are given by

ihΩHvak
= nΩHvak

, (7)

where h is the horizontal projector of a connection on π0 (see [6,7]). We will
show that these equations are equivalent to the vakonomic field equations (4)
and (5). In brief, we will construct a sequence of submanifolds

. . . ↪→ W3 ↪→ W2 ↪→ W1 ↪→ W0 = J1π × ∧n+1
2 Y .

where W1, W2 and W3 admit the following interpretation:

(1) W1 consists of points where a solution h of (7) exists;
(2) W2 contains the points of W1 where the image of the solution h is tangent

to W1;
(3) W3 is defined by an additional technical assumption, to be specified later

on.

Under a certain regularity condition, W1 and W2 coincide and only the mani-
folds W0, W1 and W3 come into play. In the general case, one needs to apply
some form of Gotay’s constraint algorithm to formulate the dynamics on a
final constraint submanifold W∞, but this will not be considered here.

Let us now turn to the construction of W1, W2, and W3. Notice that the field
equation (7) does not necessarily have a solution on the whole of W0. Hence,
we introduce a subset W1 ↪→ W0, defined as the set of points of W0 for which
there does exist a horizontal projector of a connection on π0 : C×∧n+1

2 Y → X
solving equation (7). If h has the following coordinate expression:

h = dxµ ⊗
(
∂

∂xµ
+ AAµ

∂

∂yA
+Bµ

∂

∂p
+ Cν

µA

∂

∂pνA
+Da

µν

∂

∂yaν

)
, (8)

for unknown functions AAµ , Bµ, Cν
µA, and Da

µν , then a brief coordinate calcu-
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lation shows that W1 is determined by the following equations:

pµa = −pνα
∂Φα

ν

∂yaµ
+
∂L̃

∂yaµ

= −pνα
∂Φα

ν

∂yaµ
+
∂L

∂yaµ
+
∂L

∂yαν

∂Φα
ν

∂yaµ
. (9)

In addition, the connection coefficients have to satisfy the following con-
straints:

Aαµ = Φα
µ, Aaµ = yaµ

Cµ
µA + pµα

∂Φα
µ

∂yA
− ∂L̃

∂yA
= 0. (10)

Let us now assume that W1 is a manifold. This is a very restrictive assumption,
but for the sake of clarity, we adopt it nevertheless. When dealing with real-
world applications, it should be verified by calculations, and it can be expected
that interesting behaviour may occur in the points where W1 fails to be a
manifold.

Secondly, we define W2 as the submanifold of W1 where the image of the
horizontal projector h solving (7) is tangent to W1. This is expressed by the
following equation:

h

(
∂

∂xµ

)(
pνa −

∂L̃

∂yaν
+ pκα

∂Φα
κ

∂yaν

)
= 0.

In coordinates, this implies the following for the connection coefficients of h:

Cν
µa −Dµ

(
∂L̃

∂yaν

)
+ Cκ

µα

∂Φα
κ

∂yaν
+ pκαDµ

(
∂Φα

κ

∂yaν

)
= 0, (11)

where Dµ is the operator defined as

Dµ =
∂

∂xµ
+ yaµ

∂

∂ya
+ Φα

µ

∂

∂yα
+Da

µν

∂

∂yaν
.

Equation (11) uniquely determines the coefficients Da
µν if the following matrix

is nonsingular:

Cµνab =
∂2L̃

∂yaµ∂y
b
ν

− pκα
∂2Φα

κ

∂yaµ∂y
b
ν

.

This we now assume. Hence, W2 is the whole of W1. If Cµνab is singular, addi-
tional steps in the “constraint algorithm” are necessary. For this procedure,
we refer to [6].

We end this section by giving a meaning to the coordinate p, and, at the same
time, fixing the remaining connection coefficient Bµ. This we do by considering
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the submanifold W3 of W2 defined as

W3 := W2 ∩ {Hvak(xµ, yA, yaµ; pµA) = 0}.

Demanding that a horizontal projector h on W2 solving (7) is tangent to W3

leads to the following condition for Bµ:

Bµ + Cν
µay

a
κ + Cν

µαΦα
ν +Da

µνp
ν
a + pναDµ(Φα

ν )−Dµ(L) = 0

which allows for the determination of Bµ in terms of the other connection
coefficients as well as the momenta pµA.

Let us now proceed to derive the vakonomic field equations. On W3, the
Skinner-Rusk equation (7) can be locally written as

dya

dxµ
=
∂Hvak

∂pµa
and

dpµa
dxµ

= −∂Hvak

∂ya
,

where Hvak is defined on W3 as Hvak := −p = pµay
a
µ+pµαΦα

µ−L̃. By substituting
this expression, we finally obtain the following field equations:

∂L̃

∂ya
− pµα

∂Φα
µ

∂ya
=

d

dxµ

(
∂L̃

∂yaµ
− pνα

∂Φα
ν

∂yaµ

)

as well as

dpµα
dxµ

=
∂L̃

∂yα
− pµβ

∂Φβ
µ

∂ya
and yαµ = Φα

µ(xν , yA, yaν).

If we identify the momenta pµα with the Lagrange multipliers λµα, then these
equations are precisely the vakonomic field equations (4) and (5).

Note in passing that, if L̃ is regular, then W3 is a multisymplectic manifold,
with multisymplectic form ΩW3 := j∗3,0ΩHvak

, where j3,0 : W3 ↪→ W0 is the
canonical injection. This can be verified by a routine coordinate calculation.

3.3 Affine constraints

Let D be the horizontal distribution of a connection on τ as in section 2.2.
Recall that we may assume that the annihilator D◦ is locally spanned by the
following k forms:

φα := dyα −Bα
a dya −Bα

µdxµ.

In case of affine constraints, the coefficients Da
µν are determined by the follow-
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ing expression:

Db
µν

∂2L̃

∂yaµ∂y
b
ν

= − ∂2L̃

∂xµ∂yaµ
− ybµ

∂2L̃

∂yb∂yaµ
− Φb

µ

∂2L̃

∂yb∂yaµ
+
∂L̃

∂ya
+Bα

a

∂L̃

∂yα

+ pµα

(
∂Bα

a

∂xµ
+ ybµ

∂Bα
a

∂yb
+ Φβ

µ

∂Bα
a

∂yβ
−Bβ

a

∂Φβ
µ

∂yα
−
∂Φα

µ

∂ya

)
, (12)

where Φα
µ = Bα

a y
a
µ + Bα

µ . The expression between brackets in equation (12) is
closely related to the curvature of D. Indeed, we recall that the curvature R
of D is a section of

∧2 Y ⊗ TY , locally defined as R = Rα
abdy

a ∧ dyb ⊗ ∂
∂yα

+

Rα
aµdya ∧ dxµ ⊗ ∂

∂yα
, where

Rα
ab =

∂Bα
a

∂yb
− ∂Bα

b

∂ya
+Bβ

b

∂Bα
a

∂yβ
−Bβ

a

∂Bα
b

∂yβ

Rα
aµ =

∂Bα
a

∂xµ
−
∂Bα

µ

∂ya
+Bβ

µ

∂Bα
a

∂yβ
−Bβ

a

∂Bα
µ

∂yβ
.

Bearing this in mind, one then obtains for the coefficients Da
µν the following

expression:

Db
µν

∂2L̃

∂yaµ∂y
b
ν

=− ∂2L̃

∂xµ∂yaµ
− ybµ

∂2L̃

∂yb∂yaµ
− Φb

µ

∂2L̃

∂yb∂yaµ
+
∂L̃

∂ya
+Bα

a

∂L̃

∂yα

+ pαµ(Rα
aby

b
µ +Rα

aµ).

(13)

These expressions will play an important role in the comparison between vako-
nomic and nonholonomic dynamics below in section 5.

4 Skinner-Rusk formulation of nonholonomic field theories

A similar, but slightly more involved method can be used to cast the non-
holonomic field equations into Skinner-Rusk form. We consider a constraint
submanifold C of codimension k(n+ 1), determined by similar expressions as
in (3). The nonholonomic field equations will be recast as a Skinner-Rusk type
system on the bundle π̄W̄0

: W̄0 := J1π × ∧n+1
2 Y → Y .

4.1 The nonholonomic field equations

Let us first briefly recall the nonholonomic field equations. For a more detailed
treatment, see [3,18].

Assume as before that C is a constraint submanifold of J1π. In addition, let
F be a bundle of reaction forces. For the sake of definiteness, we asssume that
F is the subbundle of

∧n+1(T ∗J1π) spanned by Φα = S∗µ(dϕα), where Sµ is



The Skinner-Rusk approach for vakonomic and nonholonomic field theories 9

the vertical endomorphism on J1π (see [13]). In coordinates, we have

Φα =
∂ϕα

∂yaµ
(dya − yaνdxν) ∧ dnxµ. (14)

Other choices F are also possible (see [17]) but will not be considered here.

In the presence of nonholonomic constraints, the field equations become

∂

∂xµ

(
∂L

∂yaµ
(j1φ)

)
− ∂L

∂ya
= λαµ

∂ϕα

∂yaµ
, (15)

together with the constraint that j1φ ∈ C, which serves to determine the un-
known multipliers λαµ. These equations can be cast into the following intrinsic
form:

ihΩL − nΩL ∈ I(F ) and Im h ⊂ TC, (16)

where I(F ) is the ideal generated by F . The terms on the right-hand side
of (15) and (16) represent the constraint forces that keep the section j1φ
constrained to C.

4.2 Skinner-Rusk formulation

Consider first the bundle of reaction forces F spanned by the (n + 1)-forms
Φα defined in (14). We again denote by I(F ) the ideal in Ω•(J1π) generated
by F and we use the same notation to denote the pullback of this ideal to W̄0.

In the nonholonomic case, the generalized Hamiltonian is defined as

Hnh := 〈pr1, pr2〉 − pr∗2L.

Note that Hnh involves the values of L on the whole of J1π and not just on
C as in the vakonomic approach. The pre-multisymplectic form ΩHnh

is then
defined as in section 3 by putting ΩHnh

:= Ω + dHnh ∧ η.

The nonholonomic field equations are now

(ikΩHnh
− nΩHnh

)|C×
∧n+1

2
Y
∈ I(F ) and (Im k)|C×

∧n+1

2
Y
⊂ T (C × ∧n+1

2 Y )

(17)
for a horizontal projector k on π̄0 := π◦π̄W̄0

; notice the similarity between these
equations and the nonholonomic field equations (16). A similar computation
as in section 3 shows us that a horizontal projector, with coordinate expression

k = dxµ ⊗
(
∂

∂xµ
+ AAµ

∂

∂yA
+Bµ

∂

∂p
+ Cν

µA

∂

∂pνA
+DA

µν

∂

∂yAν

)
, (18)

is a solution of the nonholonomic field equations if and only if

AAµ = yAµ , pµA =
∂L

∂yAµ
and Cµ

µA =
∂L

∂yA
+ λκαµ

∂Ψα
κ

∂yAµ
, (19)
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where Ψα
κ = yακ−Φα

κ and the λκαµ are a set of Lagrange multipliers, to be deter-
mined by imposing the second part of (17). Let us now define a submanifold
W̄1 of W̄0, specified by the relations (compare with (9)):

pµA =
∂L

∂yAµ
. (20)

Again as with vakonomic dynamics, we define the submanifold W̄2 ↪→ W̄1

as the set of points where the image of the solution k determined by (19) is
tangent to W1. This leads to the following conditions:

Cν
µA −

∂2L

∂xµ∂yAν
− yBµ

∂2L

∂yB∂yAν
−DB

µκ

∂2L

∂yBκ ∂y
A
ν

= 0, (21)

as well as

Dα
µν −

∂Φα
ν

∂xµ
− yAµ

∂Φα
ν

∂yA
−Da

µκ

∂Φα
ν

∂yaκ
= 0. (22)

It is easily seen that, in the case of a regular Lagrangian, these conditions do
not restrict the submanifold W̄1 any further, i.e. W̄2 = W̄1.

Finally, we define the submanifold W̄3 as (compare with the definition of W3

in the vakonomic case):

W̄3 := W̄2 ∩ {Hnh(xµ, yA, yaµ; pµA) = 0}.

Demanding that a connection k whose image is tangent to W̄2 has an image
tangent to W̄3 imposes an additional condition on the the connection coeffi-
cient Bµ:

Bµ + Cν
µAy

A
ν +DA

µνp
ν
A −

(
∂L

∂xµ
+ AAµ

∂L

∂yA
+DA

µν

∂L

∂yAν

)
= 0.

If we now define Hnh along W̄3 as Hnh := −p = pµAy
A
µ − L, then the nonholo-

nomic Skinner-Rusk equations (17) become

dyA

dxµ
=
∂Hnh

∂pµA
and

dpµA
dxµ

= −∂Hnh

∂yA
+ λναµ

∂Ψα
ν

∂yAµ
,

together with the constraint equations yαµ = Φα
µ(xν , yA, yaν). By using the ex-

pression for Hnh as well as (20), we finally obtain that the Skinner-Rusk equa-
tions imply the standard nonholonomic field equations:

d

dxµ

(
∂L

∂yAµ

)
− ∂L

∂yA
= λκαµ

∂Ψα
κ

∂yAµ
,

together with the constraints.
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4.3 Affine constraints

We now focus on affine constraints, and employ a similar convention for the
bundle D of constraint forms as in the vakonomic case. In this case, the third
equation of (19) splits into two sets of equations,

Cµ
µa =

∂L

∂ya
− λµαµBα

a and Cµ
αµ =

∂L

∂yα
+ λµαµ.

One can combine these two expressions to eliminate the Lagrange multipliers.
In the resulting expression, one can then substitute expression (21) to elim-
inate Cµ

µA, and expression (22) to express Dα
µν in terms of Da

µν . After a long
computation, we finally obtain

Db
µν

∂2L̃

∂yaµ∂y
b
ν

= − ∂2L̃

∂xµ∂yaµ
− ybµ

∂2L̃

∂yb∂yaµ
− Φβ

µ

∂2L̃

∂yβ∂yaµ
+
∂L̃

∂ya

+
∂L

∂yαµ

(
ybµ
∂Bα

a

∂yb
+ Φβ

µ

∂Bα
a

∂yβ
+
∂Bα

a

∂xµ
−
∂Φα

µ

∂ya

)
.

(23)

5 Comparison between both approaches

Definition 2 Let X be a manifold and consider two fibrations πC , πD : C,D →
X. Consider a smooth map f : C → D and let h be a connection on πC, and
k a connection on πD. These connections are then said to be f -related if

Tf ◦ hp = kf(p) ◦ Tf for all p ∈ C.

Consider now the vakonomic and nonholonomic manifolds W3 and W̄3. There
exists an obvious surjective submersion f : W3 → W̄3, given in coordinates by
f(xµ, yA, yaµ; pµα) = (xµ, yA, yaµ) (see [9,5]). The map f can be given an intrinsic
meaning by using the Legendre transformation.

In order to study the relation between W3 and W̄3, and hence the relation
between vakonomic and nonholonomic classical field theory, we make use of
the following observation of Krupková [9] and Cortés et al. [5]: if h and k
were f -related connections, then any integral section of h would project down
(under f) to an integral section of k. The original theorem concerned integral
curves of vector fields, but using definition 2 also covers integral sections of
connections.

Let h be a vakonomic connection (with connection coefficients as determined
in section 3) and k be a nonholonomic connection (with coefficients as in
section 4). By considering the set of points S1 of W3 where h and k are f -
related, we obtain a first characterization of the equivalence between h and k.
Let us assume that S1 is not empty, otherwise both connections are entirely
unrelated. A comparison of both sets of connection coefficients then shows the
following:
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Proposition 3 S1 is locally determined by the vanishing of the following set
of functions on W3:

ϕa =

(
∂L̃

∂yαµ
− pµα

)
(Rα

aby
b
µ +Rα

aµ).

Proof. The local expression for S1 follows by considering the following con-
tracted difference:

ϕa =
∂2L̃

∂yaµ∂y
b
ν

(
Ďb
µν − D̂b

µν

)
,

where Ď is the set of vakonomic connection coefficients (13), and D̂ is the set
of nonholonomic coefficients (23).

The submanifold S1 can be seen as the first stage in a certain constraint
algorithm (see [9,5]), the result of which is a final submanifold S∞ (which
might be empty) where the vakonomic and nonholonomic dynamics are equiv-
alent. A general discussion of this constraint algorithm would not differ signifi-
cantly from the treatment of Krupkova and Cortés et al. and is hence omitted.
We only wish to point out that, if the constraints are holonomic, and hence
Rα
ab = Rα

aµ = 0, then S1 is the whole of W3 and vakonomic and nonholo-
nomic dynamics are everywhere equivalent, by which it is confirmed that the
vakonomic and nonholonomic description give the same results for holonomic
constraints.
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