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Abstract— We introduce a method which allows one to
recover the nonholonomic equations of motion of certain
systems by instead finding a Hamiltonian via Pontryagin’s
Maximum Principle on an enlarged phase space, and then
restricting the resulting canonical Hamilton equations to an
appropriate invariant submanifold of the enlarged phase space.
We illustrate the method through several examples, and discuss
its relationship to the integrability of the system, and its
quantization.

I. INTRODUCTION

One of the hallmarks of continuous optimal control prob-

lems is that, under certain regularity assumptions, the opti-

mal Hamiltonian can be found by applying the Pontryagin

Maximum principle [4]. Moreover, in most cases of physical

interest, the problem can be rephrased so as to be solved by

using Lagrange multipliers [4]. Such a usage of the multiplier

approach can also be applied to the mechanics of constrained

physical systems with success in the case of holonomic

(position dependent) constraints. On the other hand, many

interesting mechanical systems are subject to additional

velocity-dependent (i.e. nonholonomic) constraints. Typical

engineering problems that involve nonholonomic constraints

arise for example in robotics, where the wheels of a mobile

robot are often required to roll without slipping, or where

one is interested in guiding the motion of a cutting tool. In

many cases the solution of these systems cannot be obtained

analytically, and one can only analyze the systems by means

of its qualitative and geometric features. Unfortunately, in

the case of these nonholonomically constrained systems the

Lagrange multiplier approach, also called the vakonomic

approach by Arnold [2], generally leads to dynamics that do

not reproduce the physical equations of motion (see [19] and

references therein). Thus, the rich interplay between Pontrya-

gin’s Maximum Principle, the vakonomic approach, and the

physical equations of motion of a constrained system breaks

down when the constraints are nonholonomic. However as

we showed in a previous paper [12], for certain systems

and initial data the vakonomic approach and Lagrange-

D’Alembert principle yield equivalent equations of motion.

The purpose of the current work is to close the gap left

open in the relationship between Pontryagin’s Maximum

Principle and nonholonomically constrained systems. The
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main result is that for certain systems belonging to a class

different from those considered in [12], we can recover

the nonholonomic equations of motion by instead finding

a Hamiltonian via Pontryagin’s Maximum Principle on an

enlarged phase space, and then restricting the resulting

canonical Hamilton equations to an appropriate invariant sub-

manifold of the enlarged phase space. In essence, the method

we introduce here results in an unconstrained, variational

system which when restricted to an appropriate submanifold

reproduces the dynamics of the underlying nonholonomic

system. The idea of enlarging the phase space of the system

is not new, appearing rather naturally in the theory of

singular Lagrangians with constraints and the resulting Dirac

constraint theory [15], and also in some other works [10],

[1]. However, unique to our method is the identification of

the problem with one of optimal control, and an intriguing

relationship to integrability and stability questions of the

underlying nonholonomic system.

The paper is divided into four basic parts. We review the

necessary background in nonholonomic mechanics in Section

1, introducing the dynamics on the constraint manifold M.

In Section 2 we introduce a class of systems for which

our newly introduced method reproduces the nonholonomic

dynamics. We then apply the main result of Section 2 to

various examples in Section 3. In Section 4 we discuss the

relationship of our method to questions of integrability of

the momentum equations of the underlying nonholonomic

system. Lastly, we outline some further avenues for research

in the Conclusion.

II. NONHOLONOMIC MECHANICS

Nonholonomic mechanics takes place on a configuration

space Q with a nonintegrable distribution D that describes

the kinematic constraints of interest. These constraints are

often given in terms of independent one-forms, whose

vanishing in turn describes the distribution. Moreover, we

typically choose a bundle and an Ehresmann connection

A on that bundle such that D is given by the horizontal

subbundle associated with A. One then derives the equations

of motion using the Lagrange-d’Alembert principle, which

takes into account the need for reaction forces that enforce

the constraints throughout the motion of the system.

To this end, let {ωa} be a set of m independent one-forms

whose vanishing describes the constraints on the system.

Locally, we can write

ωk(q) = dsk + Ak
α(r, s)drα, k = 1, . . . ,m, (1)



where q = (r, s) ∈ R
n−m × R

m. In these coordinates we

can choose the bundle to be that given by (s, r) 7→ r, and

the connection is, in this choice of bundle, defined by the

constraints. Moreover, the distribution D is given by

D = span{∂rα − Ak
α∂sk}. (2)

One can then form the constrained Lagrangian

Lc(q, q̇) = L(q, hor q̇) (3)

where hor q̇ is the horizontal projection given in coordinates

by (ṙα, ṡk) 7→ (ṙα,−Ak
α(r, s)ṙα). Given these data, one

can write down the constrained Hamilton Equations on the

constraint phase space M := FL(D) ⊂ T ∗Q [4], [25]:

ṙα =
∂Hc

∂p̃α
, (4)

ṡk = −Ak
β

∂Hc

∂p̃β
, (5)

˙̃pα = −∂Hc

∂rα
+ Ak

α

∂Hc

∂sk
− Kγ

l p̃γBl
αβ

∂Hc

∂p̃β
, (6)

where Kγ
l is defined by (glα − glkAk

α)∂Hc/∂p̃α = Kγ
l p̃γ ,

with the gij the components of the kinetic energy metric of

the unconstrained Lagrangian, Bl
αβ is the curvature of the

connection, Hc = p̃αṙα−Lc is the constrained Hamiltonian,

and p̃α = pα−pkAk
α. These are a set of 2n−m equations on

the submanifold M with induced coordinates (rα, sk, p̃α),
and are manifestly non-Hamiltonian, a reflection of the

fact that the presence of nonholonomic constraints induces

additional forces that enforce those constraints.

III. THE MAXIMUM PRINCIPLE AND NONHOLONOMIC

MECHANICS

In traditional investigations of the inverse problem of the

calculus of variations [24], one is interested in whether or not

a given system of differential equations is actually the Euler-

Lagrange equations of some yet undetermined Lagrangian.

Thus the objective is: given the equations of motion, attempt

to construct an appropriate Lagrangian that reproduces them.

For nonholonomic systems we know this is not possible,

since these types of systems are not variational [4]. However,

in [5] we explore a method that allows one to preserve much

of the above reasoning.

In this paper, we will take a different approach: given the

solutions to the equations of motion, attempt to construct a

Hamiltonian H and a set C such that the canonical equations

of H restricted to C reproduce the nonholonomic mechanics.

Said differently, we are looking for a Hamiltonian vector field

X and a subset C of its phase space such that X|C = XM,

the nonholonomic vector field. Below we introduce a method

which accomplishes this by identifying the problem with one

of optimal control and applying the Pontryagin Maximum

Principle. We then later apply the results to some well known

nonholonomic systems considered in [1] and [4].

To begin, suppose that we have a nonholonomic system

with configuration manifold Q. Consider the special class of

systems whose equations of motion (4)-(6) have solutions

given by

qa = uat + ba, a = 1, . . . , J, (7)

qi = uihi(qa) + bi, i = J + 1, . . . ,m (8)

qα = cα(ua, ui)hα(qa) + bα, α = 1, . . . n − m (9)

where the u’s and b’s are constants dependent on the initial

conditions. Differentiating the system (7)-(9) with respect to

time yields:

q̇a = ua, q̇i = hijaujua, (10)

q̇α = hαβacβua, (11)

where we have adopted the notation hij = hiδij , hija =
∂hij/∂qa and employed Einstein’s summation convention.

Now, consider the optimal control problem with cost

function

G(q, u) =
1

2
(δabuaub + hijauiujua + hαβauαuβua), (12)

subject to the constraints (10), and the following variation of

(11):

q̇α = hαβauβua. (13)

Accordingly, we can form the Hamiltonian

H(q, p, u) = paua + pihijaujua

+pαhαβauauβ − G(q, u), (14)

and applying Pontryagin’s Maximum Principle [4], the opti-

mality conditions ∂H/∂ua = 0, ∂H/∂ui = 0, ∂H/∂uα = 0
yield the optimal controls

u∗

a = pa +
1

2
(hijapipj + hαβapαpβ),

u∗

i = pi,

u∗

α = pα. (15)

Substituting this into (14) yields the Hamiltonian H∗(q, p) =
H(q, p, u∗), where

H∗(q, p) =
1

2

J
∑

a=1

[

pa +
1

2
(hijapipj + hαβapαpβ)

]2

.

(16)

Now, by taking the resulting dynamics from the Hamilton

equations corresponding to (16) and restricting to the sub-

manifold of T ∗Q defined by

pα = cα(u∗

a(q, p), pi), (17)

we recover the nonholonomic problem equations (10)-(11).

The above derivation forms the basis for the main result.



Proposition 1: Suppose the solutions of a nonholonomic

system with configuration manifold Q have the form (7)-

(9). Then the canonical equations associated with the Hamil-

tonian (16), when restricted to the invariant submanifold

C ⊂ T ∗Q defined by (17), reproduce the nonholonomic

solutions (7)-(9).

Proof: It suffices to show that the canonical equations

when restricted to C reproduce (10)-(11). The canonical

equations are given by:

q̇a = pa +
1

2
(hijapipj + hαβapαpβ), (18)

q̇i = hijapj q̇a,

q̇α = hαβapβ q̇a,

ṗa = −q̇b
∂

∂qb

[

1

2
(hijapipj + hαβapαpβ)

]

, (19)

ṗi = ṗα = 0. (20)

However, (19) can be re-written as

d

dt

[

pa +
1

2
(hijapipj + hαβapαpβ)

]

= 0. (21)

This verifies that the right-hand side of (18) is indeed con-

stant, as are the pi and pα by (20). Lastly, imposing condition

(17) in (18)-(20) gives back the kinematic equations (10)-

(11), and by (20) we see at once that this submanifold is

indeed invariant under the motion of the system. �

IV. EXAMPLES

A. The Nonholonomic Free Particle

To illustrate the method, consider perhaps the simplest

example: a nonholonomically constrained free particle (more

details can be found in [4], [23]). In this example one has a

free particle with Lagrangian and constraint given by

L = 1

2

(

ẋ2 + ẏ2 + ż2
)

ż + xẏ = 0. (22)

We can form the constrained Lagrangian Lc by substi-

tuting the constraint into L, and proceed to compute the

constrained equations (4)-(6), which take the form

ẋ = p̃x, ˙̃px = 0,

ẏ =
p̃y

1 + x2
, ˙̃py =

xp̃xp̃y

1 + x2
,

ż = − xp̃y

1 + x2
. (23)

These equations have the solution

x = u1t + x0, (24)

y = u2 ln
(

x +
√

1 + x2

)

+ y0, (25)

z = −u2

√

1 + x2 + z0, (26)

where u1,2 and x0, y0, z0 are constants dependent on the

initial conditions. Now, differentiating (24)-(26) in time

yields the system:

ẋ = u1 (27)

ẏ =
u1u2√
1 + x2

, (28)

ż = − xu1u2√
1 + x2

. (29)

Considering the optimal control problem with cost function

L =
1

2

[

u2

1
+

u1√
1 + x2

(

u2

2
+ xu2

3

)

]

(30)

and subject to (27)-(28) and

ż =
xu1u3√
1 + x2

. (31)

we can apply the Maximum Principle to arrive at the Hamil-

tonian

H =
1

2

[

px +
1

2
√

1 + x2

(

p2

y + xp2

z

)

]2

. (32)

Moreover, an easy calculation shows that by restricting the

dynamics from (32) to the submanifold

py + pz = 0, (33)

one indeed recovers the nonholonomic trajectories given

by (24)-(26), taking into account the fact that since (32)

is independent of y, z, then the restriction (33) is indeed

constant in time.

B. The Knife Edge on the Plane

The knife edge on the plane corresponds physically to a

blade moving in the xy plane at an angle φ to the x-axis (see

[21]). The Lagrangian and constraints for the system are:

L = 1

2
m(ẋ2 + ẏ2) + 1

2
Jφ̇2,

ẋsinφ − ẏcosφ = 0, (34)

where J is the moment of inertia of the blade about a vertical

axis through the point of contact. Calculating the constrained

equations yields:

φ̇ =
1

J
p̃φ, ˙̃pφ = 0,

ẋ =
1

m
p̃xcos2φ, ˙̃px =

1

J
p̃xp̃φtanφ,

ẏ =
1

m
tanφcos2φp̃x. (35)

Now, the solution to these equations is given by [21]

φ = u1t + φ0,

x = u2sinφ + x0,

y = −u2cosφ + y0, (36)



where u1,2 and q0 depend on the initial conditions, and

where we have absorbed m, J into the constants u1,2.

Proposition 1 again applies and yields the Hamiltonian and

constraint:

H = 1

2

[

pφ + 1

2

(

p2

xcosφ − p2

ysinφ
)]2

,

px + py = 0. (37)

C. The Vertical Rolling Disk

The vertical rolling disk is a homogeneous disk rolling

without slipping on a horizontal plane (see [4]). The system

has the Lagrangian and constraints given by

L = 1

2
m(ẋ2 + ẏ2) + 1

2
Iθ̇2 + 1

2
Jϕ̇2,

ẋ = R(cosϕ)θ̇,

ẏ = R(sinϕ)θ̇, (38)

and the constrained equations of motion are:

θ̇ =
p̃θ

Ĩ
, ˙̃pθ = 0

ϕ̇ =
p̃ϕ

J
, ˙̃pϕ = 0

ẋ =
R

Ĩ
cos ϕp̃θ,

ẏ =
R

Ĩ
sin ϕp̃θ, (39)

where Ĩ = I + mR2. These equations have the immediate

solutions

θ = u1t + θ0,

ϕ = u2t + ϕ0,

x =

(

u1

u2

)

sinϕ + x0,

y =

(

−u1

u2

)

cosϕ + y0, (40)

where again we have absorbed the system’s parameters into

u1,2. The system has the form of Proposition 1, and in this

case we have uα = u3,4, where u3 = u1/u2, and u4 =
−u1/u2, or equivalently, u3 + u4 = 0. Now, by applying

Proposition 1 the optimal controls (15) turn out to be:

u∗
1

= pθ, u∗
3

= px, u∗
4

= py, (41)

u∗
2

= pϕ + 1

2

(

p2

xcosϕ − p2

ysinϕ
)

. (42)

Thus, the resulting H and C are:

H = 1

2

[

p2

θ +
{

pϕ + 1

2

(

p2

xcosϕ − p2

ysinϕ
)}2

]

,

px + py = 0,

px

{

pϕ + 1

2

(

p2

xcosϕ − p2

ysinϕ
)}

− pθ = 0. (43)

V. RELATED RESEARCH DIRECTIONS AND

CONCLUSIONS

Proposition 1 represents a new link between the fields

of optimal control, where equations are derived from a

Hamiltonian, and nonholonomic mechanics, where equations

are derived from a Hamiltonian and constraint reaction

forces. The Proposition shows that by combining elements

of both derivations, for certain systems one can formulate

the mechanics in a form analogous to the treatment of

constraints arising from singular Lagrangians that leads to

the Dirac theory of constraints [15]. Moreover, two important

bi-products of our method have emerged which we are

currently researching: applications to the quantization of

nonholonomic systems [13], and applications to integrability

[14].

A. Quantization of Nonholonomic Systems

Dirac’s theory allows for the quantization of constrained

systems wherein the constraints typically arise from a singu-

lar Lagrangian (see [18] and references therein), and central

to the method is the modification of the Hamiltonian to

incorporate so-called first and second class constraints. The

method proposed in this paper provides an analogue to

Dirac’s theory and allows for the quantization of certain

nonholonomic systems by similarly modifying the usual

Hamiltonian.

Although there have already been some attempts to quan-

tize nonholonomic systems [6], [8], [1], [17], [22], the results

have been mixed, mainly due to the inherent difficulties

arising in the quantization procedure. However, taking the

knife edge on the plane as an example, in view of (37) the

quantum Hamiltonian Ĥ has the form

Ĥ = −~
2

2

[

∂

∂φ
− i

~

2

(

cos φ
∂2

∂x2
− sin φ

∂2

∂y2

)]2

, (44)

which is a Hermitian operator. We also see at once that since

Ĥ is independent of x and y, it commutes with p̂x and p̂y ,

making the task of finding the eigenfunctions easier [13].

Moreover, one can show [13] that φ is quantized due to its

periodicity, which makes finding the eigenenergies easier.

Treating the constraints is the difficult part. There have in

the literature been essentially two different ways to impose

the quantum version of (37) in this case: strongly and weakly.

One may require that the quantum version of (37) hold

strongly by restricting the set of possible eigenstates of (44)

to those which satisfy the quantum version of (37). On

the other hand, one may only require that the eigenstates

satisfy the quantum version of (44) on average, a weaker

condition but arguably a more physically relevant viewpoint

also advocated in [17], [1]. Details will be given in [13].

B. Nonholonomic Phase Space Transformations

Although recent authors [16], [3] have been developing

Hamilton-Jacobi theory for nonholonomic systems with great

success, many fundamental questions remain. For example,

it is well known that the flow of a general nonholonomic



system does not consist of canonical transformations [4],

and as such the task of transforming coordinates in phase

space to achieve a certain transformed Hamiltonian, as is

usually done to arrive at the Hamilton-Jacobi equation in

the unconstrained case, is made more difficult. However,

common to all the examples in Section 3 is the fact that

the momentum equations are integrable. In the most obvious

case, that of the momentum equations of the vertical disk

(39), the momenta are in fact constant in time.

Although we have yet to focus on this point, let us recall

the origin of the invariant submanifold C, equations (17).

Within the context of the assumed solutions (4)-(6), the

substitution (17) amounts to the claim that the newly defined

momenta pi are constant in time, as are then the pα, being

defined as they are in (17). Thus emerges another avenue

for constructing the Hamiltonian (16): if one can find a

coordinate transformation taking p̃ → p such that ṗI = 0∀I ,

then the constrained equations of motion (4)-(6) will be

transformed into a kinematic set, that is, a set of n equations

for which the conjugate momenta are all constant in time. In

these cases the problem is then reduced to a set of equations

of the form (10)-(11) [14]. From there we can essentially

apply the same procedure leading up to Proposition 1 to

obtain H and M, with minor modifications.

The advantage of such an alternative is that one would no

longer require the solutions to the nonholonomic system to

find H and C. One case in which this direction seems to work

rather well is when the momentum equations are integrable

[4], [27]. To illustrate this, consider again the nonholonomic

free particle with constrained equations of motion (23). One

can easily show that the momentum equations are integrable,

with p̃x = u1, and p̃y = k
√

1 + x2, where u1, k are

constants. Consider now the transformation p̃ → p given

by:

p̃x = u1,

p̃y = u1py

√

1 + x2. (45)

Under this transformation, equations (23) become:

ẋ = u1, u̇1 = 0, (46)

ẏ =
u1py√
1 + x2

, ṗy = 0, (47)

ż = − u1xpy√
1 + x2

. (48)

From here, we can define pz = −py as in (17) and repeat

the earlier procedure from Proposition 1 to arrive at the

Hamiltonian and constraint (32)-(33) as before.

Lastly, we expect the existence of such transformations

to relate to the existence of an invariant measure for the

constrained dynamics [14]. One can show [7] that the non-

holonomic free particle’s constrained dynamics (23) have an

invariant measure with density k =
(

1 + x2
)1/2

, which is the

factor used in (45) to effect the phase space transformation.

One can also show [14] that there exists a similar relationship

between the constrained system’s invariant measure density

and the corresponding phase space transformation.
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