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1 Introduction

Routh’s procedure, in its original form (as described in his treatise [13]), was concerned with
eliminating from a Lagrangian problem the generalized velocities corresponding to so-called
ignorable or cyclic coordinates. Let L be a Lagrangian on Rn that does not explicitly depend
on m of its base variables, say the coordinates θa. From the Euler-Lagrange equations for these
coordinates,

d

dt

(
∂L

∂θ̇a

)
− ∂L

∂θa
= 0,

we can immediately conclude that the functions ∂L/∂θ̇a are constants, say

∂L

∂θ̇a
= πa;

these equations express the conservation of generalized momentum. Routh’s idea is to solve
these equations for the variables θ̇a and to introduce what he calls the ‘modified Lagrangian
function’, the restriction of the function

L′ = L− ∂L

∂θ̇a
θ̇a

to the level set where the momentum is πa. One can easily verify that the (n−m) Euler-Lagrange
equations for the remaining variables xi can be rewritten as

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 ⇒ d

dt

(
∂L′

∂ẋi

)
− ∂L′

∂xi
= 0.
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For example, if the Lagrangian takes the form

L(x, θ, ẋ, θ̇) = 1
2kij(x)ẋiẋj + kia(x)ẋiθ̇a + 1

2kab(x)θ̇aθ̇b − V (x),

the conservation of momentum equations read kiaẋ
i + kabθ̇

b = πa, and they can be solved for
the variables θ̇a if (kab) is a non-singular matrix. The modified Lagrangian function is

L′(x, ẋ) = 1
2(kij − kabkiakjb)ẋiẋj + kabkiaπbẋ

i − (V + 1
2kabπaπb),

where kab denotes a component of the matrix inverse to (kab), in the usual way. Clearly, the
advantage of this technique is that the reduced equations in L′ involve only the unknowns xi

and ẋi; they can in principle be directly solved for the xi, and the θa may then be found (if
required) from the momentum equation.

A modern geometric interpretation of this reduction procedure can be found in e.g. [8]. The above
Lagrangian L is of the form T − V , where the kinetic energy part is derived from a Riemannian
metric (i.e. we are dealing with a so-called simple mechanical system). The function L is defined
on the tangent manifold of a manifold of the form M = S×G (in this case Rn) and it is invariant
under an Abelian Lie group G (in this case the group of translations Rm). The main feature
of the procedure is that the modified Lagrangian function and its equations can be defined in
terms of the coordinates on S only. However, to give the definition of the modified function an
intrinsic meaning, we should define this function, from now on called the Routhian, rather as
the restriction to a level set of momentum of

R = L− ∂L

∂θ̇a
(θ̇a + Λa

i ẋ
i),

with Λa
i = kabkib, i.e.

R(x, ẋ) = 1
2(kij − kabkiakjb)ẋiẋj − (V + 1

2kabπaπb).

The coefficients Λa
i form a connection on the trivial principal bundle M = S ×G → S, usually

called the mechanical connection, and θ̇a + Λa
i ẋ

i is in fact the vertical projection of the vector
(ẋi, θ̇a). The (n−m) Euler-Lagrange equations in xi then become

d

dt

(
∂R
∂ẋi

)
− ∂R

∂xi
= −Ba

ijπaẋ
j ,

where in the term on the right-hand side

Ba
ij =

∂Λa
i

∂xj
− ∂Λa

j

∂xi

has a coordinate-free interpretation as the curvature of the connection.

In [9, 10], Marsden et al. extended the above procedure to the case of simple mechanical systems
with a non-Abelian symmetry group G and where the base manifold has a principal bundle
structure M → M/G. The procedure has recently been further extended to cover Lagrangian
systems in general by Castrillon-Lopez [1].

The most important contribution of our paper lies in the geometric formalism we will adopt.
The bulk of the literature dealing with different types of reduction of Lagrangian systems has
relied heavily on methods coming from the calculus of variations. In fact, as in e.g. [1, 5, 10], the
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reduced equations of motion are usually obtained by considering some reduced version of Hamil-
ton’s principle. Our method is different from those of other authors in that it doesn’t involve
consideration of variations. It is distinctively Lagrangian (as opposed to Hamiltonian), and is
based on the geometrical analysis of regular Lagrangian systems, where solutions of the Euler-
Lagrange equations are interpreted as integral curves of an associated second-order differential
equation field on the velocity phase space, that is, the tangent manifold of the configuration
space. Consequently our derivation of Routh’s equations is relatively straightforward and is
a natural extension of that used by Routh in the classical case. In particular, we will show
how Routh’s equations can be derived directly from the Euler-Lagrange equations by choos-
ing a suitable adapted frame, or equivalently by employing well-chosen quasi-velocities. This
line of thinking has already provided some new insights into e.g. the geometry of second-order
differential systems with symmetry [3].

We deal from the beginning with arbitrary Lagrangians, i.e. Lagrangians not necessarily of the
form T − V .

As in [10], we explain how solutions of the Euler-Lagrange equations with a fixed momentum can
be reconstructed from solutions of the reduced equations. The method relies on the availability
of a principal connection on an appropriate principal fibre bundle. We will introduce in fact two
connections that serve the same purpose.

We describe the basic features of our approach in Section 2. The reduction of a Lagrangian
system to a level set of momentum is discussed in Section 3, and our generalization of Routh’s
procedure is explained there. Section 4 contains some general remarks about using a principal
connection to reconstruct an integral curve of a dynamical vector field from one of a reduction
of it. In Section 5 we describe the two principal connections that can be used in the specific
reconstruction problem we are concerned with, while in Section 6 we carry out the reduction in
detail, first in the Abelian case, then in general. In Section 7 we specialize to simple mechanical
systems, in order to compare our results with those published elsewhere. We conclude the paper
with a couple of illustrative examples.

2 Preliminaries

We will be concerned with Lagrangian systems admitting non-Abelian (that is to say, not nec-
essarily Abelian) symmetry groups. We begin by explaining what assumptions we make about
the action of a symmetry group.

We will suppose that ψM : G×M → M is a free and proper left action of a connected Lie group
G on a manifold M . It should be noticed from the outset that this convention differs from the
one in e.g. [3, 6], but resembles the one taken in e.g. [8, 10].

With such an action, M is a principal fibre bundle with group G; we write M/G for the base
manifold and πM : M → M/G for the projection. We denote by g the Lie algebra of G. For any
ξ ∈ g, ξ̃ will denote the corresponding fundamental vector field on M , that is, the infinitesimal
generator of the 1-parameter group ψM

exp(tξ) of transformations of M . The Lie bracket of two

fundamental vector fields satisfies [ξ̃, η̃] = − ˜[ξ, η] (see e.g. [8]). Since G is connected, a tensor
field on M is invariant under the action of G if and only if its Lie derivatives by all fundamental
vector fields vanish. In particular, a vector field X on M is invariant if and only if [ξ̃, X] = 0
for all ξ ∈ g. We will usually work with a fixed basis for g, which we denote by {Ea}; then for
X to be invariant it is enough that [Ẽa, X] = 0, a = 1, 2, . . . ,dim(g).
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We suppose that we have at our disposal a principal connection on M . For the most part it will
be convenient to work with connections in the following way. A connection is a left splitting of
the short exact sequence

0 → M × g → TM → (πM)∗T (M/G) → 0

of vector bundles over M ; we identify M × g with the vertical sub-bundle of TM → M by
(m, ξ) 7→ ξ̃|m. Thus we may think of a connection as a type (1, 1) tensor field ω on M which is a
projection map on each tangent space, with image the tangent to the fibre of πM . The connection
is principal just when ω is invariant, that is, when Lξ̃ω = 0 for all ξ ∈ g. The kernel distribution
of ω is the horizontal distribution of the connection. An alternative test for invariance of the
connection is that its horizontal distribution should be invariant (as a distribution); that is,
for any horizontal vector field X, [ξ̃, X] is also horizontal for all ξ. We will often refer to a
connection by the symbol of the corresponding tensor field.

Let {Xi} be a set of local vector fields on M which are linearly independent, horizontal with
respect to ω and invariant. Such a set of vector fields consists of the horizontal lifts of a local
basis of vector fields on M/G, and in particular we may take for the Xi the horizontal lifts of
coordinate fields on M/G. We then have a local basis {Xi, Ẽa} of vector fields on M . We will
very often work with such a basis, which we call a standard basis. The Lie brackets of pairs of
vector fields in a standard basis are

[Xi, Xj ] = Ra
ijẼa, [Xi, Ẽa] = 0, [Ẽa, Ẽb] = −Cc

abẼc.

The Ra
ij are the components of the curvature of ω, regarded as a g-valued tensor field. The

second relation simply expresses the invariance of the Xi. In the third expression the Cc
ab are

structure constants of g with respect to the chosen basis.

It will sometimes be convenient to have also a basis {Xi, Êa} that consists entirely of invariant
vector fields. Let U ⊂ M/G be an open set over which M is locally trivial. The projection
πM is locally given by projection onto the first factor in U × G → U , and the (left) action by
ψM

g (x, h) = (x, gh). The vector fields on M defined by

Êa : (x, g) 7→ ˜(adg Ea)(x, g) = ψTM
g (Ẽa(x, e)).

(where e is the identity of G) are invariant. The relation between the sets {Êa} and {Ẽa} can
be expressed as Êa(x, g) = Ab

a(g)Ẽb(x, g) where (Ab
a(g)) is the matrix representing adg with

respect to the basis {Ea} of g. In particular, Ab
a(e) = δb

a. Since [Ẽa, Êb] = 0, the coefficients Ab
a

have the property that Ẽa(Ac
b) = Cc

adAd
b .

We revert to consideration of a standard basis. We define the component 1-forms ωa of the
tensor field ω by ω = ωaẼa. Then ωa(Xi) = 0, ωa(Ẽb) = δa

b . Thus the ωa comprise part of the
basis of 1-forms dual to the standard basis. We denote by ϑi the remaining 1-forms in the dual
basis.

Most of the objects of interest, such as the Lagrangian and the corresponding Euler-Lagrange
field Γ, live on the tangent manifold of M , which we denote by τ : TM → M . We recall that
there are two canonical ways of lifting a vector field, say Z, from M to TM . The first is the
complete or tangent lift, ZC, whose flow consists of the tangent maps of the flow of Z. The
second is the vertical lift, ZV, which is tangent to the fibres of τ and on the fibre over m coincides
with the constant vector field Zm. We have Tτ(ZC) = Z while Tτ(ZV) = 0. Moreover, TM is
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equipped with a canonical type (1, 1) tensor field called the vertical endomorphism and denoted
by S, which is essentially determined by the facts that S(ZC) = ZV and S(ZV) = 0. For more
details on this material, see e.g. [4, 16]. The set {XC

i , ẼC
a , XV

i , ẼV
a }, consisting of the complete

and vertical lifts of {Xi, Ẽa}, forms a local basis of vector fields on TM .

Let {Zα} be a local basis of vector fields on M , and {θα} the dual basis of 1-forms. These 1-forms
define fibre-linear functions ~θa on TM , such that for any u ∈ TmM , u = ~θa(u)Zα(m). These
functions are therefore the components of velocities with respect to the specified vector-field
basis. We may use these functions as fibre coordinates. Coordinates of this type are sometimes
called quasi-velocities, and we will use this terminology. In the case of interest we have a standard
basis {Xi, Ẽa} and its dual {ϑi, ωa}; we denote the corresponding quasi-velocities by vi = ~ϑi,
va = ~ωa.

We will need to evaluate the actions of the vector fields XC
i , ẼC

a , XV
i and ẼV

a on vi and va. Now
for any vector field Z and 1-form θ on M ,

ZC(~θ) = −−→LZθ, ZV(~θ) = τ∗θ(Z).

Most of the required results are easy to derive from these formulae. The only tricky calculation
is that of XC

i (~ωa), for which we need the Lie derivative of a connection form by a horizontal
vector field. We have

(LXiω
a)(Ẽb) = Xi(δa

b )− ωa([Xi, Ẽb]) = 0,

(LXiω
a)(Xj) = −ωa([Xi, Xj ]) = −Ra

ij ;

in the first we have used the invariance of the horizontal vector fields. In summary, the relevant
derivatives of the quasi-velocities are

XC
i (vj) = 0, XV

i (vj) = δj
i , XC

i (va) = −Ra
ijv

j , XV
i (va) = 0,

ẼC
a (vi) = 0, ẼV

a (vi) = 0, ẼC
a (vb) = Cb

acv
c, ẼV

a (vb) = δb
a.

Finally, we list some important Lie brackets of the basis vector fields:

[ẼC
a , XC

i ] = [Ẽa, Xi]C = 0, [ẼC
a , XV

i ] = [Ẽa, Xi]V = 0,

[ẼC
a , ẼC

b ] = [Ẽa, Ẽb]C = −Cc
abẼ

C
c , [ẼC

a , ẼV
b ] = [Ẽa, Ẽb]V = −Cc

abẼ
V
c .

3 The generalized Routh equations

We begin by explaining, in general terms, how we will deal with the Euler-Lagrange equations.

Consider a manifold M , with local coordinates (xα), and its tangent bundle τ : TM → M ,
with corresponding local coordinates (xα, uα). A Lagrangian L is a function on TM ; its Euler-
Lagrange equations,

d

dt

(
∂L

∂uα

)
− ∂L

∂xα
= 0,

comprise a system of second-order ordinary differential equations for the extremals; in general
the second derivatives ẍα are given implicitly by these equations. We say that L is regular if its
Hessian with respect to the fibre coordinates,

∂2L

∂uα∂uβ
,
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considered as a symmetric matrix, is everywhere non-singular. When the Lagrangian is regular
the Euler-Lagrange equations may be solved explicitly for the ẍα, and so determine a system of
differential equations of the form ẍα = fα(x, ẋ). These equations can in turn be thought of as
defining a vector field Γ on TM , a second-order differential equation field, namely

Γ = uα ∂

∂xα
+ fα ∂

∂uα
;

we call this the Euler-Lagrange field of L. The Euler-Lagrange equations may be written

Γ
(

∂L

∂uα

)
− ∂L

∂xα
= 0,

and when L is regular these equations, together with the assumption that it is a second-order
differential equation field, determine Γ.

This is essentially how we will deal with the Euler-Lagrange equations throughout: that is, we
will assume that L is regular and we will work with the Euler-Lagrange field Γ, and with the
Euler-Lagrange equations in the form given above. However, we need to be able to express those
equations in terms of a basis of vector fields on M which is not necessarily of coordinate type.
It is easy to see that if {Zα} is such a basis then the equations

Γ(ZV
α (L))− ZC

α(L) = 0

are equivalent to the Euler-Lagrange equations. The fact that Γ is a second-order differential
equation field means that it takes the form

Γ = wαZC
α + ΓαZV

α

where the wα are the quasi-velocities corresponding to the basis {Zα}.
We now build in the assumption that L has a symmetry group G, which acts in such a way that
M is a principal bundle with G as its group, as we described above. We will suppose that the
Lagrangian is invariant under the induced action of G on TM . This tangent action is defined by
the collection of transformations ψTM

g = TψM
g on TM , g ∈ G. By construction, the fundamental

vector fields for this induced action are the complete lifts of the fundamental vector fields of the
action on M ; the invariance of the Lagrangian can therefore be characterized by the property
ẼC

a (L) = 0. We have shown in [11] that if L is invariant, then so also is Γ, which is to say that
[ẼC

a , Γ] = 0.

We choose a principal connection on M , and a basis of vector fields {Xi, Ẽa} adapted to it (a
standard basis), as described above. Then the Euler-Lagrange equations for L are

Γ(XV
i (L))−XC

i (L) = 0
Γ(ẼV

a (L))− ẼC
a (L) = 0.

But by assumption ẼC
a (L) = 0: it follows immediately that Γ(ẼV

a (L)) = 0. So the functions
ẼV

a (L) are first integrals, which clearly generalize the momenta conjugate to ignorable coordi-
nates in the classical Routhian picture. We write pa for ẼV

a (L). The Euler-Lagrange field is
tangent to any submanifold pa = µa = constant, a = 1, 2, . . . ,dim(g), that is, any level set of
momentum. By a well-known argument (see e.g. [8]), we may regard (x, v) 7→ (pa(x, v)) as a
map from TM to g∗, the dual of the Lie algebra g, and this map is equivariant between the
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given action of G on TM and the coadjoint action of G on g∗ (the coadjoint action is defined
as 〈ξ, ad∗g µ〉 = 〈adg ξ, µ〉). We have

ẼC
a (pb) = ẼC

a ẼV
b (L) = [ẼC

a , ẼV
b ](L) = −Cc

abẼ
V
c (L) = −Cc

abpc,

which expresses this result in our formalism.

We will also need a less coordinate-dependent version of the Hessian. In fact the Hessian of L
at w ∈ TM is the symmetric bilinear form g on TmM , m = τ(w), given by g(u, v) = uVvV(L),
where the vertical lifts are to w. We can equally well regard g as a bilinear form on the vertical
subspace of TwTM , by identifying u and v with their vertical lifts. The components of the
Hessian g with respect to our standard basis will be denoted as follows:

g(Ẽa, Ẽb) = gab, g(Xi, Xj) = gij , g(Xi, Ẽa) = gia = gai = g(Ẽa, Xi).

We also have gab = ẼV
a (pb), gia = XV

i (pa). In general these components are functions on TM , not
on M , and the Hessian should be regarded as a tensor field along the tangent bundle projection
τ : TM → M . We will assume throughout that L is regular, which means that g as a whole
is non-singular. Then Γ is uniquely determined as a second-order differential equation field on
TM .

We now turn to the consideration of Routh’s procedure. We call the function R on TM given
by

R = L− vapa

the Routhian. It generalizes in an obvious way the classical Routhian corresponding to ignorable
coordinates. The Routhian is invariant:

ẼC
b (vapa) = Ca

bcv
cpa − vaCc

bapc = 0,

whence the result.

We now consider the Euler-Lagrange equations Γ(XV
i (L))−XC

i (L) = 0. We wish to write these
equations in terms of the restriction of the Routhian to a level set of momentum, say pa = µa,
which we denote by Nµ. To do so, we need to work in terms of vector fields related to XC

i ,
XV

i and ẼC
a which are tangent to Nµ (in general there is no reason to suppose that these vector

fields themselves have this property, of course). To define the new vector fields we will assume
that the Lagrangian has an additional regularity property: we will assume that (gab) is non-
singular. (Note that if the Hessian is everywhere positive-definite then (gab) is automatically
non-singular.) Then there are coefficients Ab

i , Bb
i and Cb

a, uniquely defined, such that

(XC
i + Ab

i Ẽ
V
b )(pa) = XC

i (pa) + Ab
igab = 0

(XV
i + Bb

i Ẽ
V
b )(pa) = XV

i (pa) + Bb
i gab = 0

(ẼC
a + Cb

aẼ
V
b )(pc) = ẼC

a (pc) + Cb
agbc = 0.

The vector fields X̄C
i , X̄V

i and ĒC
a given by

X̄C
i = XC

i + Aa
i Ẽ

V
a

X̄V
i = XV

i + Ba
i ẼV

a

ĒC
a = ẼC

a + Cb
aẼ

V
b
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are tangent to each level set Nµ. (The notation is not meant to imply that the barred vector
fields are actually complete or vertical lifts.) We will need to know the coefficients explicitly
only in the case of Ba

i and Cb
a: in fact

Ba
i = −gabgib and Cb

a = gbcCd
acpd.

This is all carried out under the assumption that (gab) is non-singular. One has to make such
an assumption in the classical case in order to be able to solve the equations ∂L/∂θ̇a = µa for
the θ̇a. In the general case the non-singularity of (gab) is the condition for the level set Nµ to
be regular, i.e. to define a submanifold of TM of codimension dim(g). The vector fields ẼV

a are
transverse to all regular level sets, and the barred vector fields span the level sets. Thus on any
regular level set the bracket of any two of the barred vector fields is a linear combination of vector
fields of the same form. We want in particular to observe that this implies that [ĒC

a , X̄V
i ] = 0.

It is not difficult to see, using the known facts about the brackets of the unbarred vector fields,
that this bracket is of the form P aẼV

a ; this must satisfy P aẼV
a (pb) = P agab = 0, whence by

the regularity assumption P a = 0. In fact by similar arguments the brackets of the barred
vector fields just reproduce those of their unbarred counterparts, except that [X̄C

i , X̄V
j ] = 0. In

particular, [ĒC
a , ĒC

b ] = −Cc
abĒ

C
c . The ĒC

a therefore form an anti-representation of g, acting on
the level set Nµ (just as the Ẽa do on M).

We return to the expression of the Euler-Lagrange equations in terms of the Routhian. We will
need to evaluate the actions of X̄C

i and X̄V
i on va. Using the formulae in Section 2 we find that

X̄C
i (va) = (XC

i + Ab
i Ẽ

V
b )(va) = −Ra

ijv
j + Aa

i

X̄V
i (va) = (XV

i + Bb
i Ẽ

V
b )(va) = Ba

i .

We now set things up so that we can restrict to the submanifold Nµ easily. We have

XC
i (L) = X̄C

i (L)−Aa
i Ẽ

V
a (L)

= X̄C
i (L− vapa) + (−Ra

ijv
j + Aa

i )pa + vaX̄C
i (pa)−Aa

i pa

= X̄C
i (R)− paR

a
ijv

j ;

XV
i (L) = X̄V

i (L)−Ba
i ẼV

a (L)
= X̄V

i (L− vapa) + Ba
i pa + vaX̄V

i (pa)−Ba
i pa

= X̄V
i (R).

But Γ(XV
i (L))−XC

i (L) = 0, and Γ is tangent to the submanifold Nµ; thus if we denote by Rµ

the restriction of the Routhian to the submanifold (where it becomes L− vaµa) we have

Γ(X̄V
i (Rµ))− X̄C

i (Rµ) = −µaR
a
ijv

j .

On the other hand, if Γ is a second-order differential equation field such that Γ(ẼV
a (L)) = 0

and the above equation holds for all µa then Γ satisfies the Euler-Lagrange equations for the
invariant Lagrangian L.

We will refer to these equations as the generalized Routh equations.

Neither Rµ nor Γ is ĒC
a -invariant. They will however be invariant under those vector fields ξ̃C,

ξ ∈ g, which happen to be tangent to the level set Nµ. These are the vector fields for which
ξaẼC

a = ξaĒC
a , or ξaCc

abµc = 0. We will return to this issue in later sections.
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Note that since Γ satisfies Γ(pa) = 0 it may be expressed in the form

Γ = viX̄C
i + ΓiX̄V

i + vaĒC
a .

If the matrix-valued function X̄V
i X̄V

j (R) is non-singular, the reduced Euler-Lagrange equations
above will determine the coefficients Γi. We show now that this is always the case, under the
assumptions made earlier.

Recall that X̄V
i = XV

i + Ba
i ẼV

a is determined by the condition that X̄V
i (pa) = 0, and that

therefore Ba
i = −gabgib. We may regard Xi + Ba

i Ẽa as a vector field along the tangent bundle
projection, and X̄V

i really is the vertical lift of this vector field; we will accordingly denote it by
X̄i. Then

g(X̄i, Ẽa) = g(Xi, Ẽa) + Bb
i g(Ẽb, Ẽa) = gia + Bb

i gab = 0;

thus the X̄i span the orthogonal complement to the space spanned by the Ẽa with respect to the
Hessian of L. That is to say, the tangent space to a regular level set of momentum at any point
u ∈ TM intersects the tangent space to the fibre of TM → M at u in the subspace orthogonal
with respect to gu to the span of the ẼV

a . Moreover,

g(X̄i, X̄j) = gij + Ba
i gaj + Ba

j gia + Ba
i Bb

jgab

= gij − 2gabgiagjb + gacgbdgicgjdgab

= gij − gabgiagjb.

So this is the expression for the restriction of the Hessian of L to the subspace orthogonal to
that spanned by the Ẽa.

Now recall that X̄V
i (R) = XV

i (L). Thus

X̄V
i X̄V

j (R) = (XV
i − gabgibẼ

V
a )XV

j (L) = gij − gabgibgaj = g(X̄i, X̄j).

That is, the ‘Hessian’ of R (i.e. X̄V
i X̄V

j (R)) is just the restriction of the Hessian of L to the
subspace orthogonal to that spanned by the Ẽa. It follows that the bilinear form with compo-
nents ḡij = X̄V

i X̄V
j (R) must be non-singular. For suppose that there is some vector wj such

that ḡijw
j = 0; then g(X̄i, w

jX̄j) = 0 by assumption, and g(Ẽa, w
jX̄j) = 0 by orthogonality —

but then wjX̄j = 0 since g is assumed to be non-singular.

The sense in which the generalized Routh equations are ‘reduced’ Euler-Lagrange equations is
that (in principle at least) we can reduce the number of variables by using the equations pa = µa

to eliminate the quasi-velocities va. However, these variables appear explicitly in the expression
for Γ, so it may be considered desirable to rearrange the generalized Routh equations so that
they no longer appear. This can be done by changing the basis of vector fields on the level set
of momentum, as follows. The change is suggested by the fact that, notation notwithstanding,
S(X̄C

i ) 6= X̄V
i (where S is the vertical endomorphism). Let us, however, set

X̂C
i = X̄C

i + Ba
i ĒC

a :

then since S vanishes on vertical lifts,

S(X̂C
i ) = S(XC

i + Ba
i ẼC

a ) = XV
i + Ba

i ẼV
a = X̄V

i .

We write
Γ0 = viX̂C

i + ΓiX̄V
i ,
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so that
Γ = Γ0 + (viBa

i + va)ĒC
a .

We will examine the contribution of the term involving ĒC
a in Γ to the generalized Routh

equations. First we determine ĒC
a (R). Since ĒC

a (pb) = 0,

ĒC
a (R) = ĒC

a (L− vbpb) = Cb
apb − ĒC

a (vb)pb = Cb
apb − Cb

acpbv
c − Cc

aδ
b
cpb = −Cb

acpbv
c.

It follows that

ĒC
a (X̄V

i (R)) = X̄V
i (ĒC

a (R)) = −X̄V
i (Cb

acpbv
c) = −Cb

acpbB
c
i .

So setting Γ = Γ0 + (viBa
i + va)ĒC

a we have

Γ(X̄V
i (Rµ))− X̄C

i (Rµ) = Γ0(X̄V
i (Rµ)) + (vjBa

j + va)ĒC
a (X̄V

i (Rµ))− X̂C
i (Rµ) + Ba

i ĒC
a (Rµ)

= Γ0(X̄V
i (Rµ))− X̂C

i (Rµ)− (vjBa
j + va)Cb

acµbB
c
i −Ba

i Cb
acµbv

c

= Γ0(X̄V
i (Rµ))− X̂C

i (Rµ) + vjBa
j Bc

i C
b
acµb,

and the generalized Routh equations become

Γ0(X̄V
i (Rµ))− X̂C

i (Rµ) = −µa(Ra
ij + Bb

i B
c
jC

a
bc)v

j .

We may say that among the vector fields tangent to a level set of momentum it is X̄C
i + Ba

i ĒC
a ,

not X̄C
i , that really plays the role of the complete lift of X̄i. Be aware, however, that unless the

symmetry group is Abelian, Γ0 cannot be identified with a vector field on T (M/G). We will
return to this matter at the end of Section 5.

To end this section we give a coordinate expression for the generalized Routh equations in their
original form. For this purpose we take coordinates (xi) on M/G, and coordinates (xi, θa) on
M such that the θa are fibre coordinates; then (xi, θa, vi) are coordinates on Nµ, which is to say
that Nµ can be locally identified with M ×M/G T (M/G). We may write

Xi =
∂

∂xi
− Λa

i

∂

∂θa
, Ẽa = Kb

a

∂

∂θb

for suitable functions Λa
i and Kb

a on M . (We should note that the Kb
a are components of a

non-singular matrix at each point; moreover, the invariance property of the Xi can be expressed
in terms of the coefficients Λa

i and Kb
a; but we will not actually need either of these facts here.)

From the formulae for the action of complete and vertical lifts on quasi-velocities given at the
end of Section 2 we see that

X̄C
i (vi) = ĒC

a (vi) = 0, X̄V
i (vj) = δj

i .

Thus in terms of xi, θa and vi we can write

X̄C
i =

∂

∂xi
− Λa

i

∂

∂θa
, X̄V

i =
∂

∂vi
, ĒC

a = Kb
a

∂

∂θb
.

It is necessary to be a little careful: the coordinate vector field expressions are ambiguous,
since they can refer either to coordinates on TM or on Nµ. We emphasise that it is the latter
interpretation that is intended here. In view of the possibilities of confusion it will be useful to
have an explicit notation for the injection Nµ → TM : we denote it by ι. The non-singularity
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of (gab) ensures that, at least locally, we can rewrite the relation pa = µa for the injection
ι : Nµ → TM in the form va = ιa(xi, θa, vi), for certain functions ιa of the specified variables.

The restriction of the Euler-Lagrange field Γ to Nµ is

Γ = ιaĒC
a + viX̄C

i + (Γi ◦ ι)X̄V
i

= ιbKa
b

∂

∂θa
+ vi

(
∂

∂xi
− Λa

i

∂

∂θa

)
+ (Γi ◦ ι)

∂

∂vi

=
(
ιbKa

b − viΛa
i

) ∂

∂θa
+ vi ∂

∂xi
+ (Γi ◦ ι)

∂

∂vi
;

the equations for its integral curves are




ẋi = vi,
v̇i = Γi(x, θ, v),
θ̇a = ιb(x, θ, v)Ka

b (x, θ)− viΛa
i (x, θ).

These can be considered as a coupled set of first- and second-order equations,
{

ẍi = Γi(x, θ, ẋ),
θ̇a = ιb(x, θ, ẋ)Ka

b (x, θ)− ẋiΛa
i (x, θ).

With regard to the second of these equations, we point out that the expression for the velocity
variables θ̇a in terms of the quasi-velocities vi and va is just θ̇a = vbKa

b −viΛa
i . What turns these

identities into genuine differential equations is, in particular, substitution for the va in terms of
the other variables via the functions ιa — or in other words, restriction to Nµ.

The functions Γi may be determined from the generalized Routh equations. These may be
expressed as

d

dt

(
∂Rµ

∂vi

)
− ∂Rµ

∂xi
= −µaR

a
ij − Λa

i

∂Rµ

∂θa
.

In the light of the earlier remarks about the interpretation of coordinate vector fields, we point
out that substitution for va in terms of the other variables in this equation must be carried out
before the partial derivatives are calculated.

4 The reconstruction method

We have seen in Section 3 that Routh’s technique consists in restricting the Euler-Lagrange
equations to a level set of momentum Nµ. This procedure takes partial, but not necessarily
complete, account of the action of the symmetry group G. To make further progress we must
examine the residual action of G on Nµ.

As we mentioned before, the momentum map is equivariant between the induced action of G on
TM and the coadjoint action of G on g∗. The submanifold Nµ is therefore invariant under the
isotropy group Gµ = {g ∈ G | ad∗g µ = µ} of µ. The algebra gµ of Gµ consists of those ξ ∈ g

such that ξbCc
abµc = 0; this is the necessary and sufficient condition for ξ̃C to be tangent to Nµ.

Note that any geometric object we know to be G-invariant is automatically Gµ-invariant.

The manifold Nµ is a principal fibre bundle with group Gµ; we will denote its base by Nµ/Gµ.
The restriction of the Euler-Lagrange field Γ to Nµ is Gµ-invariant, and as a consequence it
projects onto a vector field Γ̌ on Nµ/Gµ.

11



The task now is to examine the relationship between Γ̌ and Γ. There are two aspects: the
formulation of the differential equations represented by Γ̌; and the reconstruction of integral
curves of Γ from integral curves of Γ̌ (supposing that we have solved those equations).

Our methods of attack on these problems will be based on those we developed in our papers [3, 11]
and are similar to (but different from) the ones that were adopted in e.g. [7]. These in turn were
based on the following well-known method for reconstructing integral curves of an invariant
vector field from reduced data. Let π : N → B be a principal fibre bundle with group G.
Any invariant vector field Γ on N defines a π-related reduced vector field Γ̌ on B: due to the
invariance of Γ, the relation Tπ(Γ(n)) = Γ̌(π(n)) is independent of the choice of n ∈ N within
the equivalence class of π(n) ∈ B. Given a principal connection Ω, an integral curve v(t) of Γ
can be reconstructed from an integral curve v̌(t) of Γ̌ as follows. Let v̌H(t) be a horizontal lift
of v̌(t) with respect to Ω (that is, a curve in N over v̌ such that Ω( ˙̌vH) = 0) and let g(t) be the
solution in G of the equation

˜ϑ(ġ(t)) = Ω(Γ(v̌H(t)))

where ϑ is the Maurer-Cartan form of G. (We use here the fact that given any curve ξ(t) in
g, the Lie algebra of G, there is a unique curve g(t) in G which satisfies ϑ(ġ(t)) = ξ(t) and
g(0) = e; g(t) is sometimes called the development of ξ(t) into G, see for example [14].) Then
v(t) = ψN

g(t)v̌
H(t) is an integral curve of Γ.

In the following sections we define two principal connections on Nµ, we determine Γ̌ and we
identify for both connections the vertical part of Γ, necessary for the reconstruction method
above.

5 Two principal connections on a level set of momentum

A principal connection Ω on Nµ → Nµ/Gµ is by definition a left splitting of the short exact
sequence

0 → Nµ × gµ → TNµ → Nµ ×Nµ/Gµ
T (Nµ/Gµ) → 0;

all spaces in the above sequence should be interpreted as bundles over Nµ. We think of Ω as a
type (1, 1) tensor field on Nµ which is pointwise a projection operator with image the tangent
space to the fibre, and which is invariant under Gµ.

The first connection we define uses the Hessian of L to determine its horizontal distribution,
and is therefore analogous to the mechanical connection of a simple system; we denote it by Ωm.

Recall that we interpret the Hessian g of L as a tensor field along τ . In particular, its components
with respect to the standard basis {Xi, Ẽa} are functions on TM . We will say that a vector
field W on Nµ is horizontal for Ωm if

g(ξ̃, τ∗W ) = 0, ∀ξ ∈ gµ,

where τ∗W is the projection of a vector field W on TM to a vector field along τ : TM → M .
The definition makes sense only if we assume that the restriction of g to Nµ×gµ is non-singular,
as we do from now on.

In [11] we have shown that if the Lagrangian is invariant then so is g, in the sense that

Lξ̃g = 0, ∀ξ ∈ g.
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Here, for a vector field Z on M , LZ stands for an operator acting on tensor fields along τ that
has all the properties of a Lie derivative operator, and in particular, when applied to a function
f on TM and a vector field X along τ gives

LZf = ZC(f), LZX =

(
Zβ ∂Xα

∂xβ
+

∂Zβ

∂xγ
uγ ∂Xα

∂uβ
−Xβ ∂Zα

∂xβ

)
∂

∂xα

where
Z = Zα(x)

∂

∂xα
, X = Xα(x, u)

∂

∂xα
.

Note that if X is a basic vector field along τ (i.e. a vector field on M), then LZX = [Z,X].
Furthermore, for any vector field W on TM we have

LZ(τ∗W ) = τ∗[ZC,W ].

To show that the connection is principal we need only to show that if W is horizontal so also is
[ξ̃C,W ] for all ξ ∈ gµ. But for all ξ, η ∈ gµ,

g(τ∗[ξ̃C, W ], η̃) = g(Lξ̃(τ∗W ), η̃) = −g(τ∗W,Lξ̃η̃) = −g(τ∗W, [ξ̃, η̃]) = g(τ∗W, ˜[ξ, η]) = 0,

using the properties of the generalized Lie derivative and the invariance of g.

As was mentioned before, {X̄C
i , ĒC

a , X̄V
i } is a basis of vector fields on Nµ. Suppose now that the

basis {Ea} = {EA, Eα} of g is chosen so that {EA} is a basis of gµ. Then Cc
Abµc = 0, and on

Nµ we get for the corresponding fundamental vector fields

ĒC
A = ẼC

A + gbcCd
AcµdẼ

V
b = ẼC

A.

All ẼC
A are therefore tangent to Nµ, as required. These vector fields span exactly the vertical

space of Nµ → Nµ/Gµ which we have identified with Nµ × gµ. Vector fields of this form are
infinitesimal generators of the Gµ-action on Nµ.

If (GAB) is the inverse of the matrix (gAB) (and not the (A,B)-component of (gab)), then the
vector fields

ĒH
α = ĒC

α −GABgAαẼC
B = ĒC

α −ΥB
α ẼC

B

X̄H
i = X̄C

i −GABgAiẼ
C
B = X̄C

i −ΥB
i ẼC

B,

together with X̄V
i , are horizontal. (As was the case with the notations ĒC

a etc., the notation for
the horizontal fields is not meant to imply that ĒH

α etc. are actually horizontal lifts.) The action
of Ωm is simply

Ωm(ẼC
A) = ẼC

A, Ωm(ĒH
α) = 0, Ωm(X̄H

i ) = 0, Ωm(X̄V
i ) = 0,

and since the arguments form a basis of vector fields on Nµ these equations specify Ωm explicitly.
We will call Ωm the mechanical connection on Nµ.

The vector fields X̂C
i = X̄C

i +Ba
i ĒC

a introduced earlier are also horizontal; they can be expressed
as X̂C

i = X̄H
i − gαbgbiĒ

H
α .

The vector fields X̄C
i are not horizontal with respect to Ωm. However, it is possible to identify

a second principal connection ΩNµ on Nµ for which these vector fields are horizontal. We will
identify ΩNµ in two steps.
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It seems natural to split the basis {X̄C
i , ĒC

a , X̄V
i } into a ‘vertical’ part {ĒC

a } and a ‘horizontal’
part {X̄C

i , X̄V
i }. To see that it does indeed make sense to do so it is sufficient to observe that the

distributions spanned by {ĒC
a } and {X̄C

i , X̄V
i }, respectively, are unchanged when the bases {Ea}

of g and {Xi} of ω-horizontal vector fields on M are replaced by different ones. Under a change
of basis for g the {ĒC

a } are simply replaced by constant linear combinations of themselves, so
their span is clearly unchanged. On the other hand, if we set Yi = Aj

iXj then Y V
i = Aj

iX
V
j

and Y C
i = Aj

iX
C
j + Ȧj

iX
V
j (where Ȧj

i is the total derivative of Aj
i , not that it matters), so the

distributions spanned by {X̄C
i , X̄V

i } and {Ȳ C
i , Ȳ V

i } are the same.

So we can indeed characterize a connection in this way, but it is not a connection on Nµ →
Nµ/Gµ. In fact this construction defines a connection on the bundle with projection Nµ →
T (M/G) (the restriction of TπM : TM → T (M/G) to Nµ), i.e. a splitting of the short exact
sequence

0 → Nµ × g → TNµ → Nµ ×T (M/G) T (T (M/G)) → 0.

(Recall that the vector fields ĒC
a , which span the vertical space of the projection Nµ → T (M/G),

form an anti-representation of g acting on the level set Nµ.) The construction just described is a
version of the so-called vertical lift of a connection on a principal bundle (here ω) to its tangent
bundle (this is described more fully in [3]); accordingly we denote the corresponding type (1, 1)
tensor field by ΩV, and we have

ΩV(ĒC
a ) = ĒC

a , ΩV(X̄C
i ) = 0, ΩV(X̄V

i ) = 0.

Evidently (ΩV)2 = ΩV. We show now that LẼC
A
ΩV = 0 for all A. Firstly, note that

[ẼC
A, ĒC

a ] = [ĒC
A, ĒC

a ] = −Cb
AaĒ

C
b ,

so that
(LẼC

A
ΩV)(ĒC

a ) = [ẼC
A, ΩV(ĒC

a )]− ΩV[ẼC
A, ĒC

a ] = [ẼC
A, ĒC

a ] + Cb
AaĒ

C
b = 0.

Moreover, since [ẼC
A, X̄C

i ] = 0,

(LẼC
A
ΩV)(X̄C

i ) = [ẼC
A, ΩV(X̄C

i )]− ΩV[ẼC
A, X̄C

i ] = 0,

and similarly for X̄V
i .

The relation between ΩV and ω may be described more easily if we momentarily break our
convention by specifying connections by their forms rather than by the tensors corresponding
to their splittings: it is easily checked that

ΩV(Zv) = ω(T (τ ◦ ι)Zv), Zv ∈ TNµ.

This equation has to be read as one between elements of g, obtained by identifying the vertical
subbundle of TNµ with Nµ × g and the vertical subbundle of TN with M × g, or if you will by
projection onto g.

The vertical space Nµ × gµ of the connection ΩNµ we are looking for is only a subbundle of the
vertical space Nµ×g of the connection ΩV. So in a second step we need to identify a connection
for the following sequence of trivial vector bundles:

0 → Nµ × gµ → Nµ × g → Nµ × g/gµ → 0.

14



For this connection we can simply take the restriction of the mechanical connection Ωm defined
earlier to the submanifold Nµ×g. The connection ΩNµ is then simply Ωm ◦ΩV (see the diagram
below).

- -

- -

- -

?

?

?

?

?

?

Nµ × gµ Nµ × g Nµ × g/gµ

Nµ × gµ TNµ Nµ ×Nµ/Gµ T (Nµ/Gµ)

0 Nµ ×T (M/G) T (T (M/G)) Nµ ×T (M/G) T (T (M/G))

By construction ΩV ◦Ωm = Ωm, so ΩNµ = Ωm ◦ΩV satisfies (ΩNµ)2 = ΩNµ as it should. We have

ΩNµ(ẼC
A) = ẼC

A, ΩNµ(ĒH
α) = 0, ΩNµ(X̄C

i ) = 0, ΩNµ(X̄V
i ) = 0.

The tensor field ΩNµ is Gµ-invariant since both of the tensors of which it is composed are
Gµ-invariant; ΩNµ therefore defines a principal Gµ-connection.

Note that to define the mechanical connection we do not need a principal connection ω on
M → M/G (though we may use one in calculations). If such a connection is available then we
can use either Ωm or ΩNµ for the reconstruction method.

The connection ΩNµ is clearly different from Ωm in general. We can also decompose Ωm into
two connections, in accordance with the short exact sequences in the diagram. The splitting
ΩV

0 of the middle vertical line, similar to the connection ΩV of ΩNµ , can be defined by saying
that a vector field W is horizontal if g(ξ̃, τ∗W ) = 0 for all ξ ∈ g (not just for ξ ∈ gµ). For this
connection we have

ΩV
0 (ĒC

a ) = ĒC
a , ΩV

0 (X̂C
i ) = 0, ΩV(X̄V

i ) = 0,

where the vector fields X̂C
i are exactly those that we have encountered in Section 2.

To end this section we consider the decomposition of the restriction of the Euler-Lagrange field
Γ to Nµ into its vertical and horizontal parts with respect to the two connections.

Let us introduce coordinates (xi, θa) on M such that the orbits of G, or in other words the fibres
of M → M/G, are given by xi = constant; the xi may therefore be regarded as coordinates on
M/G. As before, we will use as fibre coordinates the quasi-velocities (vi, va) with respect to
the standard basis {Xi, Ẽa}. The non-singularity of (gab) ensures that, at least locally, we can
rewrite the relation pa = µa for the injection ι : Nµ → TM in the form va = ιa(xi, θa, vi), for
certain functions ιa of the specified variables. The restriction of the Euler-Lagrange field to Nµ

is

Γ = ιaĒC
a + viX̄C

i + (Γi ◦ ι)X̄V
i

= (ιA + ΥA
α ια)ẼC

A + ιαĒH
α + viX̄C

i + (Γi ◦ ι)X̄V
i

= (ιA + ΥA
α ια + ΥA

i vi)ẼC
A + ιαĒH

α + viX̄H
i + (Γi ◦ ι)X̄V

i .
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The vertical part of Γ with respect to the mechanical connection Ωm is (ιA + ΥA
α ια + ΥA

i vi)ẼC
A,

and with respect to the vertical lift connection ΩNµ it is (ιA + ΥA
α ια)ẼC

A.

Note that neither of the current decompositions of Γ coincides with the one we had towards the
end of Section 3, which we should now write Γ = (ιa + Ba

i vi)ĒC
a + Γ0. The reason is that this

last decomposition is only partial, in the sense that the vector field Γ0 is the horizontal part of
Γ with respect to the connection ΩV

0 ; it is the horizontal lift of a section of the pullback bundle
Nµ ×T (M/G) T (T (M/G)), not a vector field on T (M/G), and this section is only a part of the
data required for the reconstruction method.

6 The reduced vector field

A principal connection is all we need to reconstruct integral curves of an invariant vector field
from those of its reduced vector field. We next examine the latter.

6.1 The Abelian case

Before embarking on the more general case, it is instructive to see what happens if the symmetry
group G happens to be Abelian, i.e. when Cc

ab = 0. Then as we pointed out earlier for the case
of a simple mechanical system with Abelian symmetry group, gµ = g and any level set pa = µa

is invariant under the whole group G. In fact, under the assumption that pa = µa can be solved
locally in the form va = ιa, Nµ/G can be interpreted as T (M/G), with coordinates (xi, vi),
where the xi are coordinates on M/G and the vi the corresponding fibre coordinates (no longer
quasi-velocities). In this case there are no ‘Eα’-vectors and ĒC

a = ẼC
a for all a.

The restriction of the Euler-Lagrange field to Nµ, given here by

Γ = ιaẼC
a + viX̄C

i + (Γi ◦ ι)X̄V
i

= (ιa − gabgbiv
i)ẼC

a + viX̄H
i + (Γi ◦ ι)X̄V

i ,

is now also G-invariant. As a consequence, the coefficients Γi ◦ ι do not depend on the group
coordinates θa but only on the coordinates (xi, vi) of T (M/G). In fact the vector fields viX̄C

i +
(Γi ◦ ι)X̄V

i (the ΩNµ-horizontal part of Γ) and viX̄H
i + (Γi ◦ ι)X̄V

i (the Ωm-horizontal part of
Γ) both reduce to the same vector field on Nµ/G, which in this case is exactly a second-order
differential equation field on T (M/G),

Γ̌ = vi ∂

∂xi
+ Γi(x, v)

∂

∂vi
.

The integral curves of this reduced vector field are the solutions of the equations ẍi = Γi(x, ẋ)
(with vi = ẋi) and, from the introduction, we know that these are equivalent to the equations

d

dt

(
∂R
∂vi

)
− ∂R

∂xi
= −Ba

ijπaẋ
j .

6.2 The non-Abelian case

In the general case of a non-Abelian symmetry group we should not expect that the equations
for xi will be completely decoupled from all coordinates θa. Indeed, in that case the vector field
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Γ reduces to a vector field on Nµ/Gµ. This manifold can locally be identified with M/Gµ ×
T (M/G), so the equations for the integral curves of the reduced vector field will depend also on
the coordinates of M/Gµ.

To give a local expression of the reduced vector field Γ̌ we need to introduce a basis for
X (Nµ/Gµ). The bracket relations [ẼC

A, X̄C
i ] = 0 and [ẼC

A, X̄V
i ] = 0 show that X̄C

i and X̄V
i

are Gµ-invariant vector fields on Nµ; they project therefore onto vector fields X̌C
i and X̌V

i

on Nµ/Gµ. The invariance of the Hessian g amounts for its coefficients to ẼC
a (gij) = 0,

ẼC
a (gbc) + Cd

abgcd + Cd
acgbd = 0, and ẼC

a (gib) + Cc
abgic = 0. From this

ẼC
A(ΥB

i ) = CB
ACΥC

i ,

ẼC
A(ΥB

α ) = CB
ACΥC

α − Cβ
AαΥB

β − CB
Aα

(where we have taken into account the fact that in the current basis Cγ
AB = 0). It is now easy

to see that the vector fields X̄H
i = X̄C

i − ΥA
i ẼC

A are also Gµ-invariant. In fact, since they differ
from X̄C

i only in a part that is vertical with respect to the bundle projection Nµ → Nµ/Gµ,
they project onto the same vector fields X̌C

i on Nµ/Gµ.

The vector fields ĒH
α are not invariant: in fact [ẼC

A, ĒH
α ] = −Cβ

AαĒH
β . To obtain a complete basis

for X (Nµ/Gµ), we need to replace the vector fields {ĒH
α} by Gµ-invariant vector fields. To do so,

we will consider the G-invariant vector fields Êa = Ab
aẼb on M that we introduced in Section 2.

Let (Aα
β) be the coefficients we find in the relation Êα = Aβ

αẼβ +AB
α ẼB. The vector fields

ÊH
α = Aβ

αĒH
β

are tangent to the level set Nµ and horizontal. Given that Cβ
AB = 0, it easily follows from the

relation ẼA(Aβ
α) = Cβ

AγAγ
α that these vector fields are Gµ-invariant:

[ẼC
A, ÊH

α ] = ẼA(Aβ
α)ĒH

β −Aβ
αCγ

AβĒH
γ = 0.

They project therefore onto vector fields ĚH
α on Nµ/Gµ. To conclude, the set {X̌C

i , X̌V
i , ĚH

α}
defines the basis for X (Nµ/Gµ) we were looking for.

We denote by (Āα
β) the matrix inverse to (Aα

β) and set ΦA = ιA +ΥA
α ια, ΦA

m = ιA +ΥA
α ια +ΥA

i vi

and Ψα = Āα
β ιβ. Then Γ takes the form

Γ = ΦAẼC
A + ΨαÊH

α + viX̄C
i + (Γi ◦ ι)X̄V

i ,

= ΦA
mẼC

A + ΨαÊH
α + viX̄H

i + (Γi ◦ ι)X̄V
i ,

where, as before, the first term is the vertical part of Γ with respect to the vertical lift connection
ΩNµ (in the first place) and the mechanical connection Ωm (in the second). Obviously vi and
(Γi ◦ ι) are Gµ-invariant functions. To see that Ψα is also Gµ-invariant, recall that Cα

AB = 0
and ẼC

A(ιβ) = Cβ
Aγιγ , and observe that ẼC

A(Āβ
δ )Aγ

β = −Āβ
δ ẼC

A(Aγ
β) = −Āβ

δAα
βCγ

Aα = −Cγ
Aδ.

Therefore
ẼC

A(Ψα) = ẼC
A(Āα

β)ιβ + Āα
βẼC

A(ιβ) = −Āα
δ Cδ

Aβιβ + Āα
βCβ

Aγιγ = 0.

We conclude that vi, (Γi ◦ ι) and Ψα can all be regarded as functions on Nµ/Gµ. The horizontal
part of Γ, for both connections, can thus be interpreted as the horizontal lift of the reduced
vector field

Γ̌ = ΨαĚH
α + viX̌C

i + (Γi ◦ ι)X̌V
i
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on Nµ/Gµ.

For completeness, we point out that it follows from the relations ẼC
A(ΥB

α ) = CB
ACΥC

α −Cβ
AαΥB

β −
CB

Aα and ẼC
A(ιB) = CB

ACιC + CB
Aγιγ that the coefficients ΦA and ΦA

m satisfy

ẼC
A(ΦB) = CB

ACΦC , ẼC
A(ΦB

m) = CB
ACΦC

m.

This shows that they can be interpreted as the coefficients of gµ-valued functions Φ and Φm

on Nµ satisfying Φ ◦ ψg
Nµ = adg Φ for g ∈ Gµ (and similarly for Φm), where ψNµ denotes the

Gµ-action on Nµ (see [3]).

We now give a coordinate expression for the reduced vector field. From here on we will use
coordinates (θa) = (θA, θα) such that the fibres of G → G/Gµ are given by θα = constant. With
this assumption, there are functions Ka

b on M such that

ẼA = KB
A

∂

∂θB
, Ẽα = KB

α

∂

∂θB
+ Kβ

α

∂

∂θβ
.

We also introduce the functions Λb
i for which

Xi =
∂

∂xi
− Λb

i

∂

∂θb
,

as before.

By interpreting Nµ/Gµ locally as M/Gµ×M/G T (M/G), we see that a point of Nµ/Gµ has coor-
dinates (xi, θα, vi). Because of their Gµ-invariance, the functions Γi ◦ ι and Ψα are independent
of the variables θA. Let πNµ be the projection Nµ → Nµ/Gµ; then for any invariant function
F on Nµ there is a function f on Nµ/Gµ such that F = f ◦ πNµ . Then for all invariant vector
fields X on Nµ, and their reductions X̌ to vector fields on Nµ/Gµ, we have

X(F ) = X̌(f) ◦ πNµ .

We will apply this property to the vector fields ÊH
α , X̄C

i and X̄V
i and the invariant functions xi,

vi and θα. Keeping in mind that for any vector field Z, function f and 1-form θ on M ,

ZC(τ∗f) = τ∗Z(f), ZV(τ∗f) = 0, ZC(~θ) = −−→LZθ, ZV(~θ) = τ∗θ(Z).

where ~θ stands for the fibre-linear function on TM defined by the 1-form θ, and τ is the tangent
projection TM → M , we find that

X̄C
i (xj) = δj

i , X̄C
i (θβ) = −Λβ

i , X̄C
i (vj) = 0,

X̄V
i (xj) = 0, X̄V

i (θβ) = 0, X̄V
i (vj) = δj

i ,

ÊH
α(xj) = 0, ÊH

α(θβ) = Aγ
αKβ

γ , ÊH
α(vj) = 0,

from which it follows immediately that

X̌C
i =

∂

∂xi
− Λα

i

∂

∂θα
, X̌V

i =
∂

∂vi
, ĚH

α = Aγ
αKβ

γ

∂

∂θβ

and
Γ̌ = (ιβKα

β − viΛα
i )

∂

∂θα
+ vi ∂

∂xi
+ (Γi ◦ ι)

∂

∂vi
.
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The equations that determine the integral curves v̌(t) = (xi(t), θα(t), vi(t)) of the reduced vector
field Γ̌ are therefore the coupled set

{
ẍi = Γi ◦ ι,

θ̇α = ιβKα
β − viΛα

i .

One can easily convince oneself that the right hand side of the equation for θ̇α is indeed inde-
pendent of the variables θA: by considering the coefficients of ∂/∂θα in [ẼA, Ẽβ] = −Cc

AβẼc we
find that ẼA(Kα

β ) = −Cγ
AβKα

γ ; since also ẼC
A(ιβ) = Cβ

Aγιγ and ẼA(Λβ
i ) = 0, it follows easily

that ẼC
A(ιβKα

β − viΛα
i ) = 0, as claimed.

The functions Γi ◦ ι on the right-hand side of the equation for the ẍi can be determined from
the generalized Routh equations of Section 3,

Γ(X̄V
i (Rµ))− X̄C

i (Rµ) = −µaR
a
ijv

j .

Since Rµ = R ◦ ι is Gµ-invariant, so also are X̄V
i (Rµ) and X̄C

i (Rµ). Recall that the Ra
ij are

functions on M , determined by [Xi, Xj ] = Ra
ijẼa. Thus since [Ẽa, Xi] = 0,

(Ẽa(Rb
ij)−Rc

ijC
b
ac)Ẽb = 0.

But Cb
Acµb = 0, and so

ẼC
A(Rb

ijµb) = ẼA(Rb
ij)µb = Rc

ijC
b
Acµb = 0.

It follows that the term µaR
a
ijv

j is Gµ-invariant. The generalized Routh equations therefore
pass to the quotient Nµ/Gµ, and take the reduced form

Γ̌(X̌V
i (Rµ))− X̌C

i (Rµ) = −µaR
a
ijv

j .

Following [10], we will call these reduced equations the Lagrange-Routh equations. Under the
regularity assumptions we have adopted throughout, the function-valued matrix (X̄V

i X̄V
j (Rµ)) is

non-singular and the coefficients Γi◦ι, now interpreted as functions on Nµ/Gµ, can be determined
from the Lagrange-Routh equations. In the current coordinate system the equations become

d

dt

(
∂Rµ

∂vi

)
− ∂Rµ

∂xi
= −µaR

a
ijv

j − Λα
i

∂Rµ

∂θα
.

Given a reduced solution v̌(t) = (xi(t), θα(t), vi(t)) ∈ Nµ/Gµ, we can apply the method of
reconstruction using either one of the connections Ωm and ΩNµ to recover a complete solution
v(t) = (xi(t), θA(t), θα(t), vi(t)) ∈ Nµ of the Lagrangian system. The examples discussed in
Section 8 will make it clear how this method works in practice.

7 Simple mechanical systems

In this section we reconcile our results with those for the case of a simple mechanical system to
be found elsewhere in the literature.

A simple mechanical system is one whose Lagrangian is of the form L = T − V where T is
a kinetic energy function, defined by a Riemannian metric g on M , and V is a function on
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M , the potential energy. The symmetry group G consists of those isometries of g which leave
V invariant. We define a connection on M → M/G by taking for horizontal subspaces the
orthogonal complements to the tangent spaces to the fibres; it is this connection that is usually
called the mechanical connection (for a simple mechanical system). We write gab = g(Ẽa, Ẽb),
gij = g(Xi, Xj); by assumption, g(Ẽa, Xi) = 0. Then in terms of quasi-velocities,

L(m, v) = 1
2

(
gij(m)vivj + gab(m)vavb

)
− V (m),

and ẼV
a ẼV

b (L) = gab etc., so the notation is consistent with what has gone before. Note that since
we assume that g is Riemannian and therefore positive-definite it is automatic that L is regular
and that the matrices (gab(m)) and (gij(m)) are both non-singular for all m; in particular we
don’t need to make the separate assumption that (gab) is non-singular. Considered as defining
a map M → g∗ ¯ g∗, (gab) is called the locked inertia tensor. The isometry condition gives

Ẽa(gbc) + Cd
abgcd + Cd

acgbd = 0, Ẽa(gij) = 0.

The first of these is the differential version of the equivariance property of the locked inertia
tensor with respect to the action of G on M and the coadjoint action of G on g∗ ¯ g∗. The
second shows that gij may be considered as a function on M/G.

The momentum is given simply by pa(m, v) = gab(m)vb. On any level set Nµ, where pa = µa,
we can solve explicitly for the va to obtain va = gabµb.

The Routhian is given by

R = L− pav
a = 1

2gijv
ivj − 1

2gabv
avb − V,

and on restriction to Nµ we obtain

Rµ = 1
2gijv

ivj −
(
V + 1

2gabµaµb

)
.

The quantity V + 1
2gabµaµb is the so-called amended potential [15] and the term Cµ = 1

2gabµaµb

is called the ‘amendment’ in [10]. Both functions on M are Gµ-invariant: one easily verifies that
Ẽa(Cµ) = gbcCd

abµcµd, so in particular for a = A we get ẼA(Cµ) = 0.

Note that by the choice of connection Ba
i = 0; we have X̂C

i = X̄C
i , and the generalized Routh

equations are
Γ0(X̄V

i (Rµ))− X̄C
i (Rµ) = −µaR

a
ijv

j .

This equation is the analog in our framework of the one in Corollary III.8 of [10]. We have
shown in the previous section that it reduces to the Lagrange-Routh equations

Γ̌(X̌V
i (Rµ))− X̌C

i (Rµ) = −µaR
a
ijv

j ,

which for consistency should be supplemented by the equation that determines the variables
θα. As we pointed out earlier, the latter is actually just the expression for genuine velocity
components θ̇α in terms of quasi-velocities, supplemented by the constraint vα = ια which for a
simple mechanical system takes the form ια = gαaµa.

We can split the reduced Routhian Rµ in a Lagrangian part L = 1
2gijv

ivj − V and the reduced
amendment Cµ. Since the quasi-velocities va do not appear in the expression of L, it can formally

20



be interpreted as a function on T (Q/G). The reduced amendment is a function on Q/Gµ. We
can now rewrite the Lagrange-Routh equations as

Γ̌(X̌V
i (L))− X̌C

i (L) = −µaR
a
ijv

j + X̌i(Cµ);

in coordinates
d

dt

(
∂L

∂vi

)
− ∂L

∂xi
= −µaR

a
ijv

j +
(

∂

∂xi
− Λα

i

∂

∂θα

)
(Cµ).

This equation is only one out of two equations that appear in Theorem III.14 in [10], the theo-
rem that states the reduced equations obtained by following a variational approach to Routh’s
procedure. We leave it to the reader to verify that the second equation, in its form (III.37), is
in fact

vαCa
βαµa = gαbµbC

a
βαµa.

Since vα = gαbµb, this is obviously an identity from the current point of view; it certainly
cannot be used to determine θ̇α in terms of the other variables, and without this information
the equations are incomplete. In this respect, therefore, our reduction results are an improvement
on those in [10].

Let us now check, in the case where the configuration space M is of the form S × G, for an
Abelian symmetry group (Cc

ab = 0), and a Lagrangian of the form

L(x, θ, ẋ, θ̇) = 1
2kij(x)ẋiẋj + kia(x)ẋiθ̇a + 1

2kab(x)θ̇aθ̇b − V (x),

that the reduced equations above coincide with those in the introduction. We set

Ẽa = Kb
a

∂

∂θb

where the Ka
b are independent of the θa since we are dealing with the Abelian case. In general,

horizontal vector fields take the form

Xi =
∂

∂xi
− Λa

i

∂

∂θa
.

The quasi-velocities adapted to the connection are therefore given, as before, by vi = ẋi and
Ka

b vb = θ̇a + Λa
i ẋ

i.

Given that in this case Ẽa(gbc) = 0 and Ẽa(gij) = 0, all coefficients of the metric can be
interpreted as functions on M/G = S, and they depend only on the variables xi. The use of the
mechanical connection entails that gai = 0. When expressed in terms of the coordinates (ẋi, θ̇a),
this property fixes the connection coefficients to be of the form Λa

i = kabkib and the remaining
coefficients of the metric to be gab = kcdK

c
aK

d
b and gij = kij − kabkiakjb. The expression for Rµ

given in the introduction now easily follows. Since Rµ is a function only of xi and vi = ẋi we
get

X̄V
i (Rµ) =

∂Rµ

∂ẋi
and X̄C

i (Rµ) =
∂Rµ

∂xi
.

Moreover,

[Xi, Xj ] = Ba
ij

∂

∂θa
= Ra

ijẼa,

and likewise µa = ẼV
a (L) = Kb

aπb. So µaR
a
ij = πaB

a
ij and the equation from the introduction

follows.
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We now return to the general case (of a simple mechanical system) and consider the reconstruc-
tion process.

We continue to use the mechanical connection on M . Since, in the basis that is adapted to this
connection, gia = 0, and therefore X̄H

i = X̄C
i , the two connections Ωm and ΩNµ coincide. We

denote the common connection on Nµ by Ω.

Let v̌(t) be a curve in Nµ/Gµ which is an integral curve of Γ̌, and v̌H a horizontal lift of v̌ to Nµ

(horizontal with respect to Ω). The reconstruction equation is

ϑ̃(ġ)
C

= Ω(Γ ◦ v̌H)

(where ϑ here is the Maurer-Cartan form of Gµ); this is (at each point on the curve v̌) an
equation between vertical vectors on Nµ, but can and should be thought of as an equation on
gµ. It determines a curve g(t) in Gµ such that

t 7→ ψ
Nµ

g(t)v̌
H(t)

is an integral curve of Γ in Nµ; again, ψNµ is the action of Gµ on Nµ. So far, this works for an
arbitrary Lagrangian.

Now as we showed earlier in general, the vertical part of Γ with respect to the vertical lift
connection ΩNµ is (ιA + ΥA

α ια)ẼC
A. Thus in the case at hand

Ω(Γ) = (ιA + ΥA
α ια)ẼC

A

= (ιA + GABgBαια)ẼC
A

= (gAaµa + GABgBαgαaµa)ẼC
A

= (gAaµa + GAB(δa
B − gBCgCa)µa)ẼC

A

= (gAaµa + GABµB − gAaµa)ẼC
A

= GABµBẼC
A.

The first point to note is that the coefficient GABµB appearing on the right-hand side of the
final equation above is a function on M , so that in the right-hand side of the reconstruction
equation the argument v̌H can be replaced by its projection into M , which is τ ◦ ι ◦ v̌H.

Next, we interpret GABµB in terms of the locked inertia tensor. Recall that the locked inertia
tensor at m ∈ M has components gab(m). As is the usual practice we consider the locked inertia
tensor as a non-singular symmetric linear map I(m) : g → g∗. Now let j be the injection
gµ → g: then µB are the components of j∗µ ∈ g∗µ, and gAB(m) are the components of the map
Iµ(m) = j∗ ◦ I(m) ◦ j. Then

GAB(m)µBEA = I−1
µ (m)(j∗µ),

a point of gµ. So finally the reconstruction equation may be written

ϑ(ġ(t)) = I−1
µ (c(t))(j∗µ), c = τ ◦ ι ◦ v̌H.

This is an equation between curves in gµ.

We will now show that this reconstruction equation above is a particular and simple case of one
of the reconstruction equations appearing in [10].
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To do so we must introduce yet another connection, used in [10] and called there the mechanical
connection for the Gµ-action. This is a connection on the principal fibre bundle M → M/Gµ,
i.e. a Gµ-invariant splitting of the short exact sequence

0 → M × gµ → TM → M ×M/Gµ
T (M/Gµ) → 0,

If, as before, {EA, Eα} is a basis of g for which {EA} is a basis for gµ, then the vector fields Xi

together with the vector fields Ẽα−GABgAαẼB form a basis for the set of vector fields which are
horizontal with respect to the mechanical connection for the Gµ-action. We denote the latter by
ωµ. Now ωµ and Ω are related somewhat as a connection and its vertical lift: in fact (for their
projections onto gµ)

Ω(Zv) = ωµ(T (τ ◦ ι)Zv), Zv ∈ TNµ.

We note in passing that since T (τ ◦ ι)Γ(v) = v for any v ∈ Nµ, we can write the reconstruction
equation as

˜ϑ(ġ(t)) = ωµ(v̌H).

The reconstruction equation in [10] that we are aiming for is the third of the four, equation
(IV.6). It seems the one most relevant to our approach because, as Marsden et al. say, in it
they ‘take the dynamics into account’, and this has been our purpose throughout. Now equation
(IV.6) of [10] differs from our reconstruction equation (expressed in terms of Iµ) by having an
additional term on the right-hand side involving the mechanical connection for the Gµ-action
ωµ. This arises because the authors start with a more general class of curves on M than we do.

In order to show that our equation agrees with theirs we first show that the curve c = τ ◦ ι◦ v̌H in
M is ωµ-horizontal; the extra term in their equation is therefore zero in our case. By evaluating
ωµ on the tangent to c and using the relation between ωµ and Ω we have

ωµ(ċ) = ωµ(T (τ ◦ ι) ˙̌vH) = Ω( ˙̌vH) = 0

because v̌H is Ω-horizontal. So our reconstruction equation formally agrees with equation (IV.6)
of Marsden et al., when we take the starting curve on M to be c: it is the particular case of that
equation in which the curve on M is horizontal with respect to the Gµ mechanical connection.

To finish the story we must also take into account the fact that equation (IV.6) of [10] is
presented as an equation for the reconstruction of a base integral curve of Γ, with momentum µ,
from another suitable curve on M , whereas our reconstruction equation gives an integral curve of
Γ on Nµ. But there is no real discrepancy here, because Γ is a second-order differential equation
field and so knowing its base integral curves is equivalent to knowing its integral curves. Let us
spell this out in detail. We know that if t 7→ g(t) is a solution of our reconstruction equation
then

t 7→ ψ
Nµ

g(t)v̌
H(t)

is an integral curve of Γ in Nµ. The corresponding base integral curve is

t 7→ τ(ι(ψNµ

g(t)v̌
H(t))).

But
τ ◦ ι ◦ ψNµ

g = τ ◦ ψTM
g ◦ ι = ψM

g ◦ τ ◦ ι,

so the curve t 7→ ψM
g(t)c(t) is a base integral curve of Γ. Thus the same curve in Gµ determines

an integral curve of Γ in Nµ (by its action on v̌H) and the corresponding base integral curve (by
its action on c = τ ◦ ι ◦ v̌H, the projection of v̌H to M).
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8 Illustrative examples

We give two examples. In the first we derive Wong’s equations using our methods. This example
is intended to illustrate the Routhian approach in a case of some physical interest; however, we do
not pursue the calculations as far as the consideration of the isotropy algebra and reconstruction.
These matters are illustrated in the second example, which is more specific and more detailed,
if somewhat more artificial.

8.1 Wong’s equations

We discuss the generalized Routh equations for the geodesic field of a Riemannian manifold on
which a group G acts freely and properly to the left as isometries, and where the vertical part
of the metric (that is, its restriction to the fibres of πM : M → M/G) comes from a bi-invariant
metric on G. The reduced equations in such a case are known as Wong’s equations [2, 12].

This is of course an example of a simple mechanical system, with V = 0; we therefore adopt the
notation of Section 7, and we will use the mechanical connection. In order to utilise conveniently
the assumption about the vertical part of the metric g, we will need symbols for the components
of g with respect to the invariant vector fields Êa introduced in Section 2; we write

hab = g(Êa, Êb) = Ac
aAd

bgcd.

Since both hab and gij are G-invariant functions, they pass to the quotient. In particular, the
gij are the components with respect to the coordinate fields of a metric on M/G, the reduced
metric; we denote by Γk

ij its Christoffel symbols.

The further assumption about the vertical part of the metric has the following implications. It
means in the first place that LÊc

g(Êa, Êb) = 0 (as well as LẼc
g(Êa, Êb) = 0). Taking into account

the bracket relations [Êa, Êb] = Cc
abÊc, we find that the hab must satisfy hadC

d
bc + hbdC

d
ac = 0.

It is implicit in our choice of an invariant basis that we are working in a local trivialization
of M → M/G. Then the hab are functions on the G factor, so must be independent of the
coordinates xi on M/G, which is to say that they must be constants. Moreover, Ẽa, Êa and Ab

a

are all objects defined on the G factor, so are independent of the xi. We may write

Xi =
∂

∂xi
− γa

i Êa

for some coefficients γa
i which are clearly G-invariant; moreover [Xi, Êa] = γc

i C
b
acÊb. We set

γc
i C

b
ac = γb

ia; then hacγ
c
ib + hbcγ

c
ib = 0.

We are interested in the geodesic field of the Riemannian metric g. The geodesic equations may
be derived from the Lagrangian

L = 1
2gαβuαuβ = 1

2gijv
ivj + 1

2gabv
avb = 1

2gijv
ivj + 1

2habw
awb,

where the wa are quasi-velocities relative to the Êa; we have Aa
bw

b = va. The momentum is
given by pa = gabv

b = Āc
ahbcw

c, where (Āb
a) is the matrix inverse to (Ab

a). The Routhian is

R = 1
2gijv

ivj − 1
2gabpapb.
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It is easy to see that X̄V
i (R) = gijv

j . The calculation of X̄C
i (R) reduces to the calculation of

Xi(gij) and Xi(gab). The first is straightforward. For the second, we note that gab = Āc
aĀd

bhcd;
since the right-hand side is independent of the xi, so is gab, and so equally is gab. It follows that

X̄C
i (R) = 1

2

∂gjk

∂xi
vjvk − 1

2γc
i Êc(gab)papb.

Now Êc(gab) = −Ad
c(g

aeCb
de + gbeCa

de), from Killing’s equations. Using the relation between gab

and hab, and the fact that ad is a Lie algebra homomorphism, we find that

Êc(gab) = −Aa
dA

b
e(h

dfCe
cf + hefCd

cf ).

The expression in the brackets vanishes, as follows easily from the properties of hab. Thus the
generalized Routh equation is

d

dt
(gijv

j)− 1
2

∂gjk

∂xi
vjvk = gij

(
v̇j + Γj

klv
kvl

)
= −µaR

a
ijv

j .

But µa = gabv
b = Āc

ahbcw
b; so if we set Ka

ij = Āa
bR

b
ij , then µaR

a
ij = hbcK

c
ijw

b. The generalized
Routh equation is therefore equivalent to

ẍi + Γ i
jkẋ

j ẋk = gimhbcK
c
lmẋlwb.

We also need an equation for wa: this comes from the constancy of µa, which we may write as

hbc
d

dt
(Āc

aw
b) = 0.

If we are to understand this equation in the present context, we evidently need to calculate Ȧb
a.

Now
Ȧb

a = viXi(Ab
a) + vcẼc(Ab

a) = viγc
iaAb

c + vcCb
cdAd

a.

It follows that

hbc
d

dt
(Āc

a) = −hbcĀd
aĀc

eȦe
d = −hbcĀd

aĀc
e(v

iγf
idAe

f + vfCe
fgAg

d)

= −hbcĀd
a(v

iγc
id + weCc

ed),

where in the last step we have again used the fact that ad is a Lie algebra homomorphism. Now
from the skew-symmetry properties of hab we obtain

hbc
d

dt
(Āc

a) = hcdĀd
a(v

iγc
ib + weCc

eb),

and therefore
hbc

d

dt
(Āc

aw
b) = hcdĀd

a(ẇ
c + γc

ibv
iwb).

The generalized Routh equation and the constancy of momentum together amount to the mixed
first- and second-order equations

ẍi + Γ i
jkẋ

j ẋk = gimhbcK
c
lmẋlwb

ẇa + γa
jbẋ

jwb = 0.

These are Wong’s equations as they are usually expressed.
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8.2 A Lagrangian with SE(2) as symmetry group

We now consider the Lagrangian (of simple mechanical type)

L = 1
2 ẋ2 + 1

2 ẏ2 + 1
2 ż2 + 1

2 θ̇2 + A((sin θ)ż + (cos θ)ẏ)θ̇.

The system is regular if A2 6= 1. The Euler-Lagrange equations are

ẍ = 0,
d

dt
(ẏ + (A cos θ)θ̇) = 0,

d

dt
(ż + (A sin θ)θ̇) = 0, θ̈ + (A sin θ)z̈ + (A cos θ)ÿ = 0,

and the solution with (for convenience) θ0 = 0 is

(x(t), y(t), z(t), θ(t))

=
(
ẋ0t + x0,−A sin(θ̇0t) + (ẏ0 + Aθ̇0)t + y0, A cos(θ̇0t) + ż0t + z0 −A, θ̇0t

)
.

The system is invariant under the group SE(2), the special Euclidean group of the plane. The
configuration manifold is R × SE(2), where x is the coordinate on R. We will use the trivial
connection. An element of SE(2) can be represented by the matrix




cos θ − sin θ y
sin θ cos θ z

0 0 1


 .

The identity of the group is (y = 0, z = 0, θ = 0) and the multiplication is given by

(y1, z1, θ1) ∗ (y2, z2, θ2) = (y2 cos θ1 − z2 sin θ1 + y1, y2 sin θ1 + z2 cos θ1 + z1, θ1 + θ2).

The matrices

e1 =




0 0 1
0 0 0
0 0 0


 , e2 =




0 0 0
0 0 1
0 0 0


 , e3 =




0 −1 0
1 0 0
0 0 0


 ,

form a basis for the Lie algebra, for which [e1, e2] = 0, [e1, e3] = e2 and [e2, e3] = −e1. The
corresponding basis for the fundamental vector fields is

ẽ1 =
∂

∂y
, ẽ2 =

∂

∂z
, ẽ3 = −z

∂

∂y
+ y

∂

∂z
+

∂

∂θ
,

and for the invariant vector fields we get

ê1 = cos θ
∂

∂y
+ sin θ

∂

∂z
, ê2 = − sin θ

∂

∂y
+ cos θ

∂

∂z
, ê3 =

∂

∂θ
.

One can easily verify that the Lagrangian is invariant.

Before we calculate an expression for the level sets pa = µa, we will examine the isotropy algebra
gµ of a generic point µ = µ1e

1 + µ2e
2 + µ3e

3 in g∗. The relations that characterize an element
ξ = ξ1e1 + ξ2e2 + ξ3e3 of gµ are

ξ3µ2 = 0, ξ3µ1 = 0, ξ1µ2 − ξ2µ1 = 0.

26



So if we suppose that µ1 and µ2 do not both vanish — we will take them from now on to be 1
and µ respectively — then a typical element of gµ is ξ = ξ1(e1 + µe2). We will also set µ3 = 0
for convenience. Since gµ is 1-dimensional it is of course Abelian.

Before writing down the coordinate version of the reduced equations in the previous sections
we made two assumptions. First, we supposed that a part of the basis of g was in fact a basis
of gµ. So from now on we will work with a new basis {E1 = e1 + µe2, E2 = e2, E3 = e3},
with corresponding notations for the fundamental and invariant vector fields. The Lie algebra
brackets in this basis are [E1, E2] = 0, [E1, E3] = −µE1 +(1+µ2)E2 and [E2, E3] = −E1 +µE2.
The momentum vector with which we are working takes the form (1+µ2)E1+µE2 (with µ3 = 0),
when written with respect to the new dual basis.

The second assumption is that we use coordinates (θa) = (θA, θα) on G such that the fibres
G → G/Gµ are given by θα = constant. Then fundamental vector fields for the Gµ-action
on G are of the form KB

A ∂/∂θB. The main advantage of this assumption is that in these
coordinates the expressions in the reduced equations became independent of the coordinates θA.
This assumption is not yet satisfied in our case for the coordinates (y, z, θ). The action of Gµ

on G is given by the restriction of the multiplication, i.e. by

(y1) ∗ (y2, z2, θ2) = (y2 + y1, z2, θ2).

We have only one coordinate on Gµ, say y′. The fundamental vector fields that correspond to
this action should be of the form K∂/∂y′. However, in the new basis, vectors in gµ are of the
form KE1, with corresponding fundamental vector fields

KẼ1 = K

(
∂

∂y
+ µ

∂

∂z

)
.

So we should make a coordinate change (y, z, θ) → (y′, z′, θ′), such that

∂

∂y′
=

∂

∂y
+ µ

∂

∂z
.

This can be done by putting

y′ = y, z′ = z − µy, θ′ = θ.

We will then have coordinates (y′, z′, θ′, x, ẋ) on Nµ, and (z′, θ′, x, ẋ) on Nµ/Gµ. To save typing,
we will use y and θ for y′ and θ′, and only make the distinction between z and z′.

The first goal is to solve the reduced equations on Nµ/Gµ. They are of the form
{

ẍi = Γi(xj , θα, ẋj),
θ̇α = ιβKα

β − ẋiΛα
i ,

For this example there is only one coordinate x on R (we are using the trivial connection on
SE(2) ×R → R), but the coordinates θα on SE(2)/Gµ are (z′, θ). The reduced second-order
equation in x above can be derived from the Lagrangian equation in x which is simply

ẍ = 0.

It is therefore not coupled to the first order equation in (z′, θ), and its solution is x(t) = ẋ0t+x0.
For the other equations, we will work first with the variables (y, z, θ), and only make the change
to the new coordinates at the end.
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The matrix (Kα
β ) in the above expressions is determined by the relation Ẽa = Kb

a∂/∂θa. It is
the lower right (2,2)-matrix of

K =




1 0 0
0 1 0
−z y + µz 1


 .

With the trivial connection, the equations for the other variables on Nµ/Gµ are therefore of the
form

ż′ = ι2 + (y + µz)ι3, θ̇ = ι3.

We can find the functions ιa by solving the expressions pa = µa for va, with (µ1, µ2, µ3) ∈ g∗ of
the form ((1 + µ2), µ, 0). We get

1 + µ2 = ẏ + µż + (A cos θ + Aµ sin θ)θ̇,
µ = ż + (A sin θ)θ̇,
0 = (A cos θ)ẏ + (A sin θ)ż + θ̇ − z(ẏ + (A cos θ)θ̇) + y(ż + (A sin θ)θ̇).

At t = 0, the above equations relate the integration constants and µ. We will set from now on
ẏ0 = 1 − Aθ̇0, ż0 = µ and z0 = µy0 + Aẏ0 + θ̇0. It is easy to see that the coordinates va with
respect to the basis {Ẽ1} (with the trivial connection) are given by

v1 = ẏ + zθ̇, v2 = ż − µẏ − µzθ̇ − yθ̇, v3 = θ̇.

After substituting this into the equations for the level set, we obtain the expressions va = ιa as
functions of (y, z, θ). After some calculation, the reduced equations become

ż′ =
A

A2 − 1

(
(z − µy)(sin θ − µ cos θ)−A(1− µ2) sin θ cos θ − µA + 2µA(cos θ)2

)
,

θ̇ =
1

A2 − 1

(
µy − z + A cos θ + Aµ sin θ

)
.

Observe that we can now replace (z − µy) everywhere by the new coordinate z′, so that indeed
the Gµ-coordinate y′ does not appear in the reduced equations. One can verify that the solution
of the above equations, with the integration constants determined by µ, is

(z′(t), θ(t)) =
(
A cos(θ̇0t) + Aµ sin(θ̇0t) + (1−A2)θ̇0, θ̇0t

)
.

We will now use the mechanical connection to reconstruct the Gµ-part y(t) of the solution. The
Hessian of the Lagrangian, in the basis {X = ∂/∂x, Ẽa} is




1 + µ2 µ A cos θ + Aµ sin θ − z + µy 0
µ 1 A sin θ + y 0

A cos θ + Aµ sin θ − z + µy A sin θ + y 1− 2Az cos θ + 2Ay sin θ + y2 + z2 0
0 0 0 1


 .

The determinant of the matrix is 1− A2. The vector field X̄C = XC = ∂/∂x is tangent to the
level sets and horizontal with respect to the mechanical connection Ωm.

In general, we regard the Hessian as a tensor field along the tangent bundle projection. A basis
of vector fields along τ that lie in the g-complement of gµ is

{
Ẽ2 − µ

1 + µ2
Ẽ1, Ẽ3 − 1

1 + µ2
(A cos θ + Aµ sin θ − z′)Ẽ1,

∂

∂x

}
.
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Notice that they are all basic vector fields along τ (i.e. vector fields on M). The reason is
that the Lagrangian is of the simple type. We have seen that in that case the g-complement
of gµ defines a connection ωµ on M → M/Gµ. The connection tensor Ωm of the mechanical
connection is determined by

Ωm(ẼC
1 ) = ẼC

1 , Ωm(ĒH
α) = 0, Ωm(X̂C) = 0, Ωm(X̄V) = 0,

where the vector fields {ĒH
α} that are horizontal with respect to the mechanical connection Ωm

and tangent to the level set are here

ĒH
2 = ĒC

2 −
µ

1 + µ2
ẼC

1 , ĒH
3 = ĒC

3 −
1

1 + µ2
(A cos θ + Aµ sin θ − z′)ẼC

1 .

The explicit expressions of the ĒC
α are not of direct concern, we only need to know that they

are tangent to the level set and that they differ from ÊC
α in a vertical lift. The vertical part of

Γ = ιaĒC
a + viX̄C

i + ΓiX̄V
i (the restriction of the dynamical vector field to Nµ) is here

Ωm(Γ) =
(
ι1 +

µ

1 + µ2
ι2 +

1
1 + µ2

(A cos θ + Aµ sin θ − z′)ι3
)
ẼC

1 .

Before we can write down the explicit form of the reconstruction equation g−1ġ = Ωm(Γ ◦ v̌H),
we need to find the horizontal lift v̌H of the reduced solution v̌ = (z′, θ, x, ẋ). It is the curve
(ym, z′, θ, x, ẋ) in Nµ whose tangent vector is horizontal with respect to the Gµ-mechanical
connection. By construction this means that d

dt(τ ◦ v̌H) should be ωµ-horizontal. If we write in
general that d

dt(τ ◦ v̌H) = v1Ẽ1 + v2Ẽ2 + v3Ẽ3, then in order for the curve to be horizontal the
va must satisfy

v1 = −v2 µ

1 + µ2
− v3 1

1 + µ2
(A cos θ + Aµ sin θ − z′).

By expressing the va as functions of the θ̇a, we find that the missing yH is a solution of

ẏH = −Aθ̇0 cos(θ̇0t),

from which yH(t) = −A sin(θ̇0t) + y0. Using this yH in the reconstruction equation gives

ẏ1 = ι1 +
µ

1 + µ2
ι2 +

1
1 + µ2

(A cos θ + Aµ sin θ − z′)ι3 = 1,

once we have evaluated the functions ιa in terms of (yH, z′, θ, x, ẋ). So the solution through the
identity is y1(t) = t. The y-part of the complete solution of the Euler-Lagrange equation is
therefore

y(t) = y1(t) + yH(t) = −A sin(θ̇0t) + t + y0,

as it be should for the given value of the momentum.
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