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Abstract

We examine the reduction of a system of second-order ordinary differential equations
which is invariant under the action of a symmetry group. We describe the reduced
system, and show how the integral curves of the original system can be reconstructed
from the reduced dynamics. We then specialize to invariant Lagrangian systems.
We compare and contrast two approaches to reduction in this case. The first leads
to the so-called Lagrange-Poincaré equations. The second involves an extension of
Routh’s reduction procedure to an arbitrary Lagrangian system (that is, one whose
Lagrangian is not necessarily the difference of kinetic and potential energies) with a
symmetry group which is not necessarily Abelian. Throughout we use a new method
of analysis based on adapted frames and associated quasi-velocities.
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1 Introduction

The concept of symmetry plays an important role in a great number of applications
in dynamics. Symmetry properties of dynamical systems have been studied intensively
in recent years: see for example the survey in the recent monograph [6] by Marsden
et al., as well as the more long-established reference [7]. Perhaps the most important
aspect of symmetry is its use in reduction. When a dynamical system has a Lie group
of symmetries, which is to say that considered as a vector field on some manifold it is
invariant under the action of the group on the manifold, then the corresponding equations
of motion can be reduced to a new set of equations with fewer unknowns. The working
assumption is that the reduced system will be simpler to deal with than the original one.

The bulk of the literature on symmetry in dynamics concentrates on the Hamiltonian de-
scription of dynamical systems with symmetry, in which the theory of Poisson manifolds
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plays the main role. Less well-known is symmetry reduction for Lagrangian systems. It
is the latter that is at the core of the present paper.

There are in fact accounts of several different Lagrangian reduction theories to be found
in the literature. For example, one distinctive reduction method applies when the config-
uration space is itself a Lie group; it is called Euler-Poincaré reduction. The particular
issue that we will be concerned with, however, is the following. In rough terminology,
the invariance of the Lagrangian leads via the Noether theorem to a set of conserved
quantities (the components of momentum). There are two alternative broad types of La-
grangian reduction theory, which differ in whether or not the existence of these conserved
quantities is explicitly taken into account in the reduction process. The more direct ap-
proach, which effectively ignores conservation laws, is called Lagrange-Poincaré reduction
(and includes Euler-Poincaré reduction as a special case). Taking account of momentum
conservation leads to Routh’s procedure. For more details and some comments on the
history of these reduction theories, see e.g. [6] and [8].

One main purpose of our paper is to compare and contrast Lagrange-Poincaré reduction
and Routh’s procedure. Over the last couple of years we have been developing our
own techniques for analysing symmetry and reduction of dynamical systems. These
techniques, while being well adapted to the discussion of Lagrangian systems, are not
restricted to them; in this respect they are different from the techniques usually found
in the literature. In fact our techniques are designed to apply to any dynamical system,
that is, any vector field, which is invariant under a Lie group.

The basic ideas, which we exploit throughout the paper, are most succinctly explained in
the simplest context, that of a first-order dynamical system or plain and unadorned vector
field. We discuss this case in the following section. The transition to Lagrangian systems,
that is, to dynamical systems of Euler-Lagrange type, is made via the consideration of
second-order systems. By a second-order system we mean a second-order differential
equation field, that is to say, a vector field on a tangent bundle belonging to that special
class whose integral curves satisfy a system of second-order differential equations. We
describe the general second-order theory in Section 3. Those particular second-order
systems defined by Lagrangians are discussed in Section 4, where the two approaches,
Lagrange-Poincaré and Routh, are explained. We end with an example of a second-order
system with symmetry, reduced by all three methods.

This paper is in effect a survey and summary of work which has been presented in greater
detail in a number of other articles; we draw the reader’s attention in particular to [4],
[5] and [9].

Throughout the paper, symmetry groups are supposed to act as follows. We have a
differentiable manifold M and a connected Lie group G which acts freely and properly
to the left on M , so that M is a principal G-bundle. We denote the base by M/G, the
projection by πM : M → M/G, and the action by (x, g) 7→ ψM

g x. The Lie algebra of G

is denoted by g, and for ξ ∈ g, ξ̃ is the fundamental vector field corresponding to ξ (the
vector field whose flow is t 7→ ψM

exp(tξ)).
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2 The first-order case

Suppose we have a first-order dynamical system, represented by a vector field Z on the
manifold M , which is invariant under a symmetry group G acting on M as described
above. We can of course express the condition of invariance in terms of the action
ψM ; alternatively, we can note that if Z is invariant then [ξ̃, Z] = 0 for all ξ ∈ g, and
conversely when this differential condition holds and G is connected (as we assume) then
Z is invariant. We will find it convenient always to use the differential version of the
condition for invariance.

The invariance of Z implies that it ‘passes to the quotient’. That is to say, there is a
well-defined vector field on M/G, say Ž, which is πM -related to Z: Ž = πM∗ Z. We call
Ž the reduced dynamical system. Two questions arise:

reduction: how to describe the reduced system Ž explicitly and conveniently;

reconstruction: how, given an integral curve of Ž, to obtain an integral curve of Z in
a systematic fashion.

2.1 Reduction

In order to formulate a simple description of the reduced dynamics we introduce and
work with a local frame {Ea, Xi}, where the Ea, a = 1, 2, . . . ,dimG, are tangent to the
fibres of πM : M → M/G, the Xi, i = 1, 2, . . . ,dim(M/G) are transverse to the fibres,
and all of the members of the basis are G-invariant.

We define the Ea as follows. Let {ea} be a basis for g, ẽa the corresponding fundamental
vector fields. Then [ẽa, ẽb] = −Cc

abẽc, where the Cc
ab are the structure constants of g

with respect to the given basis. It is clear that in general the ẽa are not invariant. We
set Ea = Ab

aẽb, and enquire under what conditions on the coefficients Ab
a the Ea are

invariant. We have
[ẽa, Eb] =

(
ẽa(Ac

b)− Cc
adA

d
b

)
ẽc,

so the Ea are invariant if and only if

ẽa(Ac
b) = Cc

adA
d
b .

The integrability conditions for these equations are satisfied by virtue of the Jacobi
identity. There are therefore local solutions, for which the matrix A = (Ab

a) is non-
singular, and for which A is the identity matrix on some specified local section of πM .
Such a local section determines a local trivialization M ' G ×M/G of M ; identifying
the fibres with G, we see that each Ea corresponds to a left-invariant vector field on G.
Each ẽa, on the other hand, corresponds to a right-invariant vector field on G (which
explains the sign in the expression for the bracket); A(g) is the matrix of ad(g) with
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respect to the basis {ea}. In the literature , {ẽa} is sometimes referred to as the moving
frame, {Ea} as the body-fixed frame (see for example [1]).

To define the part of the frame transverse to the fibres, we assume that we have at
our disposal a principal connection on the principal G-bundle M ; we take Xi to be the
horizontal lift with respect to the connection of a member of some local basis of vector
fields on M/G. In particular, we may (and generally will) take this to be a coordinate
basis.

We may now write Z = ZaEa + ZiXi. Since Z, Ea and Xi are all invariant, so also are
the coefficients Za and Zi. We may therefore regard the Zi (in particular) as functions
on M/G, and we have

πM
∗ Z = Ž = Zi ∂

∂xi
,

where the xi are coordinates on M/G. The reduced equations are simply

ẋi = Zi(x).

2.2 Reconstruction

Suppose given an integral curve of Ž, say t 7→ ž(t) (a curve in M/G). We have to find
an integral curve of Z, t 7→ z(t) (a curve in M), over ž (so that πM ◦ z = ž).

We proceed as follows. Take any lift of ž to M , t 7→ ζ(t) (so that πM ◦ ζ = ž). Then
there is a curve t 7→ g(t) ∈ G such that z(t) = ψM

g(t)ζ(t). The next questions therefore
are how to lift ž(t) to ζ(t) in a systematic fashion, and having done so, how to find g(t).

Assume as before that we have a principal connection on M , with connection form ω (a
g-valued 1-form on M). Then we can take ζ(t) to be a horizontal lift of ž(t). We can
now derive a differential equation for g(t). First, differentiate the equation for z(t):

ż(t) = ψM
g(t)∗

(
ζ̇(t) + ˜ϑ(ġ(t))|ζ(t)

)
,

where ϑ is the Maurer-Cartan form of G (i.e. g−1ġ for a matrix group). We want z(t) to
be an integral curve of Z, so

ż(t) = Zz(t) = ψM
g(t)∗Zζ(t)

by invariance. Thus
Zζ(t) = ζ̇(t) + ˜ϑ(ġ(t))|ζ(t).

This formula expresses Zζ(t) in terms of its horizontal and vertical components. We pick
out the vertical component, or in other words apply ω:

ϑ(ġ(t)) = ωζ(t)(Z).
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The right-hand side is a curve in g, so this is an equation in g, and it has a unique solution
for g(t) with g(0) = id. (This is evident for a matrix group, for which the equation is
ġ = gωζ(Z).)

Then z(t) = ψM
g(t)ζ(t) is an integral curve of Z. It is the integral curve through ζ(0):

to find the integral curve over ž through some other point in the fibre over ž(0), say
ψM

g ζ(0), we merely have to left translate z(t), that is, take ψM
g z(t).

3 The second-order case

A second-order dynamical system determines and is determined by a vector field Γ on a
tangent bundle TM , which has the form

Γ = uα ∂

∂xα
+ Γi(x, u)

∂

∂uα

when expressed in terms of natural coordinates (xα, uα); such a vector field is called a
second-order differential equation field.

In order to consider symmetries of a second-order differential equation field we must
extend the group action from M to TM . Suppose G acts on M as before; then the
induced action of G on TM is given by ψTM

g (x, u) = (ψM
g x, ψM

g∗u). (Transformations of
TM of this form are sometimes called point transformations.) The fundamental vector
fields of the induced action are the complete lifts of the fundamental vector fields of the
action on M , which we denote by ξ̃C. Moreover, TM is a principal G-bundle, and we
denote by πTM : TM → TM/G the projection (which is not to be confused with the
projection TM → M , which we denote by τ .)

We assume now that the second-order differential equation field Γ is invariant under the
induced action of G:

[ξ̃C,Γ] = 0 for all ξ ∈ g.

3.1 Reduction

We will make extensive use of the complete and vertical lifts of vector fields on M to
TM : we denote the vertical lift of a vector field X on M by XV (and its complete lift by
XC as above). We recall the following formulae for the brackets of such lifts:

[XC, Y C] = [X, Y ]C, [XV, Y C] = [X, Y ]V, [XV, Y V] = 0.

From these formulae it is clear that the complete and vertical lifts of a G-invariant vector
field on M are both invariant under the induced action of G on TM . So if we take an
invariant local basis {Ea, Xi} on M as before, then {EC

a , XC
i , EV

a , XV
i } is an invariant

local basis of vector fields on TM .
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We now introduce new fibre coordinates with respect to τ , adapted to the invariant basis,
which we call quasi-velocities. For any vector field basis {Zα} on M we denote by vα the
components of u ∈ TxM with respect to {Zα|x}: so u = vαZα|x. Considered as functions
on TM the vα are fibre coordinates; these are the quasi-velocities corresponding to the
basis {Zα}. Alternatively, let {θα} be the 1-form basis dual to {Zα}; each θα defines a
fibre-linear function on TM , θ̂α; then vα = θ̂α. We denote by (va, vi) the quasi-velocities
corresponding to {Ea, Xi}.
We need expressions for the derivatives of the quasi-velocities with respect to the mem-
bers of the invariant basis {EC

a , XC
i , EV

a , XV
i }. To find them, the following two fomulae

are indispensible:
ZC(θ̂) = L̂Zθ, ZV(θ̂) = τ∗θ(Z).

For example, we have ẽC
a(vi) = L̂ẽaθ

i = 0 (since the basis dual to an invariant basis is
also invariant).

We also need expressions for the pairwise brackets of {Ea, Xi}: we have [Ea, Eb] = Cc
abEc,

and we set
[Xi, Xj ] = Ka

ijEa, [Xi, Ea] = Xi(Ab
a)ẽb = Υb

iaEb.

It is worth noting that since the vector fields Xi and Ea are G-invariant, so are their
brackets, and so are the coefficients Ka

ij and Υb
ia.

Let (xi) be coordinates on M/G, as before. Then we find that

ẽC
a(xi) = 0, ẽC

a(vi) = 0, ẽC
a(vb) = 0,

EC
a (xi) = 0, EC

a (vi) = 0, EC
a (vb) = Υb

iav
i + Cb

acv
c,

EV
a (xi) = 0, EV

a (vi) = 0, EV
a (vb) = δb

a,

XC
i (xj) = δj

i , XC
i (vj) = 0, XC

i (va) = −Ka
ijv

j −Υa
ibv

b,

XV
i (xj) = 0, XV

i (vj) = δj
i , XV

i (va) = 0.

From the first line, (xi, vi, va) define coordinates on TM/G. The invariant vector fields
of the basis project onto TM/G, and we can read off the coordinate expressions for their
projections from the formulae above:

πTM
∗ EC

a =
(
Υb

iav
i + Cb

acv
c
) ∂

∂vb
, πTM

∗ EV
a =

∂

∂va
,

πTM
∗ XC

i =
∂

∂xi
−

(
Ka

ijv
j + Υa

ibv
b
) ∂

∂vb
, πTM

∗ XV
i =

∂

∂vi
.

Since Γ is a second-order differential equation field,

Γ = vaEC
a + viXC

i + ΓaEV
a + ΓiXV

i .

Each term is invariant, so Γa and Γi define functions on TM/G. We have

πTM
∗ Γ = Γ̌ = va(Υb

iav
i + Cb

acv
c)

∂

∂vb
+ vi ∂

∂xi

− vi
(
Ka

ijv
j + Υa

ibv
b
) ∂

∂vb
+ Γa ∂

∂va
+ Γi ∂

∂vi

= vi ∂

∂xi
+ Γi ∂

∂vi
+ Γa ∂

∂va
.
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The reduced equations are ẋi = vi, v̇i = Γi(xj , vj , vb), v̇a = Γa(xj , vj , vb), or

ẍi = Γi(xj , ẋj , vb), v̇a = Γa(xj , ẋj , vb);

they are of mixed first- and second-order type.

So far as we are aware, the study of the reduction of general second-order dynamical
systems with symmetry by methods similar to ours has been attempted by other authors
only for single symmetries (that is, 1-dimensional symmetry groups), in [2]. For a more
detailed account of our approach, see [4].

3.2 Reconstruction

In order to carry out reconstruction using the method described in Section 2 we need
a principal connection on the bundle πTM : TM → TM/G. We have already assumed
that we have at our disposal a principal connection on πM : M → M/G. There is in
fact a simple method of lifting such a connection to one on πTM . The initial connection
is specified by its connection form ω. We show that the pull-back τ∗ω of ω to TM by
the tangent bundle projectionτ is the connection form of a principal connection on the
principal G-bundle πTM . Clearly, τ∗ω is a g-valued 1-form on TM . The action of G on
TM is τ -related to the action on M . Likewise, for any ξ ∈ g the fundamental vector field
ξ̃C corresponding to the action on TM is τ -related to ξ̃, the fundamental vector field
corresponding to the action on M . Thus

τ∗ω(ξ̃C) = ω(τ∗ξ̃C) = ω(ξ̃) = ξ,

while
ψTM

g
∗τ∗ω = τ∗ψM

g
∗ω = ad(g−1)τ∗ω,

as required. The connection defined by τ∗ω is called the vertical lift of the original
connection, and its connection 1-form is denoted by ωV.

When we use ωV in the reconstruction process, the right-hand side of the reconstruction
equation is ωV(Γ). The special natures of Γ (that it is a second-order differential equation
field) and ωV (that it is a vertical lift connection) now come into play. For at any point
u ∈ TM , ωV

u (Γ) = ωτ(u)(τ∗Γu) = ωτ(u)(u); that is to say, ωV
u (Γ) is just the vertical part

of u (considered as an element of g), and in particular is the same for all G-invariant
second-order differential equation fields on TM .

4 Lagrangian systems

We now suppose that we are dealing with a second-order dynamical system Γ defined by
a regular Lagrangian L on TM . Thus Γ is the Euler-Lagrange field of L, and satisfies
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the Euler-Lagrange equations, which in terms of coordinates (xα, uα) can be written

Γ
(

∂L

∂uα

)
− ∂L

∂xα
= 0.

We assume that L is regular, which is to say that its Hessian with respect to the fibre
coordinates, the symmetric matrix with entries

∂2L

∂uα∂uβ
,

is non-singular. Then Γ is uniquely determined by the Euler-Lagrange equations (and
the fact that it is a second-order differential equation field). In order to use the methods
described in the previous sections we have to express the Euler-Lagrange equations in
terms of a vector field basis on M which is not of coordinate type. With respect to the
basis {Zα} they take the form

Γ(ZV
α (L))− ZC

α(L) = 0.

Assume that the regular Lagrangian L is G-invariant: ξ̃C(L) = 0. Then the Euler-
Lagrange field Γ is also G-invariant, as one would expect. We wish to carry out a
reduction, and to express the reduced equations in terms of an appropriate reduced
version of the Lagrangian. As we mentioned in the Introduction, there are in fact two
different ways of proceeding.

In the first, which is called Lagrange-Poincaré reduction, we work with the invariant
basis {Ea, Xi}, as before. The Euler-Lagrange equations become

Γ(XV
i (L))−XC

i (L) = 0, Γ(EV
a (L))− EC

a (L) = 0,

and the reduced equations determine a vector field Γ̌ on TM/G.

The second approach could be characterized as making more direct use of the particular
properties of the Euler-Lagrange formalism. This time we use a mixed basis {ẽa, Xi}
(mixed in the sense that only part of it is invariant); since ẽC

a(L) = 0, the Euler-Lagrange
equations are

Γ(XV
i (L))−XC

i (L) = 0, Γ(ẽV
a (L)) = 0.

Thus the momentum, whose components are ẽV
a (L), is conserved. The first step in the

reduction process in this case (if ‘reduction’ is the right word) just consists in restriction
to a level set of momentum. The process as a whole is called Routh’s procedure; it
generalizes the elimination of the momentum conjugate to a cyclic coordinate which was
Routh’s original version of the procedure [11].

4.1 Lagrange-Poincaré reduction

Since it is invariant, L defines a function Ľ on TM/G. The Euler-Lagrange equations
reduce directly to

Γ̌(X̌V
i (Ľ))− X̌C

i (Ľ) = 0, Γ̌(ĚV
a (Ľ))− ĚC

a (Ľ) = 0
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where X̌C
i = πTM∗ XC

i etc. Using the formulae from the previous section we obtain

Γ̌

(
∂Ľ

∂vi

)
− ∂Ľ

∂xi
= −(Ka

ijv
j + Υa

ibv
b)

∂Ľ

∂va

Γ̌

(
∂Ľ

∂va

)
= (Υb

iav
i + Cb

acv
c)

∂Ľ

∂vb
;

and as before,

Γ̌ = vi ∂

∂xi
+ Γi ∂

∂vi
+ Γa ∂

∂va
.

These are the Lagrange-Poincaré equations [3], though they are usually written with
d/dt in place of Γ̌; see also [9].

4.2 Routh’s procedure

We set pa = ẽC
a(L). Considered as a vector, (pa) takes its values in g∗, the dual of the Lie

algebra: it is the (generalized) momentum. Since Γ(pa) = 0, the vector field Γ is tangent
to the level sets of momentum; we will concentrate on its restriction to one level set, say
Nµ : pa = µa.

We work now with the mixed basis {ẽa, Xi}. The quasi-velocities are (ṽa, vi), where
ṽa = Aa

bv
b; the ṽa are not invariant. The pairwise brackets of elements of the basis are

[ẽa, Xi] = 0, [Xi, Xj ] = Ra
ij ẽa, Ra

ij = Ab
aK

b
ij .

(The expression for [Xi, Xj ] identifies the Ra
ij as the components of curvature of the

connection on πM , regarded as a g-valued 2-form on M/G.)

The derivatives of the quasi-velocities are

XC
i (vj) = 0, XC

i (ṽa) = −Ra
ijv

j ,

XV
i (vj) = δj

i , XV
i (ṽa) = 0,

ẽC
a(vi) = 0, ẽC

a(ṽb) = Cb
acṽ

c,
ẽV
a (vi) = 0, ẽV

a (ṽb) = δb
a.

Set gab = ẽV
a (pb) = ẽV

a (ẽV
b (L)). Since vertical lifts commute, gba = gab. We assume that

the symmetric matrix (gab) is everywhere non-singular. Then ẽV
a is transverse to Nµ, and

in principle we can solve the equations pa = µa for ṽa. Thus restricting to a level set of
momentum is a form of reduction, in the sense that by doing so we reduce the number of
variables, and presumably thereby the difficulty of the problem. It is however a somewhat
different form of reduction from those discussed so far: reduction by restriction rather
than projection.

The gab are in fact components of the Hessian of L. The Hessian of L can be defined in
a coordinate-independent way as the symmetric covariant 2-tensor g along τ given by

g(u, v) = uV(vV(L)),
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for any vectors u, v at the same point of M . We have gab = g(ẽa, ẽb).

We may use gab to define vector fields tangent to Nµ. Denote by (gab) the matrix inverse
to (gab). For any vector field Y on TM , the vector field Y − gabY (pa)ẽV

b annihilates pa

and is therefore tangent to each level set of momentum. In particular, set

X̄C
i = XC

i − gabXC
i (pb)ẽV

a = XC
i − P a

i ẽV
a

X̄V
i = XV

i − gabXV
i (pb)ẽV

a = XV
i −Qa

i ẽ
V
a .

Then X̄C
i , X̄V

i are tangent to Nµ. We have

X̄C
i (ṽa) = −Ra

ijv
j − P a

i , X̄V
i (ṽa) = −Qa

i .

We now derive some Euler-Lagrange-like equations which determine the restriction of Γ
to the level set of momentum Nµ. These equations involve, not the Lagrangian itself,
but a modification of it called the Routhian, which is given by R = L− paṽ

a. Now

XC
i (L) = X̄C

i (L) + P a
i pa = X̄C

i (L)− pa(X̄C
i (ṽa) + Ra

ijv
j)

= X̄C
i (R)− paR

a
ijv

j ;
XV

i (L) = X̄V
i (L) + Qa

i pa = X̄V
i (L)− paX̄

V
i (ṽa)

= X̄V
i (R).

But Γ(XV
i (L)) −XC

i (L) = 0, and Γ is tangent to Nµ. So if Rµ is the restriction of the
Routhian to Nµ we have

Γ(X̄V
i (Rµ))− X̄C

i (Rµ) = −µaR
a
ijv

j .

These are the required equations; we call them the generalized Routh equations.

The generalized Routh equations may appear to be straightforwardly second-order differ-
ential equations, unlike the other reduced equations for second-order differential equation
fields, which are mixed first- and second-order equations. This appearance is deceptive.
In the first place, the generalized Routh equations (when expressed explicitly as differ-
ential equations) are equations on Nµ, not TM/G as is the case for the other reduced
equations. Now Nµ can be locally identified with M×M/GT (M/G). For local coordinates
on Nµ we may take (xi, θa, vi), where (θa) are fibre coordinates on M , so that (xi, θa) are
coordinates on M and (xi, vi) coordinates on T (M/G). The quasi-coordinates (vi, va)
on TM are linear combinations of ẋi and θ̇a, and in fact vi = ẋi. So we can express va

in terms of ẋi and θ̇a. On TM the resulting expression is an identity; but on restricting
to Nµ, the equations pa = µa, when expressed in this way in terms of ẋi and θ̇a, become
additional implicit first-order differential equations, which we may regard as equations
for the θ̇a (since the equations vi = ẋi are already subsumed in the representation of the
generalized Routh equations as second-order equations).

The level set Nµ is not in general G-invariant: ξ̃C is not in general tangent to Nµ. In fact

ξ̃C(pa) = ξbẽC
b (pa) = ξb[ẽC

b , ẽV
a ](L) = ξbCc

abpc.
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Thus ξ̃C will be tangent to Nµ if and only if ξbCc
abµc = 0. The set of ξ ∈ g which

satisfy this condition forms a subalgebra gµ of g. It is in fact the algebra of Gµ, the
isotropy group of µ ∈ g∗ under the coadjoint action of G in g∗. Now Γ|Nµ , Rµ, and
the generalized Routh equations, are all invariant by Gµ. We can therefore carry out a
further reduction, by Gµ, in the manner described earlier, to obtain a reduced system on
Nµ/Gµ. The resulting reduced equations have been called the Lagrange-Routh equations
[8]. We do not give the derivation here, but refer the reader to [5], as well as [8], for
the details. In fact [8] contains an extensive discussion of the background to Routh’s
procedure and its modern generalization. The methods used in this paper are quite
different from ours, however, and it deals only with so-called simple mechanical systems.
For a more detailed account of all aspects of our approach see [5].

4.3 Reconstruction

The same method of reconstruction as was described for second-order differential equa-
tions in the previous section, namely using the vertical lift connection, can be used for
Lagrange-Poincaré reduction. For Routh’s procedure it is necessary to carry out recon-
struction only for the final stage of reduction by Gµ: an integral curve of the restriction
of Γ to Nµ is, after all, an integral curve of Γ. It is not so obvious how to adapt the
vertical lift connection to this situation, though it can be done. We will now describe
an alternative way of constructing a connection, which is based more closely on the fact
that we are dealing with a Lagrangian system, and applies more-or-less directly to both
reconstruction problems.

We consider first the case of a simple mechanical system, which is one in which the
Lagrangian takes the simple form L = T −V where T is a kinetic energy function derived
from a Riemannian metric g, and V a function on M defining the potential energy. The
symmetry group G consists of all isometries of the metric g leaving V invariant. Then
the distribution on M consisting of all vectors orthogonal (with respect to g) to the fibres
of πM : M → M/G is G-invariant, and defines a principal connection (of which it is the
horizontal distribution). This is the so-called mechanical connection on πM . It can be
lifted to a principal connection on πTM : TM → TM/G, as before. For the vertical lift
of the mechanical connection, v ∈ TuTM is horizontal just when gτ(u)(τ∗v, ξ̃) = 0 for all
ξ ∈ g. This connection can be used for reconstruction in the Lagrange-Poincaré case.
For Routh’s procedure we define the required connection by saying that v ∈ TuNµ is
horizontal just when gτ(u)(τ∗v, ξ̃) = 0 for all ξ ∈ gµ.

In general, we can use the Hessian of L in place of the Riemannian metric. This doesn’t
give a connection on M , but does give connections on TM → TM/G and Nµ → Nµ/Gµ.
Indeed, since we have (wittingly) used the same symbol, g, for both the metric in the
case of a simple mechanical system and the Hessian in general, the definitions are almost
identical: the only difference is that in general g is not projectable. For the Lagrange-
Poincaré case, we say that v ∈ TuTM is horizontal just when gu(τ∗v, ξ̃) = 0 for all ξ ∈ g.
For the Routhian case, we say that v ∈ TuNµ is horizontal just when gu(τ∗v, ξ̃) = 0
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for all ξ ∈ gµ. Both of these specifications define principal connections, which we call
collectively the generalized mechanical connection. A fuller account of this construction
can be found in [9].

5 An example: Wong’s equations

In this final section we determine the reduced equations for an interesting second-order
differential equation field, namely the geodesic field for a Riemannian manifold on which
a group G acts freely and properly to the left as isometries. We make the further
stipulation that the vertical part of the metric (that is, its restriction to the fibres of
πM : M → M/G) comes from a bi-invariant metric on G. The reduced equations in such
a case are known as Wong’s equations [3, 10]. We will derive the reduced equations by
each of the three methods discussed above.

We will denote the metric by g. The fact that the symmetry group acts as isometries
means that the fundamental vector fields ξ̃ are Killing fields: Lξ̃g = 0. It follows that
the components of g with respect to the members of an invariant basis {Ea, Xi} are
themselves invariant. We have a small notational problem to deal with here: we will need
to distinguish between the components of g with respect to the fundamental vector fields
ẽa and those with respect to the Ea. We will set g(ẽa, ẽb) = gab, as before. For g(Ea, Eb)
we will write hab. We set g(Xi, Xj) = gij . We will use the mechanical connection, which
means that g(ẽa, Xi) = 0. Since both hab and gij are G-invariant functions, they pass
to the quotient; in particular, the gij are the components with respect to the coordinate
fields of a metric on M/G, the reduced metric.

The further assumption about the vertical part of the metric has the following implica-
tions. It means in the first place that LEcg(Ea, Eb) = 0 (as well as Lẽcg(Ea, Eb) = 0), and
secondly that the hab must be independent of the coordinates xi on M/G, which is to say
that they must be constants. From the first condition, taking into account the bracket
relations [Ea, Eb] = Cc

abEc, we easily find that the hab must satisfy hadC
d
bc + hbdC

d
ac = 0.

It is implicit in our choice of an invariant basis that we are working in a local trivializa-
tion of M → M/G. Then ẽa, Ea and Ab

a are all objects defined on the G factor, and so
are independent of the xi. We may write

Xi =
∂

∂xi
− γa

i Ea

for some coefficients γa
i which are clearly G-invariant; moreover

[Xi, Ea] = γc
i C

b
acEb = Υb

iaEb.

Thus Υb
ia = γc

i C
b
ac, and therefore hacΥc

ib + hbcΥc
ib = 0.

The second-order differential equation field Γ of interest is the geodesic field of the
Riemannian metric g. To find the reduced equations by the direct method we have
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to express Γ in terms of the invariant basis, and for this purpose we need the connection
coefficients of the Levi-Civita connection in terms of this basis. Using the data above in
the standard Koszul formulae for the Levi-Civita connection coefficients of g with respect
to the basis {Ea, Xi} we find that the only non-zero coefficients are Γ i

jk, which are just
the connection coefficients of the Levi-Civita connection of the reduced metric gij , and

Γa
bc = 1

2Ca
bc, Γa

jb = Υa
jb, Γa

jk = 1
2Ka

jk, Γ i
jb = −1

2gikhbcK
c
jk = Γ i

bj .

It follows that

Γ = viXC
i + vaEC

a

−
(
Γ i

jkv
jvk + (Γ i

jb + Γ i
bj)v

jvb + Γi
bcv

bvc
)

XV
i

−
(
Γa

jkv
jvk + (Γa

jb + Γa
bj)v

jvb + Γa
bcv

bvc
)

EV
a

= viXC
i + vaEC

a −
(
Γ i

jkv
jvk − gikhbcK

c
jkv

jvb
)

XV
i −Υa

jbv
jvbEV

a .

The reduced vector field on TM/G is therefore

Γ̌ = vi ∂

∂xi
−

(
Γ i

jkv
jvk − gikhbcK

c
jkv

jvb
) ∂

∂vi
−Υa

jbv
jvb ∂

∂va

and the reduced equations are

ẍi + Γ i
jkẋ

j ẋk = gikhbcK
c
jkẋ

jvb

v̇a + Υa
jbẋ

jvb = 0.

These are Wong’s equations. (The form of the second of these equations suggests that
the Υa

jb should be regarded as connection coefficients. It is indeed the case that they are:
the connection in question is that induced by ω on the adjoint bundle, that is, the vector
bundle associated with the principal G-bundle πM by the adjoint action of G on g.)

The geodesic equations may also be derived from the Lagrangian

L = 1
2gαβuαuβ = 1

2gijv
ivj + 1

2habv
avb.

It is of course G-invariant. We may therefore apply Lagrange-Poincaré reduction, which
gives the reduced equations

d

dt
(gijv

j)− 1
2

∂gjk

∂xi
vjvk = −(Ka

ijv
j + Υa

ibv
b)hacv

c

d

dt
(habv

b) = (Υb
iav

i + Cb
acv

c)hbdv
d.

Now Υa
ibhac is skew-symmetric in b and c, and Cb

achbd is skew-symmetric in c and d, so
the final terms in each equation vanish identically, and we may write the equations in
the form

gij

(
ẍj + Γj

klẋ
kẋl

)
= −hbcK

c
ij ẋ

jvb

hab

(
v̇b + Υb

icẋ
ivc

)
= 0,
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using the skew-symmetry of Υc
ibhac again in the second equation. These equations are

equivalent to the ones obtained by the direct method (Kc
ij is of course skew-symmetric

in its lower indices).

In order to use Routh’s procedure we must rewrite the Lagrangian in terms of the quasi-
velocities associated with the mixed basis: it is given by

L = 1
2gijv

ivj + 1
2gabṽ

aṽb.

The momentum is given by pa = gabṽ
b, and the Routhian by

R = L− paṽ
a = 1

2gijv
ivj − 1

2gabpapb.

The next problem is to calculate X̄V
i (R) and X̄C

i (R). In fact, it is easy to see that
X̄V

i (R) = gijv
j . The calculation of X̄C

i (R) reduces to the calculation of Xi(gij) and
Xi(gab). The first is straightforward. For the second, we note that gab = Āc

aĀ
d
bhcd, where

(Āb
a) is the matrix inverse to (Ab

a); since the right-hand side is independent of the xi, so
is gab, and so equally is gab. It follows that

X̄C
i (R) = 1

2

∂gjk

∂xi
vjvk − 1

2γc
i Ec(gab)papb.

Now Ec(gab) = −Ad
c(g

aeCb
de + gbeCa

de), from Killing’s equations. Using the relation
between gab and hab, and the fact that ad is a Lie algebra homomorphism, we find that

Ec(gab) = −Aa
dA

b
e(h

dfCe
cf + hefCd

cf ).

The expression in the brackets vanishes, as follows easily from the properties of hab. Thus
the generalized Routh equation is

d

dt
(gijv

j)− 1
2

∂gjk

∂xi
vjvk = gij

(
v̇j + Γj

klv
kvl

)
= −µaR

a
ijv

j .

But Ra
ij = Aa

bK
b
ij , and µa = gabṽ

b = Āc
ahbcv

b, so µaR
a
ij = hbcK

c
ijv

b. The generalized
Routh equation is therefore equivalent to

gij

(
ẍj + Γj

klẋ
kẋl

)
= −hbcK

c
ij ẋ

jvb

again. On the other hand, the constancy of µa gives

hbc
d

dt
(Āc

av
b) = 0.

If we are to understand this equation in the present context, we evidently need to calculate
Ȧb

a. Now
Ȧb

a = viXi(Ab
a) + ṽcẽc(Ab

a) = viΥc
iaA

b
c + ṽcCb

cdA
d
a.

It follows that

hbc
d

dt
(Āc

a) = −hbcĀ
d
aĀ

c
eȦ

e
d = −hbcĀ

d
aĀ

c
e(v

iΥf
idA

e
f + ṽfCe

fgA
g
d)

= −hbcĀ
d
a(v

iΥc
id + veCc

ed),
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where in the last step we have again used the fact that ad is a Lie algebra homomorphism.
Now from the skew-symmetry properties of hab we obtain

hbc
d

dt
(Āc

a) = hcdĀ
d
a(v

iΥc
ib + veCc

eb),

and therefore
hbc

d

dt
(Āc

av
b) = hcdĀ

d
a(v̇

c + Υc
ibv

ivb).

The first-order part of Wong’s equations is thus equivalent to the constancy of momen-
tum.
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