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Abstract. We discuss the geometry of partially decoupling (submersive) second-
order equations in general and illustrate the theory with an application to the case
of Lagrangian systems of mechanical type: it is shown that submersiveness implies
decoupling into separate subsystems in that case, unless non-conservative forces are
added to the system. The main purpose of the paper is to explain the geometric
structures underlying so-called ‘driven cofactor systems’, which constitute a special
class of non-conservative Lagrangian systems. In doing so, we generalize the orig-
inal set-up of driven cofactor systems [9] from a Euclidean space to an arbitrary
Riemannian one.

1 Introduction

The class of Newtonian equations which is often referred to as cofactor systems nowadays,
was the subject of study in Lundmark’s thesis [7]. In a first paper about such systems
[16], the discussion was mainly restricted to two dimensions and Lundmark’s more general
account for arbitrary dimension [8] only appeared much later. Specifically, the Newtonian
systems which Lundmark first considered were second-order equations (Sodes) of the
form:

q̈i = −(A(q)−1)ij ∂W

∂qj
,

where A is the cofactor matrix of a matrix G (called planar inertia tensor in [1]) of the
form

Gij(q) = αqiqj + βiqj + βjqi + γij.

As observed in [3], such equations can be viewed as representing a class of non-conservative
Lagrangian systems

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi,

with a ‘Euclidean kinetic energy’ T = 1
2

∑
(q̇i)2 and non-conservative forces of some quasi-

potential type. The point of this remark is that it paves the way for an intrinsic geometri-
cal description, allowing at the same time for a more general ‘Riemannian kinetic energy’
T = 1

2
gij(q)q̇

iq̇j. As a matter of fact, within the class of non-conservative Lagrangian
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systems on a tangent bundle TM , determined by such a T (and hence by some g on
M) and by a 1-form µ = Qi(q)dqi representing non-conservative forces independent of
velocities, the geometric definition of a cofactor system reads as follows [3].

Definition 1. The pair (g, µ) on a Riemannian manifold M determines a cofactor system
if g admits a special conformal Killing tensor J and µ satisfies DJµ = 0, where (for any
1-form ρ)

DJρ = dJρ + d(tr J) ∧ ρ or DJρ = (det J)−1dJ((det J)ρ).

The term special conformal Killing tensor was probably first used in [3] as well, but the
same concept or a closely related one appears under different names in different contexts
(see for example the review paper [2]).

Definition 2. A special conformal Killing tensor (scKt) w.r.t. g is a (non-singular) type
(1, 1) tensor on M , such that Jij = gikJ

k
j is symmetric and its covariant derivative (w.r.t.

the Levi-Civita connection) satisfies

Jij|k = 1
2
(αigjk + αjgik),

for some 1-form α.

It follows from the scKt condition that α = d(tr J). More importantly, we have that J
has vanishing Nijenhuis torsion:

NJ = 0 ⇒ dJ
2 = 0 ⇒ DJ

2 = 0,

but DJ is not a derivation in the strict sense (it is a so-called gauged differential operator,
see [4]). Note that the scKt condition is what produces the matrix G of the Euclidean
case above.

The interest of cofactor systems comes from the following further properties. If A is the
cofactor tensor of J , i.e. A J = (det J)I, then A is a Killing tensor! Also, DJµ = 0 (in
view of DJ

2 = 0) implies that there exists a function W on M , such that A(µ) = dW and
we have that E = 1

2
Aij(q)v

ivj + W (q) is a first integral, which is in fact the Hamiltonian

of a quasi-Hamiltonian description of the system. Indeed, denoting by J̃ the complete lift
of J to T ∗M , J̃ commutes with the standard Poisson map P0 : X ∗(T ∗M) → X (T ∗M),
has vanishing Nijenhuis torsion as well and is in fact the recursion operator of a Poisson-
Nijenhuis structure on T ∗M , with P0 and PJ = J̃ ◦ P0 as compatible Poisson maps.
Then, if Γ̂ ∈ X (T ∗M) denotes the image of the given second-order dynamics Γ under the
Legendre transform of the kinetic energy Lagrangian L = 1

2
gijv

ivj, we have the following
important characterization of cofactor systems [3].

Theorem 1. The cofactor system properties are necessary and sufficient for Γ̂ to have
the quasi-Hamiltonian representation:

F Γ̂ = PJ(dH) with H = 1
2
Aijpipj + W, F = det J.
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Cofactor pair systems constitute an interesting subcase: the non-conservative system
(g, µ) then has a double cofactor representation, leading to two modified Poisson tensors
which are compatible and a hierarchy of first integrals which are in involution with respect
to both Poisson structures [3]. For a recent contribution to the subject, see [10].

The motivation for the present paper stems from the study of what we will call driven
cofactor systems , initiated in [9]. Roughly, these are cofactor systems which exhibit partial
decoupling into a “driving” and a “driven” subsystem. Explicitly, the equations under
consideration in [9] are of the form

ÿi = Qi(yj), i = 1, . . . ,m

ẍa = Qa(yi, xb), a = 1, . . . , n

and apart from the overall assumption that the system in (yi, xa) is of cofactor type (w.r.t.
the Euclidean metric), an extra hypothesis is: after solving the driving equations for the
yi, the reduced driven system

ẍa = Qa(yi(t), xb)

has a Lagrangian of mechanical type T − V , of course with a potential V which will be
time-dependent through its dependence on the y-variables. What is proved then are the
following quite remarkable features: (i) the driving system is of cofactor type in its own
right on the Euclidean space IRm; (ii) for any solution y(t) of the driving system, the driven
system has n (time-dependent) integrals; (iii) under some technical assumptions, there
exists a canonical transformation, which brings the driven system in a form in which its
(time-dependent) Hamilton-Jacobi equation can be solved by separation of variables. The
authors provide no clue, however, about the question whether there is any geometrical
content for such systems or, expressed differently, whether there exists a coordinate-
free characterization of the defining properties of such systems, which then should hold
preferably for an arbitrary Riemannian metric again, rather than the Euclidean one.

Our aim is to show that the concept of driven cofactor systems indeed makes sense on
an arbitrary Riemannian manifold and can be given a concise coordinate-free description.
We will take this opportunity, however, to start from the question of partial decoupling of
Sodes in general and then gradually narrow the subject to come to the situation of driven
cofactor systems. The point is that, since the work on complete decoupling of Sodes in
[14] and [15], we dare claim that the perfect geometrical tools are available for studying
partial decoupling as well, but they seem to be hardly known. For this reason, we will
focus here on the broad geometrical picture and leave the rather technical computational
details of the third of the challenges raised by the results in [9] for a forthcoming paper.

2 Generalities about second-order equations

It is well known that a Sode field on TM

Γ = vi ∂

∂qi
+ f i(q, v)

∂

∂vi
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comes with a canonically defined connection on τ : TM → M , determined by the hori-
zontal lift construction

X ∈ X (M) 7→ XH =
1

2
(Xc + [XV , Γ]) .

Here, Xc denotes the complete lift and XV the vertical lift of X. In coordinates, if
X = X i(q)∂/∂qi, we have

XH = X i Hi, Hi =
∂

∂qi
− Γj

i

∂

∂vj
, Γi

j = −1

2

∂f i

∂vj
.

In turn, with the aid of the projection operators PH and PV of this non-linear connection
on TM , one can construct a linear connection on the pullback bundle τ ∗τ : τ ∗TM → TM
(see e.g. [11]). Sections of τ ∗τ are called vector fields along τ and constitute a C∞(TM)-
module X (τ). The linear connection D : X (TM)× X (τ) → X (τ), said to be of Berwald
type, then essentially defines vertical and horizontal covariant derivative operators DV

X

and DH
X on X (τ). In coordinates, these are determined by the following action on functions

F ∈ C∞(TM) and basic vector fields (and then further extend by duality):

DV

XF = X i Vi(F ), DV

X

∂

∂qi
= 0 (Vi :=

∂

∂vi
)

DH

XF = X i Hi(F ), DH

X

∂

∂qi
= XjVi(Γ

k
j )

∂

∂qk
.

Of equal importance are: the dynamical covariant derivative ∇, a self-dual degree 0
derivation on tensor fields along τ , and a (1, 1) tensor Φ along τ , called the Jacobi endo-
morphism. These can implicitly be defined by the following formula for the decomposition
of the vector field LΓXH on TM into its horizontal and vertical part:

LΓXH = (∇X)H + Φ(X)V .

For practical purposes, it suffices to know that:

∇F = Γ(F ) ∇ ∂

∂qi
= Γj

i

∂

∂qj
∇dqi = −Γi

jdqj ,

Φi
j = −∂f i

∂qj
− Γi

kΓ
k
j − Γ(Γi

j) .

For the general theory of derivations of forms along τ , one can consult [12, 13].

3 Submersive equations

Sodes for which one can find suitable coordinates in which the equations exhibit partial
decoupling are said to be submersive by Kossowski and Thompson [6]. These authors
used tangent bundle geometry techniques in their analysis and the main relevance of
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their results is that submersiveness is characterized in an intrinsic way, i.e. by properties
which can be verified, in principle, prior to the construction of decoupling coordinates.
The point we wish to make is that the tools explained in the preceding section are more
concise and ideally suited for studying submersiveness. Indeed, the following result is
implicitly present in [14].

Proposition 1. A Sode Γ on TM is submersive if and only if there exists a distribution
K along τ : TM → M , such that

Φ(K) ⊂ K, ∇K ⊂ K, DV

ZK ⊂ K ∀Z ∈ X (τ).

A sketch of the proof of this statement goes as follows. The DV -invariance means that K
is generated by basic vector fields. DV - and ∇-invariance further implies DH-invariance
(through the commutator properties of these derivations) and since the horizontal bracket
of vector fields along τ reduces to the usual Lie bracket in the case of basic vector fields,
the result is that K is generated by a Frobenius integrable distribution. If the xa are
coordinates on integral manifolds of K (and the yi denote transversal coordinates), ∇-
invariance now implies that the forces f i do not depend on the ẋa. Finally, as can be seen
from the coordinate expression of Φi

a, Φ-invariance subsequently implies ∂f i/∂xa = 0 as
well.

It is well known that, if a Sode Γ is Lagrangian, the Hessian of this Lagrangian is a kind
of generalized metric on TM , which is invariant under ∇. Let us therefore, for the kind of
non-conservative Lagrangian systems we ultimately have in mind, start by investigating
what submersiveness means in the presence of a Riemannian metric g on M , satisfying

∇g = 0 or equivalently gij|k = 0.

Denote by K⊥ the orthogonal complement of K with respect to g: g(K, K⊥) = 0. It
easily follows from ∇g = 0 and DV

Zg = 0 that

∇K⊥ ⊂ K⊥, DV

ZK⊥ ⊂ K⊥ ∀Z ∈ X (τ).

Another general property of Lagrangian systems is that Φ is symmetric with respect to
the Hessian of L. Therefore, if our submersive Γ were actually Lagrangian, with the
Riemannian g as its Hessian, it would follow that

0 = g(ΦK, K⊥) = g(K, ΦK⊥),

which would imply that also Φ(K⊥) ⊂ K⊥. Thus we reach the conclusion that a sub-
mersive Lagrangian system of mechanical type is necessarily submersive in two different
ways! Moreover, the two complementary distributions K and K⊥ then are simultaneously
integrable, meaning that we obtain the somewhat surprising result that a submersive La-
grangian system (of mechanical type) actually decouples into two separate systems. We
will show next that this is not the case in the presence of non-conservative systems, where
one can indeed distinguish between a ‘driving’ and a ‘driven’ system.

In what follows, we will label the overall coordinates (q, v) of the system with Greek
indices (when making use of the kind of general coordinate relations explained so far).
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Coordinates adapted to the two integrable distributions will typically be represented as
yi (i = 1, . . . ,m) and xa (a = 1, . . . , n), say

K = sp

{
∂

∂xa

}
, K⊥ = sp

{
∂

∂yi

}
,

so that in such coordinates: (qα) = (yi, xa) (α = 1, . . . ,m + n).

4 Submersive non-conservative systems

Consider a pair (g, µ) on M , with g Riemannian and µ of the form µ = Qα(q)dqα. The
corresponding non-conservative Sode then is of the form

Γ = Γ̃ + Qβ ∂

∂vβ
, Qβ = gβαQα,

where Γ̃ is the geodesic spray of g.

Comparing the geometrical tools provided by the Sode fields Γ and Γ̃, respectively, we
observe first of all that

Γα
β = Γ̃α

β = Γ̃α
βγv

γ.

It follows that Hα = H̃α, while ∇ and ∇̃ coincide on basic tensor fields, but obviously
differ on functions on TM . We further have,

Φ = Φ̃−DH̃Q, where Q = Qα ∂

∂qα
, (DH̃Q)

α

β = Qα
|β.

But the geodesic spray Γ̃ is Lagrangian, hence

∇̃g = 0, and Φ̃ g is symmetric.

It follows that ∇g = 0 as well, but of course we insist on dµ 6= 0 to avoid that Γ would
also be Lagrangian.

Assume now again that a distribution K makes Γ submersive and consider its complement
K⊥ with respect to g. As before, since ∇g = 0, we have

∇K⊥ ⊂ K⊥, DV

ZK⊥ ⊂ K⊥ ∀Z ∈ X (τ),

but generally,

g(ΦK, K⊥) = g(Φ̃K, K⊥)−DHµ(K,K⊥)

= g(K, ΦK⊥) + DHµ(K⊥, K)−DHµ(K, K⊥).

The left-hand side is zero, and to avoid splitting of Γ in two separate subsystems, we
want that g(K, ΦK⊥) 6= 0. However, since Γ̃ is Lagrangian and also submersive (and thus
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splits), we have g(Φ̃K, K⊥) = 0 and therefore DHµ(K, K⊥) = 0 from the first line. The
condition to avoid splitting of Γ thus is that DHµ(K⊥, K) 6= 0.

In coordinates (yi, xa), simultaneously adapted to K and K⊥, the equations of motion
will take the form

ÿi = −Γi
jk(y)ẏj ẏk + Qi(y),

ẍa = −Γa
bc(x)ẋbẋc + Qa(y, x).

Obviously, these are fairly general conclusions which hold independently of the existence
of a special conformal Killing tensor for g.

Within the general class of submersive non-conservative systems, just described, two
more assumptions are needed now to capture and at the same time generalize the systems
described in [9]. One is the existence of a scKt J which must take care of the overall
cofactor nature of the system, the other is simply the assumption dµ(K, K) = 0, which
in adapted coordinates will guarantee that the Qa(y, x) satisfy

∂Qa

∂xb
− ∂Qb

∂xa
= 0,

and thus that the ‘driven’ system is (parametrically) Hamiltonian.

Hence we arrive at the following coordinate-free characterization:

Definition 3. A driven cofactor system is a cofactor system (g, µ, J), determined by a
Riemannian metric g, a 1-form µ and a scKt J on M , for which there exists a distribution
K along τ , with the properties

Φ(K) ⊂ K, ∇K ⊂ K, DV

ZK ⊂ K,

dµ(K, K) = 0, DHµ(K⊥, K) 6= 0.

5 The cofactor pair nature of driven cofactor systems

We know that in coordinates (yi, xa) adapted to the integrable distributions K⊥ and K,
the metric g will have a block diagonal structure, i.e. gia = gai = 0. Furthermore, it is
easy to verify from ∇g = 0 and the scKt condition for J that

∂gij

∂xa
=

∂Jij

∂xa
= 0,

∂gab

∂yi
=

∂Jab

∂yi
= 0,

and also

Jij|k = 1
2
(α1igjk + α1jgik), α1 = d tr J1, J1 = (J i

j),

Jab|c = 1
2
(α2agbc + α2bgac), α2 = d tr J2, J2 = (Ja

b ).

This means that J1 and J2 are in fact special conformal Killing tensors for g1 = g|K⊥ and
g2 = g|K respectively. But it is worthwhile having a more intrinsic look at the situation.
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K and K⊥ being regular, basic, integrable distributions, give rise to two complementary
sub-bundles of TM (and corresponding sub-modules of X (τ)). Consider the projection
operators

P1 : X (M) → K⊥, P2 : X (M) → K.

Lemma 1. We have ∇Pi = 0 and NPi
= 0, i = 1, 2.

Proof. ∇Pi = 0 easily follows from the ∇-invariance of both distributions and the
Nijenhuis property of integrable almost product structures is well known.

The point about these properties is the following. The projectors Pi obviously have
constant trace (think of their representation in adapted coordinates). Therefore, ∇Pi = 0
expresses that the Pi formally satisfy the defining relation of scKts, except that they are
degenerate. NPi

= 0 then guarantees that the important Nijenhuis property of scKts
remains valid for these degenerate specimen.

We want to show now that P2 actually can be regarded as providing a second (though
degenerate) cofactor representation of the given system. This requires checking that the
non-conservative forces µ have the appropriate properties. The following general property
of type (1, 1) tensors will be useful for that purpose (we make no notational distinction
between the action of a (1, 1) tensor on vector fields or on 1-forms).

Lemma 2. Let N be a (1, 1) tensor field on M . Then the Nijenhuis torsion of N vanishes
if and only if for any 1-form α:

dα(NX, NY ) + d(N2α)(X, Y )− d(Nα)(NX, Y )− d(Nα)(X,NY ) = 0.

Proof. A fairly straightforward computation shows that the left-hand side is just
−α(NN(X, Y )).

Lemma 3. For any (1, 1) tensor N with vanishing Nijenhuis torsion and any 1-form α,
we have

dα(NX, NY ) = dN(Nα)(X, Y ).

Proof. From the general commutator relation of a type i∗ and a type d∗ derivation in
the standard work of Fröhlicher and Nijenhuis [5], it follows that in the case of a (1, 1)
tensor N with vanishing bracket [N, N ], we have

iNdN − dN iN = dN2 .

Explicitly, this means that for any α,

dN(Nα)(X, Y ) = dNα(NX, Y ) + dNα(X, NY )− dN2α(X, Y ),

and making use of dN = [iN , d] to compute the terms in the right-hand side, we obtain

dN(Nα)(X,Y ) = 2 dα(NX, NY ) + d(N2α)(X, Y )− d(Nα)(NX, Y )− d(Nα)(X,NY ).

The result of the preceding lemma now immediately completes the proof.
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Proposition 2. Let (g, µ, J) be a driven cofactor system. Then the corresponding Sode
Γ has a second, degenerate cofactor representation with the projector P2 in the role of
special conformal Killing tensor.

Proof. From the preceding lemma, applied to P2 and the 1-form µ representing the non-
conservative forces, we get dµ(P2X, P2Y ) = dP2(P2µ)(X, Y ). Therefore, the hypothesis
dµ(K, K) = 0 becomes equivalent to dP2(P2µ) = 0. In addition, thinking in the coordi-
nates (yi, xa) adapted to the submersiveness of the system, P1µ is a 1-form involving the
coordinates yi of the driving system only, whence the same is true for its exterior deriv-
ative. It follows that iP2d(P1µ) = 0 and since P2(P1µ) = 0 trivially, also dP2(P1µ) = 0.
Hence, we can conclude that dP2µ = 0, which is the same as DP2µ = 0 in view of P2

having constant trace.

It follows that we have a kind of degenerate cofactor pair system.

We next proceed to show that the driving system, perhaps not unexpectedly, inherits
a cofactor representation in its own right. The type (1, 1) tensors J1 and J2, already
mentioned at the beginning of this section, constitute two of the following four blocks in
which the scKt J can be broken up:

Ji = Pi ◦ J ◦ Pi, i = 1, 2, J12 = P1 ◦ J ◦ P2, J21 = P2 ◦ J ◦ P1.

The composition of (1, 1) tensors has to be used with some care here: we think of maps
on vector fields in the above defining relations, so the order of the compositions has to be
reversed when the dual action on 1-forms is considered. Anyway, we have J = J1 + J2 +
J12 + J21, and in the coordinates (yi, xa) adapted to the complementary distributions,

J21 = Ja
i (y, x)

∂

∂xa
⊗ dyi, J12 = J i

a(y, x)
∂

∂yi
⊗ dxa.

Also put
µ1 = P1(µ) = Qi(y)dyi, µ2 = P2(µ) = Qa(y, x)dxa.

Lemma 4. ∀X,Y ∈ K⊥, we have

dµ2(J21X, Y ) + dµ2(X, J21Y )− d(J21µ)(X, Y ) = 0.

Proof. It is easy to check that, in adapted coordinates, the left-hand side of the above
expression reduces to (

∂Ja
k

∂yl
− ∂Ja

l

∂yk

)
QaX

kY l.

The general defining relation of a scKt J , when expressed in its type (1, 1) version (cf.
definition 2 with one index raised), reads

Jα
β|γ :=

∂Jα
β

∂qγ
− Jα

σ Γσ
βγ + Jσ

β Γα
σγ = 1

2
(αβδα

γ + ασg
σαgβγ).

9



For the present situation, it implies among other things that in adapted coordinates:

Ja
i|k =

∂Ja
i

∂yk
− Ja

j Γj
ik = 1

2
αbg

bagik.

It follows that
∂Ja

i

∂yk
=

∂Ja
k

∂yi
,

which suffices to arrive at the desired result.

Proposition 3. If (g, µ, J) determines a driven cofactor system, then the driving system
has itself a cofactor representation, determined by g1 = g|K⊥, µ1 = P1(µ) and J1 =
P1 ◦ J ◦ P1.

Proof. We know that

DJµ = iJdµ− d(Jµ) + d(tr J) ∧ µ = 0.

Applying this in particular to vector fields belonging to K⊥ and taking the decomposition
of J and µ into account, this reduces to: ∀X, Y ∈ K⊥,

0 = dµ1(J1X, Y ) + dµ1(X, J1Y )− d(J1µ1)(X,Y ) + d(tr J1) ∧ µ1(X, Y )

+ dµ2(J21X, Y ) + dµ2(X, J21Y )− d(J21µ)(X, Y ).

The second line vanishes in view of the preceding lemma and the remaining terms then
express that DJ1µ1 = 0, which is what we want.

It follows that the driving system has a quadratic integral which in adapted coordinates
reads

E = 1
2
A1

ij(y)ẏiẏj + W 1(y),

with A1 = cof J1 and A1µ1 = dW 1.

Let us finally come back to the cofactor pair nature of the full system. The algorithm
for generating a hierarchy of first integrals of a cofactor pair system, as described for
example in [3], can be suitably adapted to the case where one of the special conformal
Killing tensors is degenerate. In the present situation, if n = dim K as before, the adapted
algorithm can be shown to produce n + 1 integrals, one of which is E. Along solutions
of the driving system, the other n are time-dependent integrals of the driven system.
All of this generalizes the results of [9] for the Euclidean case (cf. the points (i) and
(ii) mentioned towards the end of the introduction). There is a lot to be said about
point (iii) of that enumeration, which involves, among other things, the construction of
a specific canonical transformation aimed at obtaining a (time-dependent) Hamiltonian
representation of the driven system, which can be solved by separation of variables in the
Hamilton-Jacobi equation. In fact, a number of the interesting features of this latter part
have remained virtually unnoticed even in the Euclidean situation of [9]. For this reason
and because it requires more technicalities which would take us too far away from the
geometrical theory of submersive systems we wanted to highlight here, all these additional
aspects will be treated in a separate paper.
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