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Abstract. The developments in this paper are concerned with nonholonomic
field theories in the presence of symmetries. Having previously treated the case
of vertical symmetries, we now deal with the case where the symmetry action can
also have a horizontal component. As a first step in this direction, we derive a
new and convenient form of the field equations of a nonholonomic field theory.
Nonholonomic symmetries are then introduced as symmetry generators whose
virtual work is zero along the constraint submanifold, and we show that for
every such symmetry, there exists a so-called momentum equation, describing the
evolution of the associated component of the momentum map. Keeping up with
the underlying geometric philosophy, a small modification of the derivation of the
momentum lemma allows us to treat also generalized nonholonomic symmetries,
which are vector fields along a projection. Such symmetries arise for example in
practical examples of nonholonomic field theories such as the Cosserat rod, for
which we recover both energy conservation (a previously known result), as well
as a modified conservation law associated with spatial translations.
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1. Introduction

Knowledge of symmetry is fundamental to the understanding of mechanical systems
and field theories, whether classical or not. Results such as Noether’s theorem, the
Marsden-Weinstein reduction procedure, etc. all attest to this. In the presence of
nonholonomic constraints, however, the concept of symmetry becomes somewhat more
subtle: Noether’s theorem (see [10] and the references therein) for example no longer
holds automatically.

Surprisingly, there is a more sophisticated analogue of Noether’s theorem, going by the
name of the nonholonomic momentum equation [5,7], which plays a fundamental role
in the reduction procedure for general nonholonomic systems. This equation describes
the evolution of the components of the momentum map under the nonholonomic flow
and its derivation relies heavily on the use of differential geometry for the formulation
of the nonholonomic problem.

In the case of classical field theories, a similar result was derived in [22] for a restricted
class of symmetries, namely those symmetries whose infinitesimal vector field is
vertical, or alternatively, symmetries which act trivially on the space of independent
variables of the theory. Nevertheless, many physically interesting symmetries are
not vertical, and an extension of this result to a more general class of symmetries is
therefore needed: this is the subject of the present paper. Examples of non-vertical
symmetries include translation in time, yielding conservation of energy, without doubt
the prime example of a conserved quantity.

Outline of this paper

In this paper, we derive a generalized form of the nonholonomic momentum equation
for two classes of symmetries. The first consists of symmetries which have a nontrivial
horizontal component, while for the second class we restrict our attention to vertical
symmetries whose infinitesimal generator is a generalized vector field, i.e. a vector
field along the projection π1,0. More information on the application of generalized
symmetries to differential equations can be found in [19].

In section 3 we derive a new form of the field equations for a classical field theory with
nonholonomic constraints, which is particularly well-suited to the derivation of the
momentum equation in section 4. These equations are equivalent to the nonholonomic
field equations derived, for example, in [3,15,21] but they do not involve the Lagrange
multipliers, and are therefore closer in spirit to Hölder’s equations (see [18]). We
derive the nonholonomic momentum equation for two distinct classes of symmetries:
firstly, for the case of a symmetry group whose infinitesimal generators are projectable
vector fields on the total space, and secondly, for a symmetry group acting vertically
on the total space, but whose associated nonholonomic symmetries are generalized
vector fields.

This theory is applied in section 5 to a number of examples. In section 5.1 we
obtain a new class of nonholonomic symmetries for mechanical systems with nonlinear
constraints; Benenti’s nonholonomic system (see [2]) is chosen as a straightforward but
relevant example and a number of new conservation laws are derived. In section 5.2 we
derive nonholonomic conservation laws for the nonholonomic Cosserat rod, an example
of a nonholonomic field theory (see [23]). These conservation laws are associated to
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translations in time and spatial translations, respectively. The former is a horizontal
symmetry, while the latter is described by a (vertical) generalized vector field.

Finally, in the appendix, we elaborate somewhat further on the choice of reaction
forces for a nonholonomic field theory. As the material in this section is not crucial to
the developments in the remainder of the paper, we have delegated it to the appendix.

Notation

Throughout this paper, all geometric objects are assumed to be smooth. We will
denote the contraction of a vector field V and a form α both as iV α or as V α, and
we will use these two notations interchangeably. The Lie derivative is denoted by L .
We will frequently use the notation

∧k(M), where M is a manifold, to denote the
k-fold exterior product of TM with itself. Thus,

∧k(M) is a bundle over M whose
sections are k-forms on M .

2. Classical field theories

As is customary in the geometric treatment of classical field theories (see [8,10,13,20]
and the references therein), fields are modelled as sections of a fibre bundle π : Y → X
of rank m, where the base space X is an (n+ 1)-dimensional oriented manifold (with
volume form η), and the total space Y has dimension n + m + 1. Local coordinates
on X are denoted by (xµ), µ = 0, . . . , n and are supposed to be such that the volume
form η can be locally written as

η = dn+1x := dx0 ∧ · · · ∧ dxn.

In addition, we assume a local system of bundle coordinates (xµ, ya), µ = 0, . . . , n,
a = 1, . . . ,m, on Y to be given.

Over Y , there exists a tower of jet bundles

· · · −→ J2π
π2,1−→ J1π

π1,0−→ Y.

The elements of Jkπ are equivalence classes of local sections of π, where two sections
are said to be equivalent at a point x of X if their kth-order Taylor expansions agree
at that point. We denote the equivalence class of a section as jkxφ. More information
on jet bundles can be found in [20]. We will mostly only need the first-order jet bundle
J1π; the second-order jet bundle will make a brief appearance in section 5.2 (see for
instance [12] for a review of mechanics on higher order jet bundles).

We will need as basic geometric tools the concepts of contact forms and jet
prolongation of vector fields. A contact m-form on Jkπ will be any m-form θ satisfying
(jkφ)∗θ for every local section φ of π. The set of contact 1-forms on J1π defines
a distribution DCartan, called the Cartan distribution. Using this distribution, it
is easy to define the 1-jet prolongation of a vector field ξY on Y as the unique
vector field j1ξY projectable on ξY and preserving the Cartan distribution, i.e.
Lj1ξY DCartan ⊆ DCartan. In coordinates, if ξY = ξµ(x, y) ∂

∂xµ + ξa(x, y) ∂
∂ya , then

j1ξY = ξµ
∂

∂xµ
+ ξa

∂

∂ya
+
(

dξa

dxν
− yaµ

∂ξµ

∂xν

)
∂

∂yaν
, where

d
dxν

=
∂

∂xν
+ yaν

∂

∂ya
.
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If we adopt the coordinate systems on X and Y as above, then J1π is equipped
with an induced coordinate system (xµ, ya; yaµ), µ = 0, . . . , n, a = 1, . . . ,m. With
respect to this coordinate system, the projection π1,0 : J1π → Y is given by
π1,0(xµ, ya; yaµ) = (xµ, ya).

For later use, we mention the existence of a distinguished vector-valued (n+ 1)-form
Sη on J1π, which is called the vertical endomorphism. In coordinates, Sη reads

Sη = (dya − yaνdxν) ∧ dnxµ ⊗
∂

∂yaµ
, (1)

where

dnxµ :=
∂

∂xµ
dn+1x.

For the purpose of this paper, a Lagrangian will be a function L on J1π. Given a
Lagrangian L, we define the Poincaré-Cartan (n+ 1)-form ΘL as

ΘL := S∗η(dL) + Lη =
∂L

∂yaµ
(dya − yaνdxν) ∧ dnxµ + Ldn+1x.

We also put ΩL := −dΘL, to which we refer as the Poincaré-Cartan (n+ 2)-form.

For more information on the geometry of jet bundles, see [20].

The Euler-Lagrange equations

Let there be given a Lagrangian L. The dynamics of the field theory is described
by the Euler-Lagrange equations associated to L; they express that the field is an
extremum of the following action functional:

S(φ) =
∫
X

L

(
xµ, φa(x),

∂φa

∂xµ

)
dn+1x. (2)

By varying the action S with respect to a variation V , we obtain after integrating by
parts

0 =
d
dε
S(j1(Φε ◦ φ))

∣∣∣
ε=0

=
∫
U

(
∂L

∂ya
− d

dxµ
∂L

∂yaµ

)
V adn+1x, (3)

where Φε is a finite variation associated to V . Here, a variation of a field φ over an
open set U ⊂ X is a π-vertical vector field V defined on an open neighborhood of
φ(U). The associated finite variation Φε is nothing but the flow of V . Note that the
composition Φε ◦ φ is again a local section of π.

In coordinates, a section φ of π is an extremum of (2) if and only if it satisfies the
familiar Euler-Lagrange equations, given by

∂

∂xµ

(
∂L

∂yaµ
(j1φ)

)
− ∂L

∂ya
(j1φ) = 0.

There exist various intrinsic formulations of these equations (see [11] for an overview),
of which we mention just one. It can be shown by a straightforward coordinate
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calculation that the Euler-Lagrange equations are equivalent to the following set of
intrinsic equations:

(j1φ)∗(iWΩL) = 0 for allW ∈ X(J1π).

In what follows, we will be mostly interested in similar equations for field theories
which are subject to nonholonomic constraints. This is the subject of the next section.

3. The nonholonomic field equations

A nonholonomic field theory is given by the specification of three objects (see also [21]):

(i) a Lagrangian L : J1π → R;
(ii) a constraint submanifold C ↪→ J1π, such that the restriction of the projection

(π1,0)|C defines a subbundle of π1,0 : J1π → Y ;
(iii) a bundle of reaction forces F , where the elements Φ of F are (n+1)-forms defined

along C, i.e. maps from C ⊂ J1π to Ωn+1(J1π). The elements of F have to satisfy
the following requirements:
(a) Φ is n-horizontal, i.e. Φ vanishes when contracted with any two π1-vertical

vector fields;
(b) Φ is 1-contact, i.e. (j1φ)∗Φ = 0 for any section φ of π.
It can be shown that any element Φ of F is of the following form:

Φ = Aµa(dya − yaνdxν) ∧ dnxµ, (4)

where Aµa are functions on J1π.

For the sake of simplicity, we will assume C to be defined by the vanishing of k
functionally independent functions ϕα on J1π. Furthermore, we will assume that F
is globally generated by l generators Φκ of the following form:

Φκ = Aκµa (dya − yaνdxν) ∧ dnxµ (κ = 1, . . . , l).

In practice, the dimension l of F will be equal to the codimension k of C. There seems
to be no a priori reason for supposing that k = l. In most cases, however, F will be
determined by C through application of the Chetaev principle, described in remark 3.6
below.

In the nonholonomic treatment of constraints, a special role is played by infinitesimal
variations of the fields which are compatible with the constraint, as in the following
definition.

Definition 3.1. A variation V of a field φ (taking values in C, i.e. such that j1φ ⊂ C)
defined over an open subset U with compact closure is admissible if

(j1φ)∗(j1V Φ) = 0 for all Φ ∈ F. (5)

By varying the action S with respect to an admissible variation V , we obtain after
integrating by parts again (3). If the variations V were arbitrary, then this would
immediately yield the Euler-Lagrange equations. However, this is not the case as
the variations have to be admissible. Additional reaction forces will therefore appear
in the Euler-Lagrange equations, whose role it is to constrain the solution φ to the
constraint submanifold.
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Definition 3.2. A local section φ of π, defined on an open subset U ⊂ X with compact
closure, is a solution of the nonholonomic problem determined by L, C, and F if
j1φ(U) ⊂ C and (3) holds for all admissible variations V of φ.

It follows from (3) that a local section φ is a solution of the nonholonomic problem if
it satisfies the nonholonomic Euler-Lagrange equations:[

∂L

∂ya
− d

dxµ
∂L

∂yaµ

]
(j2φ) = λακA

ακ
a (j1φ) and ϕα(j1φ) = 0. (6)

Here, λακ are unknown Lagrange multipliers, to be determined from the constraints.
An intrinsic form of these equations is derived below in theorem 3.5, but first we need
the following technical results.

Lemma 3.3 (lemma 3.2 in [13]). Let W be a vector field on J1π. If φ is a section
of π and if either W is tangent to the image of j1φ or if W is π1,0-vertical, then
(j1φ)∗(iWΩL) = 0.

Now, let φ be a section such that the image of j1φ is a subset of C and consider a
vector field W which is tangent to the image of j1φ, i.e. there exists a vector field
w on X such that Txj1φ(w(x)) = W (j1

xφ) for all x ∈ X. One can follow a similar
reasoning as in the proof of lemma 3.2 in [13] to show that

(j1φ)∗(W Φ) = w ((j1φ)∗Φ)

for any Φ ∈ F . Since Φ is 1-contact, the right-hand side of this expression vanishes. On
the other hand, if W is π1,0-vertical, it follows automatically that (j1φ)∗(W Φ) = 0.
We have therefore proved the following lemma:

Lemma 3.4. Let φ be a section of π such that j1
xφ ∈ C for all x ∈ U ⊂ X. If either

W is tangent to the image of j1φ or W is π1,0-vertical, then (j1φ)∗(W Φ) = 0 for all
Φ ∈ F .

Henceforth, we shall call any vector field W on J1π admissible with respect to a section
φ of π if (j1φ)∗(W Φ) = 0 for all Φ ∈ F .

Theorem 3.5. Let φ be a section of π. If Im j1φ ⊂ C, then the following assertions
are equivalent:

(a) φ is a stationary point of the action (2) under admissible variations;
(b) φ satisfies the Euler-Lagrange equations (6);
(c) for all vector fields W on J1π such that (j1φ)∗(W Φ) = 0 for all Φ ∈ F ,

(j1φ)∗(W ΩL) = 0. (7)

Proof: Let us first prove the equivalence of (a) and (c). For arbitrary, not necessarily
admissible variations, the following result holds (this is equation 3C.5 in [13]):

d
dε
S(φε)

∣∣∣
ε=0

= −
∫
U

(j1φ)∗(j1V ΩL).

For admissible variations, from hypothesis (a), we have∫
U

(j1φ)∗(j1V ΩL) = 0.
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Now, we may multiply V by an arbitrary function on X and this result will still hold
true. The fundamental lemma of the calculus of variations therefore shows that

(j1φ)∗(j1V ΩL) = 0, (8)

for all admissible variations V defined over U . By using a partition of unity as
in [13], it can then be shown that (8) holds for all π-vertical vector fields V such
that (j1V ) Φ = 0 for all Φ ∈ F . This expression is equivalent to (7): to see this, take
an arbitrary vector field W on J1π such that (j1φ)∗(W Φ) = 0 for all Φ ∈ F . The
vector field W can be decomposed as the following sum (to be considered along the
image of j1φ):

W = w‖ + j1V + vπ1,0 ,

where w‖ is tangent to the image of j1φ, j1V is the prolongation of a π-vertical vector
field V , and vπ1,0 is a π1,0-vertical vector field. Using lemma 3.4, we have that

(j1φ)∗(j1V Φ) = (j1φ)∗(W Φ) = 0,

and from lemma 3.3, we get (j1φ)∗(W ΩL) = (j1φ)∗(j1V ΩL). The right-hand side
of this equation vanishes since j1V is admissible, and therefore we conclude that W
satisfies (7).

The equivalence of (b) and (c) is just a matter of writing out the definitions. In
coordinates, the left-hand side of (7) reads (for a prolongation of a vertical vector field
V )

(j1φ)∗(j1V ΩL) = V a
(
∂L

∂ya
(j1φ)− ∂

∂xµ
∂L

∂yaµ
(j1φ)

)
dn+1x,

and this holds for all admissible variations V . Therefore, if φ satisfies (7), then there
exist functions λακ such that[

∂L

∂ya
− d

dxµ
∂L

∂yaµ

]
(j2φ) = λακA

ακ
a (j1φ).

The converse is similar. 2

We see from the proof of this theorem that only vertical vector fields yield nontrivial
results for (7).

Remark 3.6. The bundle of reaction forces F is commonly derived from the constraint
submanifold C through application of the Chetaev principle (see [18], as well as [21] for
an extension to the case of field theories). If the constraint submanifold is given as the
zero level set of functions ϕα, then according to this principle, F is locally generated
by the following forms:

Φα := S∗η(dϕα) =
∂ϕα

∂yaµ
(dya − yaνdxν) ∧ dnxµ.

In the past, there has appeared some criticism over the use of the Chetaev principle
(see [16]), and as we shall see in the appendix, for classical field theories the Chetaev
principle sometimes has to be modified. �
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4. The nonholonomic momentum equation

In this section, we derive the nonholonomic momentum equation, the nonholonomic
counterpart to the well-known theorem of Noether. More in detail, we prove that
for every nonholonomic symmetry there exists a certain partial differential equation,
which reduces to a conservation law when the constraints are absent. In proving the
momentum lemma, many different starting assumptions can be made, and we study
two different setups:

(i) in section 4.2, we assume that the symmetry group G acts by bundle
automorphisms on Y . In particular, we allow for the fact that G acts nontrivially
on X as well. In this case, nonholonomic symmetries are projectable vector fields
on Y .

(ii) in section 4.3, we model nonholonomic symmetries as vector fields along the
projection π1,0. For the sake of simplicity, we assume in this case that the
action of G on Y is vertical, i.e. G acts trivially on X. This setup is therefore
complementary to the one described before, but this case can probably be
extended even further.

4.1. The nonholonomic momentum map

Let G be a Lie group acting on Y by bundle automorphisms; i.e. there exist smooth
actions Φ : G× Y → Y and Φ : G×X → X such that π(Φ(g, y)) = Φ(g, π(y)) for all
g ∈ G and y ∈ Y . We use the following abbreviations: Φg := Φ(g, ·) and Φg := Φ(g, ·).
The Lie group G acts on J1π by prolonged bundle automorphisms, i.e.

j1Φg(j1
xφ) = j1

x(Φg ◦ φ ◦ Φ−1
g ).

Let us now assume that G leaves invariant L, C, and F :

j1Φ∗g(Lη) = Lη, j1Φg(C) ⊂ C and (j1Φg)∗F ⊂ F

for all g ∈ G.

We consider first the vector bundle gF over Y , defined as follows. Denote by gF (y)
the linear subspace of g consisting of all ξ ∈ g such that

j1ξY (γ) F = 0 for all γ ∈ C ∩ π−1
1,0(y), (9)

where ξY is the infinitesimal generator of the action corresponding to ξ, that is,

ξY (y) =
d
dt

Φexp(tξ)(y)
∣∣∣
t=0

.

We assume that the disjoint union of all gF (y), for all y ∈ Y can be given the structure
of a vector bundle gF over Y .

To any section ξ̄ of gF , one can associate a vector field ξ̃Y on Y according to the
following prescription:

ξ̃Y (y) =
[
ξ̄(y)

]
Y

(y). (10)
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Definition 4.1. A nonholonomic symmetry is a section ξ̄ of gF such that the
associated vector field ξ̃Y is π-projectable; i.e. there exists a vector field ξ̃X on X
such that Tπ ◦ ξ̃Y = ξ̃X ◦ π.

Definition 4.2. A horizontal nonholonomic symmetry is a section ξ̄ of gF which is
constant, i.e. ξ̄(y) = ξ̄(y′) for all y, y′ ∈ Y .

We may identify horizontal nonholonomic symmetries with elements ξ ∈ g such that
ξ = gF (y) for all y ∈ Y , that is,

j1ξY (γ) F = 0 for all γ ∈ C ∩ π−1
1,0(y) and for all y ∈ Y,

We now define the nonholonomic momentum map as the map Jn.h. : C →
∧n(J1π)⊗

gF , constructed as follows. Let ξ̄ be any section of gF (for the construction of the
momentum map it does not matter whether the associated vector field is projectable
or not) and put

Jn.h.
ξ̄ = ij1ξ̃Y ΘL, (11)

where ξ̃ is the vector field associated to ξ̄ according to (10). Given this definition of
Jn.h.
ξ̄

, we define Jn.h. by the following rule:〈
Jn.h., ξ̄

〉
= Jn.h.

ξ̄ .

If ξ̄ is a nonholonomic symmetry, then the prolongation j1ξ̃Y of the associated vector
field is admissible. This is proved below in corollary 4.4.

Lemma 4.3. Let ξ̄ be a section of gF . For a fixed y ∈ Y , put ξ := ξ̄(y) and consider
any γ ∈ π−1

1,0(y) ∩ C. Then there exists a π1,0-vertical vector vγ ∈ TγJ1π such that

j1ξ̃Y (γ) = j1ξY (γ) + vγ .

Proof: Recall that j1ξY is the prolongation of the fundamental vector field ξY
associated to the (fixed) Lie algebra element ξ. The lemma follows from the fact
that Tγπ1,0(j1ξ̃Y (γ)) = ξ̃Y (y). On the other hand, Tγπ1,0(j1ξY (γ)) = ξY (y), but by
definition, ξ̃Y (y) = ξY (y). 2

Corollary 4.4. Let ξ̄ be a nonholonomic symmetry. Then the prolonged vector field
j1ξ̃Y is admissible with respect to any section φ of π.

Proof: Take γ ∈ C, put y = π1,0(γ), and let ξ = ξ̄(y). From definition 4.1, we gather
that for all Φ ∈ F , j1ξY (γ) Φ(γ) = 0. But j1ξ̃Y (γ) is equal to j1ξY (γ) up to a vertical
vector, while Φ ∈ F is semi-basic. Therefore,

j1ξ̃Y (γ) Φ(γ) = 0.

As this holds for all γ ∈ C, we conclude that j1ξ̃Y is admissible with respect to any
section. 2

Remark 4.5. In the case of mechanical systems with linear constraints, the bundle
gF , defined as above, coincides with the bundle S used in [5]. �
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4.2. The nonholonomic momentum equation

Theorem 4.6. If φ is a solution of the nonholonomic field equations (7), then for
any nonholonomic symmetry ξ̄ the associated component of the momentum map Jn.h.

ξ̄

satisfies the following nonholonomic momentum equation:

(j1φ)∗(dJn.h.
ξ̄ ) = (j1φ)∗

(
Lj1ξ̃Y

(Lη)
)
.

Proof: Let ξ̄ be a nonholonomic symmetry. Recall that the prolongation j1ξ̃ of the
associated vector field is admissible with respect to any section of π. Therefore, since

dJn.h.
ξ̄ = Lj1ξ̃Y

ΘL + ij1ξ̃Y ΩL,

pulling back along a solution of the nonholonomic Euler-Lagrange equations gives us

(j1φ)∗(dJn.h.
ξ̄ ) = (j1φ)∗

(
Lj1ξ̃Y

ΘL

)
. (12)

For the sake of notational convenience, let us say that two forms α and β on J1π
are equivalent (denoted by α ' β) if they agree up to a contact form, i.e. α ' β iff
α = β+ θ, where θ is contact. This is equivalent to saying that (j1φ)∗α = (j1φ)∗β for
all sections φ of π. We then have that

Lj1ξ̃Y
ΘL = Lj1ξ̃Y

(
S∗η(dL)

)
+ Lj1ξ̃Y

(Lη) .

In coordinates, the first term on the right-hand side becomes

Lj1ξ̃Y

(
S∗η(dL)

)
= Lj1ξ̃Y

(
∂L

∂yaµ
(dya − yaνdxν) ∧ dnxµ

)
' ∂L

∂yaµ
Lj1ξ̃Y

(dya − yaνdxν) ∧ dnxµ

=
∂L

∂yaµ

∂ξa

∂yb
(dyb − ybνdxν) ∧ dnxµ ' 0

and hence vanishes when pulled back along a prolongation of a section. Here, we’ve
used the fact that the prolongation j1ξ̃Y can locally be written as follows:

j1ξ̃Y = ξµ(x)
∂

∂xµ
+ ξa(x, y)

∂

∂ya
+
(

dξa

dxµ
− yaν

dξν

dxµ

)
∂

∂yaµ
,

and that the Lie derivative of a contact form with respect to such a vector field is
again a contact form. Note especially that the coefficient ξµ(x) does not depend on
y: this is a consequence of the projectability condition in definition 4.1. 2

Corollary 4.7. If φ is a solution of the nonholonomic field equations (7), then for
any horizontal nonholonomic symmetry ξ the momentum map Jn.h.

ξ is a conservation
law for the nonholonomic dynamics, that is,

(j1φ)∗(dJn.h.
ξ ) = 0.



Symmetry aspects of nonholonomic field theories 11

4.3. Vertical vector fields along the projection

Not all nonholonomic symmetries can be modelled as sections of gF ; as we shall see, an
important class consists of sections of the pullback bundle π∗1,0g

F , i.e. maps ξ̄ : C → gF

such that ξ̄(γ) ∈ gF (π1,0(γ)) for all γ ∈ C. Such a section can be represented as

ξ̄ = ξA(xµ, ya, yaµ)eA, (13)

where ξA(xµ, ya, yaµ) are locally defined functions on C and {eA} is a basis of g.

For this treatment, we will make one important simplification: we assume that the
symmetry group G acts vertically. It should noted, though, that this is probably not
a fundamental restriction: it is likely that this approach can be generalized further.

Our treatment is therefore somewhat restricted compared to the previous paragraph.
On the other hand, by allowing as in (13) sections whose coefficients are functions on
C rather than just on Y , we are able to describe symmetries which do not fit into the
framework of the previous paragraph. Examples will be given in section 5.

Definition 4.8. A generalized nonholonomic symmetry is a section ξ̄ of the pull-back
bundle π∗1,0g

F .

A generalized nonholonomic symmetry ξ̄ induces a vertical vector field ξ̃ along π1,0,
defined as follows: for all γ ∈ C,

ξ̃(γ) =
[
ξ̄(γ)

]
Y

(y) ∈ TyY, where y = π1,0(γ).

There exists a generalized notion of prolongation for vector fields along π1,0 (see [20]).
In coordinates, if ξ̃ = ξa(xµ, yb, ybµ) ∂

∂ya , then

j1ξ̃Y = ξa
∂

∂ya
+

dξa

dxµ
∂

∂yaµ
, where

dξa

dxµ
=
∂ξa

∂xµ
+
∂ξa

∂yb
ybµ +

∂ξa

∂ybν
ybµν .

Note that j1ξ̃Y is a vector field along π2,1, as its coefficients depend on the second-order
derivatives ybµν .

Having defined the prolongation j1ξ̃Y as above, we now define the associated
component of the momentum map as

Jn.h.
ξ̄ = ij1ξ̃Y ΘL.

This definition is formally identical to (11), but strictly speaking, the momentum map
is now an n-form along the projection π2,1. By pull-back, such a form induces an
n-form on J2π. Similarly, the concept of Lie derivation can be extended in a natural
fashion to the case of vector fields along the projection (see [20]).

Theorem 4.9. If φ is a solution of the nonholonomic field equations (7), then for any
generalized nonholonomic symmetry ξ̄ the associated component of the momentum map
Jn.h.
ξ̄

satisfies the following nonholonomic momentum equation:

(j2φ)∗(dJn.h.
ξ̄ ) = (j2φ)∗

(
Lj1ξ̃Y

(Lη)
)
. (14)
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Proof: The proof is similar in spirit to that of theorem 4.6 but there are some
additional technical difficulties that need to be taken into account. For any solution
φ of the nonholonomic field equations, we have

(j2φ)∗(dJn.h.
ξ̄ ) = (j2φ)∗(Lj1ξ̃Y

ΘL) + (j2φ)∗(ij1ξ̃Y ΩL). (15)

For the first term on the right-hand side, one can check that

Lj1ξ̃Y
(dya − yaµdxµ) =

∂ξa

∂yb
(dyb − ybµdxµ) +

∂ξa

∂ybµ
(dybµ − ybµνdxν),

a contact form on J2π. From this, it follows that the Lie derivative of ΘL is given by

(j2φ)∗(Lj1ξ̃Y
ΘL) = (j2φ)∗(Lj1ξ̃Y

(Lη)).

The second term on the right-hand side of (15) is zero. This is essentially a consequence
of the fact that φ is a solution of the field equations and can be proved using the
following observation. Take x ∈ X and consider a vector field W on J1π such that
W (j1

xφ) = j1ξ̃Y (j2
xφ). Then W (j1

xφ) Φ = 0 for all Φ ∈ F , and without loss of
generality, we may choose W to be such that this equality holds in a neighbourhood
of j1

xφ. We now have that

(j2φ)∗(ij1ξ̃Y ΩL)(x) = (j1φ)∗(iWΩL)(x).

As W is admissible with respect to φ, we conclude that the right-hand side is zero,
and this in turn implies the vanishing of the second term in (15). 2

5. Examples

5.1. Mechanical systems with nonlinear constraints

As an illustrative example, we take a variation of Benenti’s system (see [9,14] and the
references therein), which describes two point masses moving on a horizontal plane
whose velocities are constrained to be parallel. The configuration space of this system
is Q := R2 × R2, and so we put X = R, while Y = R × Q. The projection π is the
projection onto the first factor. The Lagrangian for this system is

L =
m

2
(ẋ2

1 + ẏ2
1) +

m

2
(ẋ2

2 + ẏ2
2).

Strictly speaking, L is a function on TQ, but since J1π is isomorphic to R× TQ, we
view L as a (time-independent) Lagrangian on J1π. The constraint is

ϕ ≡ ẋ1ẏ2 − ẋ2ẏ1 = 0.

This is a nonlinear constraint, and determines a submanifold C of J1π. If we assume
Chetaev’s principle to hold, the bundle of reaction forces F along C is generated by
the following one-form:

Φ = ẏ2θx1 + ẋ1θy2 − ẏ1θx2 − ẋ2θy1 ,

where the contact one-forms θqa are defined as θqa = dqa − q̇adt.
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(α, β, γ, δ)

(1, 1, 0, 0) ẋ1ẍ1 + ẏ1ÿ1 = 0
(0, 0, 1, 1) ẋ2ẍ2 + ẏ2ÿ2 = 0
(1, 0, 0, -1) ẋ1ẍ1 − ẏ2ÿ2 = 0

Table 1. Conservation laws for the Benenti system.

Consider now the obvious action of the Abelian group R4 on Y by translations:
(a1, b1, a2, b2) · (t;x1, y1, x2, y2) = (t;x1 + a1, y1 + b1, x2 + a2, y2 + b2). This action
fulfills all the necessary conditions needed for the momentum lemma: it is vertical,
and leaves invariant the Lagrangian L, the constraint submanifold C, and the bundle
of reaction forces F .

It is easy to check that the contraction of a vector field ξ̃ of the following form

ξ̃ = αẋ1
∂

∂x1
+ βẏ1

∂

∂y1
+ γẋ2

∂

∂x2
+ δẏ2

∂

∂y 2

(α, β, γ, δ ∈ R)

with Φ will vanish along C if α+δ = β+γ. In this case, ξ̃ is a generalized nonholonomic
symmetry of the kind defined in definition 4.8. (Strictly speaking, the term
“generalized nonholonomic symmetry” refers to the section ξ̄ := (αẋ1, βẏ1, γẋ2, δẏ2)
of π∗1,0g

F .)

For the sake of convenience, let us take α = β = 1 and γ = δ = 0. The other cases
are similar and the results are summarized in table 1. In this case, the prolongation
j1ξ̃ of ξ̃ is the vector field along π2,1 given in coordinates by

j1ξ̃ = ẋ1
∂

∂x1
+ ẏ1

∂

∂y1
+ ẍ1

∂

∂ẋ1
+ ÿ1

∂

∂ẏ1
.

The component Jn.h.
ξ̄

of the nonholonomic momentum map then becomes

Jn.h.
ξ̄ = j1ξ̃ ΘL = m(ẋ2

1 + ẏ2
1),

while the right-hand side of the momentum equation (14) is Lj1ξ̃(Ldt) = m(ẋ1ẍ1 +
ẏ1ÿ1)dt. The momentum equation hence reduces to ẋ1ẍ1 + ẏ1ÿ1 = 0, which can also
be verified using the equations of motion.

5.2. The nonholonomic Cosserat rod

The nonholonomic Cosserat rod is an example of a nonholonomic field theory studied
in [23]. It describes the motion of a rod which is constrained to roll without sliding
on a horizontal surface. This theory can be studied using the bundle π : Y → X,
where X = [0, `]×R (space and time) and Y = X ×R2× S1, with bundle coordinates
(s, t;x, y, θ).

Its Lagrangian is given by

L =
ρ

2
(ẋ2 + ẏ2) +

α

2
θ̇2 − 1

2
(
β(θ′)2 +Kκ2

)
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with κ2 = (x′′)2 + (y′′)2, while the constraints are given by

ẋ+Rθ̇y′ = 0 and ẏ −Rθ̇x′ = 0. (16)

Here, ρ, α, β, K, and R are real parameters. The field equations associated to this
Lagrangian are given by

ρẍ+Kx′′′′ = λ
ρÿ +Ky′′′′ = µ

αθ̈ − βθ′′ = R(λy′ − µx′),
(17)

where λ and µ are Lagrange multipliers associated with the nonholonomic constraints.
These equations are to be supplemented by the constraint equations (16).

For future reference, we note that the bundle of reaction forces is generated in this
case by the following forms:{

Φ1 = (dx− ẋdt) ∧ ds+Ry′(dθ − θ̇dt) ∧ ds
Φ2 = (dy − ẏdt) ∧ ds−Rx′(dθ − θ̇dt) ∧ ds.

(18)

In the absence of nonholonomic constraints, this model is subject to the usual
symmetry actions such as translations in time, global translations, and global rotations
(see [23]). As we shall now show, some of these persist in the nonholonomic case.

Observe that the Lagrangian is of second order. At the cost of sacrificing physical
relevance, one may also put K = 0 to obtain a purely first-order theory. We will
not do so here, as the derivation of a nonholonomic momentum lemma for a second-
order field theory proceeds exactly as above, up to a few minor modifications. The
nonholonomic momentum map Jn.h. is now defined on J3π, and the nonholonomic
momentum equation hence becomes

(j3φ)∗(dJn.h.
ξ̄ ) = (j2φ)∗Lj2ξ̃(Lη), (19)

where φ is a solution of the nonholonomic Euler-Lagrange equations. This equation
holds both for “genuine” symmetries as well as for symmetries along the projection.

5.2.1. Translations in time Consider the action of R on X by translations in time
defined by the map Φ : R ×X → X, with Φ(α, (s, t)) = (s, t + α). As the bundle π
is trivial, this action naturally induces an action on Y , and, by prolongation, also on
J1π. Clearly, this action is not vertical; the fundamental vector field associated to a
Lie algebra element ξ ∈ R is given by

j1ξY = ξ
∂

∂t
. (20)

This vector field is a nonholonomic symmetry: it is π1-related to a vector field on X
and its contraction with the elements of F vanishes along C: for the n-form Φ1 defined
in (18), we have

∂

∂t
Φ1 = −(ẋ+Rθ̇y′)ds,

which vanishes on C, and a similar result holds for Φ2.
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Note that the nonholonomic symmetry (20) is a horizontal symmetry (definition 4.2);
in general, this will not be the case. In this special case, however, we have that
Lj1ξY (Lη) = 0, expressing the infinitesimal invariance of the Lagrangian. The
momentum map now becomes

(j3φ)∗Jn.h.
1 =

[
−Kx′′′ẋ+−Ky′′′ẏ + βθ′θ̇ +K(x′′ẋ′ + y′′ẏ′)

]
dt+ Eds,

where we have introduced the energy density

E =
ρ

2
(ẋ2 + ẏ2) +

α

2
θ̇2 +

K

2
((x′′)2 + (y′′)2) +

β

2
(θ′)2.

The nonholonomic momentum lemma then states that d(j3φ)∗Jn.h.
1 = 0. This

equation expresses local conservation of energy; by integrating over a hypersurface
of constant s, we may then obtain a law expressing global conservation of energy.

Remark 5.1. This case was also treated in [23] by use of a different method, to which
we refer for further details. Note however, that the method used in that paper is less
general as it is only valid for horizontal nonholonomic symmetries. �

5.2.2. Spatial translations Consider the action of R2 × S1 on Y by translations; i.e.
for each (a, b, ϕ) we consider the map Φ(a,b,ϕ) : (s, t, x, y, θ) 7→ (s, t, x+ a, y+ b, θ+ϕ).
Let ξ = (v1, v2, vθ) be an element of the Lie algebra of R2 × S1. The corresponding
fundamental vector field is given by

ξY = v1
∂

∂x
+ v2

∂

∂y
+ vθ

∂

∂θ
.

When no constraints are present, this symmetry implies the conservation of linear
momentum. In the presence of nonholonomic constraints, a modified conservation law
holds: it is easy to see that the following vector field annihilates F along C:

ξ̃ = −Ry′ ∂
∂x

+Rx′
∂

∂y
+

∂

∂θ
.

(Any scalar multiple of the above vector field is also allowed.) This generalized vector
field corresponds with the section ξ̄ = (−Ry′, Rx′, 1) of π∗1,0g

F . As ξ̃ is vertical, the
nonholonomic momentum lemma 4.9 can be applied.

The right-hand side of (19) is

j2φ∗Lξ̃(Lη) =
[
−Rρẏ′ẋ+Rρẋ′ẏ −KRx′′′y′′ +KRy′′′x′′

]
η.

The nonholonomic momentum map Jn.h., on the other hand, is given by

Jn.h.
ξ̄ = −

[
ρ(Rx′ẏ −Ry′ẋ) + αθ̇

]
ds−

[
KR(y′x′′′ − x′y′′′) + βθ′

]
dt,

and the nonholonomic momentum equation hence becomes

Ry′(ρẍ+Kx′′′′)−Rx′(ρÿ +Ky′′′′) = αθ̈ − βθ′′. (21)

This conservation law can also be derived from the nonholonomic field equations (17)
by subtracting the second equation multiplied by x′ from the first equation multiplied
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by y′, and using the third equation to eliminate the Lagrange multipliers λ and µ.
Unfortunately, the knowledge of this nonholonomic conservation law does not help us
in solving the field equations (in contrast with the situation for the vertical rolling
disc; see [4]).

6. Conclusions

In this paper, we presented a geometric framework for nonholonomic field theories
with symmetries. We showed that the momentum map associated with a group
action satisfies a certain momentum equation, which we proved in a number of cases.
On the one hand, there exists a momentum equation for nonholonomic symmetries
which act nontrivially on the base space (examples being energy conservation for the
nonholonomic rod), while on the other hand a similar result exists for generalized
symmetries associated to a vertical group action. The Benenti system is an example
of the latter.

It is likely that the results in this paper can be generalized still further. In particular,
there seems to be no reason why there shouldn’t be a momentum equation for
generalized symmetries associated to a non-vertical group action, up to some technical
restrictions (for instance, that the generalized vector field should be related to a regular
vector field on the base space). This generalization would encompass both momentum
equations derived in this paper. Moreover, it would be interesting to study further
examples of such a momentum equation.
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Appendix: noncovariant nonholonomic constraints

A special class of nonholonomic field theories consists of those where the base space
X is R×M , where the first factor represents time, and such that π is trivial. In other
words, there exists a canonical distinction between time and space. Accordingly, one
can show that in this case, the jet bundle J1π is isomorphic to the product bundle
R × [J1(M,S) ×S TS], thus providing a canonical distinction between derivatives of
the fields with respect to time and space.

This class of field theories was discussed in detail in [23] and includes among others also
theories of nonrelativistic elasticity (see also [17]). The example studied in section 5.2
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is also among these field theories.

As shown in [23], the reaction forces for this kind of field theory are not the ones
obtained from the Chetaev prescription in remark 3.6. The problem is that this form
of the principle is fully covariant, in the sense that no distinction is made between
spatial derivatives and derivatives with respect to time. However, in some cases
(the nonholonomic Cosserat rod being one of them) the time derivatives do play
a distinguished role, and therefore a different, “noncovariant” Chetaev principle is
needed.

The main objective of this appendix is to propose such a principle, using the geometry
of J1π, and especially the isomorphism with R×[J1(M,S)×STS]. Using this modified
principle, we derive the correct form of the reaction forces for the nonholonomic
Cosserat rod, which were obtained in [23] using a different approach.

1.1. A new vertical endomorphism

Recall the coordinate expression (1) of the vertical endomorphism Sη on J1π. This
tensor field was constructed by Saunders [20] using a map assigning to each one-form
ω on X the vector-valued one-form Sω on J1π given in coordinates by (see [20, p. 156])

Sω = ωµ(dya − yaνdxν)⊗ ∂

∂yaµ
, where ω = ωµdxµ. (22)

Roughly speaking, the vertical endomorphism Sη then arises, once a volume form on
X is chosen, by putting

Sη = Sdxµ∧̇(π∗1dnxµ), (23)

where the wedge operator ‘∧̇’ is defined as follows: if Φ is a vector-valued k-form
on J1π, and α is a regular (i.e. R-valued) l-form, then Φ∧̇α is the vector-valued
(k + l)-form given by 〈Φ∧̇α, β〉 = 〈Φ, β〉 ∧ α for all β ∈ Ω1(J1π).

It is obvious that (23) is fully covariant, in the sense that no distinction is made
between the variables on the base space. However, in elastodynamics, this is not
always desirable, as we have a distinguished direction of time. Therefore, we propose
the following “non-covariant” vertical endomorphism:

Definition 1.1. The non-covariant vertical endomorphism is the vector-valued (n+1)-
form Sn.c. defined as Sn.c. := Sdt∧̇(π∗1ηM ), where Sdt is the vector-valued one-form
associated to dt as in (22).

Here ηM denotes the volume form on M defined by restriction to M of dnx0

Note that dt is a well defined one-form on X = R×M ; therefore, Sn.c. is an intrinsic
object. In coordinates, Sn.c. is given by

Sn.c. = (dya − yaµdxµ) ∧ dnx0 ⊗
∂

∂ya0
.

Remark 1.2. In [20], it is shown that the action of the vertical endomorphism Sη
is related to the fact that π1,0 : J1π → Y is an affine bundle; i.e. there exists an
affine action of π∗T ∗X ⊗ V π on J1π. The noncovariant vertical endomorphism can
be understood in a similar vein, by restricting this affine action to π∗T ∗R⊗ V π. �
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1.2. The bundle of constraint forces

Let ι : C ↪→ J1π be a constraint manifold. In section 3, we required that reaction
forces be n-horizontal and 1-contact. This leads to local expressions of the form (4).
For noncovariant constraints, we attribute a special status to the time coordinate, and
therefore we require also that the following holds:

iviwΦ = 0

for all tangent vectors v, w on J1π such that T (pr1 ◦ π1)(v) = T (pr1 ◦ π1)(w) = 0,
where pr1 : R×M → R is the projection onto the first factor (this condition expresses
that v and w do not contain a component proportional to ∂

∂t ). In coordinates, this
implies that Φ has the following form:

Φ = Aa(dya − yaµdxµ) ∧ dnx0, (24)

where the Aa are local functions on C. Compare this with (4) and note that only the
“time” component is left (i.e. the component proportional to θa ∧ ( ∂∂t η)).

Using the noncovariant vertical endomorphism of section 1.1, one can construct from
C a natural candidate for the bundle F . This is a field-theoretic generalization of the
well-known Chetaev principle from mechanics.

Recall that C is assumed to be given by the vanishing of k functions ϕα and define the
associated bundle of reaction forces as the bundle F locally spanned by the following
(n+ 1)-forms: Φα := S∗n.c.(dϕ

α), or in coordinates:

Φα =
∂ϕα

∂ya0
(dya − yaµdxµ) ∧ dnx0. (25)

The (n+ 1)-form Φα is therefore of the form outlined in (24), with Aαa = ∂ϕα

∂ya0
.
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