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Abstract— Manipulation of particles suspended in fluids is
crucial for many applications, such as precision machining,
chemical processes, bio-engineering, and self-feeding of mi-
croorganisms. In this paper, we study the problem of particle
manipulation by cyclic fluid boundary excitations from a
geometric-control viewpoint. We focus on the simplified prob-
lem of manipulating a single particle by generating controlled
cyclic motion of a circular rigid body in a two-dimensional
perfect fluid. We show that the drift in the particle location
after one cyclic motion of the body can be interpreted as
the geometric phase of a connection induced by the system’s
hydrodynamics. We then formulate the problem as a control
system, and derive a geometric criterion for its nonlinear
controllability. Moreover, by exploiting the geometric structure
of the system, we explicitly construct a feedback-based gait
that results in attraction of the particle towards the rigid body.
We argue that our gait is robust and model-independent, and
demonstrate it in both perfect fluid and Stokes fluid.

I. INTRODUCTION

A variety of practical tasks — ranging from the sorting and
filtering of airborne contaminants for public safety [14] to
the mechanical testing of macromolecules like DNA [29] to
the assisted fertilization of human ova with immotile sperm
[10] to the stirring of chemical processes [1] — involve
the manipulation of particles suspended in fluids. Depending
on the application, direct mechanical manipulation of the
particles in question can be impractical because of their
number (as with environmental pollutants) or their delicacy
(as with living cells). Current alternatives addressing one or
the other of these issues have problems of their own: laser-
based systems like optical tweezers [4], for instance, are
relatively gentle but require translucent media (and closed-
loop control) for practical implementation.

Examples of particle manipulation through periodic fluid
boundary excitation are present throughout the natural world,
suggesting a class of simply realized engineered systems
with diverse applications. The ingestion of nutrients by many
aquatic organisms hinges, for instance, on the entrainment
of these nutrients in flow structures maintained by vibrating
appendages. Among the simplest such structures is the

Y. Or, J. Vankerschaver, R. Murray and J. Marsden are with the
Control and Dynamical Systems Department, California Institute of
Technology, Pasadena, CA 91125, USA.
J. Vankerschaver is also with the Department of Mathematical
Physics and Astronomy, Ghent University, B-9000 Ghent, Belgium.
S. Kelly is with the Department of Mechanical Engineering and
Engineering Science, University of North Carolina at Charlotte,
Charlotte, NC 28223-0001, USA.
YO is supported by a Fulbright Postdoctoral Fellowship and a
Bikura Postdoctoral Scholarship of the Israeli Science Foundation.
JV is supported by a Postdoctoral Fellowship of the Research
Foundation — Flanders (FWO-Vlaanderen).

toroidal feeding vortex of the ciliated protozoan Vorticella
[30], depicted in the video at [26]. Compare this video to
that at [31], which shows the toroidal vortex surrounding a
vibrating carbon-fiber probe penetrating a droplet of water
in which a large number of forty-micron polymer beads
are suspended [32]. The sustained excitation of abrasive
particles in this manner has proven an effective strategy for
the precision machining of brittle surfaces [24]. In a different
implementation, a microfluidic device has been developed for
manipulating cells by controlling external electric fields and
using vision-based feedback control [3]

The mixing properties of the ciliary motion described
above have recently been studied experimentally [23], and
efforts to develop artificial cilia are ongoing in the MEMS
community [12], but a consistent framework has not been
established for studying the dynamics and control of such
systems — let alone the broader class of systems in which
cyclic boundary motions of arbitrary geometry are invoked to
manipulate particles suspended in fluids on arbitrary physical
scales. We initiate the development of such a framework in
the present paper.

We focus the present discussion on a planar system
resembling the oscillating probe from [31] in cross section,
as shown in Fig. 1. In modeling the coupling between the
actuated motion of the shaded cylinder and the motion of
the surrounding fluid, we assume the fluid to be inviscid.
This assumption represents a natural first step toward more
complicated flow models, but does not necessarily restrict
the relevance of our results to the context of conservative
systems, and we demonstrate the effectiveness of a control
strategy derived with the help of this model in the opposite
extreme of Stokes flow. Indeed, prior work by the authors in
the context of locomotion — conceptually, the mirror image
of fluid transport through boundary motion — has explored
both the formal parallelism between ideal flow and Stokes
flow [16] and the correlation between optimally propulsive
boundary motions in ideal flows and in flows dominated by
dynamic vortex shedding [17].

Contributions: The aims and achievements of this paper
are twofold. First and foremost, we investigate the problem of
a particle moving in the fluid field generated by an actuated
rigid body from a control-theoretic point of view. We show
that the system is nonlinearly controllable and design a gait
for the rigid body that succeeds in attracting the particle.
Despite the low dimensionality of the problem, this is by
no means an easy task: naive gaits move the particle on a
circle but do not manage to bring it closer. By exploiting
the geometric structure of the control system, we design
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Fig. 1. The cylinder-particle system

a feedback-based gait that succeeds in doing so. Our gait
has the added advantage of being model-independent in the
sense that, while the main body of the text is concerned with
rigid bodies in ideal, inviscid flows, the same strategy also
works for other types of control systems possessing similar
geometric structure, as demonstrated for the case of two rigid
bodies moving in Stokes flow.

Secondly, we argue that this example fits into a broader
class of control systems, whose characteristic property is that
their configuration space has the structure of a fiber bundle.
Using some elementary tools from differential geometry
and nonlinear control theory, we show that the particle
manipulation problem can be understood in terms of a
connection on the fiber bundle, so that the drift in the
particle location after one cyclic change in the position of
the rigid body can be described by the geometric phase (or
holonomy) of this connection. While geometric phases have
been used in control theory to great effect before (see [22],
[8], [27], [18], [15]), this approach has traditionally been
confined to the case of locomotion systems, that enjoy some
additional symmetry properties due to the fact that the output
variables are group-valued. The class of control systems that
we consider here is distinct from that, but the geometric
structure still allows for significant simplifications: we prove
a new controllability criterion which is equivalent to the
classical Chow theorem, but uses objects on the space of
output variables only, leading to a significant reduction in
dimensionality.

II. PROBLEM DESCRIPTION

Consider a rigid, circular body of radius rc moving in
an inviscid, incompressible two-dimensional fluid which is
at rest at infinity. Physically, this ideal model corresponds
to the case of flow with large Reynolds number, where
the hydrodynamics is governed primarily by inertial effects,
whereas the effect of viscous drag is negligible [20]. As in
Fig. 1, we denote the position of the center of the body by
xc. Our aim is to design bounded, cyclic gaits for the motion
of the rigid body that bring a distinguished particle, whose
location is denoted by xp, closer to the body.

A. Potential Flow

Consider an inviscid, incompressible fluid with Eulerian
velocity field v(x, t). When the curl ∇ × v vanishes, the
fluid is said to be irrotational. For two-dimensional flows,

this implies that the Euler equations describing v are reduced
to solving a Laplace equation, as we recall below. For more
information about irrotational fluid dynamics, see [20].

In the case of an irrotational fluid, the velocity field can
be written as a gradient of a potential function v = ∇φ,
where φ is the solution of Laplace’s equation ∇2φ = 0
with Neumann boundary conditions given by the fact that the
normal velocity of the fluid should be equal to the normal
velocity of the points on the boundary of the body:

n · ∇φ = (ω × (x− xc) + ẋc) · n on ∂B,

together with the fact that φ goes to zero sufficiently fast
as ||x|| → ∞. Here ω and ẋc are the angular and linear
velocity of the rigid body, and n is the unit normal to the
boundary of the body.

Because of the linear dependence of φ on ω = ωez and
ẋc = ẋcex + ẏcey , φ can be expressed as φ = φωω +
φxẋc + φy ẏc, where φω , φx and φy are the elementary
velocity potentials. For a circular rigid body of radius rc,
these potentials are given by φω = 0 and

φx(x) = −r2c
x− xc

‖x− xc‖2
, φy(x) = −r2c

y − yc

‖x− xc‖2
, (1)

where x = (x, y) and xc is the location of the center of
the cylinder. For future reference, we also introduce the
associated elementary stream functions ψx and ψy as the
harmonic conjugates of φx and φy:

∂φx

∂x
=
∂ψx

∂y
and

∂φx

∂y
= −∂ψx

∂x
, (2)

and similarly for ψy .

B. Velocity of Fluid Particles

We now consider the motion of a single massless particle
xp(t) in the irrotational flow field of a moving rigid body
with center of mass xc(t). As the particle is advected by the
fluid flow (i.e. it does not influence the fluid, but is simply
swept along), its velocity is equal to the fluid velocity at
that point: ẋp = v(xp(t), t). The time-dependence of the
fluid velocity field is due to the motion of the rigid body.

The equations of motion for the particle can be made
more explicit by using the expressions in (1) for the velocity
potentials:

ẋp = A(xp,xc) · ẋc. (3)

Here, the matrix A(xp,xc) is given by

A(xp,xc) =
r2c

(X2 + Y 2)2

(
−X2 + Y 2 2XY

2XY X2 − Y 2

)
(4)

where (X,Y ) denote the components of the relative position
vector xp−xc. Note that the matrix A depends on the relative
position xp − xc only.
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Fig. 2. Particle motion under a square loop motion of the cylinder: (a)
Particle trajectory under a single cycle. (b) Particle trajectory (dashed line)
under 400 square loops cycles of the cylinder (solid curve).

C. Formulation as a Control Problem

The problem we study in this paper is controlling the
motion of the cylinder xc in a way that induces a desired
motion of the particle xp. More precisely, we wish to move
the cylinder in arbitrarily small bounded closed loops, and
generate attraction of the particle towards it. The input of
the system is the velocity of the cylinder,

ẋc = u, (5)

and the output is the position of the particle xp. Equations (3)
and (5) describe the problem as a driftless nonlinear control
system [6], [28]. In order to check the local controllability
of the system, one can apply the classical Lie-algebraic test
originally developed by Chow [7]. Direct application of this
test for our system shows that it is nonlinearly controllable
as long as X2 + Y 2 6= r2c , which is satisfied whenever the
particle is not strictly in contact with the cylinder’s boundary.
We will return to this in section VI, where we exploit the
geometric structure of the system to develop an alternative
controllability criterion.
Simulation Example. Consider the case of a cylinder with
radius rc = 1 whose initial center position is xc = (0, 0),
and a particle which is initially located at xp = (3, 0). Fig.
2(a) shows the motion of the particle as a result of the motion
of the cylinder on an anti-clockwise square loop with sides
of length 1. The initial point is marked by ’×’, while the end
point is marked by ’◦’. Next, we simulate the motion of the
particle under repetition of the square loop of the cylinder’s
motion for 400 times; see Fig. 2(b). The result is that the
particle traces out a circle centered on the origin, without
getting any closer to the cylinder. Our particular goal, to
attract the particle towards the cylinder, can therefore not be
achieved by naively applying simple loops for the cylinder’s
motion. In the sequel, we analyze the underlying geometric
structure of our control system, and present an algorithm for
generating a feedback-based gait of periodic motion of the
cylinder that will result in a slow drift of the particle towards
it.

III. CONNECTION-THEORETIC DESCRIPTION

In this section, we make a first step towards constructing
gaits, by interpreting the matrix A(q) in (3) as a connection

in a fiber bundle, and showing how the drift in the particle
location due to a cyclic change in the location of the rigid
body can be viewed as the geometric phase (or holonomy)
of this connection. This is distinct from the usual appearance
of connections and geometric phases for locomotion systems,
which are mechanical control systems defined on a principal
fiber bundle [6], [18]. These systems are (locally) of the form
g−1ġ = A(s)ṡ, where the variables g take values in a Lie
group and the matrix A(s) depends on the input parameters
s only. In contrast, the connection matrix A(xp,xc) in this
paper does not have these group-theoretical properties and
depends both on the input and the output variables, preclud-
ing a standard geometrical approach to motion planning as
in [22], [27].

A. Fiber Bundles and Connections
We now describe how the particle manipulation system (3)

and (5) fits into a broader class of control systems. We denote
the space of input variables for this class of systems by B
and the space of output variables by F . To emphasize the
link with the particle manipulation problem, we will denote
points in B and F by xc and xp, respectively. However,
we emphasize that this setup is applicable to more general
problems as well.

The spaces B and F naturally fit together into a
differential-geometric structure known as a fiber bundle. For
our purposes, it will suffice to define a (trivial) fiber bundle
to be a triple (B×F,B, π1), where B and F are manifolds
and π1 : B × F → B is the projection onto the first factor.
The manifold B is called the base space of the bundle and
encodes the internal, controlled variables, while B × F is
referred to as the total space, where the fiber F encodes the
output variables.

In order to specify the relation between the control pa-
rameters and the output variables, we need the concept of
a connection. While there are many equivalent ways of
defining connections in this context, we use the concept of
a horizontal lift [6].

Definition 1: A horizontal lift is a family of linear maps

A(xp,xc) : TxcB → TxcB × TxpF, (6)

for all (xc,xp) ∈ B × F , such that Tπ1 ◦A(xp,xc) = id,
i.e. A(xp,xc) is the identity on the first factor.

When evaluated on a vector ẋc, the horizontal lift map
A(xp,xc) · ẋc determines the influence on xp of an infinites-
imal change in xc, given by ẋc. In order to describe cyclic
changes in the control variables, we recall the concept of
geometric phase of a connection. Let γ : t 7→ xc(t) be a
closed loop in B with xc(0) = xc(1) = xc, and choose a
point xp ∈ F . We can then find a unique curve t 7→ xp(t)
in F such that

(ẋc(t), ẋp(t)) = A(xp,xc) · ẋc(t),

satisfying the initial condition xp(0) = xp. The pair
(xc(t),xp(t)) is called the horizontal lift of γ, based
at(xc,xp) ∈ B × F . Fig. 3 illustrates the geometric phase
map associated to a given loop in the base space.



Fig. 3. Illustration of the geometric phase associated to a loop in the base
space.

Definition 2: Let γ : t 7→ xc(t) be a closed loop in B.
For xp ∈ F , consider the horizontal lift (xp(t),xc(t)) of that
loop, based at (xp,xc). The geometric phase associated to
the loop γ is the map Φ : F → F associating to each xp the
end point xp(1) of the curve xp(t).

Note that the geometric phase map depends only on the
geometric shape of the loop γ, and not on the choice of
a time-parametrization of the motion of xc(t) along γ.

B. Application to Particle Manipulation

For the particle manipulation problem, the base space B
is the configuration space of the rigid body: B = R2, while
the fiber F = R2 is the particle’s configuration space.1 The
matrix A in (4) defines a connection in this bundle. We now
describe some properties of this connection.

a) Geometric Phase: For this connection, the lifted
curve (xc(t),xp(t)) associated to a closed loop xc(t) in the
body space has the following interpretation: xp(t) describes
the trajectory of the particle, relative to the body, as the body
traces out the curve xc(t).

b) Volume-preservation: Since the fluid is taken to be
incompressible, the geometric phase map Φ : R2 → R2 is
volume-preserving, regardless of the trajectory in the base
space. This can also be checked directly by noting that the
divergence of the right-hand side of (3) vanishes.

IV. GEOMETRIC STRUCTURE OF THE CONTROL SYSTEM

We now study the geometric structure and symmetries of
the control system (3) and (5), by making the following three
observations. The first observation is that the connection
A(xp,xc) in (4) depends only on the relative position q,
defined as q = xp−xc. The control system can then be
reformulated in terms of q as{

q̇ = B(q)u

ẋc = u,
(7)

where B(q)=A(q)−I, and I is the 2×2 identity matrix. The
second observation, which exploits the circular symmetry of
the cylinder, is that equation (7) is invariant under simul-
taneous rotation of q,q̇ and u, as follows. Let R ∈ SO(2)

1More precisely, one needs to restrict F to the region exterior to the rigid
body, but this caveat does not affect our treatment.

be a rotation matrix in the plane. Then q̇ = B(q)u implies
Rq̇ = B(Rq)Ru. Therefore, B(q) satisfies

B(q) = RB(RT q)RT . (8)

The third observation is that the control system (7) is
invariant under reflection with respect to the particle-cylinder
line, whose direction is q, so that

B(q) = P(q)B(q)P(q), (9)

where P = I − 2e⊥(q)e⊥(q)T is the reflection operator
about the direction of q. Here we have introduced

e⊥(q) = Je(q), e =
q
||q||

, and J =
(

0 −1
1 0

)
.

We now define a rotating reference frame F′ which is
aligned with the direction of q (see Fig. 1). Let R(θ)
be the rotation matrix from the frame F′ to the world-
fixed frame F, where θ = tan−1(Y/X) and (X,Y ) are
the components of q expressed in the frame F. Define
q′ = R(θ)T q, q̇′ = R(θ)T q̇, and u′ = R(θ)T u, which
are the vectors q, q̇ and u expressed in the frame F′.
By construction, we have that q′ = (0 r)T , where r =
||q||. Defining B′(r) = B(q′), for given q, B(q) can
be obtained from B′(r) according to (8). Note that B′(r)
depends only on the distance r between the cylinder and
the particle. Moreover, augmenting this observation with the
relation (9), we conclude that B′(r) is diagonal. Note that
our geometric interpretation is general, and applies to any
system of the form (7) describing the interaction between
two planar bodies with circular symmetries. Nevertheless, in
our specific example given in (3) and (4), direct calculation
gives B′(r) = diag{B′11(r), B′22(r)}, where

B′11(r) =
r2c
r2
− 1 and B′22(r) = −r

2
c

r2
− 1. (10)

The radial and tangential motions. We now characterize
two principal motions for this system, namely, radial and
tangential motions, implied by the diagonality of B′(r).
These two principal motions play a key role in the algorithm
we present for gait generation. Radial motion is a motion
in which the input velocity u = ẋc is directed along q. In
this case, the motion of xc and xp is one-dimensional, and
depends only on the separation distance r. Taking u = e(q),
r satisfies the differential equation

ṙ(t) = B′11(r(t)). (11)

This equation is separable, and for our specific case given
in (10), the solution r(t) with initial condition r(0) = r0 is
obtained from the implicit equation

rc
2

(
log

r + rc
r − rc

− log
r0 + rc
r0 − rc

)
+ r0 − r = t. (12)

For large distances r � rc, the solution has a constant
slope of −1, indicating that the cylinder is moving while the
particle stands still. For small initial distance r0, the solution
r(t) approaches rc asymptotically. Therefore, catching the
particle by directly “chasing” it is possible, but requires large



motions, whereas here we focus on manipulating the motion
of xp by generating bounded motions of xc.

The tangential motion is generated by applying input
velocity u = e⊥(q), which is constantly perpendicular to
q. Under this motion, the distance ||xp − xc|| remains fixed
at r = r0. Moreover, it can be shown that under this input,
xc and xp are moving along two concentric circular arcs,
where the radius of the circular arc formed by the motion of
xc is R = r0

|B′
22(r0)| .

V. THE FEEDBACK-BASED GAIT

We now present a novel algorithm for generating a gait
for this system, which results in a decrease of the distance
between xc and xp. The gait makes use of the two principal
motions described above in a way that generates a closed
loop. We prove that the gait results in attraction of the particle
xp to the body xc, and demonstrate the resulting motion via
numerical simulations. Though the gait requires feedback,
it does not depend on details of the specific model of the
system, hence it is robust.

A. The TRTR gait procedure

The TRTR gait consists of four steps, alternating between
tangential and radial motions. The input velocity u = ẋc in
each step is described as follows.

A. Apply input u = e⊥(q) for a time t1.
B. Apply input u = e(q) for a time t2.
C. Apply input u = −e⊥(q), until reaching a time

at which the initial position xc(0) and the current
positions xc and xp all lie on a common line.

D. Apply input u = −e(q) until xc reaches its initial
position xc(0).

The TRTR gait is explained as follows. In step A, xc and xp

are moving along two concentric arcs about a centerpoint O1,
while the distance between them is kept fixed at r = r0. In
step B, xc and xp are moving along the line connecting them,
and the distance between them is decreased to r2. Then in
step C, xc and xp are again moving along concentric circular
arcs with direction reversed from step A. A key fact is that
the center point of these arcs O3 is now shifted from O1 by
a distance ∆o, and the arcs’ radii for xc(t), denoted R1 and
R3, are unequal. When step C comes to an end, the points xp,
xc and xc(0) are lying along a common line. In step D, xc

moves along this line for a time t4, until it reaches its original
position xc(0). The distance r is increasing in this step. Once
this gait is completed, xc returns to its starting point, whereas
xp does not. This results in a shift of both the distance r and
the angle θ, which is precisely the geometric phase associated
with the gait. The geometric phase depends on the times t1
and t2, which are design parameters of the gait, but has no
explicit expression, as it involves the implicit solution of Eq.
(11) describing the radial motion. Denoting by Φ(r0, t) the
solution of (11) at time t under initial condition r(0) = r0,
the following lemma gives the implicit expression for rend,
which is the final distance r under the TRTR gait. The proof
of this lemma, as well as the expression for the shift in θ,
are not given here due to space constraints.

Lemma 1: Consider a control system of the form (7), that
satisfies the invariance properties (8) and (9). For given
initial distance r(0) = r0, the final distance rend under the
TRTR gait with times t1 and t2 is given by

rend = Φ(r0, t2 − t4), where

t4 =
√

(∆o +R1 cos θ1)2 + (R1 sin θ1)2 −R3

∆o = t2 +R3 −R1, θ1 = t1
R1

R1 = r0
|B′

22(r0)| , R3 = r2
|B′

22(r2)| , r2 = Φ(r0, t2).

(13)

Using the expression for rend in (13), we now prove that
the TRTR gait results in a decrease of the distance r, i.e.
rend < r0. The proof holds not only for our specific problem,
but assumes a general control system of the form (7) that
satisfies the invariance properties (8) and (9). Under these
relations, the system is defined solely by the functions B′11(r)
and B′22(r). The proof uses the following assumptions on the
system:
A1. −1 < B′11(r) < 0 for all r > rc.
A2. |B′22(r) + 1| decreases monotonously with r.
A3. B′22(r) < −1 for all r > rc.

The first two assumptions are fairly general and physically
reasonable, as they require that the interactions between the
motions of xp and xc are monotonously decaying with the
distance r, and that the magnitude of ẋp is always less than
that of ẋc. The third assumption, which is given here for
simplicity, is not essential and can be relaxed. It is easy to
verify that the three assumptions hold in our example, where
the data of the model is given in (10). The following theorem
uses the assumptions to prove that r is decreasing under the
TRTR gait.

Theorem 1: Consider a control system of the form (7),
which possesses the invariance relations (8) and (9), and
satisfies assumptions A1, A2 and A3. Then under initial
distance r(0) = r0 > rc, the TRTR gait results in a final
distance rend that satisfies rend < r0.

Proof: First, we show that ∆o, defined in (13), is
positive. Under assumptions A2 and A3, one obtains

∆o = t2 +R3 −R1 = t2 + r2
|B′

22(r2)| −
r0

|B′
22(r0)|

> t2 + r2−r0
|B′

22(r2)| > t2 + r2 − r0.

Assumption A1 implies that under the differential equation
(11), one has t > r0 − Φ(r0, t). Hence, we conclude that
t2 + r2 − r0 > 0, which implies ∆o > 0.

Next, we prove that t4 < t2. Using the fact that ∆o > 0,
we have

(∆o +R1 cos θ1)2 + (R1 sin θ1)2

= (t2 +R3 +R1(cos θ1 − 1))2 + (R1 sin θ1)2

= (t2 +R3)2 + 2R1(cos θ1 − 1)(t2 +R3 −R1)

= (t2 +R3)2 + 2R1(cos θ1 − 1)∆o < (t2 +R3)2.

Substituting into the expression for t4 in (13) yields t4 < t2.
Finally, assumption A1 implies that Φ(r0, t) is

monotonously decreasing with t. Therefore, using the



�

� �� �� �� �� ��� ���
�

��	

�

��	




��� �� �� �� 
�

���

���

��

��

�

�
�

����
�� ��	� �� ��	� ��

���	

��

��	�

��

�

�

��

��

��

��

�� ��

��

��

��

��

���������

���������

��

�
�
�

��� �� �� �� 
�

���

��

��

�

�
�

����

����

���

Fig. 4. (a) Trajectories of xc and xp under a single gait. (b) Motion of
particle xp under iterative applications of gait. (c) The series rk of the
distance r after each cycle. (d) Motion of xp under iterative applications
of the gait with alternating θ-shift.

expression for rend in (13) and the fact that t4 < t2 proves
that rend < r0.

Example: We now show a simulation example in order
to demonstrate the particle motion induced by the TRTR
gait. Fig. 4(a) shows the trajectories of xc and xp for
rc = 1, under the TRTR gait with t1 = t2 = 1. The
initial positions, which are marked by ’×’, are xc(0) =
(0, 0) and xp(0) = (2, 0). One can clearly see that while
xc travels along a closed loop, xp has a nonzero shift of
∆xp = (−0.0045,−0.0290), or equivalently, ∆r=−0.0043
and ∆θ = −0.55◦. When applying the gait repeatedly, the
distance r after each cycle is slowly decreasing, and the angle
θ is changing monotonously, resulting in a spiral motion
of the particle until it eventually reaches the boundary of
the cylinder. Fig. 4(b) shows the position of xp after each
cycle under iterative application of the TRTR gait, starting
from xc(0) = (0, 0) and xp(0) = (3, 0). Fig. 4(c) plots
the discrete series rk of distances after each iteration. It
can be seen that after k = 115 iterations, the particle is
trapped at the cylinder’s boundary r = rc = 1. In order to
eliminate the monotonous change of θ which results in spiral
motion, we now modify the sequence of gaits by reversing
the direction of the tangential motions along arcs in steps
A and C alternately between consecutive gaits. This results
in oscillations of θk around zero, as shown in Fig 4(d). The
evolution of the distances rk remains the same as in Fig 4(c).

Remarks: First, note the stopping condition in step C
of the algorithm, which assures that the trajectory forms
a closed loop. Second, a key fact is that the TRTR gait
requires feedback, since it is based on moving xc in the
directions e(q) or e⊥(q), which depend on the positions
of xp and xc. However, the feedback does not necessarily
require inertial sensors that measure absolute positions, and
can be implemented under two much simpler requirements,
as follows. The first requirement is the ability to mark the
starting point xc(0) with some fixed landmark. The second

requirement is that the moving cylinder is equipped with
a compass-like device which is capable of measuring the
bearing angle of the line connecting xc to the particle xp,
and of the line connecting it to the the landmark of xc(0).
Finally, it is important to note that the TRTR gait does
not require knowledge of the exact details of the model.
Therefore, the gait is robust with respect to inaccuracies
in the model. Moreover, the gait can be implemented in
any system describing the interaction between two circular
bodies, as long as their dynamics induces a connection of
the form (7) with the invariance properties (8) and (9).
Implementation of the gait in Stokes flow: In order
to demonstrate the fact that the TRTR gait is model-
independent, we now show how it can be implemented for a
simple example in viscous fluid which is governed by Stokes’
equation. Stokes equation describes the hydrodynamics of
particles on a small scale, where the Reynolds number is
very small, indicating that viscous effects are dominating
and inertial effects are negligible [13], [25]. We consider the
case of two spheres of equal radius, where the motion of one
sphere is controlled while the other sphere moves passively
with the fluid. The goal is again to move the controlled
sphere in small loops that induce attraction of the passive
sphere to the controlled sphere. Note that the motion of rigid
bodies in Stokes flow is quasistatic, i.e. the net forces acting
on each rigid body are zero at all times. Another fundamental
principle is the existence of a linear relation between the
rigid-body velocities and the forces exerted by the fluid on
the rigid bodies. For two rigid bodies, this linear relation is
formulated as(

f1

f2

)
=
(

R11 R12

R21 R22

)(
ẋ1

ẋ2

)
, (14)

where f i is the force acting on the ith body, ẋi is its velocity,
and the big matrix with blocks Rij in (14) is called the
resistance matrix [13]. Consider a given motion of one body
u = ẋ1, imposed by applying an external force on it. The
resulting motion of the passive body ẋ2 can be obtained by
using the relation (14) along with the quasistatic assumption
f2 = 0, and is thus given by ẋ2 = −R−1

22 R21ẋ1. This
relation is again in the form of a driftless nonlinear control
system (7) induced by a connection of the form (6). When the
two rigid bodies are spheres, the control system also satisfies
the two invariance properties given in (8) and (9), hence we
can apply the TRTR gait in a similar fashion. For simplicity,
in our simulation we use the far-field approximation of the
resistance matrix, which was developed in [9]. We simulated
the motion of two spheres of radius 1, where the sphere
x1 is controlled and the sphere x2 moves passively. Fig.
5(a) shows trajectories of x1(t) and x2(t) under a single
TRTR gait with t1 = t2 = 1, where the initial positions
are x1(0) = (0, 0) and x2(0) = (4, 0). The resulting shift
in the position of x2 is ∆r = −0.0054 and ∆θ = −0.96◦.
One noticeable difference from the cylinder-particle motion
in perfect fluid is that the arcs of x1 and x2 in steps A
and C are in-phase, whereas they were anti-phase in the
perfect fluid case of Fig. 4(a). (This is caused by the fact



 

0 0.5 1 3.5 4 4.5 
-0.5 

0 

0.5 

1 

  

  

x1 

a 

b 

c 

d a 
b 

c 
d 

x 

y
 

(a) 

x2 

0 50 100 150 200 250

2

2.5

3

3.5

4

k 

r
k
 

(b) 

Fig. 5. The motion of two spheres in Stokes flow: (a) Trajectories of x1

and x2 under a single gait. (b) The series rk of the distance r after each
cycle.

that here we have B′22(r) > −1, while in the perfect fluid
case we had B′22(r) < −1, see Eq. (10)). When applying the
gait repeatedly, the discrete series of distances rk decreases
monotonously as shown in Fig. 5(b), and reaches contact
r=2 after approximately 240 iterations.

Notice the difference in the nature of convergence in the
two examples. In the inviscid case, the distance rk converges
to zero only asymptotically, and physical contact r = 1 is
never attained. In the second example of Stokes flow, the
model predicts convergence to contact (r = 2) in finite
time. This unphysical result is an artifact, caused by the
fact that we have used a far-field approximation of the
resistance matrix. This approximation is not valid when the
gap between the particles is small, where a more refined
model accounting for lubrication effects [19] is needed.
An additional fundamental difference between the cases of
Stokes flow and potential flow is the fact that in Stokes
flow, the no-slip condition on the boundary of the spheres
implies that pure rotation of the controlled sphere also leads
to motion of the passive sphere, and thus it can serve as an
additional input for the control system, which may enhance
the manipulation capabilities.

VI. CONTROLLABILITY ON SYMPLECTIC FIBER
BUNDLES

In this last section, we return to the connection-theoretic
treatment of section III. We show that the particle manipu-
lation connection is an example of a symplectic connection,
and we establish a controllability test for systems governed
by a symplectic connection, which yields the same results
as the classical Lie-algebraic test in the Chow theorem
[28] but is significantly simpler: whereas the Chow criterion
deals with vector fields on the space B × F , our criterion
deals with objects on the fiber F only. For the particle
manipulation, dimB × F = 4 while dimF = 2, which
entails a reduction by half. Our result is analogous to that of
[18], who developed a criterion called strong controllability
for connections on a principal fiber bundle.

The treatment below will make use of differential forms
(see [6]). We denote the exterior derivative of a form ω by
dω, and the contraction of a vector field X with a form ω by
iXω. Recall that a two-form ω is symplectic when it is closed
and non-degenerate, i.e. dω = 0, and iXω = 0 implies that
X = 0. A fiber bundle B×F is said to be symplectic when
F is equipped with a symplectic form ωF ; see [11].

Definition 3: A connection A is symplectic if, for each
loop in the base space, the associated geometric phase
mapping Φ preserves the symplectic structure ωF on F , i.e.

Φ∗ωF = ωF .
For the particle manipulation problem, the symplectic

form on F is the area form dxp ∧ dyp. The connection
is symplectic because the fluid is incompressible and hence
area-preserving.

Recall that a vector on the trivial bundle B×F is vertical
if it is of the form (0, ẋp), where ẋp ∈ TF , while vectors
of the form (ẋc,A(xp,xc)ẋc) with ẋc ∈ TB, are said to be
horizontal.

Definition 4: A two-form ω is compatible with a sym-
plectic connection if ω(u, v) = 0 for all horizontal vectors
u and vertical vectors v, and if ω(v, w) = ωF (v, w) for all
vertical v, w, where ωF is the symplectic form on F .

For example, in our problem of particle manipulation, the
compatible two-form is given by ω = dψx ∧ dxc + dψy ∧
dyc + dxp ∧ dyp, where ψx, ψy are the elementary stream
functions (2).

Using the compatible two-form ω, we define then the
following vector spaces of exact one-forms on F :

v1 = {diXh iY hω : X,Y ∈ X(B)} ⊂ T ∗F
vk = {diZhαk−1 : Z ∈ X(B), αk−1 ∈ vk−1} ⊂ T ∗F,

where k = 2, 3, . . . Here, X(B) denotes the space of vector
fields on B and Xh is the horizontal lift of a vector field X
on B, given by Xh(xc,xp) = (X(xc),A(xp,xc) ·X(xc)).
Our controllability result is then as follows.

Theorem 2: Let (xc,xp) be an element of B × F . If the
sum of vector spaces

v1(xc,xp) + v2(xc,xp) + · · ·

coincides with the entire cotangent space T ∗xp
F , then the

system is controllable at (xc,xp).
For the particle manipulation problem, we have that v1 is

spanned by dH1 while v2 is spanned by dH2,1 and dH2,2,
where

H1 =
r4c

(X2 + Y 2)2
, H2,1 =

4r4cX(X2 + Y 2 − r2c )
(X2 + Y 2)4

,

and H2,2 =
4r4cY (X2 + Y 2 − r2c )

(X2 + Y 2)4
.

We recall that rc is the radius of the cylinder. It is easy
to check that the span of dH1, dH2,1 and dH2,2 is R2,
except for the points where X2 + Y 2 = r2c , corresponding
to the boundary of the cylinder. The lack of controllability
here reflects the fact that fluid particles on the boundary only
move along the boundary and cannot leave it.
Remarks. We defer the proof of the controllability charac-
terization to a future paper. The proof relies on the realization
that the functions H1, H2,1, etc. are in fact Hamiltonian
functions for the iterated Lie brackets that appear in the Chow
theorem on controllability. Last, we emphasize that the con-
nection A for the particle-manipulation problem also enjoys
a number of symmetries, which were exploited in the design
of gaits. This makes A into a Hannay-Berry connection [21],
a type of group-invariant symplectic connection that was



previously used in the description of averaged equations and
Foucault’s pendulum.

VII. CONCLUSION

In this paper, we have studied the motion of a particle in an
inviscid, irrotational fluid flow under the influence of a mov-
ing rigid body. We have designed a feedback-based gait that
results in attraction of the particle, and demonstrated that the
gait is model-independent by implementing it for a similar
problem in Stokes flow. Moreover, we have shown that this
particle drift can be interpreted as the geometric phase of a
connection, and by using these geometric structures, we have
proposed an alternative controllability criterion with reduced
dimensionality.

We now briefly sketch some possible directions for future
generalization of the results. We comment first on the exten-
sion to the case of three-dimensional fluids. Several remarks
are in order here. Firstly, the 3D case is already treated in our
example of two spheres in Stokes flow, where a 3D approach
is necessary in order to avoid the Stokes paradox (see [13]).
We expect that the other examples can easily be extended
to the case of spatial fluids too. Mathematically speaking,
3D fluid flows preserve the standard contact structure on
R3. As a result, particle manipulation in three dimensions
is described by a contact connection, an object whose
properties will be described in future work.

Secondly, we plan to investigate optimal gaits that ex-
tremize a cost function, such as net motion or overall energy
expenditure, under a gait of bounded size. A challenging
open problem would be to relate such an optimal gait to a
geodesic curve under a suitable metric (see [2], [5]). A third
possibility is to consider rigid bodies with non-circular sym-
metries, such as ellipses, or even fully deformable bodies.
Each of these extensions brings in new ways of actuating the
fluid. Finally, an long-term goal is to extend these results to
the manipulation of many particles in a fluid with a minimal
set of control inputs. The geometric description of these
extended problems will be the subject of future work.
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