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1 Introduction

A frame on an n-dimensional differentiable manifold Q is a local basis of vector fields
{Xi}, i = 1, 2, . . . , n. A frame consisting of coordinate vector fields ∂/∂qi is called,
naturally enough, a coordinate frame, or more obscurely a holonomic one; a frame which
is not holonomic, or not known to be so, is said to be anholonomic. The term dates
back at least as far as Schouten’s Ricci-Calculus [32]. Why one says anholonomic for
frames but nonholonomic for constraints in dynamics, with closely related meanings, is
anybody’s guess.

In order to test whether or not a frame {Xi} is a coordinate frame (that is, whether
coordinates may be found such that Xi = ∂/∂qi) one computes the brackets [Xi, Xj ].
These vanish for a coordinate frame; for an anholonomic frame we may write

[Xi, Xj ] = RkijXk

for some locally defined functions Rkij on Q. These functions are collectively called by
Schouten the object of anholonomity, because of their role in determining whether or not
the frame is truly anholonomic.

Anholonomic frames can be very useful in certain situations in dynamics because they
can be adapted to geometrical requirements in a way that may be impossible with a
coordinate frame. We have exploited this possibility in relation to systems with symme-
try in previous publications [11, 12, 13, 14, 28]. In this paper, we promote the use of
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anholonomic frames in the study of dynamical systems subject to nonholonomic linear
constraints.

Our paper is concerned entirely with dynamical systems of finitely many degrees of
freedom which are capable, broadly speaking, of a Lagrangian formulation; and it studies
the systems of interest by uncompromisingly differential-geometric means. One instance
of this is that, for us, the dynamics is always represented by a vector field; the possible
motions of a dynamical system are given by the integral curves of the dynamical vector
field, and the dynamical differential equations are those that determine the integral
curves of the dynamical vector field. When one is dealing with a Lagrangian system
(without constraints, for simplicity) one has therefore to interpret the Euler-Lagrange
equations as implicitly defining a vector field: this will in fact be a vector field of special
type — a so-called second-order differential equation field — on the tangent bundle TQ
of the configuration space Q. Special techniques have been developed for the study of
the differential geometry of tangent bundles and second-order differential equation fields,
which have been shown to be useful in many applications, such as the inverse problem of
Lagrangian mechanics and the study of qualitative features of systems of second-order
differential equations.

Our insistence on always thinking of the dynamics as a vector field of second-order
type on TQ is one distinctive feature of our approach. A second is our whole-hearted
use of anholonomic frames. For example, we reformulate the Euler-Lagrange equations
(which of course are normally expressed in terms of coordinates) in a frame-dependent
but entirely coordinate-free manner. To do so we first show how to lift an anholonomic
frame on Q to one on TQ. In keeping with our differential-geometric approach we do not
base our discussion of Euler-Lagrange equations on a variational principle, but instead
derive the equations ultimately by the method of the Cartan form (see [15], for example,
for a general description, and Section 2.3 for one adapted to our needs in this paper).

The concept of quasi-velocities has a very natural place in our theory — indeed, we would
claim that the only way to understand quasi-velocities properly is to view them from the
perspective of the theory of anholonomic frames. The thoroughly misleading — indeed,
incoherent — concept of quasi-coordinates to be found in some classical textbooks on
mechanics is thereby avoided. It is argued in a recent paper by Bloch et al. [5] that
although the benefits of the use of quasi-velocities have always been beyond any doubt,
the mathematical foundations of the theory in textbooks such as [20] and [30] have not
always been built up as rigourously as they should. We agree; and in fact we take a more
radical approach to the problem than do the authors of [5]. For example, the nearest
these authors come to a frame-based version of the Euler-Lagrange equations is Hamel’s
equations. We on the other hand view Hamel’s equations, however useful they may be in
practical applications, as just a half-way house — partly frame- and partly coordinate-
based. We show in our paper how to derive Hamel’s equations, but we make no use of
them.

The differential-geometric machinery necessary for our approach is described in Sec-
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tion 2.1 below. Our version of the Euler-Lagrange equations is obtained in Proposition 1
in Section 2.2. In Section 2.3 we show how to obtain these equations by means of the
Cartan forms.

There has been a long discussion in the literature about two distinct approaches to
dealing with dynamical systems subject to nonholonomic constraints, which are called
respectively nonholonomic and vakonomic mechanics. According to [2, 8, 31] the discus-
sion dates back to the end of the nineteenth century, with Korteweg, Hölder, Voronec
and Suslov among its more famous participants. Nonholonomic mechanics is the clas-
sical method for deriving equations of motion for systems with constraints and their
associated reaction forces from the Lagrange-d’Alembert principle, while the equations
for vakonomic systems (sometimes also termed variational nonholonomic systems) follow
from a variational principle where one looks for extremals in the class of curves which
satisfy the constraints. Experiments such as the one described in [26] suggest that the
nonholonomic equations of motion are the correct ones to use for mechanical systems with
nonholonomic constraints. The vakonomic theory, on the other hand, finds applications
in such fields as economics and LC-circuits (see for example [10]).

In Section 3 we show in Proposition 2 how our methods may be used to formulate a
version of the Lagrange-d’Alembert principle and derive the nonholonomic dynamics
for a system subject to nonintegrable linear constraints, provided it is regular in an
appropriate sense.

In Section 4 we turn our attention to vakonomic systems. We derive the equations
satisfied by the dynamical vector fields of such systems. In Propositions 3 and 4 we
give a version of these equations, when the multipliers are required to lie in the image
of a certain section. Section 5 concentrates in much detail on the question of when the
nonholonomic problem is consistent with the vakonomic one. This question has of course
been investigated by many authors in the past (see for example [7, 10, 16, 18, 21, 31, 34]
— this list is by no means exhaustive). By carefully analyzing the dynamical vector
fields involved we show that in fact two notions of consistency need to be distinguished.
The corresponding consistency conditions can be found in Theorem 2 and Corollary 1,
repectively. Inspired by a recent paper of Fernandez and Bloch [19] we examine the
existence of a so-called ‘variational Lagrangian’ and we clarify its role with regard to the
consistency conditions (Theorem 1 and Corollary 2). We considerably generalize some
of the results of [19], stated there for Abelian Chaplygin systems only, by showing that
they apply also to non-Abelian Chaplygin systems (in the sense of e.g. [24]) and even in
some cases to nonholonomic systems with linear constraints in general (see Propositions 5
and 6). Our discussion of Chaplygin systems is to be found in Section 6. As in earlier
sections, the ease with which we obtain the results relies on the choice of an appropriate
frame. In the case of a Chaplygin system the frame is adapted to the situation of a
system with symmetry. In the literature one can, of course, also find other approaches to
(nonholonomic and vakonomic) systems with symmetry and their reduction, e.g. using
the theory of Lie algebroids [9, 21, 29]; but the benefits of our methods are of course not
available there.
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The paper ends with some illustrative examples, namely the class of nonholonomic sys-
tems discussed recently in [4], and the two-wheeled carriage. We give new and illumi-
nating derivations of some known results. We also correct the errors which have crept
into some of the accounts of the two-wheeled carriage in the literature.

2 Anholonomic frames, quasi-velocities and the Euler-
Lagrange equations

In this section we describe the basic constructions associated with anholonomic frames,
leading to an appropriate formulation of the Euler-Lagrange equations, in preparation
for the discussion of nonholonomic systems which commences in the following section.

2.1 Some aspects of tangent bundle geometry

We shall be concerned with second-order dynamics, that is to say, with dynamical systems
represented as vector fields of second-order type on velocity phase space, which is the
tangent bundle TQ of configuration space Q. We denote the space of sections of TQ→ Q,
that is the space of vector fields on Q, by X (Q); it is a C∞(Q)-module, where C∞(Q)
denotes the ring of smooth real-valued functions on Q. (Actually all considerations in
this paper are local rather than global, but we shall not continually draw attention
to this fact.) Though in principle we prefer to manage without coordinates, we shall
want to use them sometimes, especially in this section: we point out that we denote the
generalized velocities, in other words the fibre coordinates on TQ naturally associated
with coordinates qi on Q, by ui, reserving q̇i for the actual derivative of qi along a curve.
Our policy in this section is to give informal but intrinsic definitions of objects and
constructions so that it will be clear that they are well-defined, but to supplement these
with coordinate expressions for security: this is why we make more use of coordinates
here than later.

We shall work with anholonomic frames on Q. Our first task is to show how to lift
an anholonomic frame from Q to TQ, to give an anholonomic frame there. Since the
dimension of TQ is 2n we need to double the number of vector fields in the frame.
Fortunately there are two canonical ways of lifting a vector field from Q to TQ, the
so-called complete and vertical lifts; we apply them both to each member of the frame
on Q. These constructions are described in detail in several texts, including [15]; we give
a brief account below for the convenience of the reader.

Let Z be any (locally defined) vector field on Q, with flow ϕt. By taking the tangent
map to ϕt for each t we obtain a flow on TQ; the corresponding vector field on TQ is
called the complete lift (sometimes the tangent lift) of Z and is denoted by ZC. In terms
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of coordinates

ZC = Zi
∂

∂qi
+ uj

∂Zi

∂qj
∂

∂ui
, if Z = Zi

∂

∂qi
.

The second canonical way of lifting the vector field Z from Q to TQ yields its vertical
lift ZV: this is tangent to the fibres of the projection τ : TQ→ Q, and on the fibre over
q ∈ Q it coincides with the constant vector field Zq. In coordinates

ZV = Zi
∂

∂ui
.

We have τ∗ZC = Z, which is to say that ZC is projectable and projects onto Z, while
τ∗Z

V = 0 since ZV is vertical. The brackets of complete and vertical lifts of vector fields
Y and Z are

[Y C, ZC] = [Y,Z]C, [Y C, ZV] = [Y,Z]V, [Y V, ZV] = 0.

Note that although the map Z 7→ ZV is C∞(Q)-linear, the map Z 7→ ZC is only R-linear:
in fact for f ∈ C∞(Q)

(fZ)C = fZC + ḟZV

where ḟ is the so-called total derivative of f , a function on TQ defined by ḟ(q, u) = u(f)
and given in coordinates by

ḟ = ui
∂f

∂qi
.

This fact will have an important role to play shortly. (The first term on the right of the
equation above for (fZ)C should strictly speaking be (τ∗f)ZC, but we shall not bother
to distinguish notationally between a function on Q and its pull-back to TQ.)

Given an anholonomic frame {Xi} on Q we can construct from it the anholonomic frame
{XC

i , X
V
i } on TQ. This lifted frame will play a central role in our account of dynamics

on TQ.

With any local frame {Xi} there is associated its dual coframe {θi}, consisting of locally
defined 1-forms such that θi(Xj) = δij . Now a 1-form θ on Q defines a function say vθ on
TQ, linear on the fibres, by vθ(q, u) = θq(u); if θ = θidq

i then vθ = θiu
i. The n functions

vθi
associated in this way with a frame via the dual coframe are called the quasi-velocities

of the frame; we denote them by vi for simplicity. Another way of defining the quasi-
velocities is to say that vi(q, u) is just the ith component of the vector u ∈ TqQ when it
is expressed in terms of the frame at q.

We shall need expressions for the derivatives of the quasi-velocities by complete and
vertical lifts, and in particular their derivatives along the members of the lifted frame
{XC

i , X
V
i }. To find them, the following two formulas are indispensable:

ZC(vθ) = vLZθ, ZV(vθ) = θ(Z).
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From the second of these, ZV(vi) = Zi, where (for any vector field) Zi = θi(Z) is the ith
component of Z with respect to the frame. From the first, ZC(vi) = −[Z,Xj ]ivj . Thus
we can express XC

i (vj) in terms of the object of anholonomity: if [Xi, Xj ] = RkijXk then

XC
i (vj) = −Rjikv

k.

On the other hand
XV
i (vj) = δji ,

from the second formula displayed above.

2.2 The Euler-Lagrange field

We now turn our attention to dynamics. We deal with second-order systems, which means
that we expect to be able to write the dynamical equations as second-order ordinary
differential equations of the form q̈i = F i(q, q̇). As we explained in the introduction,
we follow the time-honoured principle of differential geometry that a suitable system
of ordinary differential equations should be replaced by the vector field whose integral
curves are its solutions. A system of equations of the form q̈i = F i(q, q̇) corresponds
in this way to a vector field Γ on TQ, but one of a special character: we must have
τ∗(q,u)Γ = u, which is to say that Γ must take the form

Γ = ui
∂

∂qi
+ F i

∂

∂ui

in coordinates, for then the equations for its integral curves are

q̇i = ui, u̇i = F i(q, u),

as required. Such a vector field is, naturally enough, called a second-order differential
equation field.

One useful property of second-order differential equation fields, which is most easily
checked by a coordinate calculation, is that for any vector field Z on Q, [ZC,Γ] is vertical.

Suppose we have an anholonomic frame {Xi} on Q; we can then express any vector
field on TQ in terms of the lifted frame {XC

i , X
V
i }. Since τ∗XC

i = Xi, the condition for
a vector field to be a second-order differential equation field, when expressed in these
terms, is that it should take the form

viXC
i + ΓiXV

i

for some functions Γi on TQ, where the coefficients vi are the quasi-velocities of the
frame.

Note that for any function f on Q and any second-order differential equation field Γ
we have Γ(f) = ḟ . Recall that the total derivative ḟ also appears in the expression
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for (fZ)C, which suggests the possibility of constructive cancellation. Let Γ be any
second-order differential equation field and L any function on TQ, and consider the map
ε : X (Q)→ C∞(TQ) given by

ε(Z) = Γ(ZV(L))− ZC(L).

Then ε is evidently R-linear; it is in fact C∞(Q)-linear, as the following calculation shows:

ε(fZ) = Γ(fZV(L))− (fZ)C(L) = ḟZV(L) + fΓ(ZV(L))− fZC(L)− ḟZV(L) = fε(Z).

Thus ε behaves like a 1-form, except that it takes its values in C∞(TQ) rather than
C∞(Q): it is in fact a 1-form along the tangent bundle projection τ .

A regular Lagrangian L determines a second-order dynamical system via its Euler-
Lagrange equations. These are usually written as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0.

When L is regular, which means that its Hessian with respect to the velocities is non-
singular, these equations can be solved for the q̈i, or in other words written in the form
q̈i = F i(q, q̇). They correspond to a second-order differential equation field Γ, therefore.
In fact there is a unique second-order differential equation field Γ such that

Γ
(
∂L

∂ui

)
− ∂L

∂qi
= 0,

and its integral curves are the solutions of the Euler-Lagrange equations. But in view of
the remarks above about ε, we see that Γ must in fact satisfy

Γ(ZV(L))− ZC(L) = 0

for any vector field Z on Q. Moreover, to determine Γ, assuming that it is a second-order
differential equation field and that L is regular, it is enough to require that

Γ(XV
i (L))−XC

i (L) = 0, i = 1, 2, . . . n,

for the vector fields Xi of any frame on Q, even an anholonomic one. To be explicit, we
may take Γ = viXC

i + ΓiXV
i , when the equation above becomes

XV
i (XV

j (L))Γj = XC
i (L)− vjXC

j (XV
i (L)).

Now XV
i (XV

j (L)) are just the components of the Hessian of L expressed in terms of
the anholonomic frame (recall that vertical lifts commute): so these equations uniquely
determine the coefficients Γi, as required. We sum this discussion up in the form of
a proposition, which we regard as the fundamental statement of regular Lagrangian
dynamics.
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Proposition 1. Let L be a regular Lagrangian on TQ. There is a unique second-order
differential equation field Γ such that

Γ(ZV(L))− ZC(L) = 0

for all vector fields Z on Q. Moreover, Γ may be determined from the equations

Γ(XV
i (L))−XC

i (L) = 0, i = 1, 2, . . . n,

for any frame {Xi} on Q (which may be a coordinate frame or may be anholonomic).

The integral curves of Γ are the solutions of the conventional Euler-Lagrange equations
of L, and we may therefore regard the first displayed equation in the proposition as the
most general form of the Euler-Lagrange equations, and the second displayed equations
as the Euler-Lagrange equations relative to a frame.

Note that we do not assume that the Lagrangian is of mechanical type: the remarks
above apply to any Lagrangian, provided it is regular.

These general forms of the Euler-Lagrange equations are very useful in the discussion of
theoretical questions, but in any specific particular case it will eventually be necessary
to introduce coordinates. One way of doing so, which partially takes cognizance of an
anholonomic frame, is to use some arbitrary coordinates qi on Q, but the quasi-velocities
vi of the frame for fibre coordinates. We next write the Euler-Lagrange equations for the
frame in terms of such coordinates. To do so we need to express XC

i and XV
i in terms of

the coordinate vector fields, and this is most easily done by simply evaluating them on
the coordinates. We have

XC
i (qj) = Xi(qj) = Xj

i , XC
i (vj) = −Rjikv

k, XV
i (qj) = 0, XV

i (vj) = δji ,

where Xi = Xj
i ∂/∂q

j . It follows that

XC
i = Xj

i

∂

∂qj
−Rjikv

k ∂

∂vj
, XV

i =
∂

∂vi
.

The Euler-Lagrange equations become

Γ
(
∂L

∂vi

)
−Xj

i

∂L

∂qj
+Rjikv

k ∂L

∂vj
= 0,

which are Hamel’s equations in our notation.

2.3 The method of the Cartan form

The discussion above is limited to regular Lagrangians. Later in the paper we shall
deal with a variational problem (the vakonomic problem) for which the Lagrangian is
very definitely not regular, and so the methods developed so far will not apply. To
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cope with this situation we shall use the method of the Cartan forms, which are in fact
globally defined forms. However, once again we need a formulation in terms of a (local)
anholonomic frame, which makes the following account unusual in some respects.

We consider any Lagrangian L on any TQ equipped with the frame lifted from an an-
holonomic frame {Xi} on Q whose dual is {θi} and whose quasi-velocities are vi. The
Cartan 1-form of L is XV

i (L)θi, the Cartan 2-form

ω = d
(
XV
i (L)θi

)
.

The energy of L is E = viXV
i (L)− L, and any vector field Γ satisfying

Γ ω = −dE

is an Euler-Lagrange field of L. A word of caution is required: once again we have not
distinguished notationally between an object on Q and its pullback to TQ. Strictly
speaking we should write XV

i (L)τ∗θi for the Cartan 1-form. Bearing this in mind it is
easy to see that for any 1-form θ and vector field Z on Q,

θ(ZC) = θ(Z), θ(ZV) = 0, ZC dθ = Z dθ, ZV dθ = 0.

In the case of the anholonomic frame and its dual, the third of these leads to

XC
i dθj = Xi dθ

j = LXiθ
j − d(θj(Xi)) = −Rjikθ

k.

The equation Γ ω = −dE is of course an equation between 1-forms on TQ. Evaluating
it on XV

i and XC
i in turn leads to the pair of equations

XV
i (XV

j (L))
(
θj(Γ)− vj

)
= 0, Γ(XV

i (L))−XC
i (L) = 0.

From the first of these, θj(Γ) = vj when L is regular, which says that Γ is a second-order
differential equation field; and then the second gives the Euler-Lagrange equations rel-
ative to the frame. But the equation Γ ω = −dE stands even when the Lagrangian
is not regular; and in particular any Euler-Lagrange field Γ satisfies the equations
Γ(XV

i (L)) − XC
i (L) = 0, though these equations may not be enough to determine an

Euler-Lagrange field uniquely.

3 Nonholonomic dynamics

We now consider a dynamical system subject to nonholonomic linear constraints. There
are two (equivalent) ways of specifying such constraints: as a distribution D on Q (the
constraint distribution), such that at each q ∈ Q, Dq has the same dimension m, and
which is not integrable (in the sense of Frobenius); or as a submanifold C of TQ (the
constraint submanifold) which intersects each fibre in a linear subspace Cq, again of
constant dimension m; of course Cq and Dq are the same, just viewed from slightly
different perspectives.
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We can choose an anholonomic frame {Xi} adapted to this situation by taking its first
m members, say {Xα}, α = 1, 2, . . . ,m, to span D. We write the remaining members of
the frame as {Xa}, a = m+ 1,m+ 2, . . . , n. Let vi be the corresponding quasi-velocities:
then C is the submanifold where va = 0.

We shall be interested in vector fields defined only on the constraint submanifold C.
A vector field Γ on C (which for the purpose of the following definition could be any
submanifold of TQ) will be said to be of second-order type if it satisfies the defining
condition for second-order differential equation fields, τ∗(q,u)Γ = u, for all (q, u) ∈ C.
We shall furthermore be interested in vector fields not only defined on the constraint
submanifold C, but also tangent to it. A vector field Γ on C will be tangent to C if and
only if Γ(va) = 0, a = m+ 1,m+ 2, . . . , n. A vector field Γ on C which is of second-order
type takes the form

Γ = vαXC
α + ΓiXV

i

for some functions Γi on C. Now

XC
α(va) = −Raαivi = −Raαβvβ on C,

so vαXC
α(va) = 0 since Raαβ is skew-symmetric in its lower indices. But XV

i (va) = δai , so
for Γ to be tangent to C we must have Γa = 0. That is to say, a vector field Γ on C which
is of second-order type and which is tangent to C takes the form

Γ = vαXC
α + ΓαXV

α

with respect to the lifted anholonomic frame.

It is interesting to note that Γ, in the form just derived, depends only on those vector
fields of the frame which span D. Let us derive its representation with respect to another
frame {Yi}, where again the Yα span D. Then

Yα = AβαXβ, Ya = AbaXb +AαaXα,

where the square matrices (Aβα) and (Aba), whose entries are local functions on Q, are
non-singular. The quasi-velocities wi corresponding to the new frame are given by

wa = Āabv
b, wα = Āαβ(vβ −Aβb Ā

b
av
a),

where the overbar indicates the inverse matrix. Note that the level sets va = 0 and
wa = 0 coincide, and that where va = 0, wα = Āαβv

β. After a short calculation we find
that

Γ = vαXC
α + ΓαXV

α = wαY C
α + Āαβ(Γβ − Ȧβγwγ)Y V

α .

This shows that indeed any vector field of second-order type on the constraint subman-
ifold C which is tangent to C can be expressed entirely in terms of a local basis for D,
and incidentally gives the transformation rule for the coefficients Γα under a change of
such a basis.
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We now suppose given a Lagrangian L on TQ. We say that L is regular with respect
to the constraints if for any local basis {Xα} of D, the symmetric m×m matrix whose
entries are XV

α (XV
β (L)), functions on C, is nonsingular (this condition is easily seen to be

independent of the choice of basis).

Proposition 2. Let C ⊂ TQ be the constraint submanifold for a system of nonholonomic
linear constraints, D the corresponding constraint distribution, and L a Lagrangian on
TQ which is regular with respect to D. Then there is a unique vector field Γ on C which
is of second-order type, is tangent to C, and is such that on C

Γ(ZV(L))− ZC(L) = 0

for all Z ∈ D. Moreover, Γ may be determined from the equations

Γ(XV
α (L))−XC

α(L) = 0, α = 1, 2, . . .m,

on C, where {Xα} is any local basis for D.

Proof. For any L and Γ, the map Z 7→ Γ(ZV(L))−ZC(L) is C∞(Q)-linear, just as before.
Thus Γ(ZV(L))−ZC(L) = 0 if and only if Γ(XV

α (L))−XC
α(L) = 0 for a local basis {Xα}.

But Γ must take the form
Γ = vαXC

α + ΓαXV
α ,

so that
XV
α (XV

β (L))Γβ = XC
α(L)− vβXC

β (XV
α (L)),

which determines Γα by the regularity assumption.

We regard the content of this proposition as the fundamental statement of regular non-
holonomic dynamics; it is our version of the Lagrange-d’Alembert principle. The dis-
played equations in the statement of the proposition are the fundamental equations of
regular nonholonomic dynamics. We could express the main content of the proposition
in terms of the map ε : X (Q) → C∞(TQ) introduced earlier by saying that ε takes its
values in D0, the annihilator of D. To be more precise: D0 is a linear subbundle of T ∗Q,
and ε, which in general is a 1-form along the tangent bundle projection τ , according to
the proposition is a section of τ∗CD0 (where τC : C → Q is the restriction of τ to C).

For the proposition we do not need a full anholonomic frame. What purpose might the
remaining vectors {Xa} of such a frame serve, one might ask. Here are two uses for
them.

In many formulations of the equations of nonholonomic dynamics, multipliers appear
(see [5] for example). Having determined Γ by the method of the proposition, we may
then form the expressions Γ(XV

a (L))−XC
a (L). These will not be zero: let us set

Γ(XV
a (L))−XC

a (L) = λa.
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We have Xi = Xj
i ∂/∂q

j with (Xj
i ) nonsingular. Then the coordinate version of the full

set of equations reads

Γ
(
∂L

∂ui

)
− ∂L

∂qi
= X̄a

i λa,

where X̄a
i are the appropriate entries in the matrix inverse to (Xj

i ). In fact va = X̄a
i u

i,
which explains the significance of these coefficients: the constraint equations are just
X̄a
i u

i = 0. We emphasise that the multipliers λa are determined once one has chosen
a full anholonomic frame adapted to the constraint distribution and found Γ from the
fundamental equations. In fact the multipliers are the components of ε with respect to
the coframe dual to the (full) frame; the notional components with subscript α vanish
because ε takes its values in D0.

The fundamental equations Γ(XV
α (L))−XC

α(L) = 0 involve differentiations of L in direc-
tions transverse to C. Actually XV

α (va) = 0, so the restriction of XV
α to C is tangent to it.

But as we pointed out earlier, XC
α(va) = −Raαβvβ on C. Now Raαβ is the component of

[Xα, Xβ] along Xa, and in the case of genuinely nonholonomic constraints some of these
components will be nonzero; so we must expect that XC

α will not be tangent to C. Using
the Xa we can split XC

α into a component tangent to C, which we denote by X̄C
α (the

notation is not intended to imply that this is a complete lift, nor that an inverse matrix
is involved), and a component transverse to it. Since XV

a (vb) = δba, we see that

X̄C
α = XC

α +Raαβv
βXV

a

is tangent to C. Since vαXC
α = vαX̄C

α , the vector field Γ is in fact of the form Γ =
vαX̄C

α + ΓαXV
α . We may therefore write the fundamental equations as

Γ(XV
α (L))− X̄C

α(L) = −RaαβvβXV
a (L);

now every term on the left-hand side depends only on the value of L on C. Let us denote
the restriction of L to C by Lc; this is often called the constrained Lagrangian. Then the
version of the fundamental equations above may be written

Γ(XV
α (Lc))− X̄C

α(Lc) = −RaαβvβXV
a (L).

The equations appear in a somewhat similar form to this in [19] (Equation (1.6)).

Finally, we can easily write the fundamental equations in Hamel form: they are

Γ
(
∂L

∂vα

)
−Xi

α

∂L

∂qi
+Riαβv

β ∂L

∂vi
= 0

(compare with [5] Theorem 3.2).

4 Vakonomic systems

The term ‘vakonomic mechanics’ was introduced by Arnold and Kozlov in [1, 25] and
stands for ‘mechanics of Variational Axiomatic Kind’. The theory was proposed as an
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alternative to the approach to nonholonomic dynamics discussed in the previous section.
A fundamental reference in this context is the book chapter [33] by Vershik and Ger-
shkovich. Since more and more evidence seems to suggest that the vakonomic equations
do not give the correct equations of motion, some authors have refrained from using the
term vakonomic mechanics and prefer to call these systems ‘variational nonholonomic
systems’ (see e.g. [2]). We shall follow the majority in using the word ‘vakonomic’, but
avoid controversy by talking of ‘vakonomic systems’, ‘vakonomic problems’ and so on,
but never mentioning ‘vakonomic mechanics’.

One idea behind the formulation of vakonomic systems is to think of the multipliers as
additional variables. Recall that the multipliers are in fact components of a 1-form ε
(along a certain projection) which takes its values in D0 ⊂ T ∗Q, the annihilator bundle
of the constraint distribution D. We therefore take D0 as state space for the vakonomic
system. The Lagrangian of the vakonomic system will therefore be a function L̂ on TD0.
It is constructed as follows. First, we are given a Lagrangian L on TQ; but TD0 projects
onto TQ, so we can pull L back to TD0 (and as before we denote the pulled-back function
by the same symbol L). Secondly, every point µ of D0 over q ∈ Q is a covector at q,
and so defines a linear function on TqQ; we can therefore define a function M on TD0

by M(q, µ, u, ν) = µ(u) (note that M is independent of the second fibre component ν).
Then

L̂ = L−M.

In keeping with the philosophy of the rest of this paper, we now express L̂ in terms of
an anholonomic frame. We introduce an anholonomic frame {Xα, Xa} adapted to the
constraint distribution as before. By doing so we effectively identify D0 with Q×Rn−m,
or in other words we fix fibre coordinates µa on D0, which are the components of µ
with respect to the coframe dual to the chosen frame. This identification implies a local
character of some of our results. For a more intrinsic formulation, see e.g. [10, 33]. The
Lagrangian L̂ is given as a function on T (Q× Rn−m) by

L̂ = L− µava

where the va are quasi-velocities, as before.

We assume that L is regular. But even so L̂ fails decisively to be regular, so we cannot
obtain its Euler-Lagrange equations simply by applying Proposition 1. We shall instead
use the method of the Cartan form, as outlined in Section 2.3, to obtain them.

We may augment our frame {Xi} on Q to a frame on Q × Rn−m simply by adjoining
the coordinate fields ∂/∂µa. The vector fields Xi, now interpreted as vector fields on
Q×Rn−m, act in the same way as before on the coordinates of Q and have the property
that Xi(µa) = 0. Since L̂ does not depend on the velocity variables corresponding to the
µa its Cartan 1-form is

XV
i (L̂)θi = XV

i (L)θi − µaθa.

For the same reason, Ê = E (the energy of L). The equation Γ̂ ω̂ = −dÊ, which is an
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equation for a vector field or fields Γ̂ on T (Q× Rn−m), becomes

Γ̂ (ω − d(µaθa)) = −dE,

where ω is the Cartan 2-form of L (properly speaking, pulled back to T (Q×Rn−m)). By
evaluating the equation on XV

i we obtain

XV
i (XV

j (L))
(
θj(Γ̂)− vj

)
= 0,

whence θj(Γ̂) = vj since we assume that L is regular. The coefficient of the term in dµa
must vanish, whence θa(Γ̂) = 0 = va: that is to say, the equation Γ̂ ω̂ = −dÊ has no
solution except where va = 0, that is, except on C × TRn−m. Finally, evaluating the
equation on XC

α and XC
a successively gives

Γ̂(XV
α (L))−XC

α(L) = µaR
a
αβv

β,

Γ̂(XV
a (L))−XC

a (L) = µbR
b
aαv

α + Γ̂(µa).

We shall sometimes combine these two sets of equations into one by writing

Γ̂(XV
i (L))−XC

i (L) = µaR
a
iαv

α + Γ̂(µa)δai .

Now Γ̂ is a vector field on C × TRn−m ⊂ T (Q × Rn−m). It is natural to decompose it
according to the product structure, say Γ̂ = ΓC+ Γµ. The equation displayed above then
becomes

ΓC(XV
i (L))−XC

i (L) = µaR
a
iαv

α + Γµ(µa)δai .

We may construct Euler-Lagrange fields Γ̂ = ΓC + Γµ for the vakonomic problem as
follows: Γµ is completely undetermined; but a choice of Γµ having been made, ΓC will in
favourable circumstances be determined by the equation above.

Since the velocity variables corresponding to the µa do not appear in the equations, and
in fact play no part at all in the theory, we propose to ignore them; that is to say, we
shall replace T (Q × Rn−m) by TQ × Rn−m and C × TRn−m by C × Rn−m. The frame
{Xi, ∂/∂µa} can be lifted to a frame {XC

i , X
V
i , ∂/∂µa} (and in principle also ∂/∂νa, but

we ignore these in view of what was said above). In this frame, the vector fields XC
i ,

for example, should be interpreted as vector fields on TQ × Rn−m: again, they act in
the same way as before on the coordinate functions xi, vi and have the property that
XC
i (µa) = 0.

Furthermore, the fact that the µa are variables is really rather an embarrassment; we
would prefer to think of them as functions on C, or in other words to take a section φ of
the projection C × Rn−m → C and restrict our attention to its image im(φ).

Any Euler-Lagrange field Γ̂, restricted to im(φ), will take the form Γ̂ = ΓC + Γµ where
since ΓC is of second-order type

ΓC = vαXC
α + ΓαXV

α + ΓaXV
a , and Γµ = Aa

∂

∂µa
;
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all coefficients are functions on C. Notice that though ΓC is here defined on C, there is
no reason to believe that it is tangent to it; hence the inclusion of the term in XV

a .

We may conclude:

Proposition 3. If a vakonomic Euler-Lagrange field Γ̂ is decomposed as above, the
restriction of the vakonomic Euler-Lagrange equations to im(φ) may be written

ΓC(XV
α (L))−XC

α(L) = φaR
a
αβv

β,

ΓC(XV
a (L))−XC

a (L) = φbR
b
aαβv

α +Aa.

We shall always use the vakonomic equations in this form.

The first point to note is that provided L is regular, so that the Hessian of L is non-
singular, for given φ and Aa these equations determine ΓC as a vector field on C ⊂ TQ.
We next show that when further regularity conditions are satisfied we can choose Aa
such that ΓC is not just a vector field on C but a vector field tangent to C: that is, we
can choose Aa such that Γa = 0.

For convenience we denote the components of the Hessian of L with respect to the frame
{Xi} by gij :

XV
α (XV

β (L)) = gαβ, XV
α (XV

a (L)) = gαa, XV
a (XV

b (L)) = gab.

The gij are symmetric in their indices. In discussing the Lagrange-d’Alembert principle
we imposed a regularity condition on L, namely that the submatrix (gαβ) of its Hessian
must be nonsingular on C: we said that L is then regular with respect to D. Assuming
that L is indeed regular with respect to D, let (gαβ) be the matrix inverse to (gαβ). In
the following argument we must assume that (gab− gαβgaαgbβ) is nonsingular on C. This
matrix is in fact the restriction of the Hessian (gij(q, u)) to the subspace of TqQ which
is orthogonal to Dq with respect to it, so when this matrix is nonsingular we say that
L is regular with respect to D⊥. When (gij) is positive definite, (gab − gαβgaαgbβ) will
automatically be nonsingular, as will (gαβ) be; indeed, both will be positive definite. So
when (gij) is positive definite L will automatically be regular with respect to both D and
D⊥, but for Hessians of other signatures we need to make the assumptions explicit.

The equations for ΓC can be written

gαβΓβ + gαbΓb = Yα,

gaβΓβ + gabΓb = Ya +Aa,

where Yα and Ya are known expressions in L, the Xi, φ, the Raij , etc. Using the assump-
tion that gαβ is nonsingular we can eliminate Γβ between these equations, leaving

(gab − gαβgaαgbβ)Γb = Aa + Ya − gaαgαβYβ.

So when (gab− gαβgaαgbβ) is nonsingular, by taking Aa = gaαg
αβYβ − Ya we ensure that

Γa = 0 as required.
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The resultant vector field ΓC , which is the projection onto C of the restriction of Γ̂ to
im(φ), is determined by the equations

ΓC(XV
α (L))−XC

α(L) = φaR
a
αβv

β.

Of course, it will also satisfy

ΓC(XV
a (L))−XC

a (L) = φbR
b
aαv

α +Aa

(with Aa = gaαg
αβYβ − Ya); that is to say,

Γ̂ = ΓC + Γµ = vαXC
α + ΓαXV

α +Aa
∂

∂µa

will satisfy the vakonomic equations on im(φ).

Let us set ΓC(XV
a (L))−XC

a (L) = Λa. Then Aa = Λa − φbRbaαvα.

Now Γ̂, so determined, is a vector field on im(φ). A natural question to ask is whether
it is tangent to im(φ), that is, whether Γ̂(µa − φa) = 0 for µa = φa. But Γ̂(µa − φa) =
Aa − ΓC(φa). The condition for tangency is therefore

ΓC(φa) + φbR
b
aαv

α = Λa.

We can summarise this discussion as follows.

Proposition 4. Assume that L is regular with respect to both D and D⊥. Let φ : µa = φa
be a section of C ×Rn−m → C. There is a unique vector field Γ̂ on the image of φ which
is a solution of the vakonomic problem there, and is such that its projection onto C, ΓC,
is tangent to C. The vector field Γ̂ so determined is tangent to the image of φ if and only
if ΓC(φa) + φbR

b
aαv

α = Λa.

One might very well query the importance of the requirement of tangency to im(φ): but
consider the following.

Suppose that the φa can be continued off C, that is, suppose that there are functions Φa

defined in a neighbourhood of C in TQ such that φa = Φa|C . This can always be done
locally: since C is given by va = 0 it is enough to make Φa independent of the va. Suppose
that the Aa have been chosen so that ΓC is tangent to C; then ΓC(Φa) = ΓC(φa). Consider
the Lagrangian L̃ = L−Φav

a, which is, note, a function on some neighbourhood of C in
TQ. We have

XV
i (L̃) = XV

i (L)−XV
i (Φa)va − Φaδ

a
i ,

XC
i (L̃) = XC

i (L)−XC
i (Φa)va + ΦaR

a
ijv

j ,

whence on C

ΓC(XV
α (L̃))−XC

α(L̃) = ΓC(XV
α (L))−XC

α(L)− φaRaαβvβ = 0,
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while

ΓC(XV
a (L̃))−XC

a (L̃) = ΓC(XV
a (L))−XC

a (L)− ΓC(φa)− φbRbaαvα

= Λa − ΓC(φa)− φbRbaαvα.

Thus the tangency condition is the necessary and sufficient condition for ΓC to satisfy
the Euler-Lagrange equations of L̃ on C (and this for any extension of the φa off C). That
is to say:

Theorem 1. If there is a section φ such that Γ̂ = ΓC + Γµ is tangent to the image of
φ, where Γµ is chosen such that ΓC is tangent to C, then ΓC is the restriction to C of
an Euler-Lagrange field of L̃ for any extension of the φa off C. Conversely, let Γ̃ be an
Euler-Lagrange field of L̃ = L−Φav

a; suppose that Γ̃ is tangent to C. Let φa = Φa|C and
consider the section φ : µa = φa. Then φ∗Γ̃0, where Γ̃0 is the restriction of Γ̃ to C, is a
solution of the vakonomic problem on the image of φ.

5 The consistency problem

We now turn to the vexed question of whether the nonholonomic and vakonomic problems
can ever be in any sense consistent. As we have shown, the vakonomic problem leads to a
whole class of dynamical vector fields Γ̂ defined on C ×Rn−m but not necessarily tangent
to it, the Lagrange-d’Alembert principle to a single vector field Γ defined on C and
tangent to it. The question of how one decides whether there can be any coincidence
between such vector fields is therefore somewhat puzzling. We propose the following
answer, under the assumption that L is regular with respect to both D and D⊥: we say
that the vakonomic and the nonholonomic problems are weakly consistent if there is a
section φ of the projection C × Rn−m → C such that the corresponding vector field ΓC
defined in Proposition 4 is the nonholonomic dynamical vector field Γ. (We shall propose
a stronger criterion for consistency shortly.)

Theorem 2. The following three statements are equivalent.

(i) The variational nonholonomic problem and the nonholonomic dynamics are weakly
consistent.

(ii) There is a section φ of the projection C × Rn−m → C such that φaRaαβv
β = 0.

(iii) There is a section φ of the projection C × Rn−m → C such that the vector field Γ̄
on im(φ) given by

Γ̄ = Γ + (λa − φbRbaαvα)
∂

∂µa
,

where the λa are the multipliers for Γ, satisfies the vakonomic equations on im(φ).
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Proof. As we pointed out earlier, ΓC is determined by the equation

ΓC(XV
α (L))−XC

α(L) = φaR
a
αβv

β

on C. Thus ΓC will coincide with Γ if and only if φaRaαβv
β = 0.

On the other hand Γ̄ satisfies

Γ̄(XV
α (L))−XC

α(L) = 0,

Γ̄(XV
a (L))−XC

a (L) = φbR
b
aαv

α + Γ̄(µa),

on im(φ). Comparing with the vakonomic equations on im(φ), namely

Γ̂(XV
α (L))−XC

α(L) = φaR
a
αβv

β,

Γ̂(XV
a (L))−XC

a (L) = φbR
b
aαv

α + Γ̂(µa),

we see that Γ̄ satisfies the vakonomic equations if and only if φaRaαβv
β = 0.

Theorem 2 shows that there is a process leading from the nonholonomic dynamics Γ to
a vakonomic field Γ̄ and that therefore weak consistency works in both directions. In
fact the construction leading to Γ̄ can be applied to any vector field of second-order type
tangent to C, with the obvious choice of ‘multipliers’ λa; if it is applied to ΓC we get back
Γ̂. Conversely, if we apply Proposition 4 to Γ̄ we obtain Γ.

The condition in item (ii) of the theorem is, of course, not new. It can also be found in
other texts such as e.g. [10, 19] and it dates back to at least the paper [31] of Rumiantsev.
It can, however, always be satisfied: one merely has to take φa = 0, that is, choose the
zero section. The corresponding vakonomic field Γ̄ then has a particularly attractive
form:

Γ̄ = Γ + λa
∂

∂µa
.

The fact that weak consistency always holds explains why we regard it as weak, and why
we propose the following stronger version. We say that the nonholonomic and vakonomic
problems are strongly consistent if the problems are weakly consistent on im(φ) for some
section φ, and if in addition the vakonomic field Γ̄ is tangent to im(φ), or in other words
φ∗Γ is vakonomic.

Corollary 1. The necessary and sufficient condition for the nonholonomic and vako-
nomic problems to be strongly consistent is the existence of a section φ of the projection
C × Rn−m → C such that φaRaαβv

β = 0 and Γ(φa) + φbR
b
aαv

α = λa.

Corollary 2. If the nonholonomic and vakonomic problems are strongly consistent, Γ is
the restriction to C of an Euler-Lagrange field of a Lagrangian L̃.

Proof. Apply Theorem 1.
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It seems to us that Corollary 2 provides what is probably the most interesting con-
sequence of our analysis of the consistency of nonholonomic and vakonomic problems,
namely that strong consistency is a sufficient condition for the nonholonomic dynamics
to be the restriction of an Euler-Lagrange field.

The introduction of L̃ is the process called by Fernandez and Bloch [19], in the context
of Abelian Chaplygin systems, ‘the elimination of the multipliers’. To obtain their result
these authors assume what they call ‘conditional variationality’, which in that context
corresponds to our strong consistency. Corollary 2 above is a substantial generalization of
their result. It is worth emphasising that Theorem 1 itself, which is the major ingredient
of the corollary, is quite independent of the question of consistency and is concerned just
with the vakonomic problem.

Strong consistency has the following consequences so far as individual motions are con-
cerned. Let γ be any individual integral curve of Γ. Let ψ0

a be such that

ψ0
a(R

a
αβv

β)(γ(0)) = 0.

The equations
ψ̇a(t) + ψb(t)Rbaαv

α = λa, ψa(0) = ψ0
a,

where all of the variables other than ψa are evaluated at γ(t), have a unique solution.
Then (γ(t), ψ(t)) is a solution curve of the vakonomic problem if and only if ψa(t)Raαβv

β =
0 for all t. If strong consistency holds, with respect to a section µa = φa, then ψa(t) =
φa(γ(t)) satisfies this condition for every γ. On the other hand, it would be possible to
formulate a partial version of consistency, in which this condition holds along some, but
not necessarily all, integral curves of Γ. A definition along these lines is to be found in
[19]. It seems likely that the conditions for partial consistency case are related to the
so-called second-order constraints in the algorithm proposed in [10].

6 Chaplygin systems

We now discuss the results of the previous section as they apply to (non-Abelian) Chap-
lygin systems, which we define immediately below.

Assume that a Lie group G acts in a free and proper way on the configuration manifold
Q. Then Q → Q/G is a principal fibre bundle. A Chaplygin system [24], sometimes
referred to as a generalized Chaplygin system [6] or as a nonholomic system of ‘purely
kinematic’ or ‘principal’ type [2, 3], is a nonholonomic system where the Lagrangian is
invariant under the induced action of G on TQ, and moreover the constraint distribution
D is the horizontal distribution of a principal connection on the bundle. For more details
about principal bundles and principal connections, see e.g. [23].

The most natural choice for a frame for a Chaplygin system is one where the vector fields
Xa = Ẽa are the fundamental vector fields of the action of the group G and the vector
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fields Xα span D and in addition are invariant under G. Thus [Ẽa, Ẽb] = −CcabẼc where
the coefficients are the structure constants of the Lie algebra g of G, and [Ẽa, Xα] = 0.
We have Riaα = 0 and Riab = −δicCcab. The formula for the action of a complete lift on a
quasi-velocity gives

ẼC
a (vb) = −Rbaivi = Cbacv

c.

In particular, ẼC
a is tangent to C: the group action leaves C invariant.

The nonholonomic dynamical vector field Γ obtained from the Lagrange-d’Alembert prin-
ciple is determined by the fundamental equations

Γ(XV
α (L))−XC

α(L) = 0.

These may be written in the alternative form

Γ(XV
α (Lc))− X̄C

α(Lc) = −RaαβvβẼV
a (L) = −Raαβvβpa

where pa = ẼV
a (L) is just the ath component of momentum for the free Lagrangian L

corresponding to the action of G as a symmetry group of L. The component X̄C
α of XC

α

tangent to C is given in this case by

X̄C
α = XC

α +Raαβv
βẼV

a .

Note that X̄C
α(L) = XC

α(L) +Raαβv
βpa.

Since ẼC
a (L) = 0, the multiplier equation is

Γ(pa) = λa;

the momentum is not conserved by the nonholonomic dynamics, therefore, but it is
related to the multipliers in a simple fashion. Due to the invariance of L, we have
ẼC
a (pb) = [ẼC

a , Ẽ
V
b ](L) = −CcabẼV

c (L), or

ẼC
a (pb) + Ccabpc = 0,

which says in fact that the momentum, regarded as a g∗-valued function on TQ, trans-
forms according to the coadjoint action of G. By acting with ẼC

a on the fundamental
equations one finds that [ẼC

a ,Γ](XV
α (L)) = 0. But as we pointed out in Section 2, [ẼC

a ,Γ]
(the bracket of a complete lift and a vector field of second-order type) is vertical. It is
also tangent to C. Provided that L is regular with respect to D it follows that [ẼC

a ,Γ] = 0,
which is to say that the dynamical vector field Γ is invariant under the action of G on
C. It follows immediately that

ẼC
a (λb) + Ccabλc = 0,

which says that the multipliers should also be seen as components of a g∗-valued function
transforming under the coadjoint action. In fact for q ∈ Q the map g→ TqQ by ξ 7→ ξ̃q
identifies g with a subspace of TqQ complementary to Dq (namely the subspace tangent
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to the fibre). Under this identification D0
q , the annihilator subsapce of Dq in T ∗qQ, can

be identified with g∗.

Consider now the vakonomic problem. The Euler-Lagrange equations for a vakonomic
field Γ̂ on C × Rn−m ⊂ TQ× Rn−m, namely

Γ̂(XV
i (L))−XC

i (L) = µaR
a
iαv

α + Γ̂(µa)δai ,

in this case become

Γ̂(XV
α (L))−XC

α(L) = µaR
a
αβv

β,

Γ̂(ẼV
a (L)) = Γ̂(µa).

The latter just says that pa − µa, a function on TQ × Rn−m, is a constant of motion
for every vakonomic dynamical vector field Γ̂, or in other words that every Γ̂ is tangent
to the level sets of pa − µa. Since Γ̂ is defined only for va = 0, we must in fact restrict
these functions to C ×Rn−m, and make the more comprehensive statement that every Γ̂
is tangent to the level sets of pa − µa in C × Rn−m.

We observed in the previous section that it is preferable to restrict the Euler-Lagrange
equations of the vakonomic problem to the image of some section φ of C×Rn−m → C. We
have an obvious choice of section in the present case, namely µa = pa, the zero level set of
pa − µa. From the previous paragraph we see that every vakonomic field Γ̂ is tangent to
im(φ). It follows that with this choice of section, there is no difference between weak and
strong consistency for a Chaplygin system. In fact the second condition of Corollary 1
for strong consistency, namely Γ(φa) + φbR

b
aαv

α = λa, reduces to Γ(φa) = λa with our
choice of frame, and is satisfied automatically when φa = pa. Indeed, it is satisfied for
φa = pa + ka if Γ(ka) = 0, that is, if ka is a constant of motion for the nonholonomic
dynamics. We work with the section φa = pa here; in the next section, however, we shall
show that for the two-wheeled carriage example the consistency conditions can sometimes
be satisfied with non-zero ka.

We now consider the situation in the light of Theorem 1. This concerns the Euler-
Lagrange equations of the Lagrangian L̃ = L − Φav

a where Φa is any extension of φa
off C. In the present case (with φa = pa) there is no difficulty in extending φa off C:
φa is just the restriction to C of pa, a well-defined function on TQ. We can therefore
take L̃ = L − pava. We shall discuss the dynamics of this Lagrangian in the next few
paragraphs.

We need to impose another regularity condition on L. The components of the Hessian
are denoted as follows:

XV
α (XV

β (L)) = gαβ, XV
α (ẼV

a (L)) = gαa, ẼV
a (ẼV

b (L)) = gab.

We now require that the submatrix (gab) of the Hessian is nonsingular. When this holds
we say that L is regular with respect to g.

We consider the Lagrangian L̃ = L− pava on TQ.
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Proposition 5. If the Lagrangian L of a Chaplygin system is regular with respect to D
and to g, the function L̃ = L− pava is regular in some neighbourhood of C and invariant
under the action of G. Moreover, the corresponding Euler-Lagrange field Γ̃ is tangent to
C.

Proof. A short calculation leads to the following expressions for the components of the
Hessian of L̃, where E stands for the vector field vaẼV

a (so that L̃ = L− E(L)):

XV
α (XV

β (L̃)) = gαβ − E(gαβ),

XV
α (ẼV

a (L̃)) = −E(gαa),

ẼV
a (ẼV

b (L̃)) = −gab − E(gab).

Note that E = 0 on C, from which it follows that if L is regular with respect to D and
to g then L̃ is regular on C, and therefore regular in some neighbourhood of C at least.
In such a neighbourhood of C there is a unique second-order differential equation field Γ̃
which satisfies Γ̃(XV

i (L̃))−XC
i (L̃) = 0, the Euler-Lagrange equations of L̃.

Now L̃ (as well as L) is invariant under the action of G on TQ : since ẼC
a (pb)+Ccabpc = 0,

ẼC
a (L̃) = ẼC

a (L− pbvb) = −(ẼC
a (pb) + pcC

c
ab)v

b = 0.

The momentum p̃a = ẼV
a (L̃) will therefore be conserved by the dynamical field Γ̃, or in

other words Γ̃ will be tangent to the level sets of p̃a. But

p̃a = ẼV
a (L− pava) = pa − gabvb − pa = −gabvb.

Thus if L is regular with respect to g, the zero level of p̃a is precisely C. We can conclude
therefore that the Euler-Lagrange field Γ̃ of L̃ is tangent to C.

This proposition extends a result given in [19] for the case of an Abelian Chaplygin
system to Chaplygin systems in general.

Corollary 3. Under the assumptions of the previous proposition, the vector field φ∗Γ̃0,
where Γ̃0 is the restriction of Γ̃ to C, is a solution of the vakonomic problem on the image
of φ.

Proof. This follows from Theorem 1.

The equations determining Γ̃0 are now to be compared with those for the nonholonomic
dynamics.

Proposition 6. Under the assumptions of the previous proposition, the restriction Γ̃0

to C of the Euler-Lagrange field of L̃ equals the nonholonomic field Γ if and only if

Raαβv
βpa = 0,

or, equivalently, if and only if the conditions for weak (and thus strong) consistency are
satisfied.
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Proof. The equations determining Γ̃0 are of course the restrictions to C of the Euler-
Lagrange equations Γ̃(XV

i (L̃))−XC
i (L̃) = 0. Those with i = a just say that Γ̃0 is tangent

to C. The others may be written

Γ̃0(XV
α (L̃c))− X̄C

α(L̃c) = −RaαβvβẼV
a (L̃).

Here L̃c is the restriction of L̃ to C: but this is clearly Lc. Now ẼV
a (L̃) = p̃a = −gabvb = 0

on C. So Γ̃0 satisfies
Γ̃0(XV

α (Lc))− X̄C
α(Lc) = 0.

Since by assumption L is regular with respect to D, these equations uniquely determine
Γ̃0, which is of second-order type.

On the other hand, the equations determining the nonholonomic dynamics are

Γ(XV
α (Lc))− X̄C

α(Lc) = −Raαβvβpa.

We see that the two agree if and only if Raαβv
βpa = 0, which is of course the condition for

weak consistency, and in fact as we pointed out earlier for strong consistency as well.

This extends further results of [19] on Abelian Chaplygin systems to Chaplygin systems
in general.

We pointed out above that φ∗Γ̃0 provides us with a solution to the vakonomic prob-
lem, whether or not consistency holds. There are further points of interest about the
vakonomic problem in this special case which we now discuss.

First, we can extend the action of G from Q to TD0 in a manner modelled on the
action on the multipliers discussed earlier, as follows. Recall that at the beginning of
the previous section we said that the µa are really the components of a covector µ in
D0 ⊂ T ∗Q with respect to the coframe that is dual to the chosen frame {Xα, Ẽa}. We
can also interpret µa therefore as a function on T ∗Q. In fact each vector field X on Q
defines a linear function µX = µiX

i on T ∗Q, and µa is the function that corresponds to
the vector field Ẽa. On the other hand, each vector field W on Q can be lifted to a vector
field W (1) on T ∗Q (another complete lift: see [15]) and the relation W (1)(µX) = µ([W,X])

holds. If we take W = Ẽa and X = Ẽb, we get

Ẽ(1)
a (µb) = −Ccabµc.

Now the action of G on Q extends to an action on Q×g∗ = D◦ and therefore also induces
an action on TD◦. The infinitesimal generators of this last action are simply the vector
fields

ea = ẼC
a + Ẽ(1)

a .

The extended Lagrangian L̂ = L− µava, which is a function on TD0, is invariant under
this action:

ea(L̂) = ẼC
a (L)− Ẽ(1)

a (µb)− µbẼC
a (vb) = −µcCcabvb + µcC

c
abv

b = 0.
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The corresponding momentum components are just p̂a = pa−µa (so far as this calculation
is concerned, µa is a coordinate on the base). We thus obtain by a different method a
result that we pointed out earlier, namely that every Euler-Lagrange field of L̂ is tangent
to the level sets of the functions p̂a. The zero level set of p̂a, namely µa = pa, is of course
the section φ of C ×Rn−m → C we are using. Not only is Γ̂ tangent to this, so also is ea:

ea(pb − µb) = −Ccab(pc − µc).

The Euler-Lagrange equations for the vakonomic problem may be written

Γ̂(XV
α (L))− X̄C

α(L) = p̂aR
a
αβv

β, Γ̂(p̂a) = 0.

Set Γ̂0 = φ∗Γ̃0. Then since Γ̃0(XV
α (L))− X̄C

α(L) = 0 and Γ̂0 is tangent to the zero level
of p̂a, we have

Γ̂0(XV
α (L))− X̄C

α(L) = 0, Γ̂0(p̂a) = 0,

which shows explicitly that Γ̂0 satisfies the Euler-Lagrange equations of L̂ on im(φ).

It may not have escaped the notice of the reader that L̃ is actually the Routhian of L
(see [11, 27]). This does not seem to be of any significance — we are not interested in the
Euler-Lagrange field of L or the level sets of pa. However, there are Routhian overtones
to the story. In the first place, we may consider the Routhian of L̃ itself. This is given
by

L̃− p̃ava = L− pava + gabv
avb.

(Observe that if L = T−V is of mechanical type with gaα = 0, this Routhian is simply L.)
Its restriction to the level set va = 0 is simply the constrained Lagrangian Lc : C → R.
Furthermore, the so-called Routh procedure, as described in [11], gives an alternative
way of deriving the equations for Γ̃0, which are in fact the generalized Routh equations
for the Routhian of L̃ on p̃a = 0.

Secondly, we may compute the Routhian of L̂, which is

L̂− p̂ava = L− µava − (pa − µa)va = L− pava = L̃.

This is a function on TQ, in other words it is independent of µa, which itself is unusual
and interesting. Once again one can use the Routh procedure to derive the equations for
Γ̂ restricted to any level set of p̂a. These will be expressed in terms of L̃, which reveals
again the close relationship between this Lagrangian and the vakonomic problem.

7 Examples

7.1 A class of nonholonomic systems with constraints of a special form

As a first application we look at systems on Rk+2, with coordinates (q1, q2, qa) and corre-
sponding natural fibre coordinates (u1, u2, ua), a = 3, 4, . . . , k + 2, where the constraints
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take the rather special form
ua + ∆a(q1)u2 = 0

for some functions ∆a, and where the Lagrangian is of the type of a Euclidean metric

L = 1
2

(
I1u

2
1 + I2u

2
2 +

∑
a

Iau
2
a

)
.

(We shall not use Einstein’s convention for sums over the index a in this section.) This
class of nonholonomic systems has been studied in [4], where the authors investigated,
using methods different from ours, whether there is a Lagrangian whose Euler-Lagrange
field coincides with the nonholonomic dynamics when restricted to the constraint sub-
manifold. Evidently our Corollary 2 is relevant to this question. The class includes
important classical examples such as the nonholonomic particle, the vertically rolling
disk, the knife edge on a horizontal plane, the mobile robot with a fixed orientation, etc.

The frame {
∂

∂q1
,
∂

∂q2
−
∑
a

∆a
∂

∂qa

}
spans D; it can be completed to a total frame by adding the vector fields ∂/∂qa.
These last vector fields are in fact the infinitesimal generators of the Rk-action given
by ((εa), (q1, q2, qa)) 7→ (q1, q2, qa + εa), under which both the Lagrangian and the con-
straints are invariant (they are even invariant under an Rk+1-action). The systems are
therefore of Chaplygin type. We write

X1 =
∂

∂q1
, X2 =

∂

∂q2
−
∑
a

∆a
∂

∂qa
, Xa = Ẽa =

∂

∂qa
.

In terms of the corresponding quasi-velocities vi the restriction of the Lagrangian to the
constraint submanifold C : va = 0 is just

Lc = 1
2

(
I1v

2
1 +

(
I2 +

∑
a

Ia∆2
a

)
v2
2

)
.

The ideal candidate for a section to check strong consistency is given by φa = pa =
XV
a (L) = −Ia∆av2 on C (no sum over a here). Since the only non-vanishing bracket of

vector fields in the above frame is

[X1, X2] = −
∑
a

∆′aXa,

the condition
∑

a φaR
a
αβv

β = 0 becomes(∑
a

Ia∆a∆′a

)
v2
2 = 0 and

(∑
a

Ia∆a∆′a

)
v1v2 = 0
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on C. Given that, in general, v1, v2 6= 0, this condition is simply
∑

a Ia∆a∆′a = 0. This
last equation is the condition for the function I2 +

∑
a Ia∆

2
a, the coefficient of v2

2 in Lc,
to be constant; that is to say, it is the condition for Lc to have constant coefficients
when expressed in terms of the quasi-velocities. The condition has another geometric
interpretation. The function

N(q1) =
1√

I2 +
∑

a Ia∆2
a(q1)

is the invariant measure density of the above nonholonomic system (see [4]); our condition
is therefore the condition for the system to admit a constant invariant measure density.

From Corollary 2 we can conclude that if N is a constant, the nonholonomic field Γ is
the restriction to C of an Euler-Lagrange field of the Lagrangian L̃ = L−

∑
a pava, which

turns out to be
1
2

(
I1v

2
1 +N−2v2

2 −
∑
a

Iav
2
a

)
.

In terms of the original variables we have

L̃ = 1
2

(
I1u

2
1 + I2u

2
2 −

∑
a

Iau
2
a

)
−
∑
a

∆aIauau2.

This is exactly the statement (in the current terminology) in Proposition 2 of [4].

Let us come to some details for a few specific examples. The Lagrangian of the nonholo-
nomic particle is L = 1

2(u2
1 + u2

2 + u2
3) and its constraint is u3 + q1u2 = 0. One easily

verifies that the nonholonomic vector field is given by

Γ = v1X
C
1 + v2X

C
2 −

q1v1v2
1 + q21

XV
2 .

(For this example, it so happens that there is no term in XV
1 .) The vakonomic fields Γ̂

take the form

Γ̂ = v1X
C
1 + v2X

C
2

− µq2XV
1 + (µv1 + q1A)XV

2 +
(
(1 + q21)A+ v1v2 − µq1v1

)
XV

3 +A
∂

∂µ
,

where A is arbitrary. The field for which ΓC is tangent to C (so that the coefficient of
XV

3 vanishes) is the one where

A =
µq1v1 − v1v2

1 + q21
.

Obviously, the invariant measure density is not a constant, so there is no strong con-
sistency on µ = p. On the other hand, ΓC and Γ evidently coincide for µ = 0, which
illustrates our observation that weak consistency always holds.
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The vertically rolling disk also belongs to the class. Let R be the radius of the disk. If the
triple (x, y, z = R) stands for the coordinates of its centre of mass, ϕ for its angle with
the (x, z)-plane and θ for the angle of a fixed line on the disk and a vertical line, then
the nonholonomic constraints are of the form ux = (R cosϕ)uθ and uy = (R sinϕ)uθ.
The Lagrangian of the disk is L = 1

2M(u2
x + u2

y) + 1
2Iu

2
θ + 1

2Ju
2
ϕ, where I and J are

the moments of inertia and M is the total mass of the disk. The identification with the
notations above is (q1, q2; qa) = (ϕ, θ;x, y). It is easy to see that N is a constant here
and that the nonholonomic and the vakonomic equations are consistent. For a detailed
calculation of those equations, see e.g. [2].

7.2 A two-wheeled carriage

Consider a two-wheeled carriage which can move on a horizontal plane in the direction
in which it points and which can spin around a vertical axis; the wheels roll without
slipping over the plane. This object is sometimes called a planar mobile robot, but we
do not use this description since we think that the word ‘robot’ should be reserved for
devices that are subject to controls of some kind.

The angle of rotation about the vertical is denoted by θ, and the positions of the wheels
are characterized by angles ψ1 and ψ2. We shall generally assume that the intersection
point (x, y) of the horizontal symmetry axis of the carriage with the line which connects
the two wheels is not necessarily the centre of mass of the system, but lies at a distance
` from it.

The configuration space of the system is S1×S1×SE(2), with coordinates (ψ1, ψ2, x, y, θ).
The Lagrangian is

L = 1
2m(u2

x + u2
y) +m0`uθ((cos θ)uy − (sin θ)ux) + 1

2Juθ
2 + 1

2J2(u2
ψ1

+ u2
ψ2

)

where m0 is the mass of the body, m = m0 + 2m1 is the mass of the complete system, J
is the moment of inertia of the whole system around a vertical axis through (x, y) and
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J2 is the axial moment of inertia for the wheel. The constraints are

ux = −R
2

cos θ(uψ1 + uψ2), uy = −R
2

sin θ(uψ1 + uψ2), uθ =
R

2c
(uψ2 − uψ1).

Here R is the radius of a wheel, and c is half the length of the axle. This example,
including the formulae for the Lagrangian and the constraints, can be found in the
classic reference [30], and in many more texts, see e.g. [18, 19, 22] (the case where ` = 0)
and [6, 10, 17, 24] (the general case).

The distribution D is spanned by the vector fields

X1 =
∂

∂ψ1
− R

2

(
cos θ

∂

∂x
+ sin θ

∂

∂y
+

1
c

∂

∂θ

)
,

X2 =
∂

∂ψ2
− R

2

(
cos θ

∂

∂x
+ sin θ

∂

∂y
− 1
c

∂

∂θ

)
.

The Lagrangian and the constraints are both invariant under the (usual) SE(2)-action
and this is an example of a Chaplygin system. By adding the fundamental vector fields

X3 = Ẽ3 =
∂

∂x
, X4 = Ẽ4 =

∂

∂y
, X5 = Ẽ5 =

∂

∂θ
− y ∂

∂x
+ x

∂

∂y
,

we get a full frame. We have v1 = uψ1 , v2 = uψ2 , and the constraints are simply
v3 = v4 = v5 = 0, where

ux = −1
2R cos θ(v1 + v2) + v3 − yv5,

uy = −1
2R sin θ(v1 + v2) + v4 + xv5,

uθ = −R
2c

(v1 − v2) + v5.

We have written the quasi-velocities implicitly like this to make it easier to calculate the
expression for L in terms of them. We don’t in fact need the full expression, so we shan’t
write it down. First, we give the expression for Lc:

Lc = 1
2

(
R2

4c2
(J +mc2) + J2

)
(v2

1 + v2
2)− R2

4c2
(J −mc2)v1v2.

Note that the coefficients are constants. So far as the full Lagrangian is concerned, it
will shortly become apparent that we need only those additional terms which are linear
in v3 and v4 with coefficients involving only v1 and v2: we have

L = Lc − 1
2mR(v1 + v2)(v3 cos θ + v4 sin θ) +

m0`R

2c
(v1 − v2)(v3 sin θ − v4 cos θ) + . . .

We proceed to the calculation of the nonholonomic dynamical vector field. For this we
need the bracket of X1 and X2:

[X1, X2] =
R2

2c
((sin θ)X3 − (cos θ)X4) ,
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from which we obtain the following formulae for derivatives of quasi-velocities:

XC
1 (v3) = −R

2

2c
(sin θ)v2, XC

1 (v4) =
R2

2c
(cos θ)v2,

XC
2 (v3) =

R2

2c
(sin θ)v1, XC

2 (v4) = −R
2

2c
(cos θ)v1;

the other derivatives of quasi-velocities along XC
α , α = 1, 2, are zero (in particular, those

of vα). The terms not written explicitly in the formula for L above will give zero when
we calculate XC

α(L) and set v3 = v4 = v5 = 0. We have

XC
1 (L) = −m0`R

3

4c2
(v1 − v2)v2, XC

2 (L) =
m0`R

3

4c2
(v1 − v2)v1.

Recall that vαXC
α is tangent to C, and note that in this case vαXC

α(vβ) = 0. For conve-
nience we write

Lc = 1
2P (v2

1 + v2
2)−Qv1v2, P =

R2

4c2
(J +mc2) + J2, Q =

R2

4c2
(J −mc2).

With Γ = v1X
C
1 + v2X

C
2 + Γ1X

V
1 + Γ2X

V
2 we have

Γ(XV
1 (L)−XC

1 (L) = PΓ1 −QΓ2 +K(v1 − v2)v2 = 0
Γ(XV

2 (L)−XC
2 (L) = −QΓ1 + PΓ2 −K(v1 − v2)v1 = 0,

where we have written K for m0`R
3/4c2. Then by simple algebra

Γ1 =
K

P 2 −Q2
(v1 − v2)(Qv1 − Pv2), Γ2 =

K

P 2 −Q2
(v1 − v2)(Pv1 −Qv2).

This agrees with the expression of the dynamics in [24], and corrects an unfortunate
misprint in [17]. Notice that K = 0 when ` = 0; in this case the nonholonomic equations
say simply that in any motion v1 and v2 are constants, that is, that the wheels rotate
with constant (in general different) speeds.

In view of the fact that R5
12 = 0, to test for consistency we do not need to know p5. From

the truncated formula for L given earlier, on C we have

p3 = −1
2mR(v1 + v2) cos θ +

2cK
R2

(v1 − v2) sin θ,

p4 = −1
2mR(v1 + v2) sin θ − 2cK

R2
(v1 − v2) cos θ.

Thus

paR
a
12 =

R2

2c
((sin θ)p3 − (cos θ)p4) = K(v1 − v2).

It follows that consistency holds (strongly, since this is a Chaplygin system) with φa = pa
if and only if ` = 0. (Actually, we can choose φ5 arbitrarily subject to the condition
Γ(φ5) = λ5.)
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However, we are not restricted to taking φa = pa. For a Chaplygin system, the second
condition for strong consistency is Γ(φa) = λa; this is certainly satisfied by φa = pa, but
it is also satisfied by φa = pa + ka where ka is any constant of motion, Γ(ka) = 0. So
we may enquire whether, when ` 6= 0, there are constants of motion k3 and k4 such that
(pa + ka)Ra12 = 0, that is, such that

(sin θ)k3 − (cos θ)k4 = −2cK
R2

(v1 − v2).

Evidently, we should search for constants of motion which are linear in v1 and v2 with
coefficients linear in cos θ and sin θ. So first let us set

k = f1(θ)v1 + f2(θ)v2.

Now so far as their action on functions of θ is concerned, both X1 and X2 are just ∂/∂θ
up to a constant factor. Thus

Γ(k) = (v1XC
1 + v2X

C
2 + Γ1X

V
1 + Γ2X

V
2 )(k)

= −R
2c

(v1 − v2)(f ′1v1 + f ′2v2) + Γ1f1 + Γ2f2.

It will be convenient to set

Γ1 =
R

2c
(v1 − v2)(Q̂v1 − P̂ v2), Γ2 =

R

2c
(v1 − v2)(P̂ v1 − Q̂v2),

which means taking

P̂ =
2cKP

R(P 2 −Q2)
, Q̂ =

2cKQ
R(P 2 −Q2)

.

Then for k to be a constant of motion we require that

f ′1v1 + f ′2v2 = (Q̂v1 − P̂ v2)f1 + (P̂ v1 − Q̂v2)f2,

and this for all v1 and v2. Thus f1 and f2 must satisfy[
f ′1
f ′2

]
=
[

Q̂ P̂

−P̂ −Q̂

] [
f1

f2

]
.

But then [
f ′′1
f ′′2

]
=
[
Q̂2 − P̂ 2 0

0 Q̂2 − P̂ 2

] [
f1

f2

]
.

So if we want f1 and f2 to be linear functions of cos θ and sin θ we had better ensure that
Q̂2− P̂ 2 = −1, that is, R2(P 2−Q2) = 4c2K2, which in terms of the original parameters
can be written

` =

√
(mR2 + 2J2) (R2J + 2c2J2)

m0R2
.

So when the body of the carriage has the special position relative to the axle which is
specified by this value of `, the system admits constants of motion of the required form.
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Assume this condition is satisfied: can we find k3 and k4 such that

(sin θ)k3 − (cos θ)k4 = −2cK
R2

(v1 − v2) = −K̂(v1 − v2)?

Inspection of this formula suggests taking

k3 = −K̂ sin θ(v1 − v2) +H cos θ(v1 + v2)

= (−K̂ sin θ +H cos θ)v1 + (K̂ sin θ +H cos θ)v2,

k4 = K̂ cos θ(v1 − v2) +H sin θ(v1 + v2)

= (K̂ cos θ +H sin θ)v1 + (K̂ cos θ −H cos θ)v2.

In order that k3 should actually be a constant of motion its coefficients must satisfy
f ′1 = Q̂f1 + P̂ f2; this holds, for P̂ 2 − Q̂2 = 1, provided that

H = −K̂(P̂ − Q̂) = −2cK
R2

(P̂ − Q̂).

There are three other conditions to be satisfied if both k3 and k4 are to be constants of
motion; they all lead to this same formula for H by virtue of the fact that P̂ 2 − Q̂2 = 1.
In terms of the original parameters

H = −mR
2 + 2J2

2R

for what that’s worth. The main point is that when ` has the special value (in terms
of the other parameters) given above, the nonholonomic and vakonomic problems are
strongly consistent, via a section φa = pa + ka where the ka are constants of motion
with k3 and k4 as above; k5 can be chosen arbitrarily (subject to it being a constant of
motion). In particular, in such a case, as well as in the case ` = 0, the nonholonomic
dynamics is the restriction to C of the Euler-Lagrange field of a Lagrangian L̃.

Our solution disagrees with the solution in [10], but a careful dimensional analysis easily
shows that the solution in [10] cannot be correct.
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the Lagrange-Poincaré equations, J. Phys. A: Math. Theor. 41 (2008) 344015.

[29] T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic sys-
tems, J. Phys. A: Math. Gen. 38 (2005) 1097-1111.
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