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Abstract— We consider the concept of Stokes-Dirac struc-
tures in boundary control theory proposed by van der Schaft
and Maschke. We introduce Poisson reduction in this context
and show how Stokes-Dirac structures can be derived through
symmetry reduction from a canonical Dirac structure on the
unreduced phase space. In this way, we recover not only the
standard structure matrix of Stokes-Dirac structures, but also
the typical non-canonical advection terms in the Euler equation.

I. INTRODUCTION

The Hamiltonian formalism has been successfully applied
to the description of a variety of field theories, among others
the Euler equations for ideal fluids, the Maxwell-Vlasov
equations, and the Korteweg-de Vries equation (see [1], [2],
[15] for a historical survey). Most of these efforts have been
directed towards field theories defined on a manifold without
boundary, for which a comprehensive theory of Poisson
brackets, symmetry reduction and stability analysis exists.

From a control and interconnection point of view however,
it is more natural to consider open systems [17], in this
context field theories with varying boundary conditions. As
pointed out in [16], [10], non-zero energy flow through the
boundary causes the usual Poisson operator in Hamilton’s
equation to be no longer skew-symmetric, so that these
system fall outside the scope of the traditional Hamiltonian
framework. In [16], the authors circumvent these difficul-
ties by introducing a certain notion of infinite-dimensional
Dirac structures called Stokes-Dirac structures. The implicit
Hamiltonian equations associated to these structures allow
for a non-zero energy flux through the boundary.

Dirac structures were originally introduced in [6] as a
generalization of symplectic and Poisson structures, but it
was soon realized that they arise naturally in the modeling
of a range of mechanical systems (see [7] and [18] for
a comprehensive overview). In the case of Stokes-Dirac
structures, this description is extended by describing the
underlying field theory in terms of differential forms. Stokes’
theorem then ensures that boundary energy flow is properly
incorporated.
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While Stokes-Dirac structure have proven to be successful
in describing a variety of control-theoretic systems, they are
as of yet not fully understood. The foundational paper [16]
offers a definition of a Stokes-Dirac structure, but this de-
scription often has to be augmented to accommodate specific
examples such as Euler’s equations for a compressible fluid.

Contributions. The aims and achievements of this paper
are twofold. In the first part of the paper, we consider field
theories with symmetry, for which both the configuration
space and the symmetry group are spaces of forms. In this
case, we show that the usual description of Stokes-Dirac
structures in [16] can be obtained by symmetry reduction
from the canonical Dirac structure on the phase space. We
illustrate this observation by means of the telegrapher’s
equations, Maxwell’s equations, and the equations for a
vibrating string. In the second part of the paper, we then
show that a similar reduction philosophy can be used to
derive non-canonical Stokes-Dirac structures as well. We
demonstrate this by deriving from first principles the Stokes-
Dirac structure for a compressible isentropic fluid.

Throughout this paper, we treat the case of boundaryless
manifolds only. This simplification greatly clarifies the re-
duction picture. Moreover, since Dirac structures are well
suited to model open systems and our reduction procedure
preserves Dirac structures, we are confident that boundary
terms can be included in an extended description. We return
to this point at the end of the paper, where we argue how
boundary terms can be described by means of extended dual
spaces.

II. DIRAC STRUCTURES AND REDUCTION

Dirac structures were described from a mathematical point
of view in [6] and were applied to the modeling of La-
grangian and Hamiltonian mechanical systems in [18], [7].
We recall here the basic concepts and refer to these papers
for more information.

Dirac Structures on Manifolds. Let Q be a manifold
and define a pairing on TQ⊕ T ∗Q given by

〈〈(v, α), (w, β)〉〉 =
1

2
(α(w) + β(v)).

For a subspace D of TQ ⊕ T ∗Q, we define the orthog-
onal complement D⊥ as the space of all (v, α) such that
〈〈(v, α), (w, β)〉〉 for all (w, β). A Dirac structure is then a
subbundle D of TQ⊕ T ∗Q which satisfies D = D⊥.

The Canonical Dirac Structure. Let Q be equipped
with a symplectic form ω and note that ω induces a map



[ : TQ → T ∗Q given by [(v) = ivω for v ∈ TQ. Since ω
is symplectic, [ can be inverted and we denote the inverse
map by ] : T ∗Q→ TQ, referred to as the Poisson structure
induced by ω. It can easily checked that the graph of [ (or
equivalently of ]), given by

DT∗Q := {(v, [(v)) : v ∈ TQ}
= {(](α), α) : α ∈ T ∗Q} (1)

is a Dirac structure. In this paper we will exclusively deal
with this kind of Dirac structures, but it should be noted
that not all Dirac structures can generally be represented as
a graph.

Reduction of Dirac Structures. Let G be a Lie group
which acts on Q from the right and assume that the quotient
space Q/G is again a manifold. Denote the action of g ∈ G
on q ∈ Q by g·q and the induced actions of g ∈ G on TQ and
T ∗Q by g · v and g ·α, for v ∈ TQ and α ∈ T ∗Q. Note that
the action on the cotangent bundle is defined by 〈g · α, v〉 =〈
α, g−1 · v

〉
. In what follows, we will focus mostly on the

reduced cotangent bundle (T ∗Q)/G. When no confusion is
possible, we will denote this space by T ∗Q/G.

Consider now the canonical Dirac structure on T ∗Q. There
are various ways to describe the induced Dirac structure on
T ∗Q/G (see among others [4], [19] for an overview of Dirac
reduction theory), but for our purposes, the following point
of view is most suitable. Let ] : T ∗Q→ TQ be the map (1)
used in the definition of DT∗Q. The reduced Dirac structure
DT∗Q/G on T ∗Q/G can now be described as the graph of
a reduced map []] : T ∗(T ∗Q/G) → T (T ∗Q/G) defined as
follows.

Let πG : T ∗Q → T ∗Q/G be the quotient map
and consider an element (ρ, π) in T ∗Q. The tan-
gent map of πG at (ρ, π) is denoted by T(ρ,π)πG :
T(ρ,π)(T

∗Q)→ T(ρ,π)(T
∗Q/G), and its dual by T ∗(ρ,π)πG :

T ∗πG(ρ,π)(T
∗Q/G) → T ∗πG(ρ,π)(T

∗Q). We do not dwell
on the exact definition of these maps any further, as the
definition will be given in some concrete cases below. The
reduced map []] now fits into the following commutative
diagram:

T ∗(ρ,π)(T
∗Q)

] // T(ρ,π)(T
∗Q)

T(ρ,π)πG

��
T ∗πG(ρ,π)(T

∗Q/G)

T∗
(ρ,π)πG

OO

[]]
// TπG(ρ,π)(T

∗Q/G).

(2)

III. SPACES OF DIFFERENTIAL FORMS

Throughout this paper, M will be a compact n-
dimensional manifold without boundary. In most cases, M
can be assumed to be contractible, but this is not necessary.
We denote the space of k-forms on M by Ωk.

The Configuration Space. The physical problems con-
sidered further on will be defined on certain spaces of forms
on M , and so we single out one specific set of forms, which
we denote by Q := Ωk. Since Q is a vector space, its

tangent bundle can be identified with TQ = Q × Q, while
its cotangent bundle is T ∗Q = Q × Q∗. The latter can be
made more explicit by noting that Q∗ = Ωn−k, where the
duality pairing between Q = Ωk and Q∗ = Ωn−k is given
by

〈ρ, σ〉 =

∫
M

ρ ∧ σ

for ρ ∈ Q and σ ∈ Q∗.
For future reference, we note that the tangent bundle

T (T ∗Q) is isomorphic to (Q × Q∗) × (Q × Q∗), with a
typical element denoted by (ρ, π, ρ̇, π̇), while T ∗(T ∗Q) =
(Q × Q∗) × (Q∗ × Q), with a typical element denoted
by (ρ, π, eρ, eπ). The duality pairing between T (T ∗Q) and
T ∗(T ∗Q) is given by

〈(ρ, π, eρ, eπ), (ρ, π, ρ̇, π̇)〉 =

∫
M

(eρ ∧ ρ̇+ eπ ∧ π̇) (3)

Whenever the base point (ρ, π) is clear from the context, we
will denote (ρ, π, ρ̇, π̇) and (ρ, π, eρ, eπ) simply by (ρ̇, π̇)
and (eρ, eπ).

The Symmetry Group. The set of (k − 1)-forms is a
vector space, and hence an Abelian group, which we denote
by G. The group G acts on Q by the following additive
action: for α ∈ G and ρ ∈ Q,

α · ρ = ρ+ dα. (4)

This action lifts to TQ and T ∗Q in the standard way and is
given explicitly by

α · (ρ, ρ̇) = (ρ+ dα, ρ̇) and α · (ρ, π) = (ρ+ dα, π)

for α ∈ G, (ρ, ρ̇) ∈ TQ and (ρ, π) ∈ T ∗Q.

The Reduced Configuration Space. If we assume that
the k-th de Rham cohomology of M vanishes, then the
quotient space Q/G can be given an explicit description (see
[3]). The elements of Q/G are equivalence classes [ρ] of
k-forms up to exact forms, so that the exterior differential
determines a well-defined map from Q/G to dΩk, given by

[ρ] 7→ dρ.

As Hk(M,R) = 0, this map is an isomorphism and so
Q/G = dΩk. As a result, we have that the quotient
(T ∗Q/G) is isomorphic to Q/G×Q∗, or explicitly

(T ∗Q)/G = dΩk × Ωn−k.

For future reference, we denote the quotient map by πG :
T ∗Q→ (T ∗Q)/G. It is given by

πG(ρ, π) = (dρ, π). (5)

We will denote a typical element of T ∗Q/G by (ρ̄, π̄),
with ρ̄ ∈ dΩk and π̄ ∈ Ωn−k. Elements of T (T ∗Q/G)
will be denoted by (ρ̄, π̄, ˙̄ρ, ˙̄π), while the elements of
T ∗(T ∗Q/G) will be denoted by (ρ̄, π̄, ēρ, ēπ). For the duality
pairing, we use the same sign conventions as in (3), namely
we put

〈(ρ̄, π̄, ēρ, ēπ), (ρ̄, π̄, ˙̄ρ, ˙̄π)〉 =

∫
M

(ēρ ∧ ˙̄ρ+ ēπ ∧ ˙̄π).



As before, whenever the base point (ρ̄, π̄) is clear, we
will denote (ρ̄, π̄, ˙̄ρ, ˙̄π) simply by ( ˙̄ρ, ˙̄π), and similarly for
(ρ̄, π̄, ēρ, ēπ).

The Reduced Dirac Structure. The cotangent bundle
T ∗Q is equipped with a canonical symplectic form ω given
by

ω(ρ, π)((ρ̇, π̇), (ρ̇′, π̇′)) = 〈π̇′, ρ̇〉 − 〈π̇, ρ̇′〉

for (ρ̇, π̇) and (ρ̇′, π̇′) in T(ρ,π)(T
∗Q) = Q×Q∗. The sym-

plectic form ω induces a linear isomorphism ] : T ∗(T ∗Q)→
T (T ∗Q) given by

](ρ, π, eρ, eπ) = (ρ, π, eπ,−eρ). (6)

Our goal is now to investigate the induced Poisson struc-
ture []] on the quotient (T ∗Q)/G. This map was defined
in (2). Having described the unreduced Poisson structure ]
in (6), it now remains for us to give an explicit description
of the maps TπG and T ∗πG in the diagram. To this end,
we consider an element (ρ, π) ∈ T ∗Q, and we recall
that πG(ρ, π) = (dρ, π). Let T(ρ,π)πG : T(ρ,π)(T

∗Q) →
T(dρ,π)(T

∗Q/G) be the tangent map to πG at (ρ, π) and
consider the adjoint map T ∗(ρ,π)πG : T ∗(dρ,π)(T

∗Q/G) →
T ∗(ρ,π)(T

∗Q).

Lemma 3.1. The tangent and cotangent maps T(ρ,π)πG
and T ∗(ρ,π)πG are given by

T(ρ,π)πG(ρ, π, ρ̇, π̇) = (dρ, π,dρ̇, π̇) (7)

and

T ∗(ρ,π)πG(dρ, π, ēρ, ēπ) = (ρ, π, (−1)n−kdēρ, ēπ). (8)

Proof: The expression (7) for T(ρ,π)πG is clear from
the corresponding expression for πG. To prove (8), we let
(ρ̇, π̇) ∈ T(ρ,π)(T

∗Q) and consider〈
T ∗(ρ,π)πG(ēρ, ēπ), (ρ̇, π̇)

〉
=
〈
(ēρ, ēπ), T(ρ,π)πG(ρ̇, π̇)

〉
= 〈(ēρ, ēπ), (dρ̇, π̇)〉 .

By using Stokes’ theorem, this can be rewritten as

〈(ēρ, ēπ), (dρ̇, π̇)〉 =

∫
M

(ēρ ∧ dρ̇+ ēπ ∧ π̇)

=

∫
M

((−1)n−kdᾱ ∧ ρ̇+ β̄ ∧ π̇)

so that T ∗(ρ,π)πG(ēρ, ēπ) = ((−1)n−kdēρ, ēπ).

The reduced Poisson structure in (2) can now be obtained
explicitly by composing the various constituent maps:

[]](dρ,π) = T(ρ,π)πG ◦ ] ◦ T ∗(dρ,π)πG

for all (dρ, π) ∈ T ∗Q/G. Explicitly, we have

[]](ēρ, ēπ) = (dēπ, (−1)n−k−1dēρ). (9)

IV. STOKES-DIRAC STRUCTURES

In order to made the link between the reduced Poisson
structure and the standard representation of Stokes-Dirac
structures, we write (9) in matrix form:(

˙̄ρ
˙̄π

)
=

(
0 d

(−1)n−kd 0

)(
ēρ
ēπ

)
. (10)

While the structure matrix has the same general form as the
one employed in [16], the relative signs are different. This
can be remedied by introducing new flow variables fp, fq
and effort variables ep, eq defined as follows:

ep = ēρ, eq = (−1)r ēπ, fp = ˙̄ρ, fq = (−1)n−p ˙̄π.

Here, we have put p = n − k, q = k + 1, and r = pq + 1.
Note that p + q = n + 1. With this choice of signs, (10)
becomes (

fp
fq

)
=

(
0 (−1)rd
d 0

)(
ep
eq

)
.

This agrees precisely with the definition of Stokes-Dirac
structures given in [16].

V. EXAMPLES

We now revisit the examples of Stokes-Dirac structures
given in [16], showing in each case how the corresponding
structure can be derived through reduction.

Telegrapher’s Equations. Let M be the real line with
coordinate x. The transmission line equations describe the
propagation of currents I(x, t) and voltages V (x, t) through
a lossless uniform wire and are given by

LIt + Vx = 0 and CVt + Ix = 0,

where L and C are the distributed inductance and capacitance
(see [16], [10] for more information). We introduce also the
integrated charge density as

I(x, t) =

∫ t

t0

I(x, t′)dt′.

The lower boundary t0 of the integral is arbitrary and as
a result, I(x, t) is defined only up to an abitrary constant
(which can depend on t). In other words, there is no physical
distinction between I(x, t) and I(x, t) + f(t), where f(t) is
an arbitrary function of time only.

Hence, the configuration space for the transmission line
equations is the space Q := Ω0 of one-forms I, and the
symmetry group acting on Q is nothing but G = R. The
quotient space Q/G consists of integrated charge densities up
to a constant and can be identified with dΩ0 whose elements
ρ := dI = Ixdx represent charge densities.

The transmission line equations fit into the framework of
Stokes-Dirac structures: Q and G are defined above, and so
n = 1 and k = 0. As a result, the structure matrix is given
by (

0 d
−d 0

)
,

which is precisely the expression obtained in [10].



Maxwell’s Equations. In the case of electromagnetism,
we let M be a three-dimensional Riemannian manifold
without boundary, e.g. M = R3 with the Euclidian metric
whose Hodge star is denoted by ∗. To simplify the exposition,
we restrict ourselves to electromagnetism in a vacuum and
we choose appropriate units so that ε0 = µ0 = 1.

We let the configuration space Q be the space Ω1 of vector
potentials A = Aidx

i on M . The group G = Ω0 of functions
on M acts on Q as in (4):

f ·A = A+ df, (11)

and it is well known (see e.g. [14]) that the quotient space
Q/G can be identified with the space dΩ1 of magnetic fields
B = dA. The fields on the tangent bundle TQ are denoted
by (A, Ȧ), where Ȧ = −E with E the electric field. We will
denote the fields on the cotangent bundle T ∗Q by (A,Π),
where Π can be identified with −D = − ∗ E by means of
the Legendre transform.

The Hamiltonian of electromagnetism (see [5]) is given
by

H(A,D) =
1

2

∫
M

(D ∧ ∗D + dA ∧ ∗dA).

It is clear that H is invariant under the usual electromag-
netic gauge symmetry (11), and hence it induces a reduced
Hamiltonian given by the familiar expression

H′(B,D) =
1

2

∫
M

(D ∧ ∗D +B ∧ ∗B).

The variational derivatives of H′(B,D) are given by

δH′

δD
= ∗D and

δH′

δB
= ∗B.

As n = dimM = 3 while k = 1, we have that the implicit
Hamiltonian equations for electromagnetism are given by(

Ḃ

−Ḋ

)
=

(
0 d
−d 0

)(
∗B
− ∗D

)
,

where the minus signs in front of D are a reminder of the fact
that D = −Π. Written out in components, these equations
are nothing but the Maxwell equations in terms of forms:

Ḃ = −d ∗D and Ḋ = d ∗B.

The Vibrating String. Consider an elastic string of
infinite length with elasticity modulus T and mass density
µ. In this case, the relevant underlying manifold is again the
real line M = R, with coordinate x. The configuration of the
string can be described in terms of the displacement function
u(t, x), and we have that the Hamiltonian of the string under
the assumption of linear elasticity is given by

H(u, p) =
1

2

∫
M

(µ−1p ∧ ∗p+ Tdu ∧ ∗du),

where p is the momentum conjugate to u. Note that p is a
one-form.

It is clear that H remains invariant if we add a (time-
dependent) constant to u, so that Poisson reduction is ap-
plicable. The reduced fields are the strain α := du and the
momentum p and the reduced Hamiltonian is then

H′(α, p) =
1

2

∫
M

(µ−1p ∧ ∗p+ Tα ∧ ∗α).

In this case, n = 1 and k = 0, so that the implicit
Hamiltonian equations are given by(

α̇
ṗ

)
=

(
0 d
d 0

)(
T ∗ α
1
µ ∗ p

)
,

and these equations are precisely the equation of motion
for a vibrating string in Hamiltonian form. Note that our
definition of Stokes-Dirac structures through reduction yields
the correct structure matrix without any modification, in
contrast to [16], where a global minus sign has to be
introduced.

VI. STOKES-DIRAC STRUCTURES ON LIE ALGEBRAS

The idea of using Poisson reduction to derive Stokes-
Dirac structures is not limited to the case where both the
configuration space and the symmetry group are spaces
of forms and the group action is as in (4). As long as
the unreduced phase space has a symplectic or Poisson
structure which is invariant under some group action, we can
perform Poisson reduction and in the context of distributed
Hamiltonian systems the result can rightfully be called again
a Stokes-Dirac structure. In this paragraph, we illustrate this
idea by way of an example: the dynamics of a compressible
isentropic fluid on a Riemannian manifold M with metric
g. For this system, van der Schaft and Maschke propose the
following Stokes-Dirac structure:

d

dt

(
ρ
v

)
= −

(
dev

deρ + 1
∗ρ ∗ ((∗dv) ∧ (∗ev))

)
. (12)

where

ev =
δH

δv
=

1

2
‖v‖2 +

∂

∂ρ̃
(ρ̃U(ρ̃)), eρ =

δH

δρ
= iv]ρ.

Here, ∗ : Ωi(M) → Ω3−i(M), i = 0, . . . , 3, is the Hodge
star associated to the metric g. The fields ρ and v are
the density and the velocity, respectively interpreted as a
three-form and a one-form. The function ρ̃ is ∗ρ and U(ρ̃)
represents the internal energy of the fluid. The boundary
terms have again been left out of the picture.

Note that the structure matrix in (12) consists of the usual
exterior derivatives, together with a convective term 1

∗ρ ∗
((∗dv)∧ (∗ev)). While this term is usually introduced in the
Stokes-Dirac description a posteriori, we will now show that
it can be derived from first principles through reduction.

The Lie-Poisson Structure. Let G be an arbitrary Lie
group with Lie algebra g. We denote the dual of the Lie
algebra by g∗. It is well-known that g∗ is equipped with a
natural Poisson structure, called the Lie-Poisson structure,



which can be defined as follows. At each element µ ∈ g∗,
the Lie-Poisson structure determines a map

[]]µ : T ∗µg
∗ ∼= g→ Tµg

∗ ∼= g∗, []]µ(ξ) = ad∗ξµ, (13)

where ad∗ξµ is the co-adjoint action of ξ ∈ g on µ ∈ g∗,
given by 〈

ad∗ξµ, η
〉

= 〈µ, [ξ, η]〉 (14)

for all η ∈ g. Note that the Lie-Poisson structure (13)
depends explicitly on the base point µ ∈ g∗, in contrast
to the standard Poisson structure (9).

The Lie-Poisson structure can be obtained through Poisson
reduction from the canonical symplectic structure on T ∗G so
that this situation fits also in the framework of reduced Dirac
structures. For more information, we refer to [14].

Compressible Isentropic Fluids. In the case of an
compressible fluid on a three-dimensional manifold M , the
relevant group is the semi-direct product S of the group
Diff(M) of diffeomorphisms of M with the space F(M)
of functions on M (see [9], [13]). The multiplication in S is
given by

(φ1, f1) · (φ2, f2) = (φ1 ◦ φ2, f2 + φ∗2f1).

As a vector space, the Lie algebra s of S is the product
X(M)×F(M), where X(M) is the space of all vector fields
on M . The bracket in s is given by

[(ξ1, f1), (ξ2, f2)] = (−[ξ1, ξ2]M ,£ξ2f1 −£ξ1f2),

where we have denoted the bracket of the vector fields ξ1, ξ2
on M by [ξ1, ξ2]M . The dual s∗ can be identified with the
product of the one-form densities Ω1(M) ⊗ Ω3(M) with
the space Ω3(M) of functions on M . The duality pairing
between elements (ξ, f) ∈ s and (θ⊗ ρ, ρ) ∈ s∗ is given by

〈(ξ, f), (θ ⊗ ρ, ρ)〉 =

∫
M

(θ(X) + f)ρ.

Physically speaking, the field θ⊗ρ encodes the momentum of
the fluid, while ρ represents the density and θ is the velocity,
interpreted as a one-form.

The coadjoint action (14) is given in this case by

ad∗(ξ,f)(θ ⊗ ρ, ρ) = [(£ξθ + divµξ + df)⊗ ρ,£ξθ]. (15)

Stokes-Dirac Structures in the Momentum Representa-
tion. We can now introduce a Stokes-Dirac structure
for compressible isentropic fluids as the graph of the Lie-
Poisson map (13), where the co-adjoint action was computed
previously. If we denote variables on T(m,ρ)s

∗ ∼= s∗ by
(ṁ, ρ̇), and variables on T ∗(m,ρ)s

∗ ∼= s by (em, eρ), we have
that the Stokes-Dirac structure is given by(

ṁ
ρ̇

)
=

(
(£e[mθ + divρe

[
m + deρ)⊗ ρ

£e[mθ

)
. (16)

Here we have used the metric on M to identify the one-
form em with a vector field e[m. As this expression is written
primarily in terms of the fluid momentum m, we refer to it
as being in the momentum representation. To make the link

with (12), we need to rewrite it in terms of the velocity and
the density.

The Velocity Representation. Let (m, ρ) ∈ s∗. We define
the velocity of the fluid as the one-form θ defined implicitly
by m = θ ⊗ ρ. To make the link with velocity as a vector
field, use the metric to define v := θ[.

We let V be the space Ω1(M)×Ω3(M) of velocity-density
pairs (θ, ρ). Its dual V ∗ is the space Ω2(M)×Ω0(M) whose
elements are denoted by (eθ, eρ). The duality pairing is given
by

〈(eθ, eρ), (θ, ρ)〉 =

∫
M

(eθ ∧ θ + eρρ).

To express the Stokes-Dirac structure (16) in terms of the
velocity-density variables (θ, ρ) ∈ V , we introduce the map
Φ : g∗ → V relating the momentum representation with the
velocity representation:

Φ : (m, ρ) 7→ (θ, ρ), where m = θ ⊗ ρ.

The structure of the tangent map TΦ and the cotangent
map T ∗Φ is elucidated in the next two lemmas.

Lemma 6.1. Let (m, ρ) ∈ s∗ such that m = θ ⊗ ρ.
The tangent map T(m,ρ)Φ : s∗ → V can be written as
T(m,ρ)Φ(ṁ, ρ̇) = (θ̇, ρ̇), where the relation between ṁ and
θ̇ is given by ṁ = θ ⊗ ρ̇+ θ̇ ⊗ ρ if m = θ ⊗ ρ.

The proof of this lemma is nothing but the observation that
the rate of change ṁ of the momentum density is influenced
both by the rate of change of velocity θ̇ ⊗ ρ as well as by
the change in density θ ⊗ ρ̇. The structure of the dual map
T ∗(m,ρ)Φ is clarified in the following lemma, the proof of
which is given in the appendix.

Lemma 6.2. Consider an element (m, ρ) of s∗ such that
m = θ⊗ρ and an element (eθ, eρ) of V ∗. The dual mapping
T ∗(m,ρ)Φ : V ∗ → s is then given by

T ∗(m,ρ)Φ(eθ, eρ) =

(
(∗eθ)]

∗ρ
, eρ −

∗(eθ ∧ θ)
∗ρ

)
.

Stokes-Dirac Structures in the Velocity Representation.
Let (θ, ρ) be an element of V and put m = θ ⊗ ρ. The
reduced Lie-Poisson structure []](θ,ρ) : V ∗ → V in the
velocity representation is given as the composition of three
maps

[]](θ,ρ) = T(m,ρ)Φ ◦ ◦[]](m,ρ) ◦ T ∗(m,ρ)Φ.

Theorem 6.3. The reduced Lie-Poisson structure in the
velocity representation is given by

[]](θ,ρ)(eθ, eρ) =

(
deρ +

1

∗ρ
i(∗eθ)]dθ,deθ

)
.

Proof: Consider an element (eθ, eρ) of V ∗. For the sake
of conciseness, given a two-form eθ we define a vector field
Xeθ given by

Xeθ =
(∗eθ)]

∗ρ
. (17)



The value of []](θ,ρ)(eθ, eρ) is now given by the following
diagram.

(eθ, eρ)

T∗Φ
��(

Xeθ , eρ −
∗(eθ∧θ)
∗ρ

)
[]]

��((
£Xeθ θ + divρ(Xeθ )θ + deρ − d

(
∗(eθ∧θ)
∗ρ

))
⊗ ρ,£Xeθ ρ

)
TΦ

��(
deρ + iXeθdθ,deθ

)
Here, the first two maps have been given in lemma 6.2 and
in (16). The third expression can be simplified by using the
fact that

iXeθ θ =
1

∗ρ
g(θ, ∗eθ) =

∗(eθ ∧ θ)
∗ρ

so that

£Xeθ θ = iXeθdθ + diXeθ θ

= iXeθdθ + d

(
∗(eθ ∧ θ)
∗ρ

)
.

The third expression hence simplifies to

(ṁ, ρ̇) :=
(

(iXeθdθ + divρ(Xeθ )θ + deρ)⊗ ρ,£Xeθ ρ
)
.

The effect of the map TΦ is to cancel the divergence in the
above expression. Since ρ̇ = £Xeθ ρ = divρ(Xeθ )ρ, we have
that θ̇ is defined by

ṁ = θ̇ ⊗ ρ+ θ ⊗ ρ̇
= (θ̇ + divρ(Xeθ )θ)⊗ ρ

and therefore θ̇ = iXeθdθ + deρ. Noting furthermore that,
since ρ has maximal degree,

£Xeθ ρ = diXeθ ρ = deθ,

we have that TΦ(ṁ, ρ̇) is given by

TΦ(ṁ, ρ̇) = (θ̇, ρ̇) = (iXeθdθ + deρ,deθ).

This concludes the proof.

Finally, the Stokes-Dirac structure described in theo-
rem 6.3 can be made to agree with (16) by observing that
the convective term can be rewritten as (see [16] for a proof)

1

∗ρ
i(∗eθ)]dθ =

1

∗ρ
∗ (∗eθ ∧ ∗dθ). (18)

In this way, we recover precisely the Stokes-Dirac struc-
ture (12). Whereas the convective term (18) was introduced
in [16] on an ad-hoc basis in order to reproduce Euler’s
equations, it appears here in a natural way through Poisson
reduction.

VII. CONCLUSIONS AND OUTLOOK

In this paper we have studied Stokes-Dirac structures
from a geometric point of view. We have shown that most
common examples of Stokes-Dirac structures arise through
symmetry reduction of a canonical Dirac structure on an
infinite-dimensional phase space.

We now sketch some directions for future research. Stokes-
Dirac structures were originally conceived in [16] to deal
with systems that are controlled through the boundary. It
would be of considerable interest to extend the reduction
methods of this paper to boundary control systems. In the
case of Stokes-Dirac structures on the space Ωk of k-forms,
boundary controls can be incorporated in the reduction
method by a suitable identification of the dual space (Ωk)∗.
Whereas for a closed manifold there is a natural identification
of the latter with Ωn−k, different choices exist for the case
of manifolds with non-trivial boundary. By allowing forms
in the dual space to have distributional support , boundary
controls can be incorporated into the reduction picture. This
will addressed in future work. At the same time, we will also
address other examples, such as the Stokes-Dirac structure
governing the Timoshenko beam [12] or higher-order Stokes-
Dirac structures [11].

Secondly, the Stokes-Dirac description starts from field
theories in which time is treated on a different footing from
the spatial variables. While covariant Stokes-Dirac structures
have been addressed in [16], more remains to be done.
It is well-known (see for instance [8]) that the canonical
symplectic form on the space of fields arises from a covariant
multisymplectic form once a splitting of space and time
is chosen. It is therefore likely that covariant Stokes-Dirac
structures can be defined directly in terms of multisymplectic
forms. This will be the subject of a forthcoming publication.

APPENDIX
PROOF OF LEMMA 6.2

Throughout this paragraph, we use the notations of
lemma 6.2. The value of T ∗(m,ρ)Φ(eθ, eρ) is defined by〈

T ∗(m,ρ)Φ(eθ, eρ), (ṁ, ρ̇)
〉

=
〈
(eθ, eρ), T(m,ρ)Φ(ṁ, ρ̇)

〉
=
〈

(eθ, eρ), (θ̇, ρ̇)
〉

=

∫
M

(ρ̇eρ + θ̇ ∧ eθ). (19)

We introduce ρ̃ := ∗ρ, ˙̃ρ := ∗ρ̇ and we let ṁ be the one-
form defined by ṁ = ṁ⊗dV , where dV is the Riemannian
volume form. The one-form θ̇ can then be expressed as θ̇ =
(ṁ − ˙̃ρθ)/ρ̃. The second term in the integrand of (19) can
therefore be written as

θ̇ ∧ eθ =
1

ρ̃

(
ṁ ∧ eθ − ˙̃ρθ ∧ eθ

)
. (20)

We recall the definition (17) of the vector field Xeθ associ-
ated to the two-form eθ and note that iXeθ dV = eθ/ρ̃. We
now address the first term in (20). Since dV has maximal
degree, ṁ ∧ dV = 0 and therefore

0 = iXeθ (ṁ ∧ dV ) = (iXeθ ṁ)dV − ṁ ∧ iXeθ dV.



As a result,

(iXeθ ṁ)dV = ṁ ∧ iXeθ dV = ρ̃−1ṁ ∧ eθ. (21)

Secondly, we can trivially rewrite θ ∧ eθ = ∗(θ ∧ eθ)dV ,
and by substituting this and (21) into (20), we obtain

θ̇ ∧ eθ = (iXeθ ṁ) dV − ∗(θ ∧ eθ)
ρ̃

ρ̇.

The integral (19) then becomes〈
T ∗(m,ρ)Φ(eθ, eρ), (ṁ, ρ̇)

〉
=

∫
M

[(
eρ −

∗(θ ∧ eθ)
ρ̃

)
ρ̇+ (iXeθ ṁ)

]
dV,

which concludes the proof of lemma 6.2.
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