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1 Introduction

Differential geometry provides the tools for addressing qualitative questions about differen-
tial equations, which require a coordinate free answer. An example of such question is the
following: when does a dynamical system decouple into subsystems of lower dimension, after
an appropriate change of coordinates? Though this clearly concerns the search for special
coordinates, the mere existence of such coordinates is a coordinate free property and the im-
portant issue then is to develop coordinate independent characteristics and tests, which will
allow deciding about the possibility of decoupling prior to the identification of coordinates
in which such decoupling effectively takes place. We can refer to [13] and [21], for example,
for a study of complete separability of second-order ordinary differential equations, and to
[20] for a more recent contribution to aspects of partial decoupling, but we shall not enter
into this subject here. The main purpose of this paper is to present first a brief review of
the geometric calculus which was developed for the study of second-order ordinary differ-
ential equations (SODEs for short), and has been used successfully in applications such as
the one referred to above. We will illustrate secondly how this general theory works, and
choose for this demonstration a more recent application which is about a generalization of
the so-called inverse problem of Lagrangian mechanics. For most of our account, we restrict
ourselves to autonomous systems for simplicity, which means that the natural environment
for a differential geometric setting is a tangent bundle 7 : TM — M.

The scheme of the paper is as follows. Basic elements of the geometry of a tangent
bundle are recalled in section 2, including the additional structure coming from a SODE. In
section 3, we try to explain the motivation for introducing the calculus of differential forms



along the tangent bundle projection 7 : TM — M and sketch its main ingredients and
the main classification theorem. This geometrical calculus was introduced in the PhD work
of Eduardo Martinez [10] and was developed further in [11, 12]. In section 4, we see how
the interplay between calculations on T'M and the calculus along 7 is extremely relevant to
discover important derivations of degree zero. We briefly discuss the generalization of the
calculus along 7 to the framework for time-dependent SODEs in section 5, and give reference
to some other generalizations. Section 6 provides an introduction to the inverse problem of
Lagrangian mechanics and then passes to a sketch of ‘the calculus at work’, in the context
of recent generalizations of this inverse problem.

2 Elements of the geometry of a tangent bundle

Consider a tangent bundle 7 : TM — M, and let (g,v) denote natural coordinates on
TM. There exist ‘natural objects’ on T'M of the following kind: a dilation vector field
A = v 9/dv" and, more importantly, a type (1,1) tensor field
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which characterizes the integrable almost tangent structure on T'M and is commonly called
the vertical endomorphism for its action on X (T'M),
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Furthermore, there are two ways of lifting vector fields on M canonically to vector fields on
T M; they are called the vertical and complete lift (or prolongation) and are determined, in
coordinates, by the following prescription: for X = X*(¢q)9/d¢,
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More structure can only come from additional data, for example from a given SODE field I'
on TM.

A non-linear or Ehresmann connection on 7 : TM — M is a smooth procedure for defining
at each point (g, v) of TM a ‘horizontal subspace’ of T(.,)(T'M ), complementary to the space
of vertical vectors. A SODE I is intrinsically determined by the condition S(I') = A and has
a coordinate representation of the form
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i.e. represents the second-order system of differential equations §* = f?(g,¢). The point is
that such a SODE I' canonically defines an Ehresmann connection on TM, as follows: from
the property (LrS)? = I, one easily sees that

1 1
Py=5(I~LrS), Py=g(I+LrS)
are complementary projection operators:
PH2:PH7 PVQZPV7 PyoP, =0,

and their images determine the horizontal and vertical subspaces, respectively, of the tangent
space at each point of TM. An alternative way of establishing a connection is to provide an



intrinsic procedure for a horizontal lift of vector fields on M. This can be done here, with
the aid of T, as follows

XeX(M) — X"eXTM)= %(X“ +[XV,T)).

In coordinates, we have
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The functions
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are the connection coefficients.

Some historical references for tangent bundle geometry and the SODE connection are [§],
[5, 6] and [1].

3 The calculus of forms along 7: T'M — M

The motivation for the introduction of the calculus along the tangent bundle projection
stems from the following general observation. Many objects of interest in the study of
second-order dynamical systems, although living on T'M, a space with dimension 2n, turn
out to be fully determined by components which seem to come from the underlying base
manifold which has only half of the dimension. Here are a few examples where this occurs.

Suppose Y is a symmetry vector field of a given SODE T, so that [Y,T'] = 0. Then, if we
represent Y in an arbitrary chart on T'M by

Y = :u’l(cbv)aiql‘ + Vl(qﬂ})

vt

the symmetry requirement implies that v* = T'(u%) and the problem one has to solve in
practice is to find solutions of second-order partial differential equations for the components
u?, the so-called determining equations for symmetries, which are of the form I'?(y?) =
Y (f%). The object of interest in these equations, therefore, seems to be the ‘differential
operator’ X = p'(q,v)0/dq". This is neither a vector field on M nor on TM, however, it is
a vector field along the tangent bundle projection 7, which needs to be handled with some
care: as a derivation, X can only act on functions on M, but the set of such operators
carries a module structure over the functions on 7M. What the calculus along 7 achieves
in this context, is to provide an intrinsic, i.e. coordinate independent formulation of the
equations I'?(u?) = Y (f?); anticipating on concepts which will be developed in this section,
the determining equations for symmetries will turn out to read V2X + ®(X) = 0.

Another example exhibiting the same feature is the so-called Poincaré-Cartan 1-form 6, of
a Lagrangian second-order system with Lagrangian L. Its intrinsic definition, as a 1-form on
TM reads 07, = S(dL), so that in coordinates, 07, = (OL/0v') dg* and has only n components.
So 61 is a 1-form along 7 and in that setting, it will have the representation 6y, = dv L.
One may rightly come forward with the objection now that the more important object
in modelling Lagrangian systems on T'M is the Poincaré-Cartan 2-form wy := dfr, and
the exterior derivative will of course introduce also dv-factors in the coordinate expression.
However, it turns out that the (2n x 2n) skew-symmetric coefficient matrix of wy,, at least
when we express wy, in the natural basis adapted to the SODE-connection, is completely
determined by the (n x n)-Hessian matrix 0?L/0v‘0v7; these are the components g;;(q,v)



of a symmetric type (0,2) tensor field along the tangent bundle projection, which can be
defined (again anticipating on things to come) as g := DYDY L.

So, what we learn from these examples is that perhaps more efficiency in the calculations
should come from tools and operations which directly act on forms and vector fields along
7. This does not mean, however, that the standard calculus of forms on T'M has to be
moved aside; on the contrary, as the survey of the theory below will amply demonstrate,
progress most of the time comes from a close interaction between what happens along 7 and
appropriate lifts to corresponding standard calculations on T M.

We start our overview now by a summary of the classification of derivations of scalar and
vector valued forms along 7 (details can be found in [11, 12]). Intrinsically, a vector field X
along 7 (and similarly a 1-form « along 7) is a map defined by the following commutative
scheme.

TM T*M
X . o -
TM M TM M
In coordinates: 5
X = X'(q,v) a = ai(q,v)dq".

g’
We denote by X(7) the set of vector fields along 7, A () the set of scalar forms and V(1) the

set of vector-valued forms along 7. They are modules over C>(T'M). Typically, an element
L € V¥(7) is of the form

9 o , ,
L=X® 3 with A" =X} ., (q,v)dg”* A--- Ndg™ € A (7).

Definition: D : A(7) — A(7) is a derivation of degree r if

L. D(A(7)) € A"""(7)
2. D(a+AB)=Da+ \Dg, AeR
3. D(aANy)=DaAvy+ (—1)P"a A D, ae N(7).

For the extension to vector valued forms, it suffices to know that a derivation D (of degree
r) of V(7) has an associated derivation of A(7), also denoted by D, such that in addition
to the above rules, we have for L € V¢(1) and w € AP(7),

D(wAL)=DwAL+ (-1)""wA DL.

For all practical purposes, it is intuitively clear from the coordinate representation that
every D of A\(7) is in fact completely determined by its action on C*=(T'M) and on what
we shall call basic 1-forms, which are 1-forms on M regarded as elements of A'(7). Then,
for a consistent extension of such a D to V (1), one further has to specify an action on basic
vector fields, i.e. vector fields on M regarded as elements of X' (7).

For the standard calculus of forms on a manifold M, there exists a beautiful classification of
derivations, established by Frolicher and Nijenhuis [4], which roughly goes as follows. Recall



first of all that the algebra A (M) comes equipped with a canonical derivation of degree 1,
namely the exterior derivative d. Then, two types of derivations can be distinguished:
e derivations of type iy, they are the ones which vanish on functions,

e derivations of type d, which by definition commute with d.

For L € V"(M), one defines the operator i, , a derivation of degree r — 1, by i, f = 0 on
functions f € C=(M) and, for a € \' (M),

ipa(X1,. ... X,) = a(L(Xy,.... X,)).

The main theorems established in [4] then state that

e every type i,-derivation is of the form i, for some L,

e every derivation of type d, is the commutator of some i; with the exterior derivative,
i.e. is of the form dy, := [i, d] for some L,

e finally, every derivation D has a unique decomposition in the form D =i, +d,, for
some L, Lo.

For the calculus of forms along 7, the situation is fundamentally different because we do
not have an overall exterior derivative at our disposal. What we do have is a canonically
defined vertical exterior derivative, denoted by d¥ and determined by

dF =Vy(F)dq', V;:= FeC>(TM)

9
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But this can only be part of the story and is not sufficient to arrive at a classification theory.
A full classification requires the availability of a connection on 7 : TM — M. Indeed, any
choice of a basis of horizontal vector fields on T M, say

o 0
- 8qi _Fi(Qav)w7

H;

allows us to construct a corresponding horizontal exterior derivative d”, defined by

d"F = H;(F)dq', Fe€C>=(TM)
)
oq’

e,
H 1 H _ k
d"a=da forae \"(M), d ( )—VZ—(Fj)qué@aqk.

We are then led to consider four types of derivations:
e derivations of type i,: vanish on functions, are determined by some L € V() and are
of the form iy, as before,
o derivations of type dy: are defined to be of the form dY¥ := [ir,d"],
o derivations of type df: similarly, defined to be of the form d¥ := [ir,d"],

o derivations of type a,: vanish on A(7) and thus are needed only for the extension to
V (), they are written as ag for some Q € A(7) @ V(7).



So, with the aid of a connection and the corresponding horizontal exterior derivative, the
above four types of derivations again lead to a unique decomposition of arbitrary derivations
of scalar and vector valued forms along 7. The statement is that every derivation D of V (1),
of degree r, has a unique decomposition in the form:

D =ip, +di, +di, +aq,
with L1 € V' TH(7), Lo, L3 € V' (1), Q € N (1) @ V(7).

Note that the need for a connection is no handicap for our specific purposes, because
a SODE I' comes with its own canonical connection, as explained in the previous section.
Perhaps we should make the remark also that such a classification theorem is not just an
exercise for academical or aesthetical reasons. On the contrary, it is needed for very practical
purposes. For example, in applications, there will always be equations involving different
kinds of derivations; a study of the integrability of such equations prompts for knowledge
about the commutators of such derivations, and this can only come from investigating the
unique decomposition of such a commutator in the above sense. It is for this reason that a
large portion of the analysis in [12] had to do with the study of commutators of the main
ingredients of the theory of derivations. This is a quite technical matter, so that we will
abstain from trying to summarize it here. But we will see in the sketch of the application
to the generalized inverse problem later on, that one very quickly needs information about
such commutators indeed.

In the next section, we discuss a particular class of derivations, namely those of degree
zero which satisfy a duality property with respect to the pairing between vector fields and
1-forms along 7. They turn out to play a very important role in all applications.

4 Self-dual derivations of degree 0

Definition: A derivation D of V (7), of degree 0, is said to be self-dual if VX € X(7), a €
A (7)
D(X,a) = (DX, a)+ (X, Da).

Such derivations immediately extend to tensor fields of arbitrary type by imposing a
Leibnitz rule with respect to the tensor product. Observe also that they are completely
known as soon as a consistent action on C**(T'M) and X (1) is specified; the duality rule

. . . 1
then determines the corresponding action on A" (7).

Important self-dual derivations are the vertical and horizontal covariant derivatives D%
and D%. In coordinates, they are determined by the following action on functions F' and
basic vector fields (and then further extend by duality):

DY F = X' V,(F), D% o =0,
aq*
DYF = X' H;(F) = = XIV(Tk 9
xL = i P Xaql - ? j)aqk'

There are many ways to come to an intrinsic definition of these derivations. We want to focus
on one of them, because it is related to a simple, yet very powerful procedure to discover
interesting operators along 7. The point is simply this: the horizontal and vertical lifts from
X (M) to X(TM) naturally extend to lifts of vector fields along 7; now every & € X(TM)
has a unique decomposition into a vertical and horizontal part which are necessarily lifts of
vector fields along 7; we can write for example,

£=&" +&" forsome &, & € X(r).



Interesting computations involving vector fields on 7'M will in this way, by looking at the
unique decomposition of the result of the computation, identify interesting operators on
X (7). Applying this procedure to the brackets of horizontal and vertical lifts of vector fields
along 7, we get

XUy o= ((XY])"
(X7, YY) = (DRY)" - (DyX)",
(XY = (X Y],)" + R(X, Y)Y,

where 9
[X,Y], :=D%XY - DY X = (X*13(Y?) — YFV (X)) 5

0
oq'’
and R is the curvature tensor of the non-linear connection. It is the identification of the

vertical and horizontal parts of [X",Y"] which unambiguously fixes the operators DY and
D¥.

[X,Y], :=DXY —D{X = (XFHy(Y?") — YFH (X))

There is more to DV and D¥ than meets the eye so far. Vector fields along 7 are in
fact sections of the so-called pullback bundle 7*7 : 7*T'M — TM and with the aid of the
projection operators Py and P, of the connection on T'M, one can construct in a direct way
a corresponding linear connection on 7*7, i.e. an operator

D:X(TM) x X(1) — X(1),

which satisfies the conditions for a linear connection in the sense of Koszul. The defining
relation reads: for £ € X(T'M) and X € X(7),

DeX = ([Pu(£), XV]), + ([P (§), X)),
This is said to be a connection of Berwald type [2], and we have

Dyv =D¥%,  Dys =D%.

Up to now, everything we said in this section is valid for any choice of a non-linear con-
nection, needed to complete the classification of derivations of forms along 7. From now
on, we assume that the horizontal distribution or non-linear connection is the canonical one
associated to a given SODE I'. Then, there are two important operators which contain a
great deal of information about the given second-order dynamics:

e a degree 0 derivation, called the dynamical covariant derivative V,
e a type (1,1) tensor ® € V1(7), called the Jacobi endomorphism.
They manifest themselves via the same procedure as the one referred to above. In particular,

computing the Lie bracket of the given SODE and an arbitrary horizontal lift and looking at
the decomposition of the resulting vector field, we find that

LrX" = (VX)" +®(X)",

where the operator in the horizontal part appears to have the properties of a derivation,
while the vertical part depends tensorially on X. V is further determined by self-duality
and the fact that VF = I'(F') on functions F € C=(TM).



For computational purposes, we mention that

0 0 . .
) =TF — dg') = —T% dg*
V(aqz> 7 aqk ) V( Q) k q
and ofi
i kv i
<I>j = 78qj — I‘ij — F(Fj).

Note that the relevance of ® and V is already obvious from the following properties about
the curvature and its dynamical covariant derivative:

d"®=3R, d"®=VR.

For completeness, let us mention here also that the bracket of I' and a vertical lift decomposes
as follows:
LrXYV =-X"+(VX)".

5 Extension of the theory: time-dependent SODEs

The theory reviewed in the preceding two sections has been extended (at least partially)
to other dynamical systems of interest, such as time-dependent SODEs (see [22]), mixed
first- and second-order equations which includes the equations of non-holonomic mechanics
(see [19]), and Lagrangian systems on Lie algebroids (see [14]). We limit ourselves here to a
sketch of some features of the generalization to time-dependent SODEs. The basic underlying
structure then is a manifold E which is fibred over IR and its first-jet extension J1m (see the
diagram below).
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Geometrically, a SODE I' € X (J'm) now is determined by the requirements (I',dt) = 1
and S(I') = 0, where
0

S=0"®—, 0 =dg¢ —v'dt
ovt
In coordinates, I' is of the form
0 .0 , 0
D=2 4yl 4y y
gt "V ag T

As before, T' defines a horizontal distribution on J', corresponding to the projector
Py =3(I—-LpS+dt®T).
We have

= B FJ:_lafj
aq’ vl g 2 ovt’




so a difference is that I' is automatically horizontal here. In fact:

0 .0
r=1T" ith T =— t—,
w1 8t+vaql

What was X (7) before is now replaced by X (79) = { vector fields along 79 }, and T is the
canonical vector field along the projection 7¥. We have a direct sum splitting X' (7) =

X(79) @ (T), which entails that every X € X (7?) splits as follows

— — ; 0
X =X+ (X,dt)T, X:Xl(t,q,v)ﬁ.
q
Everything said before can be extended to the present situation [22]. Roughly, the au-
tonomous case is reflected in the X (7?)-part of the calculus, and there often is a certain
freedom in selecting the T-component.

For example: for the ‘linearization’ of the SODE-connection, two versions have been advo-
cated in the literature. One is

DeX = [Py (£), XV, + [Py (§), X"], + Pu(§)((X, dt))T,

and was introduced in [3]. The other one was conceived [15] within the context of calculations
on the full space J'm, but reduced to its essential content in the language of vector fields
along 7¢, its defining relation reads

DeX =[Py(€), X "], + [P (&), X "], + €((X, dt))T.

v

A comparative study of such Berwald and other connections can be found in [16].

6 Application: the inverse problem of the calculus of
variations and some generalizations

Going back to the autonomous situation now, the inverse problem of the calculus of variations
has many faces (see for example the recent review paper [9]), but the aspect which we want
to discuss here is the search for existence of a non-singular multiplier (g;;(g,v)) for a given
SODE I, such that:

- - d (0L oL
(i oy = 2 _
for some (regular) Lagrangian L. Geometrically, this can be captured into the single re-
quirement of existence of a function L on T'M, such that (see e.g. [18])

Lr0, =dL, 0, = S(dL).

As indicated before, the essence of this condition has only n = dim M components, however,
so in the language of the calculus along 7 : TM — M, 6;, = dV L and the condition reads:

VO, =d"L.

An equivalent formulation of the problem, which focusses on the existence of a suitable
multiplier matrix g;;, can be expressed as follows (see [12]): the SODE I has a variational
formulation if and only if there exists a non-singular, symmetric type (0,2) tensor field g
along 7, such that
Vg = 0,
Dxg (Y, 2) Dyg (Y, X),
g(@X)Y) = g(2Y, X).



Observe the crucial role played by V and ® in these conditions again! Another way of
expressing the third, algebraic condition is as: ® |g = (® _Ig)T.

Incidentally, if such a ¢ exists, the Poincaré-Cartan 2-form w; = df; which creates a
symplectic structure on T'M is completely determined by g: it is its so-called Kéhler lift,
defined by the following action on horizontal and vertical lifts of elements of X (1),

gEXTYT) = g" (XY, YY) =0,
gK(XVaYH) = g(X,Y) = 7gK(XHaYV)'

In a recent generalization, inspired by related but somewhat incomplete work in [7], we
have investigated for a given SODE the existence of an equivalent formulation in terms of
Lagrangian equations with certain non-conservative forces [17]. The non-conservative forces
we want to allow are of the form 9D /dv* for some function D on TM, and we refer to them
as forces of dissipative type, because they include the well known Rayleigh dissipation as
a special case. So the question we address now becomes: given a SODE I', what are the
conditions for existence of a non-singular, symmetric (g;;) such that

. d (OL\ 9L 8D
() — FI) = — —
9@ =) =5 (am) ag  9g" .

for some (regular) Lagrangian L and some D. Clearly, compared to the previous situation,
I" will have to satisfy a relation of the form:

Lr0, =dL+S(dD), 0, =S(dL),

and the more compact reformulation of this single requirement in terms of objects along 7
reads
Vo, =d"L+d"D. (2)

Not surprisingly, the analogue of the g conditions in the standard problem, will contain here
also the function D. The result is expressed by the following theorem, where for an arbitrary
tensor field U say, DVU(X,...) stands for DL U(...).

Theorem 1: The second-order field I" represents a dissipative system of type (1) if and
only if there exists a function D and a (non-singular) symmetric type (0,2) tensor g along
7 such that
Vg = DVDVD,
Dxg(Y,Z) = Dyg(¥,X), 3)
O _Jg— (®_Jg)T = dvd"D.

In order to give at least an idea of how the calculus along 7 works in applications, in a
way which keeps all steps coordinate independent, we now present a sketch of the proof of
equivalence between (2) and (3).

1. Assume (2), i.e. VO, =d” L+ dVD and put g := DYDY L, which is equivalent to saying
that ¢(X,Y) := D%0.(Y), with , = d“L = DYL. Then g and D"g are symmetric by
construction. Acting with V on g and using the commutator property [V,DV] = —D”, we
easily get that
Vg=D"D"D +DVD”L — D”"DV L.

But D" and DY commute for their action on functions and it can be shown that (2) further
implies that d”0; = 0. The required formula for Vg then easily follows. Establishing the
last relation in (3) is a bit more tricky. Essentially, one has to act on (2) with d”, and make
use of the commutator properties

d"d" =d,  [V,d"] =2ig + dy.



The desired property will then be obtained, provided one recognizes further that for any g
which is the Hessian of some function L, we have the identity

@Jg - ((I)JQ)T = idv¢9L - dViq>9L.

2. For proving the converse, the first step is to observe that the symmetry of g and DVg
implies that g is a Hessian, say g = DYDY F for some function F'; such an F' is not uniquely
determined, so the rest of the reasoning inevitably will boil down to showing that the further
assumptions (3) ensure that F' can be suitably modified to provide the appropriate function
L. This could be done by coordinate calculations, in principle, but we will illustrate in more
intrinsic terms how one can reach the desired conclusion in a number of steps.

Since DV g is symmetric, the same is true for VDV g, and obviously also DYVg = DVDVDY D
is symmetric. It follows that also D”¢ is symmetric. Next, using the general commutator
property of DV and D* (it is only on functions that this commutator is zero), one can
quite easily show that d”0p is a basic 2-form. With this new information, it is a matter of
manipulating the assumption DYDY D = Vg to show that also the 1-form S, determined by

ﬂ = VQF - dHF - deHQF — DVD,

is a basic 1-form. Now, as we have seen in section 3, d” coincides with the ordinary exterior
derivative on basic forms, by construction. It then follows by taking a further d” derivative
that actually d”0r and § are closed, hence locally exact, meaning that

d"0p =d"a  and  f=d"f,

for some basic 1-form « and basic function f. It is finally easy to show that the function
L = F —ira+ f, which manifestly has the same Hessian as F, verifies the required relation
Vo, =d"L+d"D. O

One would expect that the story stops here, but quite surprisingly, one can eliminate the
dependence on D all together and arrive at the following necessary and sufficient conditions
involving the multiplier g only.

Theorem 2: The second-order field I' represents a dissipative system of type

d (0L 9L 9D
dt \ 0¢ dgt  9g’

if and only if there exists a (non-singular) symmetric type (0,2) tensor g along 7 such that

x9(Y;2) = Dzg(¥,X),
D%g(Y,Z) = Dzg(Y,X), (4)
ZX,Y,Z g(R(X,Y),Z) = 0,
where > Xz stands for a cyclic sum over the indicated arguments. O

What is extra remarkable in this result is that the symmetry of D¢ and the curvature
condition )y, 9(R(X,Y),Z) = 0 which make their appearance here, are actually fa-
miliar conditions from the standard inverse problem. There, they come forward as further
integrability conditions for the equations for g, whereas they turn up here as part of the
package which has to hold true from the start.

The statement that (2) and (3) now are also equivalent to (4) thus looks fairly simple, but
the proof requires the full machinery of the calculus along 7 and makes use of a number of
preliminary lemmas, so we omit it and refer to [17] for details.



In classifying non-conservative forces, there is a class which is complementary to the forces
of dissipative type, namely gyroscopic forces. Lagrangian equations with non-conservative
forces of gyroscopic type are equations of the form

d (0L OL _ .k .
% (8(]2) - (97(]’ = wkz(‘])q ) Wk = —Wik- (5)

Again, starting from second-order equations G = (g, ¢) in normal form (the SODE I'), one
may wonder whether a multiplier matrix g;;(g, ¢) may bring the system into the above form.
We have succeeded in carrying out exactly the same analysis here as in the dissipative case.
In the gyroscopic case, the starting, intrinsic geometrical formulation requires the existence
of a function L and a basic 2-form w, such that

Vo =d"L + itw. (6)
The analogue of Theorem 1 of the dissipative case is found to read as follows.

Theorem 3: The second-order field I' represents a gyroscopic system if and only if there
exists a basic 2-form w and a (non-singular) symmetric type (0, 2) tensor g along 7 such that

Vg = 0,
Dxg(Y,Z) = Djg(Y,X), (7)
O _Jg— (@ Jg)T = ipdiw.

Again, one can eliminate the 2-form w from the conditions, to arrive at conditions on the
multiplier only.

Theorem 4: If the second-order field I" represents a gyroscopic system, then there exists
a symmetric type (0,2) tensor g along 7 such that

Vg = 0,
D¢ (Y,Z) = Dyzg(Y,X), (8)
((ng - ((I)JQ)T) (X7 Y) = ZX,Y,T g(R(Xv Y)aT)

The converse is true as well, provided we assume that ® _|g is smooth on the zero section
of TM — M.

Proofs of these results can be found in [17]. Let us illustrate the main theorems of this
section on a couple of simple examples though.

Consider the following SODE

qQ1 = 42143,

(j2 = CI§7

i3 = 47 — ¢5 ' G2ds,
which at first glance does not look like a system which would have a genuine Lagrangian
description, but may be amenable to a representation as dissipative system of type (1).
The best way to approach this question is to start from Theorem 2, with the conditions
involving solely the multiplier g. Indeed, if a g can be found satisfying the conditions (4),
we are guaranteed that a further function D will exist matching the conditions (3). The
third of the conditions (4) in Theorem 2 is purely algebraic and reads,

9i Rl + g1 R, + g RY; = 0,

where Rfj = H;(I'}) - HZ(F;“) = %(VZ((I);“) — V;(®F)), the expressions of I and ®} having
been listed before. Suppose we specifically look for a diagonal multiplier g which depends



on the position variables ¢; only. Then, the above requirement considerably simplifies and
imposes that gs3 = (g11 — 2¢22)¢2. The second of the conditions (4) subsequently can be
seen to require that g;1 = 4 goo = constant, which leaves us, up to an overall constant factor,
with the only possibility that gi1 = 4, g22 = 1, g33 = 2¢2. Theorem 2 is now taken care
of and moving to Theorem 1, it is not so hard to verify that a function D which satisfies
the first and third of the requirements (3) is found to be D = 2¢2¢?¢3. The Lagrangian
corresponding to our g obviously is given by L = %(4@% + 3 + 2¢243), and the couple of
functions (L, D) indeed provides a representation of the given system in the form (1).

For a simple example of the gyroscopic situation (5) and an illustration of the internal
consistency of the statements in Theorems 3 and 4, we look at a system with two degrees of
freedom and proceed in a different way. That is to say, we choose an L and extra gyroscopic
forces, compute the corresponding SODE and then investigate what our inverse problem
results tell us about this system. Take L to be

L=24qd} +d3) + 23,

and wy; = —wi2 = ¢2. Then, the resulting equations (5), written in normal form, read
G =—2q7"d} + qoqy o
o = —q2G1 + 5.
The algebraic condition in Theorem 4 is the third of equations (8) and requires that
9%, — 9% = (95 Ry + 91 R, + gug R0

But in dimension 2, all terms in the right-hand side automatically cancel out in view of
the symmetry of g and the skew-symmetry in the curvature tensor R. Comparison with
Theorem 3 then reveals that we better have ird”w = 0 as well and this is of course true
since d”w = 0 by dimension. The net conclusion is that both theorems then simply reduce
to the set of standard variationality conditions, as mentioned at the beginning of the section.
This means that the gyroscopic system we started from should have a genuine Lagrangian
representation as well. It is indeed easy to verify, and not in the least surprising, that by
modifying the original L to

L'=Yqd} +dd) + a5 — L,

which amounts to adding to L a so-called generalized potential, the equations under consid-
eration simply become the Euler-Lagrange equations of L'.
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