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Abstract

| study the differential geometry around the following variational
problem:
find the critical point of the integral of a Lagrangian function

defined on a set of morphism between Lie algebroids.
It is a constrained variational problem.

It includes as particular cases the standard theory, systems with

symmetry, Sigma models, Chern-Simons, ...

A generalized multisymplectic field theory is proposed.



Mechanics on Lie algebroids

(Weinstein 1996, Martinez 2001, de Ledn et. al. 2004)
Lie algebroid E — M.
LeC>=(E)or He C=(E¥)
O E =TM — M Standard classical Mechanics

O FE=DcTM — M (integrable) System with holonomic
constraints

O F=TQ/G— M = Q/G System with symmetry
O E =g — {e} System on Lie algebras

O FE =M x g — M System on a semidirect products (ej.
heavy top)



Symplectic and variational

The theory is

irwr = dE,
with wy, = —dfr, 0, = S(dL) and Ef, =daL — L.
But d is the differential on the Lie algebroid.

It is also a constrained theory:
Constraints: % = p! y* (admissible curves)
Finite admissible variations exists.
Infinitesimal variations are

ozt = plo®

oy® =%+ Cg,yyﬁoﬁ



Time dependent systems

(Martinez, Mestdag and Sarlet 2002)

With suitable modifications one can describe time-dependent
systems.

Cartan form
©r = S(dL) + Ldt.

Dynamical equation

irdOr =0 and <F,dt> =1.

Field theory in 1-d space—time‘




Example: standard case

TM — == TN

L

M—7N

m € M and n = m(m)

0 — Ver,, —1T,,M —T,N — 0

Set of splittings: Jy,m={¢: T,N - T,,M | Tmo¢=idr N }.

Lagrangian: L: Jm — R



Example: principal bundle

Tr
1q/c I Ty

|

QG=M———>M

0— Ady, — TQ/G)p, — T;uM — 0

Set of splittings: C,, ().

Lagrangian: L: C(7) - R



Other examples

Poisson Y>-model:
TN — N with dim(N) = 2
(T*M — M, A) Poisson

Chern-Simons:
TN — N with dim(N) =3
TN xg— N



General case

Consider

™
_

E

with m = (7, ) epimorphism.

Z<—"M

_—
™

Consider the subbundle K = ker(m) — M.
For m € M and n = w(m) we have
0O—K,, —FE, —F,—0

and we can consider the set of splittings of this sequence.



We define the sets

Lpm={w: F, —» E, | wis linear }
Imm={¢peLyr | Top=1idp, }
Vim ={¢peLpm |Top=0}.

Projections

To: L — M vector bundle
T dm — M affine subbundle

w: Ve — M vector subbundle



Local expressions

Take {eq,eq} adapted basis of Sec(F), i.e. {T(e,) = €.} is a
basis of Sec(F') and {e,} basis of Sec(K). Also take adapted
coordinates (2%, u?) to the bundle 7: M — N.

An element of L is of the form
w= (yley +yles) ® e
Thus we have coordinates (27, u”, 3%, y2) on L.
An element of J is of the form
d=(eqa +ysen) Qe

Thus we have coordinates (z°,u?,y2) on Jr.



Anchor and bracket

We will assume that F' and E are Lie algebroids and 7 is a mor-

phism of Lie algebroids. The anchors are

_ i 0 a0
p(€q) = ! 0 plea) = P ozt T Pa gA
@ aaxi A a
plea) = Pa7

and the brackets are

[éav éb] = Cl(nlcéa



Affine functions

Given a section 6 of (Lm)*, we define the affine function 6 €
C>(Jm) by
0(¢) = tr(0m o @),

where m = m(¢).
In coordinates, if
0= (e’ + 0% @ e,

then
0 =062+ 02y2.



Total derivative of f with respect to a section 1 € Sec(F')
df & n = flan"

where of of
Fo_ g A A «
f\a*paami+(pa +paya)auA

Affine structure functions:

o e} S5 [e% (e 8
Zgy = (de,e®) @&, = Cgr, + Cfy,
Z;Llc = (d@cea) ® éa = Cc(zlc + Cgcyaﬁ

b _ (] M we —

Zoy = (de€?) @ €q =



Variational Problem

Only for F =TN.
Let w be a fixed volume form on N.

Variational problem: Given a function L € C*(Jn) find those
morphisms ®: F' — FE of Lie algebroids such that w o ® = idp
and are critical points of the action

$(®) = /NL@)w

It is a constrained variational problem since ® must be a mor-
phism.



In coordinates,

() = (w,u(x))  and @ = (eq +yg(w)es) @
and w =dz' A--- Ada”.
The variational problem is: find the critical points of

/ L(z®, ut,y®)dzt A - A dz”
N

subject to the constraints

out " A
gpr — Pa T Pa Yo
dye  Oyy

Yy +Cyyl +Co =0

+ Cl?’yyz/ - Og'y

oxb Oz



Variations

Let o be a section of E projectable over a section n of F'.

Let Uy the flow of o and @, the flow of 7,
E E
F

éF
Define the map JV,: Jm — Jr by

\IIS
E——

s

JU,(¢) =V 0¢p0d_,.

for ¢ € Jm.



J¥s is an affine bundle map (over ¢s: M — M, the flow of
p(0)).

If ®: F — E is a morphism then so is JU4(P) = U0 Do P_,.
JW, is a local flow. The vector field it defines is to be called the
complete lift XV € X(Jm) of o.

If o projects to the zero section 1 = 0 then

Ve

0
X = pﬁaaau—A + (éﬁ‘ldma + Zg‘ﬁaﬁ)

with Z25 = Cs + CTsya



Euler-Lagrange equations

Infinitesimal admissible variations are
A_ A _«
ou” = plo

o do®
6ya - dl'a

Integrating by parts we get the Euler-Lagrange equations

+ ZaﬁO'

d (8L) oL OL 1

o 9Z oy
dx® \ Oy Oya ‘w‘+8 Pa>

Uy =Py + PLYE
(42, + Coyd)— (v + Coyl) + Cyryd + Cr = 0.




Euler-Lagrange equations: autonomous case

If M =N xQ@Qand E=F x G, then
pe =0 and Cas =0.

Thus

d(OLY oy s 0L, OL
dze ay 50‘“87 ouA™®’

a

A A
o= PaYa
Yoo~ Yoo T Cé‘vyf Ya =0



Repeated jets

From now on F' is again an arbitrary Lie algebroid.

FE-tangent to J.
Consider TBEWZ TEJr — I
TPdr = {(¢,a,V) €dm x E x T3 | Tymio(V) = p(a) }

and the projection m; = 7 o 719 = (T 0 Tp, T © T10)

TEHﬂ' L F

|

37TT>N

20



A repeated jet ¢ € Jm; at the point ¢ € Jris a map ¢: F, —
T¢E57r such that T o ¢ = idp, .

Explicitly ¢ is of the form ¥ = (¢, (, V) with

O m10(¢) = m10(C),
O V: F, — Tydr satisfying

TmpoV =po(.

Locally
= (Xq + VX, + T4V @ &

21



Contact forms

An element (¢,a,V) € T¥Jn is horizontal if vy(a) = 0;
Z = a"(Xy + 4y X5) + Vi V5.

An element pu € T*EJr is vertical if it vanishes on horizontal

elements.

A contact 1-form is a section of 7*Jr which is vertical at every
point. They are spanned by

6% = X~y

22



The A\ TPJn-module generated by contact 1-forms is the con-
tact module M¢
ME = (6%).

The differential ideal generated by contact 1-forms is the contact

ideal J¢.
J¢ = (0%, dO)

23



Second order jets

A jet ¢ € J4m is semiholonomic if 1*0 = 0 for every 6 in M°.
The jet ¢ = (¢, ¢, V) is semiholonomic if and only if ¢ = (.
A jet ¢ € J4m1 is holonomic if ¢*0 = 0 for every 6 in J¢.

The jet ¢ = (¢,¢, V) is holonomic if and only if ¢ = ¢ and
M, =0, where

Moy = Yoy — Ypa + Cpala — C;Yﬁyb C25Ya yb +yCq, + Cy,.-
The set of holonomic jets will be denoted J2.

24



Jet prolongation of sections

A bundle map ® = (®, ®) section of 7 is equivalent to a bundle
map ® = (®,®) from N to Jm — M section of 7

B(n) =T

F,

The jet prolongation of ® is the section ® = 7®d of ;.

In coordinates

DM = (X, + 09X, + bpy, V) @ €

25



Theorem: Let U € Sec(w;) be such that the associated map
¥ is a semiholonomic section and let & be the section of m to
which it projects. Then

1. The bundle map ¥ is admissible if and only if ® is admissible
and ¥ = oW,

2. The bundle map W is a morphism of Lie algebroids if and
only if U = ®® and ® is a morphism of Lie algebroids.

Corollary: Let ® an admissible map and a section of 7. Then ®
is a morphism if and only if ®® is holonomic.

26



Lagrangian formalism

L € C~(Jr) Lagrangian, w € \" F 'volume' form.
Canonical form.

For every ¢ € J,n

hg(a) = ¢(7(a)) and vg(a) = a— ¢(7(a))

They define the map 9: m10* E — m10*E by

V(¢ a) = vy(a).

27



Vertical lifting.

As in any affine bundle

d
w;f = af(qs—’_ t"/}) 07 'l/} € Vm']ra

t=

Thus we have a map £V: mo* (L) — THdn

£, ) = (¢, (Vg 0 0)g)-

¢ € I

28



Vertical endomorphism.

Every v € Sec(F*) defines S,,: T¥Jr — TF]n

SV((b’aaV) = €V(¢7a® V) = (¢707’U¢'(a) ® V)'

In coordinates

S=0"®Re, @V
Finally

Sw =0%Nw, @ V5.

29



Cartan forms.

01 = Su(dL) + Lw
Qp = —dOy

In coordinates

oL
oy

a

O = 0% N wg + Lw

30



Euler-Lagrange equations.

A solution of the field equations is a morphism ® € Sec(r) such
that
DO (ixQy) =0

for all m;-vertical section X € Sec(TFJr).

More generally one can consider the De Donder equations

T (ix Q) = 0.

If L is regular then ¥ = &™),

31



In coordinates we get the Euler-Lagrange partial differential equa-
tions

A A A
u|a =p, + pozyg

Yy = Ul + Conys — Clayy — Clavayy +y2C5, +Cp, =0

oL\ oL , 0L oL 4
il Bl _ 7y 22 A
<8y3) a 3y3‘ ba ayg ax 8uA Pa ;

32



Hamiltonian formalism

Consider the affine dual of Jm considered as the bundle
miol: §Tm — M with fibre over m

I ={ X (E)" |igip A =0 forall ki, ko € K, }

We have a canonical form © in 72Jfr, given by
Ox = (7).
Explicitly
O\(Z1,Za,...,Z) = Naq,ag, ..., a.),
for Z; = (\,ai, V;).

33



The differential of © is a multisymplectic form

Q =—do.

For a section h of the projection Jfm — V*r we consider the
Liouville-Cartan forms

On=(Th*®@ and  Qu = (Th)*Q

We set the Hamilton equations
A*(ith) =0,

for a morphism A.

34



In coordinates we get the Hamiltonian field PDEs

4 OH
u\a = pa + Pa aﬂa

(MJ)'(&H)’ o OH OH _ OH CaaH

— (e}
oug, opd, 7T oub, opg T g~ Yo T G

/C % c aH OH
/J'a\cx + :u’gccbc - _pa ou A + :U"y <Cga + Cgaa )

35



Legendre transformation

There is a Legendre transformation ?L: Jr — Jtn defined by
affine approximation of the Lagrangian as in the standard case.

We have similar results:

0 0, =(T5:.)*0

0 Q= (TF:)Q

O For hyperregular Lagrangian L: if ® is a solution of the
Euler-Lagrange equations then A = 7F o ®™ is a solution
of the Hamiltonian field equations. Conversely if A is a
solution of the Hamiltonian field equations, then there exists

a solution ® of the Euler-Lagrange equations such that A =
TFp o0dW,

36



Example: Standard case

E=TM and F =TN. In pseudocordinates

0 0 4 0 1o}
= 5 and e; = By + 17 JuA’

We have the brackets

€;

leie;] = —R;AjeA, [e;,eB] = I‘?BeA and [ea,ep] =0,
where we have written T'5, = 0T'Z /9u?.

The components of the anchor maps are pi = 6%, p* =T/ and
A 5A
P = 9B-

37



The Euler-Lagrange equations are

A, A
oy y;! B A B A
89;— ) = +F3433/i Iipy; = R;;

38



Example: Chern-Simons

We consider a Lie algebra g with an ad-invariant metric so that
the structure constants C g, are skewsymmetric.

Let N be a 3-dimensional manifold, £ = TN x g — N and
F=TN — N.

A section @: F — E is of the form ®(v) = (v, A%(v)e,) for
some 1-forms A% on N.

The Lagrangian density for Chern-Simons theory is

1
Ldz' Ndx? Ada® = 37 Casy A A AP A AY.

39



There is no admissibility condition in this case, since there are no

coordinates u?.

The morphism conditions can be written conveniently in terms of
the 1-forms A% as

[e3% 1 (63
dA® + iCmAB ANAT =0.

The Euler-Lagrange equations reduce to a linear combination of
the morphism condition, and thus vanish identically.

40



The conventional Lagrangian density for the Chern-Simons theory
is )
L'w=kap (Aa NAA? + SCL A N AR A A”)

The difference between L’ and L is a multiple of the morphism

condition
1
L'w— Lw = kq, A [dA“ + 5C5 A% A AV} :

Therefore both Lagrangians coincide on the set of morphisms,
which is the set where the action is defined.

41



Example: Poisson sigma-model

Is an example of autonomous theory.
Let N be a 2-dimensional and F' =TN.

Let (@, A) Poisson manifold and G = T*@Q with the associated
Lie algebroid structure.

The Lagrangian density £(¢) = —¢*A. For a morphism ®, we
write Ax = ®*(9/0u) = yx;dz?, so that the Lagrangian den-
sity reads

L= _%AJKAJ/\AK

42



The Euler-Lagrange equations reduce to a linear combination of

the morphism condition.
Thus the field equations are just
dp? + AE A =0

1
dA; + 5Aff,LAK ANAL =0.

43



The conventional Lagrangian density for the Poisson Sigma model
is L' = tr(® AT®) + £®*A. The difference between L’ and L is
a multiple of the admissibility condition d¢” + A7K Ag:

L' —L=A;A(de? + AN E Ag).

Therefore both Lagrangians coincide on admissible maps, and
hence on morphisms.

44



Example: Time-dependent Mechanics

Consider the case of a Lie algebroid £ — M and FF = TR —
N = R. Define the affine space

A:{aGE

f(a>=%},

modeled on the kernel of 7. Then (A")* = E and the Lie al-
gebroid on FE restricts to a Lie algebroid structure on the affine
bundle A (a Lie Afffffgebroid structure).

45



Conversely, given a structure of Lie algebroid on an affine bundle
A — M, with m: M — R fiber bundle, we have that £ = (AT)*
has a Lie algebroid structure. If 5 is the anchor on E then 7(z) =
Tw(p(z)) is a morphism form E to TR and we have a canonical

identification I: A — Jm given by
I(a) = adt

Thus we recover the time dependent formulation.

46



Many more examples

Variational problems for holomorphic maps.
Systems with symmetry.

Other sigma-models.

47



The End



Appendices



Flow of a derivation

Let 7: E — M be a vector bundle.

A of the C>(M)-module Sec(F) is a R-linear map
D: Sec(E) — Sec(E) for which there exists a vector field D
on M such that

D(fo) = (DM f)o + fDo.

The action of D can be extended to Sec(E*) by duality: if « is
a section of E* then Da is defined by the equation

D{wa,0) = (Da, o) + {(a, Do).

50



[0 There exists a linear local flow ¢5: E — E projecting to the
flow of the vector field D such that

d d
Do = %d):o and Da = £¢:a .

5=0 =0

O There exists a vector field D¥ on E such that
DFé = Do,
for every section o of E. The vector field D¥ projects to
DM and its flow is precisely ¢s.

O There exists a vector field DE* on E* such that
DE"& = Da,

for every section o of E*. The vector field Xg* projects to
DM and its flow is ¢* ,. (i.e. ¢* () = pop_s.)

51



Lie derivative.

E =TM and D = L, so that DM = X. Then D™ = Xx¢
the complete lift of X. The flow is ¢ps = T'ps.

Lie derivatives on a Lie algebroid.
More generally, if E is a Lie algebroid and D = d,, then DTM =

p*(0¢) the vector field associated to the complete lift of o.

52



Covariant derivative.

On a vector bundle with a linear connection, take D = V x then
DF = X" the horizontal lift of X to E. The flow is parallel
transport along the integral curves of X.

p-Covariant derivative.

More generally, if we have a p-covariant derivative on a vector
bundle E, take D = V, then DF = p'(c") the horizontal lift of
o to E. The flow is parallel transport along the integral curves

of o.

53



Lie Algebroids

A Lie algebroid structure on the vector bundle 7: E — M is given
by

O a Lie algebra structure (Sec(E), [, ]) on the set of sections
of E/, and

O a morphism of vector bundles p: E — T M over the identity,
such that

> p(lo,1]) = [p(e), p(n)]
> [0, fn] = flosnl + (p(o) f) .

where p(a)(m) = p(a(m)).

The first condition is actually a consequence of the second and the Jacobi identity.

54



Tangent bundle.

E=TM,
p=id,

[, ] = bracket of vector fields.

Integrable subbundle.

E C TM, integrable distribution
p = 14, canonical inclusion
[, ] = restriction of the bracket to vector fields in E.

55



Lie algebra.

E =g — M = {e}, Lie algebra (fiber bundle over a point)
p =0, trivial map (since TM = {0.})
[, ] = the bracket in the Lie algebra.

Atiyah algebroid.

Let m: Q — M a principal G-bundle.

E =TQ/G — M, (Sections are equivariant vector fields)
p([v]) = Tw(v) induced projection map

[, ] = bracket of equivariant vectorfields (is equivariant).

56



Transformation Lie algebroid.

Let ®: g — X(M) be an action of a Lie algebra g on M.

E=Mxg— M,
p(m, &) = ®(&)(m) value of the fundamental vectorfield
[, ] = induced by the bracket on g.

57



Exterior differential

On 0-forms

On p-forms (p > 0)

dw(al,...,crp+1):
p+1
z+1 ~
= E 01,...,Ui,...,Up+1)
H— ~ ~
— E Juw(] ([is05],01, ..., Giy - Gy Opt)-

1<j

58



Admissible maps and Morphisms

A bundle map ® = (®,®) between £ and E’ is said to be ad-
missible map if
Ordf = dd* f.

A bundle map ® = (®,®) between E and E’ is said to be a
morphism of Lie algebroids if

O*df = dP*6.

Obviously every morphism is an admissible map.

59
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