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The prolongation of a Lie algebroid over a fibration

(E , [[·, ·]], ρ) a Lie algebroid over M, rank E = n, dim M = m

π : M ′ → M a fibration, dim M ′ = m′

The set

T EM ′ = {(b, v) ∈ E × TM ′/ρ(b) = (Tπ)(v ′)}

τπ : T EM ′ → M ′; (b, v ′) 7→ τM′(v ′)

x ′ ∈ M ′ =⇒ T E
x ′ M

′ = (τπ)−1(x ′)

dim(T E
x ′ M

′) = n + m′ −m, ∀x ′ ∈ M ′

the vector bundle

T EM ′ is a vector bundle over M of rank n + m′ −m
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Lie algebroid structure on T EM ′ → M ′

Anchor map:

ρπ : T EM ′ → TM ′, (b, v ′)→ v ′

Lie bracket on Γ(T EM ′):

X ∈ Γ(E ), X ′ ∈ X(M ′) τ -projectable on ρ(X )

(X ,X ′) ∈ Γ(T EM ′); (X ,X ′)(x ′) = (X (π(x ′)),X ′(x ′)), ∀x ′ ∈ M ′

[[(X ,X ′), (Y ,Y ′)]]π = ([[X ,Y ]], [X ′,Y ′])

Prolongation of E over π or E -tangent bundle to M ′

(T EM ′, [[·, ·]]π, ρπ)
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A particular case:

M ′ = E , π = τ : E → M the vector bundle projection

T EE = {(b, v) ∈ E × TE/ρ(b) = (T τ)(v)}, rank T EE = 2n

The vertical endomorphism of T EE

S ∈ Γ(T EE ⊗ (T EE )∗)

S(a)(b, v) = (0, bv
a ), a, b ∈ E , v ∈ TaE

bv
a ≡ vertical lift of b to TaE

The Liouville section of T EE

∆(a) = (0, av
a ), a ∈ E
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A particular case:

Second-order differential equations (SODE) on E

ξ ∈ Γ(T EE ) /Sξ = ∆

ξ SODE ⇒ The integral curves of ρτ (ξ) are admissible ∗

∗ γ : I → E a curve on E

γ is admissible ⇔ (γ(t), γ̇(t)) ∈ T E
γ(t)E , ∀t

E = TM ⇒ T EE = T (TM)

standard notions
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A particular case

Local expressions:
(x i ) local coordinates on U ⊆ M, {eα} a local basis of Γ(E ) on U

⇓
(x i , yα) local coordinates on τ−1(U) ⊆ E

{Xα,Vα} a local basis of Γ(T EE )

Xα(a) = (eα(τ(a)), ρi
α

∂
∂x i |a), Vα(a) = (0, ∂

∂yα |a
), ∀α

{Xα,Vα} the dual basis of Γ((T EE )∗)
⇓

The vertical endo-
morphism of T EE

S = Xα ⊗ Vα

The Liouville section
of T EE

∆ = yαVα

SODE on E

ξ = yαXα + ξαVα
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The Lagrangian formalism on Lie algebroids

L : E → R a lagrangian function on E

Poincaré-Cartan 1-section

ΘL = S∗(dL) ∈ Γ((T EE )∗)

Poincaré-Cartan 2-section

ωL = −dΘL ∈ Γ(∧2(T EE )∗)

Lagrangian energy

EL = ρτ (∆)(L)− L ∈ C∞(E )

c : I → E a curve on E

c is a solution of the
Euler-Lagrange (E-L)
equations ⇐⇒

i) c is admissible

ii) i(c(t),ċ(t))ωL(c(t)) = dEL(c(t)), ∀t
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The Lagrangian formalism on Lie algebroids

Local expressions:

ΘL =
∂L

∂yα
Xα

ωL =
∂2L

∂yα∂yβ
Xα ∧ Vβ + (

1

2

∂L

∂yα
Cγ

αβ − ρ
i
α

∂2L

∂x i∂yβ
)Xα ∧ X β

EL = yα ∂L

∂yα
− L

c : t → (x i (t), yα(t)) solution of E − L equations
m

ẋ i = ρi
αyα, ∀i

d

dt
(
∂L

∂yα
) = ρi

α

∂L

∂x i
− Cγ

αβyβ ∂L

∂yγ
, ∀α
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The Lagrangian formalism on Lie algebroids

L regular ⇐⇒ ωL is non-degenerate

Local condition:
( ∂2L

∂yα∂yβ

)
is a regular matrix

L regular =⇒ ∃!ξL ∈ Γ(T EE )/iξL
ωL = dEL

ξL is a SODE and the integral sections of ξL are solutions of the
E-L equations
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Examples

E = TM ⇒ Classical Lagrangian formalism
of Mechanics

E = g a real Lie algebra of finite dimension
y ∈ g =⇒ ady : g→ g, y ′ ∈ g→ [y , y ′] ∈ g

ad∗y : g∗ → g∗ the dual linear map

l : g→ R a Lagrangian function

Euler-Poincaré equations

E-L equations for l :
d

dt
(
∂l

∂y
) = ad∗y (

∂l

∂y
)

E = D a completely integrable distribution on M

Holonomic Lagrangian Mechanics
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Examples

g a real Lie algebra of finite dimension
V a real vector space of finite dimension
Linear representation of g on V

g× V → V , (y , u)→ yu

⇓

linear representation of g on V ∗

g× V ∗ → V ∗, (y , a)→ ya

(ya)(u) = −a(yu), ∀u ∈ V

E = g× V ∗ → V ∗ action Lie algebroid over V ∗
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Examples

l : g× V ∗ → R a Lagrangian function
c : I → g× V ∗, t → c(t) = (y(t), a(t)),

Euler-Poisson-Poincaré

c a solution of E-L equations for l

m

ȧ = −ya
d

dt
(
∂l

∂y
) = ad∗y

∂l

∂y
+
∂l

∂a
♦a

u ∈ V , a ∈ V ∗ =⇒ u♦a ∈ g∗

(u♦a)(y) = −(ya)(u), ∀y ∈ g
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Examples

π : Q → M a principal G -bundle

⇓

τQ |G : TQ/G → M = Q/G the Atiyah algebroid

Γ(TQ/G ) ∼= {X ∈ X(Q)/X is G -invariant }

L : TQ → R a G -invariant Lagrangian

⇓

l : TQ/G → R the reduced Lagrangian
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Examples

A : TQ → g a principal connection
B : TQ ⊕ TQ → g the curvature of A
U ⊆ M an open subset of M; (x i )

π−1(U) ∼= U × G

{ξa} a basis of g, [ξa, ξb] = cc
abξc

ξLa the corresponding left-invariant vector field on G

A(
∂

∂x i |(x ,e)
) = Aa

i (x)ξa, B(
∂

∂x i |(x ,e)
,
∂

∂x j |(x ,e)
) = Ba

ij(x)ξa

{ ∂
∂x i
− Aa

i ξ
L
a , ξ

L
b} a local basis of Γ(TQ/G )

⇓
(x i ; ẋ i , v̄a) local coordinates on TQ/G
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Examples

Lagrange-Poincaré equations for L

E-L equations for l :
∂l

∂x j
− d

dt
(
∂l

∂ẋ j
) =

∂l

∂v̄a
(Ba

ij ẋ
i + ca

dbA
b
j v̄

d), ∀j

d

dt
(
∂l

∂v̄b
) =

∂l

∂v̄a
(ca

dbv̄
d − ca

dbA
d
i ẋ i ), ∀b
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The Hamiltonian formalism on Lie algebroids

(E , [[·, ·]], ρ) a Lie algebroid over M, rankE = n, dim M = m

τ∗ : E∗ → M the vector bundle projection

T EE∗ ≡ the E -tangent bundle to E∗

T EE∗ = {(b, v) ∈ E × TE∗/ρ(b) = (T τ∗)(v)}
(T EE∗, [[·, ·]]τ

∗
, ρτ∗

) a Lie algebroid of rank 2n over E∗

(x i ) local coordinates on M, {eα} a basis of Γ(E )
⇓

(x i , yα) local coordinates on E∗

ẽα(a∗) = (eα(τ∗(a∗)), ρi
α

∂

∂x i |a∗
),

ēα(a∗) = (0,
∂

∂yα |a∗
)

{ẽα, ēα} a local basis of Γ(T EE∗)

E = TM ⇒ T EE∗ = T (T ∗M)
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The Hamiltonian formalism on Lie algebroids

The Liouville 1-section

λE ∈ Γ((T EE ∗)∗)
λE (a∗)(b, v) = a∗(b), a∗ ∈ E ∗x , (b, v) ∈ (T EE ∗)a∗

The canonical symplectic section

ΩE ∈ Γ(∧2(T EE ∗))
ΩE = −dλE

Local expressions:
{ẽα, ēα} the dual basis of {ẽα, ē

α}

λE = yαẽα

ΩE = ẽα ∧ ēα + 1
2Cγ

αβyαẽα ∧ ẽβ
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The Hamiltonian formalism on Lie algebroids

H : E ∗ → R a Hamiltonian function
⇓

dH ∈ Γ((T EE ∗)∗)
⇓

∃!ξH ∈ Γ(T EE ∗)/iξH
ΩE = dH

ξH ≡ The Hamiltonian section associated with H

The integral curves of ρτ∗(ξH) are the solution of the Hamilton
equations associated with H

dx i

dt
= ρi

α

∂H

∂yα
,

dyα

dt
= −(Cγ

αβyγ
∂H

∂yβ
+ ρi

α

∂H

∂x i
)

i ∈ {1, . . . ,m}, α ∈ {1, . . . , n}
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The Hamiltonian formalism on Lie algebroids

E = TM ⇒ Classical Hamiltonian formalism

of Mechanics

E = g a real Lie algebra of finite dimension

Lie-Poisson equations on g∗

E = D a complete integrable distribution on M

Holonomic Hamiltonian Mechanics

E = g× V ∗ → V ∗ an action Lie algebroid over V ∗

V a real vector space of finite dimension

Lie-Poisson equations on the dual of a semidirect product of Lie
algebras
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The Hamiltonian formalism on Lie algebroids

π : Q → M = Q/G a principal G -bundle over M

τQ |G : TQ/G → M = Q/G the corresponding Atiyah
algebroid

Hamilton-Poincaré equations
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The Legendre transformation and the equivalence between
the Lagrangian and Hamiltonian formalisms

L : E → R a Lagrangian function
⇓

LegL : E → E ∗, LegL(a)(b) = θL(a)(z)
a, b ∈ Ex and z ∈ T E

a E/pr1(z) = b
LegL ≡ The Legendre transformation associated with L

LegL(x
i , yα) = (x i ,

∂L

∂yα
)

T LegL : T EE → T EE ∗ (b, v) 7→ (b, (TLegL)(v)),
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The Legendre transformation and the equivalence between
the Lagrangian and Hamiltonian formalisms

Theorem

The pair (T LegL, LegL) is a morphism between the Lie algebroids
(T EE , [[·, ·]]τ , ρτ ) and (T EE ∗, [[·, ·]]τ∗ , ρτ∗). Moreover, if θL and ωL

(respectively, λE and ΩE ) are the Poincaré-Cartan 1-section and
2-section associated with L (respectively, the Liouville section and
the canonical symplectic section on T τ∗E) then

(T LegL, LegL)
∗(λE ) = θL, (T LegL, LegL)

∗(ΩE ) = ωL
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The Legendre transformation and the equivalence between
the Lagrangian and Hamiltonian formalisms

L regular ⇔ LegL is a local diffeomorphism
L hyperregular if LegL is a global diffeomorphism

L hyperregular ⇒ H = EL ◦ Leg−1
L a Hamiltonian function

Theorem

If the Lagrangian L is hyperregular then the Euler-Lagrange section ξL

associated with L and the hamiltonian section ξH are (LLegL, LegL)-related,
that is,

ξH ◦ LegL = LLegL ◦ ξL.

Moreover, if γ : I → E is a solution of the Euler-Lagrange equations associated
with L, then µ = LegL ◦ γ : I → E∗ is a solution of the Hamilton equations
associated with H and, conversely, if µ : I → E∗ is a solution of the Hamilton
equations for H then γ = Leg−1

L ◦ µ is a solution of the Euler-Lagrange
equations for L
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An standard example

A motivation: Reduction of standard non-holonomic Lagrangian systems
with symmetries

′′A rolling ball on a rotating table with constant
angular velocity′′

r ≡ the radius of the sphere
m = 1 (unit mass)
k2 ≡ Inertia about any axis
Ω ≡ the const. angular velocity of the table

The configuration space: Q = R2 × SO(3)

The phase space of velocities:
TQ = TR2 × T (SO(3)) ∼= TR2 × (SO(3)× R3)

(x , y , ẋ , ẏ , θ, ϕ, ψ, θ̇, ϕ̇, ψ̇)→ (x , y , ẋ , ẏ , θ, ϕ, ψ, ωx , ωy , ωz)

ωx , ωy , ωz ≡ angular velocities
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An standard example

The Lagrangian function:

L =
1

2
(ẋ2+ẏ2+k2(θ̇2+ϕ̇2+ψ̇2+2ϕ̇ψ̇ cos θ)) =

1

2
(ẋ2+ẏ2+k2(ω2

x+ω
2
y+ω

2
z ))

The constraints:

φ1 ≡ ẋ − r θ̇ sinψ + r ϕ̇ sin θ cosψ + Ωy = 0

φ2 ≡ ẏ + r θ̇ cosψ + r ϕ̇ sin θ sinψ − Ωx = 0

m
φ1 ≡ ẋ − rωy + Ωy = 0, φ2 ≡ ẏ + rωx − Ωx = 0

M = {v ∈ TQ/φ1(v) = 0, φ2(v) = 0} the constraint submanifold

Ω = 0 ⇔ The constraints are linear
(⇔M is a vector subbundle of TQ)
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An standard example

Q = R2 × SO(3)→ R2 is a principal SO(3)-bundle

Action of SO(3) on TQ ∼= TR2 × (SO(3)× R3) is the standard
action of SO(3) on itself by left-translations

⇓

The Atiyah algebroid TQ/SO(3)→ Q/SO(3) = M = R2 is
isomorphic to the vector bundle TR2 × R3 → R2
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An standard example

L andM are SO(3)-invariant

L′ : TR2 × R3 → R the reduced Lagrangian

L′(x , y , ẋ , ẏ ;ω1, ω2, ω3) =
1

2
(ẋ2 + ẏ2 + k2(ω2

1 + ω2
2 + ω2

3))

M‘ = {v ′ ∈ TR2 × R3/φ′1(v
′) = 0, φ′2(v

′) = 0} the reduced
submanifold

φ′1 ≡ ẋ − rω2 + Ωy = 0, φ′2 = ẏ + rω1 − Ωx = 0

Conclusion

We have a Lagrangian system with non-holonomic constraints (which are
not, in general, linear) on an Atiyah algebroid
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Dynamical equations

τ : E → M a Lie algebroid

([[·, ·, ]], ρ) the Lie algebroid structure, dim M = m, rank E = n

M a submanifold of E such that π = τ|M :M→ M is a fibration

dimM = r + m

M≡ the constraint submanifold

Linear constraints ←→ M→ M is a vector subbundle D of E
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Dynamical equations

The vector bundle V →M of virtual displacements

a ∈M⇒ Va = {b ∈ Eτ(a)/b
v
a ∈ TaM}, rankV = r

The vector bundle Ψ→M of constraint forces

T EM→M the E -tangent bundle toM

rank(T EM) = 2n − s; s = n − r

a ∈M⇒ Ψa = S∗((T E
a M)o), rankΨ = s

(T E
a M)o = {α ∈ (T E

a E )∗/ < α, z >= 0,∀z ∈ T E
a M}
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Dynamical equations

Problem

We look for curves t → c(t) on E such that:

1 c is admissible (ρ(c(t)) = (τ ◦ c)′(t), for all t)

2 c(t) ∈M, for all t

3 i(c(t),ċ(t))ωL(c(t))− dEL(c(t)) ∈ Ψ(c(t)), for all t
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Dynamical equations

Local expressions:

(x i , yα) fibred local coordinates on E

(ρi
α,C

γ
αβ) local structure functions of E

φA(x i , yα) = 0 local equations definingM
⇓

Lagrange-d’Alembert equations for the constrained system (L,M)

ẋ i = ρi
αyα, for all i

d

dt
(
∂L

∂yα
)− ρi

α

∂L

∂yγ
+

∂L

∂yγ
Cγ

αβyβ = λA
∂φA

∂yα
, ∀α

φA(x i , yα) = 0, ∀A = 1, . . . , s
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Dynamical equations

A more geometrical description:

Dynamical equations

ξ ∈ Γ(T EE ) such that

(iξωL − dEL)|M ∈ Γ(Ψ)

ξ|M ∈ Γ(T EM)

Remark: i) ξ solution of our problem ⇒ ξ SODE along M

ii) π :M→ M a fibration
⇓

S∗ : (T EM)o → Ψ is an isomorphism of vector bundles

iii) E = TM ⇒ Classical formalism for standard non-holonomic

Lagrangian systems
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Regular non-holonomic Lagrangian systems

Two vector bundles overM:

1 F →M
a ∈M⇒ Fa = ω−1

L (Ψa), rankF = s

2 T νM→M
a ∈M⇒ T ν

a M = {z ∈ T E
a M/S(z) ∈ T E

a M}, rank(T νM) =
2r

Theorem

The following properties are equivalent:

1 The constrained Lagrangian system (L,M) is regular, that is, there
exists a unique solution of the Lagrange-d’Alembert equations

2 T EM∩ F = {0}
3 T νM∩ (T νM)⊥ = {0}
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Regular non-holonomic Lagrangian systems

Local condition:

The constrained Lagrangian system (L,M) is regular

m(
CAB =

∂φA

∂yα
W αβ ∂φ

B

∂yβ

)
A,B=1,...,s

is a regular matrix

L is of mechanical type

⇓

(L,M) is regular
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Regular non-holonomic Lagrangian systems

(2)⇒ (T EE )|M = T EM⊕ F

P : (T EE )|M → T EM, Q : (T EE )|M → F

Theorem

Let (L,M) be a regular constrained Lagrangian system and let ξL
be the solution of the free dynamics, i.e., iξL

ωL = dEL. Then, the
solution of the constrained dynamics is the SODE ξ obtained as
follows

ξ = P(ξL|M).
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Regular non-holonomic Lagrangian systems

(3)⇒ (T EE )|M = T νM⊕ (T νM)⊥

P̄ : (T EE )|M → T νM, Q̄ : (T EE )|M → (T νM)⊥

Theorem

Let (L,M) be a regular constrained Lagrangian system, ξL (respectively,
ξ) be the solution of the free (respectively, constrained) dynamics and ∆
be the Liouville section of T EE → E . Then, ξ = P̄(ξL|M) if and only if
the restriction to M of the vector field ρτ (∆) on E is tangent toM.

Corollary

Under the same hypotheses as in the above theorem ifM is a vector
subbundle of E (that is, the constraints are linear) then ξ = P̄(ξL|M)
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Regular non-holonomic Lagrangian systems

(L,M) a regular constrained Lagrangian system

⇓

∃!α(L,M) ∈ Γ((T EM)o)/iQξL
ωL = S∗(α(L,M))

Theorem (Conservation of the energy)

Let (L,M) be a regular constrained Lagrangian system, ∆ be the
Liouville section of T EE → E and ξ be the solution of the
constrained dynamics. Then, (dξEL)|M = 0 if and only if
α(L,M)(∆|M) = 0. In particular,if the restriction to M of the
vector field ρτ (∆) on E is tangent to M then (dξEL)|M = 0.
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Example (continued)

(x̄ , ȳ , θ̄, ϕ̄, ψ̄;πi )i=1,...,5 local coordinates on TQ = TR2 × T (SO(3))
x̄ = x , ȳ = y , θ̄ = θ, ϕ̄ = ϕ, ψ̄ = ψ,
π1 = r ẋ + k2q̇2, π2 = r ẏ − k2q̇1, π3 = k2q̇3,

π4 =
k2

(k2 + r2)
(ẋ − r q̇2 + Ωy), π5 =

k2

(k2 + r2)
(ẏ + r q̇1 − Ωx),

quasi-coordinates

q̇1 = ωx , q̇2 = ωy , q̇3 = ωz

P : (T EE )|M → T EM, Q : (T EE )|M → F

Q =
∂

∂π4
⊗ dπ4 +

∂

∂π5
⊗ dπ5, P = Id − Q
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Example (continued)

The constrained dynamics

ξ = (ẋ
∂

∂x̄
+ ẏ

∂

∂ȳ
+ q̇1

∂

∂q1
+ q̇2

∂

∂q2
+ q̇3

∂

∂q3
)|M

The energy is not, in general, constant along the solutions

(dξEL)|M =
Ω2k2

(k2 + r2)
(xẋ + y ẏ)|M

(dξEL)|M = 0⇔ Ω = 0
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The non-holonomic bracket

(L,M) a regular constrained Lagrangian system,
(T EE)|M = T νM⊕ (T νM)⊥

P̄ : (T EE)|M → T νM, Q̄ : (T EE)|M → (T νM)⊥

f , g ∈ C∞(M)

{f , g}nh = ωL(P̄(Xf̃ ), P̄(Xg̃ ))

Xf̃ , Xg̃ hamiltonian sections in (T EE , ωL) associated with f̃ and g̃
Properties:

1 {·, ·}nh is skew-symmetric

2 {·, ·}nh satisfies the Leibniz rule

3 {·, ·}nh doesn’t satisfy, in general, the Jacobi identity

4 f ∈ C∞(M) ⇒ ḟ = ρτ (RL)(f ) + {f , EL|M}nh

RL = P(ξL|M)− P̄(ξL|M)

Remark: If ρτ (∆)|M is tangent to M⇒ ḟ = {f , EL|M}nh
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Example (continued)

The non-holonomic bracket

{x , π1}nh = r , {y , π2}nh = r , {q1, π2}nh = −1

{q2, π1}nh = 1, {q3, π3}nh = 1, {π1, π2}nh = π3

{π2, π3}nh =
k2

(k2 + r2)
π1+

rk2Ω

(k2 + r2)
y , {π3, π1}nh =

k2

(k2 + r2)
π2−

rk2Ω

(k2 + r2)
x

The evolution of an observable

ḟ = RL(f ) + {f , L}nh, f ∈ C∞(M)

RL =
k2Ω

(k2 + r2)
(x

∂

∂y
− y

∂

∂x
) +

rΩ

(k2 + r2)
(x

∂

∂q1
+ y

∂

∂q2

+x(π3 − k2Ω)
∂

∂π1
+ y(π3 − k2Ω)

∂

∂π2
− k2(π1x + π2y)

∂

∂π3
)
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Morphisms and reduction

(L,M) a regular constrained Lagrangian system on τ : E → M

(L′,M′) a constrained Lagrangian system on τ ′ : E ′ → M ′

M
φ

τ ′

M ′-

E
Φ

τ
? ?

- E ′

epimorphism of Lie algebroids

i) L = L′ ◦ Φ

ii) Φ|M :M→M′ is a surjective submersion

iii) Φ(Va) = V ′Φ(a), for all a ∈M

Remark: M = D,M′ = D ′ are vector subbundles of E and E ′

⇓
(i), ii) and iii)⇔ L = L′ ◦ Φ, Φ(D) = D ′)
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Morphisms and reduction

T Φ : T EM→ T E ′
M′, (b, v) → (Φ(b), (TΦ)(v))

(T ΦΦ, Φ) is an epimorphim of Lie algebroids

Theorem ( Reduction of the constrained dynamics)

Let (L,M) be a regular constrained Lagrangian system on a Lie algebroid τ : E → M
and (L′,M′) be another constrained Lagrangian system on a second Lie algebroid
τ ′ : E ′ → M′. Assume that we have an epimorphism of Lie algebroids Φ : E → E ′

over φ : M → M′ such that conditions i), ii) and iii) hold. Then:

1 The constrained Lagrangian system (L′,M′) is regular

2 If ξ (respectively, ξ′) is the constrained dynamics for (L,M) (respectively,
(L′,M′)) then T ΦΦ ◦ ξ = ξ′ ◦ Φ.

3 If t → c(t) is a solution of Lagrange-d’Alembert equations for (L,M) then
t → Φ(c(t)) is a solution of Lagrange-d’Alembert equations for (L′,M′)

ξ′ ≡ reduction of the constrained dynamics ξ by the morphism Φ
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Morphisms and reduction

Theorem ( reduction of the non-holonomic bracket)

Under the same hypotheses as in the above theorem, we have that

{f ′ ◦ Φ, g ′ ◦ Φ}nh = {f ′, g ′}nh ◦ Φ,

for f ′, g ′ ∈ C∞(M′), where {·, ·}nh (respectively, {·, ·}′nh) is the
non-holonomic bracket for the constrained system (L,M)
(respectively, (L′,M′)). In other words, Φ :M→M′ is an almost
Poisson morphism.
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Morphisms and reduction

A particular case:

φ : Q → M a principal G -bundle

⇓

τQ |G : TQ|G → M = Q/G the corresponding Atiyah algebroid

Φ : TQ → TQ/G is a fiberwise bijective Lie algebroid morphism
over φ
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Morphisms and reduction

(L,M) a regular constrained Lagrangian system on TQ

M a closed submanifold of TQ

L andM are G -invariant

⇓
L′ : TQ/G → R/L = L′ ◦ Φ

M′ =M|G is a closed submanifold of TQ/G

(L′,M′) is a constrained Lagrangian system on TQ/G

Conditions i), ii) and iii) hold for the morphism Φ and the constrained
systems (L,M) and (L′,M′)

⇓
We may apply the reduction process
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Example (continued)

Q = R2 × SO(3)→ R2 is a principal SO(3)-bundle

The reduced Lie algebroid

E ′ = TQ/SO(3)→ Q/SO(3) = R2 the Atiyah algebroid

E ′ ∼= TR2 × R3 → R2

([[·, ·]]′, ρ′) the Lie algebroid structure

{e′i }i=1,...,5 a global basis of Γ(E ′)
ρ′(e′1) =

∂

∂x
, ρ′(e′2) =

∂

∂y

ρ′(e′i ) = 0, i = 3, 4, 5

[[e′4, e
′
3]]
′ = e′5, [[e′5, e

′
4]]
′ = e′3, [[e′3, e

′
5]]
′ = e′4
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Example (continued)

The reduced constrained Lagrangian system

The Lagrangian function:

L′(x , y , ẋ , ẏ , ω1, ω2, ω3) =
1

2
(ẋ2 + ẏ2 + k2(ω2

1 + ω2
2 + ω3

3))

The constraints:

φ′1 ≡ ẋ − rω2 + Ωy = 0

φ′2 ≡ ẏ + rω1 − Ωx = 0
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Example (continued)

(x ′, y ′, π′1, π
′
2, π

′
3, π

′
4, π

′
5) global coordinates on E ′

x ′ = x , y ′ = y ,
π′1 = r ẋ + k2ω2, π′2 = r ẏ − k2ω1, π′3 = k2ω3,

π′4 = k2

(k2+r2)
(ẋ − rω2 + Ωy), π′5 = k2

(k2+r2)
(ẏ + rω1 − Ωx),

Φ : TQ → E ′ = TQ/SO(3) the canonical projection

Φ(x̄ , ȳ , θ̄, ϕ̄, ψ̄;π1, π2, π3, π4, π5) = (x̄ , ȳ ;π1, π2, π3, π4, π5)

The reduced constrained dynamics

(ρ′)τ ′(ξ′) = (ẋ ′
∂

∂ẋ ′
+ ẏ ′

∂

∂ẏ ′
)|M′
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Example (continued)

The reduced non-holonomic bracket

{x ′, π′1}′nh = r , {y ′, π′2}′nh = r ,

{π′1, π′2}′nh = π′3, {π′2, π′3}′nh =
k2

(k2 + r2)
π′1 +

rk2Ω

(k2 + r2)
y ′,

{π′3, π′1}′nh =
k2

(k2 + r2)
π′2 −

rk2Ω

(k2 + r2)
x ′

Evolution of an observable

ḟ ′ = (ρ′)τ ′
(RL′)(f

′) + {f ′, L′}′nh, for f ′ ∈ C∞(M′),

(ρ′)τ ′
(RL′) = { k2Ω

k2 + r2
(x ′

∂

∂y ′
− y ′

∂

∂x ′
) +

rΩ

(k2 + r2)
(x ′(π′3 − k2Ω)

∂

∂π′1

+y ′(π′3 − k2Ω)
∂

∂π′2
− k2(π′1x

′ + π′2y
′)
∂

∂π′3
)}|M′
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Future work

To develop a Hamiltonian formalism for non-holonomic Mechanics on Lie
algebroids and then, using the Legendre transformation, to discuss the
equivalence between the Lagrangian and Hamiltonian formalism

To discuss in more detail the reduction procedure as it has been done in
Bloch AM, Krishnaprasad PS, Marsden JE and Murray RM: Arch. Rational
Mech. Anal. 136 (1996) 21–99

Cantrijn F, de León M, Marrero JC and Mart́ın de Diego D: Rep. Math. Phys.
42 (1998) 25–45; J. Math. Phys. 40 (1999), 795–820
for the standard case

To extend the so-called non-holonomic integrators in
Cortés J.: Lect. Notes in Math (2002) , no 1793, Springer-Verlag, Berlin

Cortés J. and Mart́ınez S.: Nonlinearity, 14 (2001), 1365–1392

De León M., Mart́ın de Diego D. and Santamaŕıa Merino A.: J. Math. Phys. 45
(3) (2004) 1042-1064
to the case of non-holonomic Mechanics on Lie algebroids

Marrero J.C., Mart́ın de Diego D. and Mart́ınez E.: Discrete Lagrangian and
Hamiltonian Mechanics on Lie groupoids, Preprint 2005, math.DG/0506299
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The end

THANKS!!!!!
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