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Why confrol systems on Lie algebroids?

Confrollability problem: find conditions that guarantee system can move
locally in any direction.

RKf{mJ = T)

Rif(m, < T) Rielm, < T)

Deciding local controllability must be addressed prior to other important
control questions (e.g., motion planning, frajectory generation, etc.)



Why confrol systems on Lie algebroids?
.

Lack of unifying framework imposes separate study for various classes of
systems such as

() simple mechanical systems (Lewis& Murray 95)

(i) systems subject to nonholonomic constraints (Bloch et al 92, Bullo&
Zefran 01, Lewis 97),

(i) systems invariant under the action of a Lie group of symmetries (Cortés
et al 02, Kelly & Murray 05, Martin & Crouch 84, Martinez & Cortés 03)

(ilv) systems enjoying special homogeneity properties (Cortes et al 01,
Kawski 95, Vela & Burdick 03).

(v) systems evolving on semidirect products (Shen 02)

Most works build on the rich geometric structure of these systems. s it
possible to combine both geomefric wealth and generalify?



Lie algebroid formalism provides an answer!
|

Lie algebroid notfion provides framework to overcome drawback

e Underlying structure of Lie algebroid on the phase space makes pos-
sible unified treatment

e Lie algebroid formalism allows us fo establish morphisms between two
systems, and relate their control properties

Underlying idea: property of interest easier to decide for one system, and
morphism allows us to infer property for the other one



Outline
|

() Motivation
(i) Lie algebroid formalism
(1ii) Nonlinear control
(lv) Mechanical control systems on Lie algelbroids

(v) Applications



Lie algebroids
|

Lie algebroid 7: E — M with anchor p : E — T'M (~ substitute of T'M)

Some useful definitions:

o Lie()) is distribution obtained by closing Y C Sec(E) under Lie bracket
o a: [ty t1] — E admissible if L7(a(t)) = p(a(t))

e Iv locally fransitive af m < M if p,, : E,, — T, M is surjective (m is
contained in a leaf of maximal dimension)

o U: E — Eis morphism of Lie algebroids if it is admissible (I')op = po )
and preserves Lie algebra sfructure of algebroids



Linear connections
[ ]

Linear F -connecfion on a vector bundle n: P — M (Fernandes 02,
Cantrijn & Langerock 02) is R-bilinear map V: Sec(F) x Sec(P) — Sec(P)

Veao=FV,a and  V,(Fa)=(plo)F)a+ FV,a
forany F € C>*(M), o € Sec(E) and « € Sec(P). We take P = E

Skew-symmetric part defines forsion fensorT(o,n) = V,n — V,0 — [0, 1]

Symmetric part determines symmetric product (o : n) = V,n+ V,0
Sym()) is distribution obtained by closing Y C Sec(E) under (- : -)

Covariant derivatives and geodesics of V (admissible curvesa : R — E
with Va(t)a(t) = 0)



Levi-Civita and consfrained connections
[ ]

Levi-Civita connecfion: For metric G: F X,y E — R, unique torsion-less
connection VY on E metric with respect to G,

2G(Von,¢) = p(o)G(n,¢) + p(n)G(o,¢) — p(¢)G(n, o) + G(o,[¢,n]) + G(n,[¢, 7)) -
e gradient of Ve C*(M), gradg V' € Sec(E) is gradg V = fig(p*dV)

Consfrained connectfion: Let D subbundle of £, P : £ — D projector,
QQ=1— P,and D¢ =Im(Q) (note D & D° = E). Given V connection,

~

Von=P(Von)+V,(Qn), 0,1 € Sec(E)
Generalizes nonholonomic connection (Lewis 96, Synge 28)
e Vrestrictsto D, i.e., V,n € D forn € Sec(D), o € Sec(E)



Prolongation of Lie algebroid
|

Prolongation of I/ (Martinez 01) is 7,: 7E — E with fiber
T.E={(bv)e B, xT,E | pb)=T,7(v)}, a€ E,

e Anchor p': TE — TE, p*(a,b,v) =v. Also Tr: TE — E, Tr(a,b,v) = b

e Morphisms of Lie algebroids can also be prolonged: prolongation of
UV:E— FEisTV:TE - TE, TVY(a,b,v) = (V(a),V(b), T,V (v))



Prolongation of Lie algebroid
|

Prolongation of I/ (Martinez 01) is 7,: 7E — E with fiber
T.E={(bv)e B, xT,E | pb)=T,7(v)}, a€ E,

e Anchor p': TE — TE, p*(a,b,v) =v. Also Tr: TE — E, Tr(a,b,v) = b

e Morphisms of Lie algebroids can also be prolonged: prolongation of
UV:E— FEisTV:TE - TE, TVY(a,b,v) = (V(a),V(b), T,V (v))

Vertical space: Ver(TE) C TE are elements (a, 0, v) with v vertical vector
Vertical lift of o € Sec(E)is o¥ € Sec(TFE), 0" (a) = (a,0,a(m)})
Horizontal space: Hor,,(TE) C 1, E along 0y,

Hor,(TE)={(0,,,b,v) €Ty E |veT,M CTy E}, meM
Along 0y, 7y, FE = Hor(TE) & Ver,,, (TE)



Homogeneity
|

Liouville section of TE is A(a) = (a,0,aY)

F' € C*(F) is homogeneous of degree s € Z if LyaF = sF
Z € Sec(TE) is homogeneous of degree s ¢ Z if [A, Z]| = sZ

P, is set of homogeneous sections of TE of degree s

Proposition: Let r, s € Z and Z € Sec(TFE). Then

0 [P, P.] € Pyyr,and P, = {0} if s < =2,

(i) Z € P_; if and only if there exists a section ¢ of E such that Z = ¢,
(i) Z € Py if and only if Z is a projectable section,

Note that forall Z € P,, s > 1, Z(0,,) = 0, m € M



SODE sections

[' € Sec(TFE) is SODE sectionon E if 7T o' = Idg

e Adm(F) is set of admissible vectors v € T, E of the form (a,a,v) € TE
o [' € Sec(TFE)is SODEif I' € Adm(F)

Sprays are homogeneous SODE sections with degree 1

e Associated symmetfric product: for o,n € Sec(FE), [¢", [[,n"]] is homo-
geneous with degree —1, hence (o : 1)} = [0", [[',n"]]

Symmetric product determines and is defermined by I'. Locally

y y on” oo .,
", [T o)) = (07/)5@ M f.0% )V

e For I and skew-symmetric (2,1) tensor T', VL-'n = L([o,n] + T(0,n)) +
% (o : )y is unique connection with associated spray I' and torsion T°
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Nonlinear conftrol

Affine nonlinear control system on manifold M,

k
m(t) = f(m(t)) + Z ui(t)gi(m(t)),
where u = (uy,...,u;) € U, 0 € U open set of R*

f is drift vector field
g1, - - ., gr AQre control vector fields

t— u(t) = (ui(t),...,u(t)) belongs to U, set of admissible controls
(for us, piecewise constant functions with values in U)



Sample confrol problems
e

Stabilization
e Stabilize an (otherwise) unstable equilibrium
e Shape the dynamics to make a desired configuration an equilibrium

Motion planning and frajectory tracking
e Generate controls that make system go from A to B
e Generate controls that make system track a desired trajectory

Parameter uncertainty and disturbance rejection
e Design controls that cope with errors in knowledge of parameters
e Make system behavior robust to unknown disturbances



Confrollability problem

RKf{mJ = T)

Riglm, < T) Rielm, < T)

RY,(m,T) is reachable set from m € M at time T > 0, with frajectories
contained in neighlbornood V of m fort < T

RY (m,<T) URV (m, t)
t<T

Locally accessible from m < M: R}, (m, < T) contains non-empty open
set of M for all neighborhoods Vof mand allT" > 0

Locally confrollable from m < M: R}, (m, < T) contains non-empty open
set of M to which m belongs for all neighborhoods V' of m and all 7" > 0

<d A D> o



General confrol systems on Lie algebroids

T : E — M Lie algebroid, o, ny, ..., nx € Sec(E)

Control problem on E — M with drift o and inputs ., ... n;.

() = p(om(®) + > uiOn(mit)

Trajectories are admissible curves of £, and hence must lie on a leaf of E.

Only locally transitive Lie algebroids — otherwise, system cannot be locally
accessible af points m € M where p is not surjective

With f = p(o). g;: = p(n;). standard affine nonlinear control system on M
Lie algebroid geometfric sfructure enhances controllability analysis



Accessibility algebra and subbundle

Accessibility algebra D is smallest subalgebra in Sec(E) containing
O,My---, Nk

Elements of D are linear combinations of Lie brackets of the form

[Cla [Cl—h [ c e [C%Cl] .- m: Cz c {U, m, ... 777k}7 [eN

Accessibility subbundle Lie({o,ny,...,n}) is vector subbundle of E gen-
erated by accessibility algebra D,

Lie({o,n1,...,m}) = span{((m) | ¢ sectionof Ein D}, m € M

If dimension of Lie({o,ny,...,n:}) is constant, then Lie({o,n.,...,n.}) is
smallest Lie subalgebroid of E that has {o,ny,...,n.} as sections



Accessibility and confrollability fests
.

Theorem: Let E be locally fransitive at m € M
Lie({o,n1, ..., me})(m) + ker p(m) = E,, = locally accessible from m



Accessibility and confrollability fests
.

Theorem: Let E be locally fransitive at m € M
Lie({o,n1, ..., me})(m) + ker p(m) = E,, = locally accessible from m

Let B be iterated Lie bracket of elementsin { X, X, ..., X;.} C Sec(FE)
e 0;( B) is the number of times that X; appearsin B
© )(B)=0y(B) + 01(B) + -+ 6(B), degree of B
e B badif §y(B) odd and ;(B) even, i € {1,...,k}. B goodif not bad

Theorem: Assume system locally accessible from m € M. If every bad
Lie bracket B in {o,n,,...,n:} evaluated at m can be put as an R-linear
combination of good Lie brackets in {o,n,,...,n.} of lower degree and
elements in ker p(m), then system is locally confrollable from m
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Mechanical confrol systems on Lie algebroids

For Lagrangian L : E — R, Euler-Lagrange operator §L : Adm(FE) — E*
(Carinena & Martinez 01, Martinez 01, Weinstein 96). Locally

5L:(d OL o s OL .8L>ea

dt oy + CopY 9 Poyi

With input forces {6, ..., 0;} C Sec(E*) acting on Lagrangian system

k
0L = Z U 0;
=1

If system is nonholonomically constrained by subbundle D of E, with pro-
jectors P: E — D and Q = I — P. Equations of motion read

Pr(0L) = ZUZP*(el)a Qa) =0



Connection control systems

Let V connectionon E, and {n, n, ..., M} C Sec(E)

k

Vawalt) +n(m(t)) = Y uilt)n(m(t))

1=1

Equivalently, control systemon 7E — E
at) = p'((Tv —n")(a(t)) + Z wi(t)n] (a(t)))

Equations capture mechanical confrol sysfems, both
e unconstrained: L = 3G—Vor1,V = V9, n = grad, V, n = tg(0;) € Sec(E)

e constrained: L =1G — Vo7, D subbundle of E, V = P(V9.) + V9(Q-).
n = P(gradg V). ni = P(fg(0;)) € Sec(E)



Accessibility and confrollability notions
.

I: Full-state accessibility and conftrollability
W neighborhood of 0,, € F,
RY(0,,, < T) reachable points in E from 0,

System locally accessible from m at zero if RY (0,,, < T') contains
non-empty open set of E for all neightb. W of 0, in Eand all’T’ > 0



Accessibility and confrollability notions

I: Full-state accessibility and confrollability

W neighborhood of 0,, € F,
RY(0,,, < T) reachable points in E from 0,

System locally accessible from m at zero if RY (0,,, < T') contains
non-empty open set of E for all neightb. W of 0, in Eand all’T’ > 0

II: Base accessibility and controllability

Additional notions specialized to mechanical control systems
V neighborhood of m € M,

Ry /(m, <T)= T(RTE_l(V)(Om, < T)) reachable points in M from m

System locally base accessible fromm if R}, (m, < T') contains non-
empty open set of M for all neighborhoods V of min M all'T > 0



Accessibility and confrollability notions

lI: Accessibility and conftrollability with regards fo a manifold

Let v : M — N be open. System is locally base accessible from m
with regards to N if ¢(R};(m,< T)) contains non-empty open set
of N for all neighborhoods V of mand all 7" > 0

Analogous definitions for confrollability

Base accessibility and controllability with regards to M with Id,, : M — M
corresponds to base accessibility and controllability

System base accessible (respec. controllability) = system base accessi-
ble (respec. controllability) with regards fo N



Structure of confrol algebra
.

Objective: analyze Lie({T'—n", 7Y, ..., n’}) af points of the form 0,,, m € M

Analysis

e extends Lewis & Murray 95 to mechanical control systems defined on
Lie algebroids

e relies on homogeneity and geometry of 7E along zero-section
Strategy: Lie({T' — 0", 0y, ..., n¢}) € Lie({T,ny, ..., nt,n"})

Theorem: Let m € M. Then,

Lie({T, 7y, ...,ny,n"}) NVero, (TE) = Sym({n, n, - ., me})(m)"
Lie({T',ny, ..., my,n"}) N Hor,(TE) = Lie(Sym({n,m, ..., m}))(m)



Vertical and horizontal distributions

Let X' ={I'—n",my,....oyand X ={T',ny,...,mp, 0"}

For B in Br(X”), let S(B’) c Br(X) contain B € Br(X) obtained by replacing any T —»,¥
in B’ by either T or v (denote §,,1(B) number of occurrences of ¥ in B)

B = Z (_1)5k+1(B)B
BeS(B’)

Reciprocally, for B € Br(X), determine B’ such that B € S(B’) by substituting occur-
rence of ' or p¥ in Bby I' — 1Y (pseudoinv(B) = B’)
Define o € C®)(n:my, ..., m:) C Sec(R) iff
o' =B"B'= Y (-1="B BeB’(X)primive

BeS(pseudoinv(B))
NBr_4 (X)QBI‘()(X)

and o € C¥(mimy, ..., ) C Sec(E) ff
o=o0p,B'= Y (-1)*PB, BeB™X) primitive

BeS(pseudoinv(B))
NBr_; (X)ﬂBI‘o(X)



The accessibility subbundle
e

Cver(n; My.-., 77k> — UC\(/];?(TI? m, ... 77776)
Coor (113105 -+ 1) = UCL (1, -+ -y )

Subbundles of E are Cie.(n;m1, - .., m) and Chor (173 015+ - -, M)
Theorem: Let m € M. Then,
E({F - nva 771/7 LA 7”[?}) N verOm<TE) — Cver(n; 7717 LI 777k)<m)v
Lie({I' = 7", n{, ..., mp }) N Hor(TE) = Chor(15 11, - - -, 1) ()
When n = 0 (no potential)

Cver(o; 7717 cee 777k> - @@7 RN nk})
Chor (0511, ..., my) = Lie(Sym({m, ..., mx}))



Accessibility tests

Theorem: Let m € M and assume E is locally fransitive at m. Then, system
e locally base accessible from m if Cuo(7; 71, .., ) (M) + ker p = E,,

e locally accessible from m at zero if Cyo(1n; 11, -, M)(m) + kerp = E,,
and Cie(n;m1, ..., mk)(m) = E,

When 1 = 0 (no potential), if Lie(Sym({ni, ..., m}))(m) + kerp # E,.let N
denote maximal integral manifold of Lie(Sym({m, ..., n:}))(m) through m

For each neighbornood V of m in M and each T sufficiently small,
R}, (m,<T) C N contains a non-empty open subset of N



Confrollability fests

Let P be symmetric productin {n,ny,...,n.}

Pis bad if the number of occurrences of each 7; in P is even
P is good otherwise

Accordingly, (n; : n;) isbad and ({n : n;) : (n; : n;)) is good

Theorem: Let m € M. System is locally base controllable from m if
locally base accessible from m and every bad symmetric product in
{n,m,...,m} evaluated at m can be put as an R-linear combination of
good symmetric products of lower degree and elements of ker p
Similar tests for

e locally controllable at zero

e base accessibility/controllability with regards to manifold



Morphism-related mechanical systems (1)
.

Let U : E — E be morphism of Lie algebroids and weakly 7 ¥-related
systems (I' —n", {nf,....ni ) on B (U= 7", {71, ..., Tg}) on B

Using homogeneity, one can deduce that
e associated connections are also V-related

e TU-relation among vertical lifts of potential terms and input sections
franslates into a W-relation of potential ferms and input sections

Theorem: Under above conditions, with ¢ open,

if system on E is locally base accessible (respectively locally base
confrollable) from m = system on E is locally base accessible (re-
spectively locally base controllable) from i (m)



Morphism-related mechanical systems (ll)

If & isomorphism between fibers of Lie algebroids, then conditions are
either simultaneously satisfied on £ and E or simultaneously not satisfied

Theorem: Let ¥ : E — E be a morphism of Lie algebroids which is an isomorphism
on each fiber. Consider two mechanical control systems on £ and E, with k£ > &,

that are v-related. Let m € M. Then
0, Cver(n; m,... 777/€>(m) =En if and Only if Cver<ﬁ; M- >ﬁE)<¢(m)) = Ew(m)'
(”) Chor(n; m,... 7?7k)<m) + ker p = Ep, if and Only if Ohor(ﬁ; UIERRE 7ﬁE)(¢(m)) + kerp = Ed)(m)’

(i) Every bad symmetric product in {n,m,...,n:} evaluated at m can be put as an
R-linear combination of good symmetric products of lower degree if and only

if every bad symmetric product in {7,7,...,7;} evaluated at ¢ (m) can be puf
as an R-linear combination of good symmetric products of lower degree.

<qd A D> o
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Applications: simple Mechanical Control Systems (SMCS)
e

A simple mechanical control system (Q,G,V, F).
e () is the manifold of configurations of the system
e G is a Riemannian metric on () (kinetic energy metric of the system)
o VV € C™(Q) is the potential function
o F={F', ..., F"}isasetof k linearly independent 1-forms on @

The dynamics of simple mechanical control systems is classically de-
scribed by the forced Euler-Lagrange’s equations

o (OL\ OL l.
i (55) 3 = w0

where L : TQ — R, L(q,q) = 5G6(4,4) — V(q)



Applications: simple Mechanical Control Systems (SMCS)

Lie algebroid 7 =19 : By =TQ — M, = Q. with p=1Idrg : TQ — T'Q)
Forces JF correspond to sections of the dual bundle E; = T7(Q)

Dynamics is intrinsically written as

a(t) = p'(T(a(t)) — (gradg V ) + Zul Y (a

where I is SODE associated with V9 and p! = Idyry,

() Base accessibility (resp. accessibility at zero) in M = () corresponds
fo configuration accessibility (resp. accessibility at zero velocity) in ()
(Lewis & Murray 95)

(i) Tests on Lie algebroid render previously known tests for accessibility
(Lewis & Murray 95)

Analogous sifuation with confrollability



Applications: sMcs with symmetry
e

SMCS (@, G, V, F) invariant under free and proper action ¢ of Lie group G

Then Q(Q/G,G,w) principal fiber bundle with bundle space @, base
space /G, structure group G and projection 7

¢ induces liffed (free and proper) action of GonT1qQ), d: G x TQ — TQ,
¢, =T, withp:TQ — TQ/G, p(v,) = [v,]. surjective submersion

Lie algebroid E, = TQ/G — M, = Q/G, with

nollvg]) =ld pallvg) = Tm(v,)

SMCS induces mechanical control system on E.
e Yinduce sections B={B; : Q/G — TQ/G}r_ suchthat poY; = B;om;
e V. and G induce grad; V such that p o grad; V' = grad; V o m



Applications: sMcs with symmetry - tests
e

Accessibility notions:
(1) Base accessibility on E, corresponds fo configuration accessibility in

QG
(i) Accessibility at zero in E, (reachable sets in TQ/G) stronger than ac-
cessibility at zero velocity in /G (accessible setsin T(Q/G))

(ih If bundle Q = G x Q/G ftrivial, consider 7 : G x /G — G. Then,
base accessibility with regards to G corresponds fo fiber configuration
accessibility (Cortes et al 02)

Same deal with confrollabilify

What about accessibility/controllability tests in () which make use of the
SMCS symmetry?



Applicaﬁons: SMCS with symmetry - geomelry

T, YT, QT Q)

1 P2 ldrq P2
s iy b p ey
Fy FEy TQ TQ/G
TMl TMQ TQ TQ/G
T To TQ Ty

TRt Q——=Q/G

e Both algebroids have fibers of the same dimension n = dim ()
e U is surjective



Applications: sMcs with symmetry - tests
e

Theorem (accessibility):

Chor(gradg V; V) = TQ <= Ch(gradg V; B) =TQ/G
Cyer(gradg V;YV) = TQ <= Ciulgradg Vi B) =TQ/G
(resp. accessibility af zero velocity)
e reduced representation (space of smaller dimension)
e extends results in Cortes et al 02 to nontrivial potential ferms.

Theorem (confrollability): Enough to check bad symmetric products in
{grad, V', By, ..., B} are R-linear combinations of good ones in TQ/G
(plus accessibility)

Furthermore, if reduced system is not base accessible (resp. control-
lable), then original system is not base accessible (resp. controllable)



Applications: semidirect products - geometry

letg — X(M). & € g — &y € X(M), surjective Lie algebra homomorphism
Lie algebroid 7 : B = M x g — M, with p(m, &) = &y(m)

With TE =TM x Tg=TM x g x g (left multiplication),
(a,0,0) € TE is (m, ), (m, ), (v,€.C)) . with v, = ()
Therefore, TE = M X g X g X g, with

Tl(m7€7nac> — (maf)a TT(TTL,f,?],C) — (man)7 P1<m7§>777§) — (nM(m)7€7C)

Let (G, V,{04,...,0:}) be mechanical control system on F
Assume G comes from inner product on g, G((m, &), (m, &) = G(&1, &)

For ¢ € g. define ad] : g — g by G(adl ni,ns) = G(m1, [€, maly)



Applications: semidirect products - dynamics

SODE reads I'ys(m, &) = (m, €, &, adz ¢), and controlled equations

:
a—adl a = —grad; V(m) + Z u;n;(m)
i=1

For constant sections o;(m) = (m,&;).i = 1,2,

)

VE aa(m) = (m. 3[6r, €y — 5 (adl &+ ad}, &)
(o1 09) (M) = (m, —(andz1 &y + adTZ 51))

() Tests can be applied to these problems to determine base accessibil-
ity (resp. controllability) — generalizes Shen 02

(i) Systems appear frequently as mechanical systems defined on homo-
geneous spaces for a given group action



Conclusions
[ ]

e Investigated controllability properties of systems on Lie algelbroids. Es-
tablished controllability results for nonlinear affine control systems

¢ Infroduced mechanical control system on Lie algebroid. Defined con-
frollability notions and investigated sufficient tests. Applications to sys-
tfems related by morphism of Lie algelbroids

e lllustrated results with the classes of simple mechanical control systems
and of systems evolving on semidirect products

Future work

e investigation of controllability tests along relative equilibria of me-
chanical control systems on Lie algebroids

e tfreatment of models that include gyroscopic forces and dissipation



Thanks for your attention!
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