
Two separately developed theories,

• theory of geodesically equivalent metrics andLevi-Civita Painlev�e Eisenhart Aminova MikesRashevskii Solodovnikov Shandra Venzi Yamau
hi
• theory of quadratically integrable Hamiltonian sys-

tems and separations of variablesBenenti-systems, L-systems, 
ofa
tor systems, quasi-bi-hamiltonian systems, systems admitting spe
ial
onformal Killing tensorLevi-Civita Painlev�e Eisenhart Benenti BradenIbort Magri Marmo Crampin Sarlet Tondo Saun-ders Cantrijn Kolokoltsev Rastelli Chanu Mar
iniakRanada Santander Kiyohara Bolsinov Fomenko Ko-zlov
study essentially the same object.

We apply methods of one in the other

1



Two separately developed theories,� theory of geodesi
ally equivalent metri
s andLevi-Civita Painlev�e Eisenhart Aminova MikesRashevskii Solodovnikov Shandra Venzi Yamau
hi� theory of quadrati
ally integrable Hamiltonian sys-tems and separations of variables
Benenti-systems, L-systems, cofactor systems, quasi-
bi-hamiltonian systems, systems admitting special
conformal Killing tensorLevi-Civita Painlev�e Eisenhart Benenti BradenIbort Magri Marmo Crampin Sarlet Tondo Saun-ders Cantrijn Kolokoltsev Rastelli Chanu Mar
iniakRanada Santander Kiyohara Bolsinov Fomenko Ko-zlovstudy essentially the same obje
t.We apply methods of one in the other

1-a



Two separately developed theories,� theory of geodesi
ally equivalent metri
s and
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Definition: Two Riemannian metrics on one

manifold are geodesically equivalent, if every

geodesic of the first metric is a (probably, re-

parametrised) geodesic of the second metric.

Example 1: The geodesi
 of the Klein modelof the hyperboli
 spa
e are straight lines
2
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De�nition 2 Two Riemannian metri
s on onemanifold are geodesi
ally equivalent, if everygeodesi
 of the �rst metri
 is a (probably, re-parametrised) geodesi
 of the se
ond metri
.
Example 2: Given A ∈ SL(n + 1) \ O(n + 1),

Beltrami 1865 constructed a diffeomorphism

a : Sn → Sn of the standard sphere Sn ⊂ Rn+1

that is

• not an isometry

• but takes geodesics (great circles) to geodesics
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De�nition 3 Two Riemannian metri
s on onemanifold are geodesi
ally equivalent, if everygeodesi
 of the �rst metri
 is a (probably, re-parametrised) geodesi
 of the se
ond metri
.Example 2: A
we construct−−−−−−−−−→ a, a(x) := A(x)

|A(x)|

a takes great circles to great circles and is not

an isometry
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De�nition 4 Two Riemannian metri
s on onemanifold are geodesi
ally equivalent, if everygeodesi
 of the �rst metri
 is a (probably, re-parametrised) geodesi
 of the se
ond metri
.
Example 3: Levi-Civita’s Theorem 1896: Let g, ḡ be
two metrics on Mn. Assume the roots of
P (t) := det(g − tḡ) are all simple at x ∈ Mn.

Then, the metrics are geodesically equivalent near x
if and only there exist coordinates x1, x2, ..., xn in some
neighbourhood of x such that in these coordinates the
metrics have the following model form:

ds2
g = Π1dx2

1 + Π2dx2
2 + · · · + Πndx2

n,

ds2
ḡ = ρ1Π1dx2

1 + ρ2Π2dx2
2 + · · · + ρnΠndx2

n,

where the functions Πi and ρi are given by

Πi
def
=

n
∏

j 6= i
j = 1

|(λi − λj)|

ρi
def
=

1

λ1λ2...λn−1

1

λi
.

where, for each i, the function λi is a smooth function

of the variable xi.
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Relation with integrable systems and separa-

tion of variables

For g, ḡ on Mn we construct−−−−−−−−−→ L := ḡ−1g·
(

det ḡ
det g

)
1

n+1

∀t ∈ R define−−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)

consider−−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, Matveev 1998): If g ��g, then, 8t1; t2 2 R, the fun
tions Iti are 
om-muting integrals for the geodesi
 
ow of g (i.e.for the Hamiltonian H(�) := g(�; �))The family 
ontains n integrals whi
h are fun
-tionally independent almost everywhere, if andonly if there exists a point where all roots ofP(t) := det(g � t�g) are simple.
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Relation with integrable systems and separa-tion of variablesGiven g; �g on Mn we 
onstru
t���������! L := �g�1g �det�gdet g8t 2 R de�ne����������! St := (L� t � Id)�1 � det(L� t � Id)
onsider������! It : TMn ! R; It(�) := g(St(�); �).
Theorem (Topalov, Matveev 2001):

If g ∼ ḡ, then, ∀t1, t2 ∈ R, the operators

Iti :=
1√

det g

∂

∂xα

√

det g gαγ S
ti©

β

γ

∂

∂xβ

commute with the Laplacian of g and mutually

commute.There is no problem to introdu
e potential en-ergy in the pi
ture (Bolsinov, Matveev 2003)
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Plan:

• Geometric sense of the integrals

• First application of geodesic equivalence to

integrable systems: Sinjukov-Topalov hier-

archy

• Second application of geodesic equivalence

to integrable systems: superintegrability

• One application of integrable systems to

geodesic equivalence: topology

• Probably one more application of integrable

systems to geodesic equivalence: proof of

Lichnerowicz-Obata conjecture
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Symplectic nature of the integrals (Topalov, M∼)

Consider Hamiltonian systems

(N2n, ω, H, XH) and (N̄2n, ω̄, H̄, XH̄)

and their energy surfaces

Q2n−1 := {H(x) = h} and Q̄2n−1 := {H̄(x) = h̄}
Suppose there exists m : Q2n−1 → Q̄2n−1

such that dm(XH) = λ(x)XH̄

Then we can construct integrals for XH:indeed: 
onsider � := !jQ;�� := �!j �Q and the pull-ba
km���.Lemma: The 
ow of XH preserves �, m���.Proof: LXHm��� = d [{XHm���℄ + {XHd [m���℄ = 0:Sin
e the forms �, m��� are preserved by the 
ow, afun
tion 
onstru
ted invariantly by using these formsmust automati
ally be an integral. So the 
oeÆ
ientsof the 
hara
teristi
 polynomial of one form with respe
tto the se
ond are integrals.The pro
edure does not guarantee that the integrals
ommute. The proof of 
ommutativity is a separateresult. Bihamiltonian approa
h whi
h also implys 
om-mutativity is due to Ibort, Magri, Marmo 2000
5
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First applications in integrable systems: We

can construct many new examples of (quan-

tum) integrable systems:

Given g, ḡ let us construct L as above.

For every (1,1)-tensor B, define:

gB(ξ, η) := g(B(ξ), η)

ḡB(ξ, η) := ḡ(B(ξ), η)Theorem (Topalov, Matveev 2001): As-sume g � �g. Then, for every real-analyti
fun
tion F , the metri
s gF(L) and �gF(L) aregeodesi
ally equivalent.The example of Beltrami gives us a pair ofgeodesi
ally equivalent metri
s. If we applythe above Theorem to it for fun
tions F(x) =x and F(x) = x2, we get the metri
s of theellipsoid and of the Poisson spheres. Thus,the metri
s of the ellipsoid and of the Poissonsphere are (quantum) integrable
6
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sume g ∼ ḡ. For every real-analytic function

F , the metrics gF (L) and ḡF (L) are geodesically
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Second application: superintegrable and
superseparable systems:

Problems:

1. How big can be the dimension of the integrals of a
certain form.

• Locally, near a point

• or globally, on a compact or a complete manifold

2. To construct all natural Hamiltonian superintegrable
systems.

3. Given a metric, to decide whether its geodesic flow
is superintegrable
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Second application: superintegrable and
superseparable systems:

“Reformulation” of (1) for geodesically equivalent met-
rics:

How big can be the degree of mobility of a metric?

(the degree of mobility is the dimension of the space of
metrics, geodesically equivalent to the given one).Answers lo
ally (Lie 1882 Fubini 1903 Egorov 1939Solodovnikov 1956 Mikes 1982 Shandra 2000 ):In dim 2, the degree of mobility 
an be 1,2,3,4,6 (lo
allyand globally) onlyIf dim(M) � 3 then, lo
ally, the degree of mobility of ametri
 of non
onstant 
urvature 
an take the valuesm(m+1)2 + lonly, where 1 � m � n and 1 � l � �n+1�m3 �.Globally, the following theorem is true:Theorem (Matveev 2004): Let (Mn; g), n � 2, bea 
onne
ted 
omplete irredu
ible Riemannian manifoldof non
onstant se
tional 
urvature. Then the degree ofmobility of g is � 2.
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3

]
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Second application: superintegrable and
superseparable systems:

“Reformulation” of (2) for geodesically equivalent met-
rics:

To obtain a list of all metrics whose degree of mobility
is ≥ 3.For dimensions � 3 the lo
al version of the problem wassolved by Solodovnikov in 1956{1969 and Shandra in2001.In dimension 2, the lo
al version is nontrivial and is notsolved yet.Con
erning the global version, the 
ompa
t variant isdue to Kolokoltsov 1986 and Kiyohara 1991Theorem: (Matveev 2004) Suppose the degree ofmobility of a 
ompete metri
 on R2 of the form �(x; y)(dx2+dy2) be � 3. Then the metri
 is isomorphi
 to one ofthe following metri
s:1. (x2+ y2+ C)(dx2+ dy2),2. (x2+ y2=4 + C)(dx2+ dy2),3. dx2+ dy2,where C is a 
onstant.
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2001.
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Se
ond appli
ation: superintegrable andsuperseparable systems:\Reformulation" of (2) for geodesi
ally equivalent met-ri
s:To obtain a list of all metri
s whose degree of mobilityis � 3.For dimensions � 3 the lo
al version of the problem wassolved by Solodovnikov in 1956{1969 and Shandra in2000.In dimension 2, the lo
al version is nontrivial and is notsolved yet.
Concerning the global version, the compact variant is
due to Kolokoltsov 1986 and Kiyohara 1991

Theorem: (Matveev 2004) Suppose the degree of
mobility of a compete metric on R2 of the form λ(x, y)(dx2+
dy2) be ≥ 3. Then the metric is isomorphic to one of
the following metrics:

1. (x2 + y2 + C)(dx2 + dy2),

2. (x2 + y2/4 + C)(dx2 + dy2),

3. dx2 + dy2,

where C is a constant.
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Second application: superintegrable and
superseparable systems:

“Reformulation” of (3) for geodesically equivalent met-
rics:

Given a metric to decide how big is the space of metrics
geodesically equivalent to a given oneFor dimensions � 3 the problem was almost solved bySolodovnikov in 1956{1969 and Shandra in 2001.In dimension 2,Theorem: (Manno, Matveev 2005) If the dimensionof the spa
e of quadrati
 integrals is pre
isely 4, thenthere exists three independent proje
tive ve
tor �elds.(A ve
tor �eld is proje
tive if its 
ow sends geodesi
sto geodesi
s).In 1996 Romanovskii 
onstru
ted a di�erential opera-tor whi
h de
ides whether a aÆne 
onne
tion admitsthree proje
tive ve
tor �elds. Combining his result withthe result above we obtain a di�erential operator whi
hde
ides whether a metri
 is Darboux-superintegrable.
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Application of integrable systems in geodesic
equivalence

Geodesic rigidity problem (generalisation of Bel-
trami 1865): What closed manifolds admit geodesi-
cally equivalent nonproportional metrics.Theorem (Matveev 2006) Suppose M is 
losed 
on-ne
ted. Let Riemannian metri
s g and �g on M begeodesi
ally equivalent and nonproportional. Then themanifold 
an be 
overed by the sphere, or it admits ametri
 with redu
ible holonomy group.Corollary 1 (Topalov, Matveev, 2001): A 
losed ori-entable surfa
e admitting nonproportional geodesi
allyequivalent metri
s is S2 or T 2.Corollary (Matveev, 2003): A 
losed 3-manifold ad-mitting nonproportional geodesi
ally equivalent metri
sis Lp;q or Seifert manifold with zero Euler number. (Lp;qare 
overed by S3, Seifert manifold with zero Euler num-ber are 3-manifolds admitting metri
s with redu
ibleholonomy groups.)
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ally equivalent metri
sis Lp;q or Seifert manifold with zero Euler number. (Lp;qare 
overed by S3, Seifert manifold with zero Euler num-ber are 3-manifolds admitting metri
s with redu
ibleholonomy groups.)
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Appli
ation of integrable systems in geodesi
equivalen
eGeodesi
 rigidity Problem (generalisation of Bel-trami 1865): What 
losed manifolds admit geodesi-
ally equivalent nonproportional metri
s.Theorem (Matveev 2006) Suppose M is 
losed 
on-ne
ted. Let Riemannian metri
s g and �g on M begeodesi
ally equivalent and nonproportional. Then themanifold 
an be 
overed by the sphere, or it admits ametri
 with redu
ible holonomy group.
Corollary 1 (Topalov, Matveev, 2001): A closed ori-
entable surface admitting nonproportional geodesically
equivalent metrics is S2 or T 2.

Corollary (Matveev 2003): A closed 3-manifold ad-
mitting nonproportional geodesically equivalent metrics
is Lp,q or Seifert manifold with zero Euler number. (Lp,q

are covered by S3, Seifert manifold with zero Euler num-
ber are 3-manifolds admitting metrics with reducible
holonomy groups.)

11-b



Proof of Corollary 1: In dimension 2, the

integral I0 is

I0(ξ) :=

(

det(g)

det(ḡ)

)
2
3

ḡ(ξ, ξ).

Because of topology, there exists x0 such that

g|x0
= ḡ|x0

. We assume g|x1
6= ḡ|x1

and find a

contradiction.

.
12



Explanation of Corollary 2 Assume dim(M) = 3

Case 1: There exists a point of the manifold

such that that the polynomial det(g − λḡ) has

3 different roots. Then, the geodesic flow of

g is Liouville-integrable.Theorem ( Kruglikov, Matveev 2005): Then,the topologi
al entropy of g vanishes.(And therefore modulo the Poin
are 
onje
turethe manifold 
an be 
overed by S3, S2� S1 orby S1 � S1 � S1.)Case 2: At every point the number of roots ofthe polynomial is � 2.Then pre
isely the same tri
k as in dimension2 works.
13
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ow ofg is Liouville-integrable.Theorem ( Kruglikov, Matveev 2005): Then,the topologi
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are 
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turethe manifold 
an be 
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Case 2: At every point the number of roots of

the polynomial is ≤ 2.

Then precisely the same trick as in dimension

2 works.
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Another application in global differential

geometry

I proved Lichnerowicz-Obata-Solodovnikov

Conjecture (50th): Let a Lie group (of dim≥
1) act on a closed Riemannian manifold by

geodesic-preserving transformations. Then, the

manifold is covered by the round sphere, or the

group acts by isometries.History of L-O-S 
onje
ture:�rst examples Beltrami 1865�rst paper on Lie groups of geodesi
 transformationsLie 1882.�rst lo
al results Fubini 1903formulated as a question 1924proved under di�erent tensor assumptions 1950{1980proved assuming dim(Mn) � 3 and that all obje
ts arereal analyti
 Solodovnikov 1969
14



Another appli
ation in global di�erentialgeometryI proved Li
hnerowi
z-Obata-SolodovnikovConje
ture (50th): Let a Lie group (of dim�1) a
t on a 
losed Riemannian manifold by pro-je
tive transformations. Then, the manifold is
overed by the round sphere, or the group a
tsby isometries.
History of L-O-S conjecture:

first examples Beltrami 1865

first paper of Lie groups of geodesic transformations Lie
1882.

first local results Fubini 1903

formulated as a question Schouten 1924

proved under different tensor assumptions 1950–1980

proved assuming dim(Mn) ≥ 3 and that all objects are
real analytic Solodovnikov 1969
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Explanation if there exists a point such that

the roots of P(t) := det(g − tḡ) are all simple.Re
all� Levi-Civita 1896: lo
ally the metri
s are :ds2g = Xi Yj 6=i j�i(xi)� �j(xj)jdx2i
ds2�g = Xi 24 1�i(xi)Y� 1��(x�)Yj 6=i j�i(xi)� �j(xj)jdx2i 35 :

� Matveev 2004: If the manifold is not (
overedby) the round sphere, the degree of mobility � 2.Combining the fa
ts above, we obtain that an essentialproje
tive ve
tor �eld v must have the entries(v1(x1); v2(x2); :::; vn(xn)).Then a proje
tive transformation gives a system of ODE.One 
an analyse the system and prove the 
onje
ture.
15



Explanation if there exists a point su
h thatthe roots of P(t) := det(g � t�g) are all simple.
Recall

• Levi-Civita 1896: locally the metrics are :

ds2
g =

∑

i

∏

j 6=i

|λi(xi) − λj(xj)|dx2
i

ds2
ḡ =

∑

i





1

λi(xi)

∏

α

1

λα(xα)

∏

j 6=i

|λi(xi) − λj(xj)|dx2
i



 .

• Matveev 2004: If the manifold is not (
overedby) the round sphere, the degree of mobility � 2.Combining the fa
ts above, we obtain that an essentialproje
tive ve
tor �eld v must have the entries(v1(x1); v2(x2); :::; vn(xn)).Then a proje
tive transformation gives a system of ODE.One 
an analyse the system and prove the 
onje
ture.
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� Matveev 2004: If the manifold is not (covered
by) the round sphere, the degree of mobility ≤ 2.Combining the fa
ts above, we obtain that an essentialproje
tive ve
tor �eld v must have the entries(v1(x1); v2(x2); :::; vn(xn)).Then a proje
tive transformation gives a system of ODE.One 
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Explanation if there exists a point su
h thatthe roots of P(t) := det(g � t�g) are all simple.Re
all� Levi-Civita 1896: lo
ally the metri
s are :ds2g = Xi Yj 6=i j�i(xi)� �j(xj)jdx2i
ds2�g = Xi 24 1�i(xi)Y� 1��(x�)Yj 6=i j�i(xi)� �j(xj)jdx2i 35 :

� Matveev 2004: If the manifold is not (
overedby) the round sphere, the degree of mobility � 2.
Combining the facts above, we obtain that an essential
projective vector field v must have the entries
(v1(x1), v2(x2), ..., vn(xn)).

Then a projective transformation gives a system of ODE.
One can analyse the system and prove the conjecture.
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Open problems (Benenti, Rauch-Wojciechowski, Matveev)

1. How to decide?

• To construct a differential operator that decides
whether the geodesic flow of a metric admits an
additional quadratic in momenta integral.

• To construct a differential operator that decides
whether a metrics admits a geodesically equiv-
alent one.2. Superintegrable systems� To 
onstru
t all metri
s whose spa
e of quadrati
in momenta integrals has dimension 3.� To introdu
e the potential energy in Solodovnikov'sresults3. To 
onstru
t global theory of geodesi
ally equiva-lent pseudo-Riemannian metri
s.� To understand topology of 
losed manifolds 
ar-rying geodesi
ally equivalent pseudo-Riemannianmetri
s.� To solve pseudo-Riemannian analog of proje
-tive L-O-S 
onje
ture.

16



Open problems (Benenti, Rau
h-Woj
ie
howski, Matveev)1. How to de
ide?� To 
onstru
t a di�erential operator that de
ideswhether the geodesi
 
ow of a metri
 admits anadditional quadrati
 in momenta integral.� To 
onstru
t a di�erential operator that de
ideswhether a metri
s admits a geodesi
ally equiv-alent one.
2. Superintegrable systems

• To construct all metrics whose space of quadratic
in momenta integrals has dimension 3.

• To introduce the potential energy in Solodovnikov’s
results3. To 
onstru
t global theory of geodesi
ally equiva-lent pseudo-Riemannian metri
s.� To understand topology of 
losed manifolds 
ar-rying geodesi
ally equivalent pseudo-Riemannianmetri
s.� To solve pseudo-Riemannian analog of proje
-tive L-O-S 
onje
ture.

16-a



Open problems (Benenti, Rau
h-Woj
ie
howski, Matveev)1. How to de
ide?� To 
onstru
t a di�erential operator that de
ideswhether the geodesi
 
ow of a metri
 admits anadditional quadrati
 in momenta integral.� To 
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t a di�erential operator that de
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s admits a geodesi
ally equiv-alent one.2. Superintegrable systems� To 
onstru
t all metri
s whose spa
e of quadrati
in momenta integrals has dimension 3.� To introdu
e the potential energy in Solodovnikov'sresults
3. To construct global theory of geodesically equiva-

lent pseudo-Riemannian metrics.

• To understand topology of closed manifolds car-
rying geodesically equivalent pseudo-Riemannian
metrics.

• To solve pseudo-Riemannian analog of projec-
tive L-O-S conjecture.
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