
Lagrangian submanifolds and dynamics on Lie
affgebroids

Diana Sosa
dnsosa@ull.es

University of La Laguna

20th International Workshop on Differential Geometric Methods in Theoretical
Mechanics, Ghent 2005

D. IGLESIAS, J.C. MARRERO, E. PADRÓN, D. SOSA, Lagrangian submanifolds
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• Notation

τA : A→ M, τV : V → M

τA+ : A+ = Aff (A,R)→ M, 1A ∈ Γ(τA+)

τÃ : Ã = (A+)∗ → M

iA : A→ Ã iA(a)(ϕ) = ϕ(a), iV : V → Ã
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Lie affgebroid structure on T AA

Lie affgebroids

Definition

Lie affgebroid structure on A:

[[·, ·]]V : Γ(τV )× Γ(τV )→ Γ(τV ) Lie bracket

D : Γ(τA)× Γ(τV )→ Γ(τV ) R-linear action

ρA : A→ TM affine map, the anchor map

such that

DX [[Ȳ , Z̄ ]]V = [[DX Ȳ , Z̄ ]]V + [[Ȳ ,DX Z̄ ]]V

DX+Ȳ Z̄ = DX Z̄ + [[Ȳ , Z̄ ]]V

DX (f Ȳ ) = fDX Ȳ + ρA(X )(f )Ȳ

for X ∈ Γ(τA), Ȳ , Z̄ ∈ Γ(τV ), f ∈ C∞(M)
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DX+Ȳ Z̄ = DX Z̄ + [[Ȳ , Z̄ ]]V
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Lie affgebroids morphism
Lie affgebroid structure on T AA

Lie affgebroids

• (A, [[·, ·]]V ,D, ρA) Lie affgebroid

⇓
(Ã, [[·, ·]]Ã, ρÃ) Lie algebroid + 1A ∈ Γ(τA+) 1-cocycle

Conversely, (U, [[·, ·]]U , ρU) Lie algebroid and φ : U → R
1-cocycle, φ/Ux 6= 0

⇓

A = φ−1{1} Lie affgebroid with (Ã, [[·, ·]]Ã, ρÃ) ≈ (U, [[·, ·]]U , ρU),
1A ≈ φ and V = φ−1{0}
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Lie affgebroid structure on T AA

Lie affgebroids
Lie affgebroids morphism

Definition

((F , f ), (F l , f )) affine morphism between two Lie affgebroids
(A, [[·, ·]]V ,D, ρA) and (A′, [[·, ·]]V ′ ,D′, ρA′) is a Lie affgebroid
morphism if:

i) (F l , f ) Lie algebroid morphism between (V , [[·, ·]]V , ρV ) and
(V ′, [[·, ·]]V ′ , ρV ′)

ii) Tf ◦ ρA = ρA′ ◦ F

iii) F l ◦ DX Ȳ = (D′
X ′Ȳ ′) ◦ f

X ∈ Γ(τA), X ′ ∈ Γ(τA′), Ȳ ∈ Γ(τV ), Ȳ ′ ∈ Γ(τV ′): X ′ ◦ f = F ◦ X
and Ȳ ′ ◦ f = F l ◦ Ȳ
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and Ȳ ′ ◦ f = F l ◦ Ȳ
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Lie affgebroids morphism
Lie affgebroid structure on T AA

Lie affgebroids
Lie affgebroids morphism

• ((F , f ), (F l , f )) Lie affgebroid morphism

M
f - M ′

τA
?

τA′
?

A
F- A′

M
f - M ′

τV
?

τV ′
?

V
F l

- V ′

⇓
(F̃ , f ) Lie algebroid morphism

M
f - M ′

τÃ ?
τÃ′

?

Ã
F̃- Ã′ F̃ (ã)(ϕ′) = ã(ϕ′ ◦ F )

(F̃ , f )∗1A′ = 1A
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Lie affgebroids morphism
Lie affgebroid structure on T AA

Lie affgebroids
Lie affgebroids morphism

•Conversely, (F̃ , f ) Lie algebroid morphism

M
f - M′

τU
?

τU′
?

U
F̃ - U′ φ ∈ Γ(τU), φ′ ∈ Γ(τU′)

φ(x) 6= 0, φ′(x ′) 6= 0
(F̃ , f )∗φ′ = φ

⇓
((F , f ), (F l , f )) Lie affgebroid morphism

M
f - M′

τA
?

τA′
?

A
F - A′

M
f - M′

τV
?

τV ′
?

V
F l

- V ′

A = φ−1{1} V = φ−1{0} τA = (τU)/A

A′ = (φ′)−1{1} V ′ = (φ′)−1{0} τA′ = (τU′)/A′
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Lie affgebroids morphism
Lie affgebroid structure on T AA

Lie affgebroids
Lie affgebroid structure on T AA

(τA : A→ M, τV : V → M, ([[·, ·]]V ,D, ρA)) Lie affgebroid

T AA = {(a, v) ∈ A× TA/ρA(a) = (T τA)(v)}

(T ÃA, [[·, ·]]τA

Ã
, ρτA

Ã
) τ τA

Ã
: T ÃA→ A

φ0 ∈ Γ((τ τA

Ã
)∗), φ0 : T ÃA→ R φ0(ã, v) = 1A(ã)

• φ0 1-cocycle, (φ0)|(T ÃA)a
6= 0

• (φ0)
−1{1} = T AA, (φ0)

−1{0} = T V A
⇓

τ τA
A : T AA→ A admits a Lie affgebroid structure with bidual Lie

algebroid (T ÃA, [[·, ·]]τA

Ã
, ρτA

Ã
) and modelled on (T V A, [[·, ·]]τA

V , ρ
τA
V )
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τ∗V
Ã

: T ÃV ∗ → V ∗, [[·, ·]]τ
∗
V

Ã
, ρ
τ∗V
Ã

)

(x i) local coordinates on M
{e0,eα} local basis of Γ(τÃ) adapted to 1A (1A(e0) = 1, 1A(eα) = 0)

[[e0,eα]]Ã = Cγ
0αeγ [[eα,eβ]]Ã = Cγ

αβeγ

ρÃ(e0) = ρi
0
∂

∂x i ρÃ(eα) = ρi
α

∂

∂x i

⇓
(x i , y0, yα) local coordinates on Ã
(x i , y0, yα) the dual coordinates on A+

(x i , yα) local coordinates on V ∗
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{ẽ0, ẽα, ēα} local basis of Γ(τ
τ∗V
Ã

)

ẽ0(ψ) = (e0(τ
∗
V (ψ)), ρi

0
∂

∂x i |ψ
)

ẽα(ψ) = (eα(τ∗V (ψ)), ρi
α

∂

∂x i |ψ
) ēα(ψ) = (0,

∂

∂yα |ψ
)

⇓
(x i , yα; z0, zα, vα) local coordinates on T ÃV ∗

µ : A+ → V ∗ the canonical projection
µ(ϕ) = ϕl linear map associated with ϕ

h : V ∗ → A+ Hamiltonian section of µ
h(x i , yα) = (x i ,−H(x j , yβ), yα)
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I T h : T ÃV ∗ → T ÃA+

T h(ã,Xα) = (ã, (Tαh)(Xα))
⇓

(T h,h) Lie algebroid morphism

λh = (T h,h)∗(λÃ) Ωh = (T h,h)∗(ΩÃ)

λÃ and ΩÃ are the Liouville section and the canonical symplectic section associated

with Ã

⇓
λh ∈ Γ((τ

τ∗V
Ã

)∗) Ωh ∈ Γ(Λ2(T ÃV ∗)∗)

Ωh = −dT ÃV∗
λh
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I pr1 : T ÃV ∗ → Ã the canonical projection on the first factor
⇓

(pr1, τ
∗
V ) Lie algebroid morphism

η : T ÃV ∗ → R (pr1, τ
∗
V )∗(1A) = η

η(ã,Xα) = 1A(ã) 1A is a 1-cocycle⇒ η is a 1-cocycle

⇓
(Ωh, η) is a cosymplectic structure on τ

τ∗V
Ã

: T ÃV ∗ → V ∗:
{η ∧ Ωh ∧ . . .(n · · · ∧ Ωh}(α) 6= 0, for all α ∈ V∗

dT ÃV∗
η = 0 dT ÃV∗

Ωh = 0
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Rh ∈ Γ(τ
τ∗V
Ã

) the Reeb section of (Ωh, η): iRhΩh = 0, iRhη = 1

Rh = ẽ0 + ∂H
∂yα

ẽα − (Cγ
αβyγ ∂H

∂yβ
+ ρi

α
∂H
∂x i − Cγ

0αyγ)ēα

⇓
the integral sections of Rh (i.e., the integral curves of the vector
field ρ

τ∗V
Ã

(Rh)) are just the solutions of the Hamilton equations
for h

dx i

dt
= ρi

0 +
∂H
∂yα

ρi
α

dyα
dt

= −ρi
α

∂H
∂x i + yγ(C

γ
0α + Cγ

βα

∂H
∂yβ

)
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(τ τA

Ã
: T ÃA→ A, [[·, ·]]τA

Ã
, ρτA

Ã
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{e0,eα} local basis of sections of τÃ adapted to 1A

⇓
{T̃0, T̃α, Ṽα} local basis of sections of τ τA

Ã

T̃0(a) = (e0(τA(a)), ρi
0
∂

∂x i |a
)

T̃α(a) = (eα(τA(a)), ρi
α

∂

∂x i |a
) Ṽα(a) = (0,

∂

∂yα |a
)

⇓
(x i , y0, yα, zα) local coordinates on T ÃA
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Diana Sosa Lagrangian submanifolds and dynamics on Lie affgebroids



Motivation
Lie affgebroids

Hamiltonian and Lagrangian formalism on Lie affgebroids
The prolongation of a symplectic Lie affgebroid

Lagrangian submanifolds and dynamics on a Lie affgebroid

The Hamiltonian formalism
The Lagrangian formalism
The Legendre transformation

Hamiltonian and Lagrangian formalism on Lie affgebroids
The Lagrangian formalism

(τA : A→ M, τV : V → M, ([[·, ·]]V ,D, ρA)) Lie affgebroid

(τ τA

Ã
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I {T̃ 0, T̃α, Ṽα} the dual basis of {T̃0, T̃α, Ṽα}
⇓

T̃ 0 = φ0 is globally defined and it is a 1-cocycle

• γ : I ⊆ R→ A is admissible if
˙̂

(τA ◦ γ) = ρÃ ◦ iA ◦ γ

or locally if γ(t) = (x i(t), yα(t)) and
dx i

dt
= ρi

0 + ρi
αyα

• ξ ∈ Γ(τ τA

Ã
) is a second order differential equation (SODE) on

A if the integral sections of ξ, that is, the integral curves of the
vector field ρτA

Ã
(ξ), are admissible.
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Ã
) is a second order differential equation (SODE) on

A if the integral sections of ξ, that is, the integral curves of the
vector field ρτA

Ã
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The Lagrangian formalism

I L : A→ R Lagrangian function

the Poincaré-Cartan 1-section and 2-section

ΘL = Lφ0 + (dT ÃAL) ◦ S ∈ Γ((τ τA

Ã
)∗)

ΩL = −dT ÃAΘL ∈ Γ(∧2(τ τA

Ã
)∗)

the vertical endomorphism S : A→ T ÃA⊗ (T ÃA)∗

S = (T̃α − yαT̃ 0)⊗ Ṽα
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• γ : I ⊆ R→ A is a solution of the Euler-Lagrange equations iff

i) γ is admissible

ii) i(iA(γ(t)),γ̇(t))ΩL(γ(t)) = 0

or locally γ(t) = (x i(t), yα(t)) and

dx i

dt
= ρi

0 + ρi
αyα d

dt
(
∂L
∂yα

) = ρi
α

∂L
∂x i + (Cγ

0α + Cγ
βαyβ)

∂L
∂yγ
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• L is regular iff the matrix (Wαβ) = (
∂2L

∂yα∂yβ
) is regular or,

equivalently, (ΩL, φ0) is a cosymplectic structure on T ÃA

• If L is regular
⇓

the Reeb section of (ΩL, φ0), RL, is the unique Lagrangian
SODE associated with L

⇓
the integral curves of the vector field ρτA

Ã
(RL) are solutions of

the Euler-Lagrange equations associated with L
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L : A→ R Lagrangian function
ΘL ∈ Γ((τ τA

Ã
)∗) the Poincaré-Cartan 1-section

the extended Legendre transformation
LegL : A→ A+ LegL(a)(b) = ΘL(a)(z)

a, b ∈ Ax , z ∈ (T ÃA)a : pr1(z) = iA(b)

the Legendre transformation
legL : A→ V ∗ legL = µ ◦ LegL

⇓
T legL : T ÃA→ T ÃV ∗ (T legL)(b̃,Xa) = (b̃, (TalegL)(Xa))
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T legL : T ÃA→ T ÃV ∗ (T legL)(b̃,Xa) = (b̃, (TalegL)(Xa))

Diana Sosa Lagrangian submanifolds and dynamics on Lie affgebroids



Motivation
Lie affgebroids

Hamiltonian and Lagrangian formalism on Lie affgebroids
The prolongation of a symplectic Lie affgebroid

Lagrangian submanifolds and dynamics on a Lie affgebroid

The Hamiltonian formalism
The Lagrangian formalism
The Legendre transformation

Hamiltonian and Lagrangian formalism on Lie affgebroids
The Legendre transformation and the equivalence between these formalisms

L : A→ R Lagrangian function
ΘL ∈ Γ((τ τA

Ã
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Proposition

The Lagrangian L is regular if and only if the Legendre
transformation legL : A→ V ∗ is a local diffeomorphism.

• L is hyperregular if legL is a global diffeomorphism

• If L is hyperregular
⇓

(T legL, legL) is a Lie algebroid isomorphism
⇓

h : V ∗ → A+ h = LegL ◦ leg−1
L
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Theorem

If the Lagrangian L is hyperregular then the Euler-Lagrange
section RL associated with L and the Hamiltonian section Rh

associated with h satisfy the following relation
Rh ◦ legL = T legL ◦ RL.

Moreover, if γ : I → A is a solution of the Euler-Lagrange
equations associated with L, then legL ◦ γ : I → V ∗ is a solution
of the Hamilton equations associated with h and, conversely, if
γ̄ : I → V ∗ is a solution of the Hamilton equations for h then
γ = leg−1

L ◦ γ̄ is a solution of the Euler-Lagrange equations for
L.
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The prolongation of a symplectic Lie affgebroid

Definition

Let be a Lie affgebroid τA : A→ M modelled on the Lie
algebroid τV : V → M. It is said to be a symplectic Lie
affgebroid if τV : V → M admits a symplectic section Ω, that is,
Ω is a section of the vector bundle ∧2V ∗ → M such that:

i) For all x ∈ M, the 2-form Ω(x) : Vx × Vx → R on the vector
space Vx is non-degenerate and

ii) Ω is a 2-cocycle, i.e., dV Ω = 0.
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The prolongation of a symplectic Lie affgebroid

Example

τA : A→ M Lie affgebroid modelled τV : V → M

η : T ÃV ∗ → R, η(ã,Xα) = 1A(ã), η is 1-cocycle

η−1{1} = ρ∗A(TV ∗) η−1{0} = T V V ∗

⇓
ρ∗A(TV ∗) is a Lie affgebroid over V ∗ π̃V∗ : ρ∗A(TV ∗)→ V ∗

π̃V∗(a,X ) = πV∗(X )

modelled on the Lie algebroid τ
τ∗V
V : T V V ∗ → V ∗ which admits a

canonical symplectic section ΩV

⇓
π̃V∗ : ρ∗A(TV ∗)→ V ∗ is symplectic Lie affgebroid
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The prolongation of a symplectic Lie affgebroid

(τA : A→ M, τV : V → M, ([[·, ·]]V ,D, ρA)) Lie affgebroid

• f ∈ C∞(M) the complete and vertical lift f c and f v of f to A
f c(a) = ρA(a)(f ) f v (a) = f (τA(a)) a ∈ A

• X̃ ∈ Γ(τÃ) ⇒ X̃ c , X̃ v ∈ X(Ã) ⇒ X̃ c , X̃ v ∈ Γ(τ
τÃ

Ã
) :

X̃ c(ã) = (X̃ (τÃ(ã)), X̃ c(ã)) X̃ v(ã) = (0(τÃ(ã)), X̃ v (ã))

• X ∈ Γ(τV ) ⇒ iV ◦ X ∈ Γ(τÃ) ⇒ (iV ◦ X )c
|A ∈ X(A)

(iV ◦ X )v
|A ∈ X(A)

⇒ the complete and vertical lift of X

X c = (iV ◦ X )c
|A ∈ Γ(τ τA

V ) X v = (iV ◦ X )v
|A ∈ Γ(τ τA

V )

Diana Sosa Lagrangian submanifolds and dynamics on Lie affgebroids



Motivation
Lie affgebroids

Hamiltonian and Lagrangian formalism on Lie affgebroids
The prolongation of a symplectic Lie affgebroid

Lagrangian submanifolds and dynamics on a Lie affgebroid

The prolongation of a symplectic Lie affgebroid

(τA : A→ M, τV : V → M, ([[·, ·]]V ,D, ρA)) Lie affgebroid

• f ∈ C∞(M) the complete and vertical lift f c and f v of f to A
f c(a) = ρA(a)(f ) f v (a) = f (τA(a)) a ∈ A
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τÃ

Ã
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The prolongation of a symplectic Lie affgebroid

Proposition

If α is a section of the vector bundle ∧kV ∗ → M, then there
exists a unique section αc of the vector bundle ∧k (T V A)∗ → A
such that

αc(X c
1 , . . . ,X

c
k ) = α(X1, . . . ,Xk )c

αc(X v
1 ,X

c
2 , . . . ,X

c
k ) = α(X1,X2, . . . ,Xk )v

αc(X v
1 , . . . ,X

v
s ,X

c
s+1, . . . ,X

c
k ) = 0 if 2 ≤ s ≤ k

for X1, . . . ,Xk ∈ Γ(τV ). Moreover, dT V Aαc = (dVα)c .

The section αc of the vector bundle ∧k (T V A)∗ → A is called the
complete lift of α
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The prolongation of a symplectic Lie affgebroid

Theorem

Let τA : A→ M be a symplectic Lie affgebroid modelled on the
Lie algebroid τV : V → M and Ω be a symplectic section of
τV : V → M. Then, the prolongation T AA of the Lie affgebroid A
over the projection τA : A→ M is a symplectic Lie affgebroid
and the complete lift Ωc of Ω to the prolongation T V A is a
symplectic section of τ τA

V : T V A→ A.
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Lagrangian submanifolds and dynamics on a Lie affgebroid

Definition

Let S be a submanifold of the symplectic Lie affgebroid A and
i : S → A be the canonical inclusion. Denote by τS

A : S → M the map
given by τS

A = τA ◦ i and suppose that
ρV (VτS

A (a)) + (Taτ
S
A )(TaS) = TτS

A (a)M, for all a ∈ S. Then, S is said to
be Lagrangian submanifold if the corresponding Lie subaffgebroid

(π̃S : ρ∗A(TS)→ S, τ τS
A

V : T V S → S) of the symplectic Lie affgebroid
(τ τA

A : T AA→ A, τ τA
V : T V A→ A) is Lagrangian*.

A Lie subaffgebroid of A is a Lie affgebroid morphism ((j : A′ 7→ A, i : M′ 7→ M),

(j l : V ′ 7→ V , i : M′ 7→ M)): j is injective and i is an injective inmersion

*A Lie subaffgebroid of a symplectic Lie affgebroid is Lagrangian if the corresponding

Lie subalgebroid is Lagrangian.
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Lagrangian submanifolds and dynamics on a Lie affgebroid

I (τA : A→ M, τV : V → M) Lie affgebroid

h : V ∗ → A+ Hamiltonian section

(Ωh, η) cosymplectic structure on T ÃV ∗

Rh ∈ Γ(τ
τ∗V
Ã

) the Reeb section

η(Rh) = 1⇒ Rh(V ∗) ⊆ ρ∗A(TV ∗)

Theorem

Sh = Rh(V ∗) Lagrangian submanifold of ρ∗A(TV ∗)

Ψh: {curves in V ∗} ←→ { curves in Sh}
c : I → V ∗ 7−→ Rh ◦ c : I → Sh
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I (τA : A→ M, τV : V → M) Lie affgebroid

h : V ∗ → A+ Hamiltonian section

(Ωh, η) cosymplectic structure on T ÃV ∗

Rh ∈ Γ(τ
τ∗V
Ã

) the Reeb section

η(Rh) = 1⇒ Rh(V ∗) ⊆ ρ∗A(TV ∗)

Theorem
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• γ : I → Sh ⊆ ρ∗A(TV ∗) ⊆ T ÃV ∗ ⊆ Ã× TV ∗

t 7→ (γ1(t), γ2(t))

is admissible if γ2 : I → TV ∗, γ2(t) = ċ(t)

c : I → V ∗, c = πV∗ ◦ γ2

πV∗ : TV ∗ → V ∗ the canonical projection

Theorem

Under the bijection Ψh, the admissible curves in the Lagrangian
submanifold Sh correspond with the solutions of the Hamilton
equations for h.
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I L : A→ R Lagrangian function

AA : ρ∗A(TV ∗)→ (T V A)∗ the canonical isomorphism
between pr1|ρ∗A(TV∗) : ρ∗A(TV ∗)→ A and (τ τA

V )∗ : (T V A)∗ → A

Theorem

SL = (A−1
A ◦ dT V AL)(A) Lagrangian submanifold of ρ∗A(TV ∗)

ΨL:{ curves in SL} ←→ { curves in A}
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• γ : I → SL ⊆ ρ∗A(TV ∗) ⊆ A× TV ∗, t 7→ (c(t), γ2(t))

is admissible if γ2 : I → TV ∗, γ2(t) = ċ∗(t)
c∗ : I → V ∗, c∗ = πV∗ ◦ γ2

Theorem

Under the bijection ΨL, the admissible curves in the Lagrangian
submanifold SL correspond with the solutions of the
Euler-Lagrange equations for L.
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I L : A→ R hyperregular Lagrangian

ΘL, ΩL = −dT ÃAΘL the Poincaré-Cartan sections

(iV , Id) : T V A→ T ÃA
(iV , Id)(v ,Xa) = (iV (v),Xa)

⇓
(iV , Id) is a Lie algebroid morphism over the identity of A

(ΩL, φ0) cosymplectic structure on T ÃA: (iV , Id)∗φ0 = 0
⇓

(iV , Id)∗ΩL is a symplectic section of τ τA
V : T V A→ A

⇓
(τ τA

A : T AA→ A, τ τA
V : T V A→ A) is a symplectic Lie affgebroid
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RL the Reeb section of (ΩL, φ0): φ0(RL) = 1

⇓
RL ∈ Γ(τ τA

A )

Theorem

SRL
= RL(A) Lagrangian submanifold of T AA

ΨSRL
: { curves in SRL

} ←→ { curves in A}
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Lagrangian submanifolds and dynamics on a Lie affgebroid

• γ : I → SRL
⊆ T AA ⊆ A× TA, t 7→ (γ1(t), γ2(t))

is admissible if γ2 : I → TA, γ2(t) = ċ(t)
c = πA ◦ γ2 : I → A

Theorem

If the Lagrangian L is hyperregular then under the bijection
ΨSRL

the admissible curves in the Lagrangian submanifold SRL

correspond with the solutions of the Euler-Lagrange equations
for L.
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L : A→ R hyperregular⇒ legL : A→ V ∗ global diffeom.

h : V ∗ → A+ Hamiltonian section h = LegL ◦ leg−1
L

The Lagrangian submanifolds SL and Sh of the symplectic Lie
affgebroid ρ∗A(TV ∗)

The Lagrangian submanifold SRL of the symplectic Lie affgebroid
T AA

Theorem

If the Lagrangian function L : A→ R is hyperregular and
h : V ∗ → A+ is the corresponding Hamiltonian section then the
Lagrangian submanifolds SL and Sh are equal and

T legL(SRL
) = SL = Sh
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