

Groupoids

Integrability

Applications of . . .

Integrability of Lie Algebroids: Theory and Applications

Rui Loja Fernandes IST-Lisbon

August, 2005

Close

Main Reference:

M. Crainic and R.L. Fernandes, Lectures on Integrability of Lie brackets

soon available on the web page:

http://www.math.ist.utl.pt/~rfern/

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 2 of 45 Go Back Full Screen Close

Main Reference:

M. Crainic and R.L. Fernandes, Lectures on Integrability of Lie brackets

soon available on the web page:

http://www.math.ist.utl.pt/~rfern/

Plan of the Talk:

- 1. Lie algebroids
- 2. Lie groupoids
- 3. Integrability
- 4. Applications of integrability

Lie Algebroids
Groupoids
Integrability
Applications of...

Full Screen

Close

Lie algebroids are *geometric* vector bundles:

Lie algebroids are *geometric* vector bundles:

Definition. A Lie algebroid over a smooth manifold M is a vector bundle $\pi: A \to M$ with:

	0					
Grou	ıpoids					
Integrability						
App	Applications of					
	Ноте	e Page				
	Title	Page				
П	44	>>				
	4	•				
_						
	Page .	3 of 45				
Go Back						
	Full S	Screen				
	CI	ose				
	CI	036				
Quit						

Lie algebroids are *geometric* vector bundles:

Definition. A **Lie algebroid** over a smooth manifold M is a vector bundle $\pi : A \to M$ with:

• a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \to \Gamma(A);$

Lie Algebroids
Groupoids
Integrability
Applications of...

Close

Lie algebroids are *geometric* vector bundles:

Definition. A **Lie algebroid** over a smooth manifold M is a vector bundle $\pi : A \to M$ with:

- a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \to \Gamma(A);$
- a bundle map $\#: A \to TM$, called the *anchor*;

LIC	Aigebioic	13			
Gr	oupoids				
Integrability					
Αp	plications	of			
	Ноте	e Page			
	T'	_			
	I itle	Page			
	44	>>			
	•	•			
	Page	3 of 45			
	- ruge	7 07 10			
	Go I	Back			
	EII 6	Screen			
	- Full 3	Screen			
	Cle	ose			
	0				

Lie algebroids are *geometric* vector bundles:

Definition. A **Lie algebroid** over a smooth manifold M is a vector bundle $\pi : A \to M$ with:

- a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \to \Gamma(A);$
- a bundle map $\#: A \to TM$, called the *anchor*; and they are compatible.

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 3 of 45 Go Back Full Screen Close Quit

Lie algebroids are *geometric* vector bundles:

Definition. A **Lie algebroid** over a smooth manifold M is a vector bundle $\pi : A \to M$ with:

- a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \to \Gamma(A);$
- a bundle map $\#: A \to TM$, called the *anchor*; and they are compatible.

Lemma. The anchor $\#: \Gamma(A) \to \mathfrak{X}^1(M)$ is a Lie algebra homomorphism.

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 3 of 45 Go Back Full Screen Close

Lie algebroids are *geometric* vector bundles:

Definition. A **Lie algebroid** over a smooth manifold M is a vector bundle $\pi : A \to M$ with:

- a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \to \Gamma(A);$
- a bundle map $\#: A \to TM$, called the *anchor*; and they are compatible.

Lemma. The anchor $\# : \Gamma(A) \to \mathfrak{X}^1(M)$ is a Lie algebra homomorphism.

Definition. A morphism of Lie algebroids is a bundle map $\phi: A_1 \to A_2$ which preserves anchors and brackets.

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 3 of 45 Go Back Full Screen Close Quit

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

• The isotropy Lie algebra at $x \in M$:

$$\mathfrak{g}_x \equiv \operatorname{Ker} \#_x$$
.

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

• The isotropy Lie algebra at $x \in M$:

$$\mathfrak{g}_x \equiv \operatorname{Ker} \#_x.$$

• The characteristic foliation \mathcal{F} , which is the singular foliation of M determined by:

$$x \mapsto \mathcal{D}_x \equiv \operatorname{Im} \#_x$$
.

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

• The isotropy Lie algebra at $x \in M$:

$$\mathfrak{g}_x \equiv \operatorname{Ker} \#_x$$
.

• The characteristic foliation \mathcal{F} , which is the singular foliation of M determined by:

$$x \mapsto \mathcal{D}_x \equiv \operatorname{Im} \#_x$$
.

Restricting to a leaf L of \mathcal{F} we have the **short exact sequence of** L:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \stackrel{\#}{\longrightarrow} TL \longrightarrow 0$$

where $\mathfrak{g}_L = \bigcup_{x \in L} \mathfrak{g}_x$.

Close

EXAMPLES	A
Ordinary Geometry $(M \text{ a manifold})$	TM
, (D)	M
Lie Theory (g a Lie algebra)	g
	γ {*}
Foliation Theory $(\mathcal{F} \text{ a regular foliation})$	$T\mathcal{F}$
	M
Equivariant Geometry $(\rho: \mathfrak{g} \to \mathfrak{X}(M) \text{ an action})$	$M imes \mathfrak{g}$
	M
Presymplectic Geometry $(M \text{ presymplectic})$	$TM imes \mathbb{R}$
D: C	$\stackrel{lat}{M}$
Poisson Geometry (M Poisson)	T^*M
	M

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page **5** of **45**

Go Back

Full Screen

Close

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page **>>** Page 6 of 45 Go Back Full Screen

Close

• A-differential forms: $\Omega^{\bullet}(A) = \Gamma(\wedge^{\bullet}A^*)$.

- A-differential forms: $\Omega^{\bullet}(A) = \Gamma(\wedge^{\bullet}A^*)$.
- A-differential: $d_A: \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A)$

$$d_A Q(\alpha_0, \dots, \alpha_r) \equiv \sum_{k=0}^{r+1} (-1)^k \# \alpha_k (Q(\alpha_0, \dots, \widehat{\alpha}_k, \dots, \alpha_r))$$

+
$$\sum_{k < l} (-1)^{k+l+1} Q([\alpha_k, \alpha_l], \alpha_0, \dots, \widehat{\alpha}_k, \dots, \widehat{\alpha}_l, \dots, \alpha_r).$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 6 of 45

Go Back

Full Screen

Close

- A-differential forms: $\Omega^{\bullet}(A) = \Gamma(\wedge^{\bullet}A^*)$.
- A-differential: $d_A: \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A)$

$$d_A Q(\alpha_0, \dots, \alpha_r) \equiv \sum_{k=0}^{r+1} (-1)^k \# \alpha_k (Q(\alpha_0, \dots, \widehat{\alpha}_k, \dots, \alpha_r))$$

+
$$\sum_{k < l} (-1)^{k+l+1} Q([\alpha_k, \alpha_l], \alpha_0, \dots, \widehat{\alpha}_k, \dots, \widehat{\alpha}_l, \dots, \alpha_r).$$

• A-Lie derivative: $\mathcal{L}_{\alpha}: \Omega^{\bullet}(A) \to \Omega^{\bullet}(A)$

$$\mathcal{L}_{\alpha}Q(\alpha_1,\ldots,\alpha_r)\equiv\sum_{k=1}^rQ(\alpha_1,\ldots,[\alpha,\alpha_k],\ldots,\alpha_r).$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 6 of 45

Go Back

Full Screen

Close

- A-differential forms: $\Omega^{\bullet}(A) = \Gamma(\wedge^{\bullet}A^*)$.
- A-differential: $d_A: \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A)$

$$d_A Q(\alpha_0, \dots, \alpha_r) \equiv \sum_{k=0}^{r+1} (-1)^k \# \alpha_k (Q(\alpha_0, \dots, \widehat{\alpha}_k, \dots, \alpha_r))$$

+
$$\sum_{k < l} (-1)^{k+l+1} Q([\alpha_k, \alpha_l], \alpha_0, \dots, \widehat{\alpha}_k, \dots, \widehat{\alpha}_l, \dots, \alpha_r).$$

• A-Lie derivative: $\mathcal{L}_{\alpha}: \Omega^{\bullet}(A) \to \Omega^{\bullet}(A)$

$$\mathcal{L}_{\alpha}Q(\alpha_1,\ldots,\alpha_r)\equiv\sum_{k=1}^rQ(\alpha_1,\ldots,[\alpha,\alpha_k],\ldots,\alpha_r).$$

• Lie algebroid cohomology: $H^{\bullet}(A) \equiv \frac{\operatorname{Ker} d_A}{\operatorname{Im} d_A}$ (in general, it is very hard to compute...)

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 6 of 45

Go Back

Full Screen

Close

EXAMPLES	A	$H^{\bullet}(A)$
Ordinary Geometry $(M \text{ a manifold})$	TM \downarrow M	de Rham cohomology
Lie Theory (g a Lie algebra)	g *}	Lie algebra cohomology
Foliation Theory $(\mathcal{F} \text{ a regular foliation})$	$T\mathcal{F}$ \downarrow M	foliated cohomology
Equivariant Geometry $(\rho: \mathfrak{g} \to \mathfrak{X}(M) \text{ an action})$	$M imes \mathfrak{g}$ \bigvee_{M}	invariant cohomology
Poisson Geometry (M Poisson)	T*M	Poisson cohomology

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 7 of 45

Go Back

Full Screen

Close

2. Groupoids

Definition. A **groupoid** is a small category where every arrow is invertible.

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 8 of 45

Go Back

Full Screen

Close

Quit

2. Groupoids

Definition. A **groupoid** is a small category where every arrow is invertible.

 $\mathcal{G} \equiv \{\text{arrows}\}$ $M \equiv \{\text{objects}\}.$

 \bullet source and target maps:

$$\mathcal{G} \xrightarrow{\mathbf{t}} M$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 9 of 45

Go Back

Full Screen

Close

• source and target maps:

hg

 $\mathbf{s}(h) = \mathbf{t}(g)$

$$\mathcal{G} \xrightarrow{\mathbf{t}} M$$

• product:

 $\mathbf{t}(h)$

$$\mathcal{G}^{(2)} = \{(h,g) \in \mathcal{G} \times \mathcal{G} : \mathbf{s}(h) = \mathbf{t}(g)\}$$

$$R_g: \mathbf{s}^{-1}(\mathbf{t}(g)) \to \mathbf{s}^{-1}(\mathbf{s}(g))$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 9 of 45

Go Back

Full Screen

Close

• source and target maps:

$$\mathcal{G} \xrightarrow{\mathbf{t}} M$$

• product:

$$\mathcal{G}^{(2)} = \{(h,g) \in \mathcal{G} \times \mathcal{G} : \mathbf{s}(h) = \mathbf{t}(g)\}$$

$$R_g: \mathbf{s}^{-1}(\mathbf{t}(g)) \to \mathbf{s}^{-1}(\mathbf{s}(g))$$

• identity: $\epsilon: M \hookrightarrow \mathcal{G}$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 9 of 45

Go Back

Full Screen

Close

• source and target maps:

$$\mathcal{G} \xrightarrow{\mathbf{t}} M$$

• product:

$$\begin{array}{c|c}
hg \\
\hline
 & \\
\bullet \\
\mathbf{t}(h) & \mathbf{s}(h) = \mathbf{t}(g) & \mathbf{s}(g)
\end{array}$$

$$\mathcal{G}^{(2)} = \{(h,g) \in \mathcal{G} \times \mathcal{G} : \mathbf{s}(h) = \mathbf{t}(g)\}$$

$$m:\mathcal{G}^{(2)}\to\mathcal{G}$$

$$R_g: \mathbf{s}^{-1}(\mathbf{t}(g)) \to \mathbf{s}^{-1}(\mathbf{s}(g))$$

• inverse:
$$\iota:\mathcal{G}\longrightarrow\mathcal{G}$$

$$\mathbf{t}(g) \bullet \underbrace{g}_{g^{-1}} \bullet \mathbf{s}(g)$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Go Back

Full Screen

Close

For any groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ we have:

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 10 of 45

Go Back

Full Screen

Close

For any groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ we have:

• The **isotropy group** at $x \in M$:

$$\mathcal{G}_x = \{g \in \mathcal{G} : \mathbf{s}(g) = \mathbf{t}(g) = x\}.$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 10 of 45

Go Back

Full Screen

Close

For any groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ we have:

• The **isotropy group** at $x \in M$:

$$\mathcal{G}_x = \{g \in \mathcal{G} : \mathbf{s}(g) = \mathbf{t}(g) = x\}.$$

• The **orbit** through $x \in M$:

$$\mathcal{O}_x = \{ y \in M : \mathbf{s}(g) = x, \ \mathbf{t}(g) = y, \text{ for some } g \in \mathcal{G} \}.$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 10 of 45

Go Back

Full Screen

Close

For any groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ we have:

• The **isotropy group** at $x \in M$:

$$\mathcal{G}_x = \{g \in \mathcal{G} : \mathbf{s}(g) = \mathbf{t}(g) = x\}.$$

• The **orbit** through $x \in M$:

$$\mathcal{O}_x = \{ y \in M : \mathbf{s}(g) = x, \ \mathbf{t}(g) = y, \text{ for some } g \in \mathcal{G} \}.$$

Just like groups, one can consider various classes of groupoids:

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 10 of 45

Go Back

Full Screen

Close

For any groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ we have:

• The **isotropy group** at $x \in M$:

$$\mathcal{G}_x = \{g \in \mathcal{G} : \mathbf{s}(g) = \mathbf{t}(g) = x\}.$$

• The **orbit** through $x \in M$:

$$\mathcal{O}_x = \{ y \in M : \mathbf{s}(g) = x, \ \mathbf{t}(g) = y, \text{ for some } g \in \mathcal{G} \}.$$

Just like groups, one can consider various classes of groupoids:

Definition. A Lie groupoid is a groupoid where everything is C^{∞} and $\mathbf{s}, \mathbf{t} : \mathcal{G} \to M$ are submersions.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 10 of 45

Go Back

Full Screen

Close

For any groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ we have:

• The **isotropy group** at $x \in M$:

$$\mathcal{G}_x = \{g \in \mathcal{G} : \mathbf{s}(g) = \mathbf{t}(g) = x\}.$$

• The **orbit** through $x \in M$:

$$\mathcal{O}_x = \{ y \in M : \mathbf{s}(g) = x, \ \mathbf{t}(g) = y, \text{ for some } g \in \mathcal{G} \}.$$

Just like groups, one can consider various classes of groupoids:

Definition. A Lie groupoid is a groupoid where everything is C^{∞} and $\mathbf{s}, \mathbf{t} : \mathcal{G} \to M$ are submersions.

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds $(M, \mathbf{s} \text{ and } \mathbf{t}\text{-fibers},...)$ are.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 10 of 45

Go Back

Full Screen

Close

Lie Groupoids

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi: A \to M$, such that:

Lie Algebroids				
Groupoids				
Integrability				
Applications of				
Home Page				
Title Page				
44 >>				
Page 11 of 45				
Go Back				
F./// C				
Full Screen				
Close				
2,000				
Quit				

Lie Groupoids

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi : A \to M$, such that:

• Each \mathcal{G}_x is a Lie group with Lie algebra \mathfrak{g}_x ;

Lie Algebroids				
Groupoids				
Integrability				
Applications of				
Home Page				
Title Page				
44 \ \				
*				
Page 11 of 45				
1 486 22 61 10				
Go Back				
Full Screen				
Close				

Lie Groupoids

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi : A \to M$, such that:

- Each \mathcal{G}_x is a Lie group with Lie algebra \mathfrak{g}_x ;
- The orbits of G are the leaves of A, provided the source fibers are connected.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 11 of 45

Go Back

Full Screen

Close

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi : A \to M$, such that:

- Each \mathcal{G}_x is a Lie group with Lie algebra \mathfrak{g}_x ;
- The orbits of G are the leaves of A, provided the source fibers are connected.

Lie Algebroids
Groupoids
Integrability

Applications of . . .

Home Page
Title Page

Page 11 of 45

Go Back

Full Screen

Close

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi : A \to M$, such that:

- Each \mathcal{G}_x is a Lie group with Lie algebra \mathfrak{g}_x ;
- The orbits of G are the leaves of A, provided the source fibers are connected.

Lie Algebroids
Groupoids
Integrability
Applications of . . .

Close

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi : A \to M$, such that:

- Each \mathcal{G}_x is a Lie group with Lie algebra \mathfrak{g}_x ;
- The orbits of G are the leaves of A, provided the source fibers are connected.

Lie Algebroids

Groupoids

Integrability

Applications of...

Go Back

Full Screen

Close

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi : A \to M$, such that:

- Each \mathcal{G}_x is a Lie group with Lie algebra \mathfrak{g}_x ;
- The orbits of G are the leaves of A, provided the source fibers are connected.

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 11 of 45

Go Back

Full Screen

Close

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi: A \to M$, such that:

- Each \mathcal{G}_x is a Lie group with Lie algebra \mathfrak{g}_x ;
- The orbits of G are the leaves of A, provided the source fibers are connected.

A=Ker d s
$$\Big|_{M}$$
 #= dt $\Big|_{A}$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

→

Page 11 of 45

Go Back

Full Screen

Close

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi : A \to M$, such that:

- Each \mathcal{G}_x is a Lie group with Lie algebra \mathfrak{g}_x ;
- The orbits of G are the leaves of A, provided the source fibers are connected.

A=Ker d s
$$\Big|_{M}$$
 #= dt $\Big|_{A}$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Page 11 of 45

Go Back

Full Screen

Close

Proposition. Every Lie groupoid $\mathcal{G} \xrightarrow{\mathbf{t}} M$ determines a Lie algebroid $\pi: A \to M$, such that:

- Each \mathcal{G}_x is a Lie group with Lie algebra \mathfrak{g}_x ;
- The orbits of G are the leaves of A, provided the source fibers are connected.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 11 of 45

Go Back

Full Screen

Close

EXAMPLES	A	$H^{\bullet}(A)$	\mathcal{G}
Ordinary Geometry $(M \text{ a manifold})$	TM \downarrow M	de Rham cohomology	$M \times M$ $\Pi_1(M)$ W W W M
Lie Theory (g a Lie algebra)	g 	Lie algebra cohomology	<i>G</i>
Foliation Theory $(\mathcal{F} \text{ a regular foliation})$	$T\mathcal{F}$ \downarrow M	foliated cohomology	$\begin{array}{ccc} \operatorname{Hol}(\mathcal{F}) & \Pi_1(\mathcal{F}) \\ & & & \\ & \downarrow & & \\ M & M \end{array}$
Equivariant Geometry $(\rho: \mathfrak{g} \to \mathfrak{X}(M) \text{ an action})$	$M \times \mathfrak{g}$ \downarrow M	invariant cohomology	$G\times M\\ \bigcup_{\forall\forall\\M}$
Poisson Geometry (M Poisson)	T^*M \downarrow M	Poisson cohomology	???

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 12 of 45

Go Back

Full Screen

Close

3. Integrability

Problem. Given a Lie algebroid A is there always a Lie groupoid G whose associated algebroid is A?

We will see that the answer is no and we will see why not.

Proposition. For every Lie groupoid \mathcal{G} there exists a unique source simply-connected Lie groupoid $\tilde{\mathcal{G}}$ with the same associated Lie algebroid.

Lie Algebroids

Groupoids

Integrability

Applications of...

Go Back

Full Screen

Close

Proposition. For every Lie groupoid \mathcal{G} there exists a unique source simply-connected Lie groupoid $\tilde{\mathcal{G}}$ with the same associated Lie algebroid.

Construction is similar to Lie group case:

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 14 of 45 Go Back Full Screen Close

Proposition. For every Lie groupoid \mathcal{G} there exists a unique source simply-connected Lie groupoid $\tilde{\mathcal{G}}$ with the same associated Lie algebroid.

Construction is similar to Lie group case:

•
$$P(\mathcal{G}) = \{g : I \to \mathcal{G} | \mathbf{s}(g(t)) = x, \ g(0) = 1_x\};$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Go Back

Full Screen

Close

Proposition. For every Lie groupoid \mathcal{G} there exists a unique source simply-connected Lie groupoid $\tilde{\mathcal{G}}$ with the same associated Lie algebroid.

Construction is similar to Lie group case:

- $P(G) = \{g : I \to G | \mathbf{s}(g(t)) = x, \ g(0) = 1_x \};$
- $g_0 \sim g_1$ iff there exists homotopy $g_{\varepsilon} \in P(\mathcal{G}), \ \varepsilon \in [0, 1];$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 14 of 45

Go Back

Full Screen

Close

Proposition. For every Lie groupoid \mathcal{G} there exists a unique source simply-connected Lie groupoid $\tilde{\mathcal{G}}$ with the same associated Lie algebroid.

Construction is similar to Lie group case:

- $P(\mathcal{G}) = \{g : I \to \mathcal{G} | \mathbf{s}(g(t)) = x, \ g(0) = 1_x\};$
- $g_0 \sim g_1$ iff there exists homotopy $g_{\varepsilon} \in P(\mathcal{G}), \ \varepsilon \in [0, 1];$
- The product $g \cdot g'$ is defined if $\mathbf{t}(g'(1)) = \mathbf{s}(g(0))$. It is given by:

$$g \cdot g'(t) = \begin{cases} g'(2t), & 0 \le t \le \frac{1}{2} \\ g(2t-1)g'(1), & \frac{1}{2} < t \le 1. \end{cases}$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 14 of 45

Go Back

Full Screen

Close

Proposition. For every Lie groupoid \mathcal{G} there exists a unique source simply-connected Lie groupoid $\tilde{\mathcal{G}}$ with the same associated Lie algebroid.

Construction is similar to Lie group case:

- $P(G) = \{g : I \to G | \mathbf{s}(g(t)) = x, \ g(0) = 1_x \};$
- $g_0 \sim g_1$ iff there exists homotopy $g_{\varepsilon} \in P(\mathcal{G}), \ \varepsilon \in [0, 1];$
- The product $g \cdot g'$ is defined if $\mathbf{t}(g'(1)) = \mathbf{s}(g(0))$. It is given by:

$$g \cdot g'(t) = \begin{cases} g'(2t), & 0 \le t \le \frac{1}{2} \\ g(2t-1)g'(1), & \frac{1}{2} < t \le 1. \end{cases}$$

The quotient gives the **monodromy groupoid**:

$$\tilde{\mathcal{G}} \equiv P(\mathcal{G}) / \sim \Longrightarrow M$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 14 of 45

Go Back

Full Screen

Close

Lemma. The map $D^R: P(\mathcal{G}) \to P(A)$ defined by

$$(D^R g)(t) \equiv \frac{d}{ds} g(s) g^{-1}(t) \bigg|_{s=t}$$

is a homeomorphism onto

$$P(A) \equiv \left\{ a: I \to A | \frac{d}{dt} \pi(a(t)) = \#a(t) \right\}$$
 $(A-paths).$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 15 of 45

Go Back

Full Screen

Close

Lemma. The map $D^R: P(\mathcal{G}) \to P(A)$ defined by

$$(D^R g)(t) \equiv \frac{d}{ds} g(s) g^{-1}(t) \bigg|_{s=t}$$

is a homeomorphism onto

$$P(A) \equiv \left\{ a: I \to A | \frac{d}{dt} \pi(a(t)) = \#a(t) \right\}$$
 (A-paths).

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 15 of 45

Go Back

Full Screen

Close

Lemma. The map $D^R: P(\mathcal{G}) \to P(A)$ defined by

$$(D^R g)(t) \equiv \frac{d}{ds} g(s) g^{-1}(t) \bigg|_{s=t}$$

is a homeomorphism onto

$$P(A) \equiv \left\{ a: I \to A | \frac{d}{dt} \pi(a(t)) = \#a(t) \right\}$$
 (A-paths).

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 15 of 45

Go Back

Full Screen

Close

Lemma. The map $D^R: P(\mathcal{G}) \to P(A)$ defined by

$$(D^R g)(t) \equiv \frac{d}{ds} g(s) g^{-1}(t) \bigg|_{s=t}$$

is a homeomorphism onto

$$P(A) \equiv \left\{ a: I \to A | \frac{d}{dt} \pi(a(t)) = \#a(t) \right\}$$
 (A-paths).

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 15 of 45

Go Back

Full Screen

Close

Lemma. The map $D^R: P(\mathcal{G}) \to P(A)$ defined by

$$(D^R g)(t) \equiv \frac{d}{ds} g(s) g^{-1}(t) \bigg|_{s=t}$$

is a homeomorphism onto

$$P(A) \equiv \left\{ a: I \to A | \frac{d}{dt} \pi(a(t)) = \#a(t) \right\}$$
 (A-paths).

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 15 of 45

Go Back

Full Screen

Close

Lemma. The map $D^R: P(\mathcal{G}) \to P(A)$ defined by

$$(D^R g)(t) \equiv \frac{d}{ds} g(s) g^{-1}(t) \bigg|_{s=t}$$

is a homeomorphism onto

$$P(A) \equiv \left\{ a: I \to A | \frac{d}{dt} \pi(a(t)) = \#a(t) \right\}$$
 (A-paths).

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Go Back

Full Screen

Close

Lemma. The map $D^R: P(\mathcal{G}) \to P(A)$ defined by

$$(D^R g)(t) \equiv \frac{d}{ds} g(s) g^{-1}(t) \bigg|_{s=t}$$

is a homeomorphism onto

$$P(A) \equiv \left\{ a: I \to A | \frac{d}{dt} \pi(a(t)) = \#a(t) \right\}$$
 (A-paths).

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 15 of 45

Go Back

Full Screen

Close

Lemma. The map $D^R: P(\mathcal{G}) \to P(A)$ defined by

$$(D^R g)(t) \equiv \frac{d}{ds} g(s) g^{-1}(t) \bigg|_{s=t}$$

is a homeomorphism onto

$$P(A) \equiv \left\{ a: I \to A | \frac{d}{dt} \pi(a(t)) = \#a(t) \right\}$$
 $(A-paths).$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 15 of 45

Go Back

Full Screen

Close

Can transport " \sim " and " \cdot " to P(A):

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 16 of 45

Go Back

Full Screen

Close

Can transport " \sim " and " \cdot " to P(A):

• The **product** of A-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ 2a(2t-1), & \frac{1}{2} < t \le 1. \end{cases}$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 16 of 45

Go Back

Full Screen

Close

Can transport " \sim " and " \cdot " to P(A):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ 2a(2t-1), & \frac{1}{2} < t \le 1. \end{cases}$$

• *A***-homotopy** of *A*-paths:

there exists homotopy
$$a_{\varepsilon} \in P(A), \ \varepsilon \in [0,1], \ \text{s.t.}$$

$$\int_0^t \phi_{\xi_{\epsilon}}^{t,s} \frac{d\xi_{\epsilon}}{d\epsilon}(s,\gamma_{\epsilon}(s)) ds = 0$$
where $\xi_{\epsilon}(t,\cdot)$ is a time-depending section of A extending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s)).$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 16 of 45

Go Back

Full Screen

Close

Can transport " \sim " and " \cdot " to P(A):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ 2a(2t-1), & \frac{1}{2} < t \le 1. \end{cases}$$

• A-homotopy of A-paths:

there exists homotopy $a_{\varepsilon} \in P(A), \ \varepsilon \in [0,1], \ \text{s.t.}$ $\int_0^t \phi_{\xi_{\epsilon}}^{t,s} \frac{d\xi_{\epsilon}}{d\epsilon}(s, \gamma_{\epsilon}(s)) ds = 0$ where $\xi_{\epsilon}(t, \cdot)$ is a time-depending section of A extending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s)).$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 16 of 45

Go Back

Full Screen

Close

Can transport " \sim " and " \cdot " to P(A):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ 2a(2t-1), & \frac{1}{2} < t \le 1. \end{cases}$$

• *A***-homotopy** of *A*-paths:

there exists homotopy $a_{\varepsilon} \in P(A), \ \varepsilon \in [0,1], \ \text{s.t.}$ $a_0 \sim a_1 \text{ iff} \qquad \int_0^t \phi_{\xi_{\epsilon}}^{t,s} \frac{d\xi_{\epsilon}}{d\epsilon}(s,\gamma_{\epsilon}(s)) ds = 0$ where $\xi_{\epsilon}(t,\cdot)$ is a time-depending section of A

extending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s))$.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 16 of 45

Go Back

Full Screen

Close

Can transport " \sim " and " \cdot " to P(A):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ 2a(2t-1), & \frac{1}{2} < t \le 1. \end{cases}$$

• A-homotopy of A-paths:

there exists homotopy
$$a_{\varepsilon} \in P(A), \ \varepsilon \in [0,1], \ \text{s.t.}$$

$$\int_0^t \phi_{\xi_{\epsilon}}^{t,s} \frac{d\xi_{\epsilon}}{d\epsilon}(s,\gamma_{\epsilon}(s)) ds = 0$$
where $\xi_{\epsilon}(t,\cdot)$ is a time-depending section of A

extending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s))$.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 16 of 45

Go Back

Full Screen

Close

Can transport " \sim " and " \cdot " to P(A):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ 2a(2t-1), & \frac{1}{2} < t \le 1. \end{cases}$$

• A-homotopy of A-paths:

there exists homotopy $a_{\varepsilon} \in P(A), \ \varepsilon \in [0,1], \ \text{s.t.}$ $a_0 \sim a_1 \text{ iff} \qquad \int_0^t \phi_{\xi_{\epsilon}}^{t,s} \frac{d\xi_{\epsilon}}{d\epsilon}(s,\gamma_{\epsilon}(s)) ds = 0$ where $\xi_{\epsilon}(t,\cdot)$ is a time-depending section of A

extending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s))$.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 16 of 45

Go Back

Full Screen

Close

Can transport " \sim " and " \cdot " to P(A):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ 2a(2t-1), & \frac{1}{2} < t \le 1. \end{cases}$$

• A-homotopy of A-paths:

there exists homotopy
$$a_{\varepsilon} \in P(A), \ \varepsilon \in [0,1], \ \text{s.t.}$$

$$\int_0^t \phi_{\xi_{\epsilon}}^{t,s} \frac{d\xi_{\epsilon}}{d\epsilon}(s,\gamma_{\epsilon}(s)) ds = 0$$
where $\xi_{\epsilon}(t,\cdot)$ is a time-depending section of A

extending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s))$.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 16 of 45

Go Back

Full Screen

Close

Can transport " \sim " and " \cdot " to P(A):

• The **product** of A-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ 2a(2t-1), & \frac{1}{2} < t \le 1. \end{cases}$$

• A-homotopy of A-paths:

there exists homotopy $a_{\varepsilon} \in P(A), \ \varepsilon \in [0,1], \ \text{s.t.}$

$$a_0 \sim a_1 \text{ iff}$$

$$\int_0^t \phi_{\xi_{\epsilon}}^{t,s} \frac{d\xi_{\epsilon}}{d\epsilon}(s, \gamma_{\epsilon}(s)) ds = 0$$

where $\xi_{\epsilon}(t,\cdot)$ is a time-depending section of A extending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s))$.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 16 of 45

Go Back

Full Screen

Close

Observe that:

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 17 of 45

Go Back

Full Screen

Close

Observe that:

• An A-path is a Lie algebroid map $TI \to A$;

Lie Algebroids			
Groupoids			
Integrability			
Applications of			
Home Page			
Title Page			
44 >>			
Page 17 of 45			
Go Back			
Full Screen			
Close			
Ciose			
Quit			

Observe that:

- An A-path is a Lie algebroid map $TI \to A$;
- An A-homotopy is a Lie algebroid map $T(I \times I) \to A$;

Lie Algebroids
Groupoids
Integrability
Applications of . . .

Go Back

Full Screen

Close

Observe that:

- An A-path is a Lie algebroid map $TI \to A$;
- An A-homotopy is a Lie algebroid map $T(I \times I) \to A$;

Both notions do not depend on the existence of \mathcal{G} . They can be expressed solely in terms of data in A!

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 17 of 45

Go Back

Full Screen

Close

The Universal Groupoid

Observe that:

- An A-path is a Lie algebroid map $TI \to A$;
- An A-homotopy is a Lie algebroid map $T(I \times I) \to A$;

Both notions do not depend on the existence of \mathcal{G} . They can be expressed solely in terms of data in A!

For any Lie algebroid A, define a groupoid:

$$\mathcal{G}(A) = P(A) / \sim \text{ where } \begin{vmatrix} \mathbf{s} : \mathcal{G}(A) \to M, & [a] \mapsto \pi(a(0)) \\ \mathbf{t} : \mathcal{G}(A) \to M, & [a] \mapsto \pi(a(1)) \\ M \hookrightarrow \mathcal{G}(A), & x \mapsto [0_x] \end{vmatrix}$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 17 of 45

Go Back

Full Screen

Close

The Universal Groupoid

Observe that:

- An A-path is a Lie algebroid map $TI \to A$;
- An A-homotopy is a Lie algebroid map $T(I \times I) \to A$;

Both notions do not depend on the existence of \mathcal{G} . They can be expressed solely in terms of data in A!

For any Lie algebroid A, define a groupoid:

$$\mathcal{G}(A) = P(A) / \sim \text{ where } \begin{vmatrix} \mathbf{s} : \mathcal{G}(A) \to M, & [a] \mapsto \pi(a(0)) \\ \mathbf{t} : \mathcal{G}(A) \to M, & [a] \mapsto \pi(a(1)) \\ M \hookrightarrow \mathcal{G}(A), & x \mapsto [0_x] \end{vmatrix}$$

Proposition. G(A) is a topological groupoid with source simply-connected fibers.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 17 of 45

Go Back

Full Screen

Close

EXAMPLES	A	$H^{\bullet}(A)$	G	$\mathcal{G}(A)$
Ordinary Geometry $(M \text{ a manifold})$	TM \downarrow \downarrow M	de Rham cohomology	$M \times M$ $\downarrow \downarrow $	$\Pi_1(M)$ \bigvee_{W} M
Lie Theory (g a Lie algebra)	\$ \ \ {*}	Lie algebra cohomology	G 	Duistermaat-Kolk construction of G
Foliation Theory $(\mathcal{F} \text{ a regular foliation})$	$T\mathcal{F}$ \downarrow M	foliated cohomology	Hol 	$\Pi_1(\mathcal{F})$ \bigvee_{W} M
Equivariant Geometry $(\rho: \mathfrak{g} \to \mathfrak{X}(M) \text{ an action})$	$M imes \mathfrak{g}$ \bigvee_{M}	invariant cohomology	$G \times M$ W M	$\mathcal{G}(\mathfrak{g}) imes M$ \bigvee_{M}
Poisson Geometry (M Poisson)	T*M	Poisson cohomology	???	Poisson σ-model (Cattaneo & Felder)

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Go Back

Full Screen

Close

Integrability of Lie Algebroids

A Lie algebroid A is **integrable** if there exists a Lie groupoid \mathcal{G} with A as associated Lie algebroid.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 19 of 45

Go Back

Full Screen

Close

Integrability of Lie Algebroids

A Lie algebroid A is **integrable** if there exists a Lie groupoid \mathcal{G} with A as associated Lie algebroid.

Lemma. A is integrable iff G(A) is a Lie groupoid.

Applications of . . .

Page 19 of 45

Go Back

Full Screen

Close

Integrability of Lie Algebroids

A Lie algebroid A is **integrable** if there exists a Lie groupoid \mathcal{G} with A as associated Lie algebroid.

Lemma. A is integrable iff G(A) is a Lie groupoid.

In general, $\mathcal{G}(A)$ is not smooth: there are obstructions to integrate A.

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 19 of 45

Go Back

Full Screen

Close

Fix leaf $L \subset M$ and $x \in L$:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \stackrel{\#}{\longrightarrow} TL \longrightarrow 0$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 20 of 45

Go Back

Full Screen

Close

Fix leaf $L \subset M$ and $x \in L$:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \stackrel{\#}{\longrightarrow} TL \longrightarrow 0$$

$$\downarrow \downarrow$$

$$\cdots \pi_2(L, x) \stackrel{\partial}{\longrightarrow} \mathcal{G}(\mathfrak{g}_L)_x \longrightarrow \mathcal{G}(A)_x \longrightarrow \pi_1(L, x) \longrightarrow 1$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 20 of 45

Go Back

Full Screen

Close

Fix leaf $L \subset M$ and $x \in L$:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \stackrel{\#}{\longrightarrow} TL \longrightarrow 0$$

$$\Downarrow$$

$$\cdots \pi_2(L,x) \xrightarrow{\partial} \mathcal{G}(\mathfrak{g}_L)_x \to \mathcal{G}(A)_x \longrightarrow \pi_1(L,x) \longrightarrow 1$$

The **monodromy group** at x is

$$N_x(A) \equiv \operatorname{Im} \partial \subset Z(\mathfrak{g}_L).$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Go Back

Full Screen

Close

Fix leaf $L \subset M$ and $x \in L$:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \stackrel{\#}{\longrightarrow} TL \longrightarrow 0$$

$$\Downarrow$$

$$\cdots \pi_2(L,x) \xrightarrow{\partial} \mathcal{G}(\mathfrak{g}_L)_x \to \mathcal{G}(A)_x \longrightarrow \pi_1(L,x) \longrightarrow 1$$

The **monodromy group** at x is

$$N_x(A) \equiv \operatorname{Im} \partial \subset Z(\mathfrak{g}_L).$$

Theorem (Crainic and RLF, 2002). A Lie algebroid is integrable iff both the following conditions hold:

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 20 of 45

Go Back

Full Screen

Close

Fix leaf $L \subset M$ and $x \in L$:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \stackrel{\#}{\longrightarrow} TL \longrightarrow 0$$

$$\Downarrow$$

$$\cdots \pi_2(L,x) \xrightarrow{\partial} \mathcal{G}(\mathfrak{g}_L)_x \longrightarrow \mathcal{G}(A)_x \longrightarrow \pi_1(L,x) \longrightarrow 1$$

The **monodromy group** at x is

$$N_x(A) \equiv \operatorname{Im} \partial \subset Z(\mathfrak{g}_L).$$

Theorem (Crainic and RLF, 2002). A Lie algebroid is integrable iff both the following conditions hold:

(i) Each monodromy group is discrete, and

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 20 of 45

Go Back

Full Screen

Close

Fix leaf $L \subset M$ and $x \in L$:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \stackrel{\#}{\longrightarrow} TL \longrightarrow 0$$

$$\Downarrow$$

$$\cdots \pi_2(L,x) \xrightarrow{\partial} \mathcal{G}(\mathfrak{g}_L)_x \to \mathcal{G}(A)_x \longrightarrow \pi_1(L,x) \longrightarrow 1$$

The **monodromy group** at x is

$$N_x(A) \equiv \operatorname{Im} \partial \subset Z(\mathfrak{g}_L).$$

Theorem (Crainic and RLF, 2002). A Lie algebroid is integrable iff both the following conditions hold:

- (i) Each monodromy group is discrete, and
- (ii) The monodromy groups are uniformly discrete.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 20 of 45

Go Back

Full Screen

Close

• This theorem allows one to deduce all previous known criteria:

Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady & Lazard (1966), Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989), Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000), Mackenzie & Xu (2000), Nistor (2000).

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 21 of 45 Go Back Full Screen Close Quit

• This theorem allows one to deduce all previous known criteria:

Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady & Lazard (1966), Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989), Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000), Mackenzie & Xu (2000), Nistor (2000).

• Simple cases:

Corollary. A Lie algebroid is integrable if, for all leaves $L \in \mathcal{F}$, either of the following conditions holds:

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 21 of 45 Go Back Full Screen Close Quit

• This theorem allows one to deduce all previous known criteria:

Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady & Lazard (1966), Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989), Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000), Mackenzie & Xu (2000), Nistor (2000).

• Simple cases:

Corollary. A Lie algebroid is integrable if, for all leaves $L \in \mathcal{F}$, either of the following conditions holds:

(i) $\pi_2(L)$ is finite (e.g., L is 2-connected);

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 21 of 45 Go Back Full Screen Close Quit

• This theorem allows one to deduce all previous known criteria:

Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady & Lazard (1966), Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989), Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000), Mackenzie & Xu (2000), Nistor (2000).

• Simple cases:

Corollary. A Lie algebroid is integrable if, for all leaves $L \in \mathcal{F}$, either of the following conditions holds:

- (i) $\pi_2(L)$ is finite (e.g., L is 2-connected);
- (ii) $Z(\mathfrak{g}_L)$ is trivial (e.g., \mathfrak{g}_L is semi-simple);

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 21 of 45 Go Back Full Screen Close

Computing the Obstructions

In many examples it is possible to compute the monodromy groups:

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 22 of 45 Go Back Full Screen Close

Computing the Obstructions

In many examples it is possible to compute the monodromy groups:

Proposition. Assume there exists a splitting:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \xrightarrow{\#} TL \longrightarrow 0$$

with center-valued curvature 2-form

$$\Omega_{\sigma}(X,Y) = \sigma([X,Y]) - [\sigma(X),\sigma(Y)] \in Z(\mathfrak{g}_L), \quad \forall X,Y \in \mathfrak{X}(L).$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 22 of 45

Go Back

Full Screen

Close

Computing the Obstructions

In many examples it is possible to compute the monodromy groups:

Proposition. Assume there exists a splitting:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \xrightarrow{\#} TL \longrightarrow 0$$

with center-valued curvature 2-form

$$\Omega_{\sigma}(X,Y) = \sigma([X,Y]) - [\sigma(X),\sigma(Y)] \in Z(\mathfrak{g}_L), \quad \forall X,Y \in \mathfrak{X}(L).$$

Then:

$$N_x(A) = \left\{ \int_{\gamma} \Omega : [\gamma] \in \pi_2(L, x) \right\}.$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 22 of 45

Go Back

Full Screen

Close

Take $A = TM \times \mathbb{R}$ the Lie algebroid of a presymplectic manifold (M, ω) :

$$0 \longrightarrow M \times \mathbb{R} \longrightarrow TM \times \mathbb{R} \xrightarrow{\#} TM \longrightarrow 0$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 23 of 45

Go Back

Full Screen

Close

Take $A = TM \times \mathbb{R}$ the Lie algebroid of a presymplectic manifold (M, ω) :

$$0 \longrightarrow M \times \mathbb{R} \longrightarrow TM \times \mathbb{R} \xrightarrow{\#} TM \longrightarrow 0$$

For the obvious splitting, the curvature is $\Omega_{\sigma} = \omega$.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 23 of 45

Go Back

Full Screen

Close

Take $A = TM \times \mathbb{R}$ the Lie algebroid of a presymplectic manifold (M, ω) :

$$0 \longrightarrow M \times \mathbb{R} \longrightarrow TM \times \mathbb{R} \xrightarrow{\#} TM \longrightarrow 0$$

For the obvious splitting, the curvature is $\Omega_{\sigma} = \omega$. We obtain:

$$N_x = \left\{ \int_{\gamma} \omega : [\gamma] \in \pi_2(L, x) \right\}.$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 23 of 45

Go Back

Full Screen

Close

Take $A = TM \times \mathbb{R}$ the Lie algebroid of a presymplectic manifold (M, ω) :

$$0 \longrightarrow M \times \mathbb{R} \longrightarrow TM \times \mathbb{R} \xrightarrow{\#} TM \longrightarrow 0$$

For the obvious splitting, the curvature is $\Omega_{\sigma} = \omega$. We obtain:

$$N_x = \left\{ \int_{\gamma} \omega : [\gamma] \in \pi_2(L, x) \right\}.$$

Theorem. $A = TM \times \mathbb{R}$ is integrable iff the group of spherical periods of ω is a discrete subgroup of \mathbb{R} .

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 23 of 45

Go Back

Full Screen

Close

Let $(M, \{\ ,\ \})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Lie Algebroid	ls			
Groupoids				
Integrability				
Applications	of			
Home	Page			
Title	Page			
44	>>			
44				
•	•			
Page 2	4 of 45			
Go I	Back			
Full Screen				
Close				

Let $(M, \{\ ,\ \})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Lie Algebroids					
Groupoids					
Integrability					
Applications of					
Hama Dama					
Home Page					
Title Page					
Title Fage					
44 >>					
→					
Page 24 of 45					
Go Back					
Full Screen					
CI					
Close					

Let $(M, \{\ ,\ \})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 24 of 45 Go Back Full Screen Close Quit

Let $(M, \{\ ,\ \})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Lie Algebroid	ds				
Groupoids					
Integrability					
Applications	of				
Ноте	e Page				
Title Page					
44	>>				
4	•				
Page 2	24 of 45				
Go	Back				
Full S	Screen				
Close					

Let $(M, \{\ ,\ \})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Lie Algebroids					
Groupoids					
Integrability					
Applications	of				
Цот	Page				
Home Page					
Title Page					
Title Tage					
44	>>				
	•				
Page 2	24 of 45				
Go Back					
5 11 0					
Full Screen					
Close					
Close					

Let $(M, \{\ ,\ \})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Lie Algebroids				
Groupoids				
Integrability				
Applications of				
Home Page				
T'H - D				
Title Page				
44 >>				
→				
Page 24 of 45				
Go Back				
Full Screen				
Close				

Let $(M, \{\ ,\ \})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Lie Algebroids
Groupoids
Integrability
Applications of...

Title Page

Home Page

Page 24 of 45

Go Back

Full Screen

Close

Let $(M, \{ , \})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Proposition. For a foliated family $\gamma_t : \mathbb{S}^2 \to M$, the derivative of the symplectic areas

$$\left. \frac{d}{dt} A(\gamma_t) \right|_{x=0},$$

depends only on the class $[\gamma_0] \in \pi_2(L, x)$ and

$$var_{\nu}(\gamma_t) = [d\gamma_t/dt|_{t=0}] \in \nu(L)_x.$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 24 of 45

Go Back

Full Screen

Close

Defining the variation of symplectic variations $A'(\gamma_0) \in \nu_x^*(L)$ by

$$\langle A'(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \frac{d}{dt} A(\gamma_t) \Big|_{t=0}$$

we conclude that:

$$N_x = \{A'(\gamma) : [\gamma] \in \pi_2(L, x)\} \subset \nu_x^*(L).$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 25 of 45

Go Back

Full Screen

Close

• Every two dimensional Poisson manifold is integrable;

Lie Algebroids Groupoids Integrability Applications of . . . Home Page Title Page Page 26 of 45 Go Back Full Screen Close

- Every two dimensional Poisson manifold is integrable;
- A Poisson structure in $M = \mathbb{R}^3 \{0\}$ with leaves the spheres $x^2 + y^2 + z^2 = \text{const.}$ is integrable iff the symplectic areas of the spheres have no critical points.

Lie Algebroids
Groupoids
Integrability
Applications of . . .

- Every two dimensional Poisson manifold is integrable;
- A Poisson structure in $M = \mathbb{R}^3 \{0\}$ with leaves the spheres $x^2 + y^2 + z^2 = \text{const.}$ is integrable iff the symplectic areas of the spheres have no critical points.
- The Reeb foliation of \mathbb{S}^3 , with the area form on the leaves, is an integrable Poisson manifold.

Lie Algebroids
Groupoids
Integrability
Applications of . . .

Close

- Every two dimensional Poisson manifold is integrable;
- A Poisson structure in $M = \mathbb{R}^3 \{0\}$ with leaves the spheres $x^2 + y^2 + z^2 = \text{const.}$ is integrable iff the symplectic areas of the spheres have no critical points.
- The Reeb foliation of \mathbb{S}^3 , with the area form on the leaves, is an integrable Poisson manifold.

Lie Algebroids
Groupoids
Integrability
Applications of . . .

Quit

• . . .

4. Applications of Integrability

Integrability as many applications:

- Poisson geometry;
- Quantization;
- Cartan's equivalence method;
- . . .

Lie Algebroids
Groupoids
Integrability
Applications of . . .

Close

Definition. A symplectic realization of a Poisson manifold $(M, \{, \})$ is a symplectic manifold (S, ω) together with a surjective, Poisson submersion $p: S \to M$.

Lie Algebroids

Groupoids

Integrability

Applications of...

Close

Definition. A symplectic realization of a Poisson manifold $(M, \{, \})$ is a symplectic manifold (S, ω) together with a surjective, Poisson submersion $p: S \to M$.

A complete symplectic realization is a symplectic realization for which p is a complete Poisson map.

Lie Algebroids
Groupoids
Integrability
Applications of . . .

Full Screen

Close

Definition. A symplectic realization of a Poisson manifold $(M, \{,\})$ is a symplectic manifold (S, ω) together with a surjective, Poisson submersion $p: S \to M$.

A complete symplectic realization is a symplectic realization for which p is a complete Poisson map.

Theorem (Karasev, Weinstein (1989)). A Poisson manifold always admits a symplectic realization.

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 28 of 45

Go Back

Full Screen

Close

Definition. A symplectic realization of a Poisson manifold $(M, \{,\})$ is a symplectic manifold (S, ω) together with a surjective, Poisson submersion $p: S \to M$.

A complete symplectic realization is a symplectic realization for which p is a complete Poisson map.

Theorem (Karasev, Weinstein (1989)). A Poisson manifold always admits a symplectic realization.

Does it admit a *complete* one?

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 28 of 45

Go Back

Full Screen

Close

Theorem (Crainic & RLF (2004)). A Poisson manifold admits a complete symplectic realization iff it is integrable.

Note: One can compute monodromy and decide if it is integrable.

Let $(M, \{ , \})$ be a Poisson manifold, such that $\{ , \}(x_0) = 0$. In local coordinates (x_1, \ldots, x_m) around x_0 :

$$\{x_i, x_j\} = c_{ij}^k x_k + O(2).$$

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 30 of 45

Go Back

Full Screen

Close

Let $(M, \{ , \})$ be a Poisson manifold, such that $\{ , \}(x_0) = 0$. In local coordinates (x_1, \ldots, x_m) around x_0 :

$${x_i, x_j} = c_{ij}^k x_k + O(2).$$

Definition. $(M, \{ , \})$ is said to be **linearizable** at x_0 if there exist new coordinates where the higher order terms vanish identically.

Lie Algebroids
Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 30 of 45

Go Back

Full Screen

Close

Let $(M, \{ , \})$ be a Poisson manifold, such that $\{ , \}(x_0) = 0$. In local coordinates (x_1, \ldots, x_m) around x_0 :

$${x_i, x_j} = c_{ij}^k x_k + O(2).$$

Definition. $(M, \{ , \})$ is said to be **linearizable** at x_0 if there exist new coordinates where the higher order terms vanish identically.

Linearization problem: When is a Poisson bracket linearizable?

Lie Algebroids
Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 30 of 45

Go Back

Full Screen

Close

Theorem (Conn (1984)). Assume that the Killing form $K(X,Y) = c_{il}^k c_{kj}^l X^i Y^j$ is negative definite. Then $\{\ ,\ \}$ is linearizable.

Theorem (Conn (1984)). Assume that the Killing form $K(X,Y) = c_{il}^k c_{kj}^l X^i Y^j$ is negative definite. Then $\{\ ,\ \}$ is linearizable.

• Conn's proof uses hard analysis and no other proof was known.

Theorem (Conn (1984)). Assume that the Killing form $K(X,Y) = c_{il}^k c_{kj}^l X^i Y^j$ is negative definite. Then $\{\ ,\ \}$ is linearizable.

- Conn's proof uses hard analysis and no other proof was known.
- A geometric proof can be give using the integrability of Lie algebroids (Crainic & RLF (2004)).

Let (M, ω) be a simply connected symplectic manifold.

Lie Algebroids
Groupoids
Integrability
Applications of . . .

Let (M, ω) be a simply connected symplectic manifold.

Theorem. $A = TM \times \mathbb{R}$ is integrable iff

$$\left\{ \int_{\gamma} \omega : \gamma \in \pi_2(M) \right\} = r\mathbb{Z} \subset \mathbb{R}, \text{ for some } r \in \mathbb{R}.$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 32 of 45

Go Back

Full Screen

Close

Let (M, ω) be a simply connected symplectic manifold.

Theorem. $A = TM \times \mathbb{R}$ is integrable iff

$$\left\{ \int_{\gamma} \omega : \gamma \in \pi_2(M) \right\} = r \mathbb{Z} \subset \mathbb{R}, \text{ for some } r \in \mathbb{R}.$$

Theorem. (M, ω) is quantizable iff

$$\left\{ \int_{\gamma} \omega : \gamma \in \pi_2(M) \right\} = k\mathbb{Z} \subset \mathbb{R}, \text{ for some } k \in \mathbb{Z}.$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 32 of 45

Go Back

Full Screen

Close

Let (M, ω) be a simply connected symplectic manifold.

Theorem. $A = TM \times \mathbb{R}$ is integrable iff

$$\left\{ \int_{\gamma} \omega : \gamma \in \pi_2(M) \right\} = r \mathbb{Z} \subset \mathbb{R}, \text{ for some } r \in \mathbb{R}.$$

Theorem. (M, ω) is quantizable iff

$$\left\{ \int_{\gamma} \omega : \gamma \in \pi_2(M) \right\} = k\mathbb{Z} \subset \mathbb{R}, \text{ for some } k \in \mathbb{Z}.$$

This is no accident...(Crainic (2005) Cattaneo et al. (2005)).

Lie Algebroids Groupoids Integrability

Applications of . . .

Home Page

Title Page

Page 32 of 45

Go Back

Full Screen

Close

The Leibniz Identity

For any sections $\alpha, \beta \in \Gamma(A)$ and function $f \in C^{\infty}(M)$:

$$[\alpha, f\beta] = f[\alpha, \beta] + \#\alpha(f)\beta.$$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Go Back

Full Screen

Close

The Tangent Lie Algebroid

M - a manifold

- bundle: A = TM;
- anchor: $\#: TM \to TM, \# = id;$
- Lie bracket $[\ ,\]: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$, is the usual Lie bracket of vector fields;
- characteristic foliation: $\mathcal{F} = \{M\}$.

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 34 of 45

Go Back

Full Screen

Close

The Lie Algebroid of a Lie Algebra

g - a Lie algebra

- bundle: $A = \mathfrak{g} \to \{*\};$
- anchor: # = 0;
- Lie bracket $[,] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is the given Lie bracket;
- characteristic foliation: $\mathcal{F} = \{*\}$.

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 35 of 45

Go Back

Full Screen

Close

The Lie Algebroid of a Foliation

 \mathcal{F} - a regular foliation

• bundle: $A = T\mathcal{F} \to M$;

• anchor: $\#: T\mathcal{F} \hookrightarrow TM$, inclusion;

- Lie bracket: $[,] : \mathfrak{X}(\mathcal{F}) \times \mathfrak{X}(\mathcal{F}) \to \mathfrak{X}(\mathcal{F})$, is the usual Lie bracket restricted to vector fields tangent to \mathcal{F} ;
- \bullet characteristic foliation: \mathcal{F} .

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 36 of 45

Go Back

Full Screen

Close

The Action Lie Algebroid

 $\rho:\mathfrak{g}\to\mathfrak{X}(M)$ - an infinitesimal action of a Lie algebra

- bundle: $A = M \times \mathfrak{g} \to M$;
- anchor: $\#: A \to TM, \#(x, v) = \rho(v)|_x$;
- Lie bracket $[,]: C^{\infty}(M,\mathfrak{g}) \times C^{\infty}(M,\mathfrak{g}) \to C^{\infty}(M,\mathfrak{g})$ is: $[v,w](x) = [v(x),w(x)] + (\rho(v(x))\cdot w)|_x (\rho(w(x))\cdot v)|_x;$
- characteristic foliation: orbit foliation.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 37 of 45

Go Back

Full Screen

Close

The Lie Algebroid of a Presymplectic manifold

M - an presymplectic manifold with closed 2-form ω

- bundle: $A = TM \times \mathbb{R} \to M$;
- anchor: $\#: A \to TM, \#(v, \lambda) = v;$
- Lie bracket $\Gamma(A) = \mathfrak{X}(M) \times C^{\infty}(M)$ is:

$$[(X, f), (Y, g)] = ([X, Y], X(g) - Y(f) - \omega(X, Y));$$

• characteristic foliation: $\mathcal{F} = \{M\}$.

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 38 of 45

Go Back

Full Screen

Close

The Cotangent Lie Algebroid

M - a Poisson manifold with Poisson tensor π

- bundle: $A = T^*M$;
- anchor: $\#:TM^*\to TM, \#\alpha=i_\pi\alpha;$
- Lie bracket $[\ ,\]:\Omega^1(M)\times\Omega^1(M)\to\Omega^1(M),$ is the Kozul Lie bracket:

$$[\alpha, \beta] = \mathcal{L}_{\#\alpha}\beta - \mathcal{L}_{\#\beta}\alpha - d\pi(\alpha, \beta);$$

• characteristic foliation: the symplectic foliation.

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 39 of 45

Go Back

Full Screen

Close

The Pair Groupoid

M - a manifold

• arrows: $\mathcal{G} = M \times M$;

 \bullet objects: M;

• target and source: s(x, y) = x, t(x, y) = y;

• **product**: $(x, y) \cdot (y, z) = (x, z)$;

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Go Back

Full Screen

Close

M - a manifold

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page **41** of **45**

Go Back

Full Screen

Close

M - a manifold

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 41 of 45

Go Back

Full Screen

Close

M - a manifold

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 41 of 45

Go Back

Full Screen

Close

M - a manifold

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 41 of 45

Go Back

Full Screen

Close

M - a manifold

• arrows: $\mathcal{G} = \{ [\gamma] : \gamma : [0,1] \to M \};$

• objects: M;

• target and source: $\mathbf{s}([\gamma]) = \gamma(0), \mathbf{t}([\gamma]) = \gamma(1);$

• **product**: $[\gamma_1][\gamma_2] = [\gamma_1 \cdot \gamma_2]$ (concatenation);

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 41 of 45

Go Back

Full Screen

Close

The Lie Groupoid of a Lie Group

G - a Lie group

• arrows: $\mathcal{G} = G$;

• **objects**: $M = \{*\};$

• target and source: $\mathbf{s}(x) = \mathbf{t}(x) = *$;

• **product**: $g \cdot h = gh$;

Lie Algebroids Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 42 of 45

Go Back

Full Screen

Close

The Holonomy Groupoid

 \mathcal{F} - a regular foliation in M

- arrows: $\mathcal{G} = \{ [\gamma] : \text{holonomy equivalence classes} \};$
- objects: M;
- target and source: $\mathbf{s}([\gamma]) = \gamma(0), \mathbf{t}([\gamma]) = \gamma(1);$
- **product**: $[\gamma] \cdot [\gamma'] = [\gamma \cdot \gamma'];$

Lie Algebroids
Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 43 of 45

Go Back

Full Screen

Close

The Fundamental Groupoid (of a foliation)

 \mathcal{F} - a regular foliation in M

- arrows: $\mathcal{G} = \{ [\gamma] : \text{homotopy classes inside leafs} \};$
- objects: M;
- target and source: $\mathbf{s}([\gamma]) = \gamma(0), \mathbf{t}([\gamma]) = \gamma(1);$
- **product**: $[\gamma] \cdot [\gamma'] = [\gamma \cdot \gamma'];$

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 44 of 45

Go Back

Full Screen

Close

Lie Algebroids

Groupoids

Integrability

Applications of . . .

Home Page

Title Page

Page 45 of 45

Go Back

Full Screen

Close

Quit

The Action Groupoid

 $G \times M \to M$ - an action of a Lie group on M

- arrows: $\mathcal{G} = G \times M$;
- \bullet objects: M;
- target and source: s(g, x) = x, t(g, x) = gx;
- **product**: $(h, y) \cdot (g, x) = (hg, x)$;