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Definition. A Lie algebroid over a smooth manifold M
is a vector bundle 7 : A — M with:
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e a bundle map # : A — T'M, called the anchor;
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Lie algebroids are geometric vector bundles:

Definition. A Lie algebroid over a smooth manifold M
is a vector bundle 7 : A — M with:

e a Lie bracket [, | : T'(A) x I'(A) — T['(A);
e a bundle map # : A — T'M, called the anchor;

and they are compatible.

Lemma. The anchor # : T'(A) — X' (M) is a Lie algebra
homomorphism.
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1. Lie Algebroids

Lie algebroids are geometric vector bundles:

Definition. A Lie algebroid over a smooth manifold M
is a vector bundle 7w : A — M with:

e a Lie bracket [, | : T'(A) x I'(A) — T['(A);
e a bundle map # : A — T'M, called the anchor;

and they are compatible.

Lemma. The anchor # : T(A) — X' (M) is a Lie algebra
homomorphism.

Definition. A morphism of Lie algebroids is a bundle
map ¢ : A; — A, which preserves anchors and brackets.
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Basic Properties
The kernel and the image of the anchor give basic objects
associated with any Lie algebroid:
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Basic Properties
The kernel and the image of the anchor give basic objects
associated with any Lie algebroid:

e The isotropy Lie algebra at x € M:
9. = Ker #,.

e The characteristic foliation F, which is the singular
foliation of M determined by:

x+— D, =Im+#,.
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Basic Properties
The kernel and the image of the anchor give basic objects
associated with any Lie algebroid:

e The isotropy Lie algebra at x € M:
9. = Ker #,.

e The characteristic foliation F, which is the singular
foliation of M determined by:

x+— D, =Im+#,.

Restricting to a leat L of F we have the short exact se-
quence of L:

0 — g, — A, 2 TL —0

where g, = U, .; 9.
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EXAMPLES A
Ordinary Geometry
(M a manifold) e
M
Lie Theory g
(g a Lie algebra)
{x}
Foliation Theory TF
(F a regular foliation)
M
Equivariant Geometry
(p:g— X(M) an action) Mxg
M
Presymplectic Geometry
(M presymplectic) e
M
Poisson Geometry .
(M Poisson) i

Lie Algebroids
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A-Cartan Calculus
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o A-differential forms: (°(A) = ['(A*A").
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A-Cartan Calculus
o A-differential forms: Q°*(A) = ['(A*A").
o A-differential: d, : Q*(A) — Q°t1(A)

r+1

daQ(a, ..., ap) = Z<_1>k#ak<Q<a07 oy Oy

k=0

E ( k+l—|—1 ~ o
+ Q Oék-,Oél],Oéo,...,Cvk,...,Oél,...,

k<l

|-
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A-Cartan Calculus
o A-differential forms: Q°(A) = T'(A®AY).
o A-differential: d, : Q*(A) — Q°t1(A)

T'—|—1 Groupoids
~ Integrabili
dsQ(ayg, ..., q,) = Z(—l)k#ak(Q(ao, ey Oy ) anmleatons of
k=0
—|‘Z k+l+1Q Oék;,Oél],Olo,...,a{\k,...,a{\l,...,&r). Home Page
k<l Title Page
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A-Cartan Calculus
o A-differential forms: Q°(A) = T'(A®AY).
o A-differential: d, : Q*(A) — Q°t1(A)

T'—|—1 Groupoids
~ Integrabili
dsQ(ayg, ..., q,) = Z(—l)k#ak(Q(ao, ey Oy ) anmleatons of
k=0
—|‘Z IH_Z—HQ Oék;,Oél],Oéo,...,a{\k,...,a{\l,...,@r). Home Page
k<l Title Page
e A-Lie derivative: £, : Q*(A) — Q*(A) | » ]
. ] ]
L.Q(ay,...,qp) = Qlag, ..., la,anl, ..., ap). T
=1 _l
Full Scre
e Lie algebroid cohomology: H*(A) = % -

(in general, it is very hard to compute. . . ) o
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EXAMPLES A H*(A)
Ordinary Geometry M de Rham
(M a manifold) l cohomology

M

Lie Theory g Lie algebra
(g a Lie algebra) l cohomology
{x}
Foliation Theory foliated
F a regular foliation TF cohomolo,
g gy
M
Equivariant Geometry M x invariant
(p:g— X(M) an action) g cohomology
M
Poisson Geometry . Poisson
M Poisson M cohomolo,
gy
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2. Groupoids

Definition. A groupoid is a small category where every
arrow is invertible.

i)

@
g
Q.
&



http://www.math.ist.utl.pt/~rfern

2. Groupoids

Definition. A groupoid is a small category where every
arrow is invertible.

G = {arrows} M = {objects}.

i)
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e source and target maps:

g

R
[ ]

° _t>
t(9) s(9) g — M

Groupoids
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e source and target maps:

Y ¢
o) s() G—=M
Groupoids
e product:
G@ = {(h,g) €G xG:s(h) =t(g)}
hg
/_\ oo
h
L, = Ry :s7(t(g)) — s7'(s(9))
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e source and target maps:

W) s(o) G—=M
Groupoids
e product:
6% ={(h,9) €G x G:s(h) =t(g)}
hg
/_\ g =g
h g
« T . T, Ry :s71(t(g)) — s7(s(9))
t(h) s(h)=t(g) s(g)

o identity: ¢: M — G
1,

{)

°
T
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e source and target maps:

) s G—=*M
Groupoids
e product:
G® ={(h,g) € G x G :s(h) =1t(g)}
hg
/_\ et
h g
e Ry : s (t(g)) — s (s(9))
t(h) s(h)=t(g) s(g)
e identity: ¢: M — G einverse: ,:G —— G
1g
O e
° t(g)e *s(g)

T
—_—
=i

g
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Groupoids

For any groupoid G :i: M we have:
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Groupoids

For any groupoid G :i: M we have:

e The isotropy group at x € M:

Go ={9 € G :s(g) =tlg) = }.

i)

@
e
Q.
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For any groupoid G :i: M we have:

e The isotropy group at x € M: Lie Algebroids

Groupoids

Integrability

gx — {g S g : S(g) — t(g) - Z’} Applications of ...

e The orbit through z € M:

O,={ye M :s(g) ==z, t(g) =y, for some g € G}.
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Groupoids
For any groupoid G :i: M we have:
e The isotropy group at r € M:
G, ={9€G:slg) =t(g) = z}.
e The orbit through z € M:

O,={ye M :s(g) ==z, t(g) =y, for some g € G}.

Just like groups, one can consider various classes of groupoids:

@
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Groupoids
For any groupoid G :: M we have:
e The isotropy group at r € M:
G, =19 €G:slg) =tlg) =z}
e The orbit through z € M:

O,={ye M :s(g) ==z, t(g) =y, for some g € G}.

Just like groups, one can consider various classes of groupoids:

Definition. A Lie groupoid is a groupoid where every-
thing is C*° and s,t : G — M are submersions.

Lie Algebroids

Integrability
Applications of . ..

Ll
R

Page 10 of 45

il

Go Back

Full Screen

Close

1

Quit


http://www.math.ist.utl.pt/~rfern

Groupoids
For any groupoid G :: M we have:
e The isotropy group at r € M:
G, =19 €G:slg) =tlg) =z}
e The orbit through z € M:

O,={ye M :s(g) ==z, t(g) =y, for some g € G}.

Just like groups, one can consider various classes of groupoids:
Definition. A Lie groupoid is a groupoid where every-
thing is C*° and s,t : G — M are submersions.

Caution: G may not be Hausdorff, but all other manifolds
(M, s and t-fibers,. .. ) are.
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Lie Groupoids

Proposition. Fvery Lie groupoid G :i: M determines a
Lie algebroid m : A — M, such that:

i)

@
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Lie Groupoids

Proposition. Fvery Lie groupoid G :i: M determines a
Lie algebroid m : A — M, such that:
e Fach G, is a Lie group with Lie algebra g, ;
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@

Proposition. Every Lie groupoid G :i: M determines a
Lie algebroid m : A — M, such that:
e Fach G, is a Lie group with Lie algebra g, ;

Lie Algebroids
Groupoids

Integrability

e The orbits of G are the leaves of A, provided the source
fibers are connected.

Applications of . ..
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Lie Groupoids

Proposition. Every Lie groupoid G :i: M determines a
Lie algebroid m : A — M, such that:
e Fach G, is a Lie group with Lie algebra g, ;

e The orbits of G are the leaves of A, provided the source
fibers are connected.

t-fibers

s-fibers
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Lie Groupoids

Proposition. Every Lie groupoid G :i: M determines a
Lie algebroid m : A — M, such that:
e Fach G, is a Lie group with Lie algebra g, ;

e The orbits of G are the leaves of A, provided the source
fibers are connected.

t-fibers

s-fibers

A=Kerds
M

)

Lie Algebroids
Groupoids

Integrability

Applications of . ..



http://www.math.ist.utl.pt/~rfern

Lie Groupoids

Proposition. Every Lie groupoid G :i: M determines a
Lie algebroid m : A — M, such that:
e Fach G, is a Lie group with Lie algebra g, ;

e The orbits of G are the leaves of A, provided the source
fibers are connected.

t-fibers

s-fibers

A=Kerds
M

)

Lie Algebroids
Groupoids

Integrability

Applications of . ..



http://www.math.ist.utl.pt/~rfern

Lie Groupoids

Proposition. Every Lie groupoid G :i: M determines a
Lie algebroid m : A — M, such that:
e Fach G, is a Lie group with Lie algebra g, ;

e The orbits of G are the leaves of A, provided the source
fibers are connected.

t-fibers

s-fibers

A=Kerd s #=dt |
M A
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Lie Groupoids

Proposition. Every Lie groupoid Q::M determines a
Lie algebroid m : A — M, such that:
e Fach G, is a Lie group with Lie algebra g, ;

e The orbits of G are the leaves of A, provided the source
fibers are connected.

t-fibers

s-fibers

A=Kerds #=dt
M A
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Lie Groupoids

Proposition. Every Lie groupoid G :i: M determines a
Lie algebroid m : A — M, such that:
e Fach G, is a Lie group with Lie algebra g, ;

e The orbits of G are the leaves of A, provided the source
fibers are connected.

t-fibers
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Lie Groupoids

Proposition. Every Lie groupoid G ::; M determines a
Lie algebroid m : A — M, such that:
e Fach G, is a Lie group with Lie algebra g, ;

e The orbits of G are the leaves of A, provided the source
fibers are connected.

t-fibers
.. “
\ \‘ \ \ \ G
VAN VA
# @ A \
GO\ sthbdg M

s-fibers

A=Kerd s #=dt | [onBl= X, XB]
M A

@
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EXAMPLES A H*(A) g
Ordinary Geometry de Rham
(M a manifold) Tjw cohomology il @ = Hlljw)
M M M
Lie Theory g Lie algebra a
(g a Lie algebra) l cohomology \L l
{+} {*}
Foliation Theory foliated
(F a regular foliation) TF cohomology HO\I(}-) Hll(}—)
M M M
Equivariant Geometry invariant
(p:g— X(M) an action) Wil 28 5] cohomology G IlM
M M
Poisson Geometry . Poisson 299
(M Poisson) M cohomology U
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Lie Algebroids
Groupoids
Integrability

3. Integrability

Problem. Given a Lie algebroid A is there always a Lie
groupoid G whose associated algebroid is A?

We will see that the answer is no and we will see why not.
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Uniqueness of integration

Proposition. For every Lie groupoid G there exists a
unique source simply-connected Lie groupoid G with the
same associated Lie algebroid.

Lie Algebroids
Groupoids
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Proposition. For every Lie groupoid G there exists a
unique source simply-connected Lie groupoid G with the
same associated Lie algebroid.
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Proposition. For every Lie groupoid G there exists a
unique source simply-connected Lie groupoid G with the
same associated Lie algebroid.

Lie Algebroids

Construction is similar to Lie group case: Groupoids
° P(g) = {g ] — gl S(g(t)) = 7 g(()) = 1x}; Applications of ...
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Uniqueness of integration

Proposition. For every Lie groupoid G there exists a
unique source simply-connected Lie groupoid G with the
same associated Lie algebroid.

Construction is similar to Lie group case:

e P(G) ={g:T—G[s(g(t) ==z, g(0) = 1. };
e gy ~ g iff there exists homotopy g. € P(G), € € [0, 1];
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Uniqueness of integration

Proposition. For every Lie groupoid G there exists a
unique source simply-connected Lie groupoid G with the
same associated Lie algebroid.

Lie Algebroids

Construction is similar to Lie group case: Groupoids
° P(g) = {g ] — g‘ S(g(t)) = g(()) = 195}; Applications of ...

e gy ~ g iff there exists homotopy g. € P(G), € € [0, 1];

e The product g - ¢’ is defined if t(¢'(1)) = s(g(0)). It is
given by:

Home Page

il

Title Page
44 I 144

! <t <
/ g (Qt), 0<t< < | >
g ’ g (t) — Page 14 of 45
g2t —1)g'(1), <t<1

DN [ —

Go Back

i

Full Screen

Close

Quit


http://www.math.ist.utl.pt/~rfern

Uniqueness of integration

Proposition. For every Lie groupoid G there exists a
unique source simply-connected Lie groupoid G with the
same associated Lie algebroid.

Construction is similar to Lie group case:
e P(G) ={g:T—G[s(g(t) ==z, g(0) = 1. };
e gy ~ g iff there exists homotopy g. € P(G), € € [0, 1];
e The product g - ¢’ is defined if t(¢'(1)) = s(g(0)). It is
given by:

q'(2t), 0<t<

DN [ —

g-9(t)=
g2t —1)g'(1), <t<1

The quotient gives the monodromy groupoid:

G=PG))~—=M
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A-paths
Lemma. The map D : P(G) — P(A) defined by

@

(Dg)(t) = ~g(s)g™ (1

Lie Algebroids

5=t Groupoids

Integrability

1$ @ homeomorphism onto

Applications of . ..

P(A) = {a I — Al %W(G(t)) = #a(t)} (A-paths).
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A-paths
Lemma. The map D : P(G) — P(A) defined by

(Dg)(t) = ~g(s)g™ (1

s=t

1$ @ homeomorphism onto

P(A) = {a I — Al %W(G(t)) = #a(t)} (A-paths).

t-fibers

s-fibers
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A-Homotopy
Can transport “~" and “” to P(A):

Integrability
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A-Homotopy
Can transport “~" and “” to P(A):

e The product of A-paths:

2(2t), 0<t<
a-d(t)= {

1
l<t<i.

2a(2t — 1),

D[ —

Integrability
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A-Homotopy
Can transport “~" and “” to P(A):

e The product of A-paths:

2d/(2t), 0<t<3
a-d(t)=
2a(2t — 1), % <t<1. Lie Algebroids
Groupoids

Integrability

e A-homotopy of A-paths:

Applications of . .

there exists homotopy a. € P(A), ¢ € [0,1], s.t.

t,s d&.
apg ~ aj iff fo ¢f€ di (S))ds =0

where & (t, ) is a time-depending section of A
extending a. and v-(S) = m(a:(s)).
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A-Homotopy
Can transport “~" and “” to P(A):

e The product of A-paths:

2d/(2t), 0<t<3
a-d(t)=
2a(2t — 1), % <t<1. Lie Algebroids
Groupoids

Integrability

e A-homotopy of A-paths:

Applications of . .

there exists homotopy a. € P(A), ¢ € [0,1], s.t.

t,s d&.
apg ~ aj iff fo ¢f€ di (S))ds =0

where & (t, ) is a time-depending section of A
extending a. and v-(S) = m(a:(s)).
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Observe that:

e An A-path is a Lie algebroid map T1 — A;
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Lie Algebroids

e An A-homotopy is a Lie algebroid map T'(I x I) — A; Groupoids
| |
Both notions do not depend on the existence of G. They can Applications o ..

be expressed solely in terms of data in A!
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The Universal Groupoid
Observe that:

e An A-path is a Lie algebroid map T1 — A;
e An A-homotopy is a Lie algebroid map T'(I x I) — A;

Both notions do not depend on the existence of G. They can
be expressed solely in terms of data in A!

For any Lie algebroid A, define a groupoid:
s:G(A) — M, [a] — 7(a(0))

G(A) = P(A)/ ~ where | t:G(A) — M, [a]— 7m(a(l))

M — G(A), x> [0,]

Lie Algebroids
Groupoids

Integrability

Applications of . ..
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The Universal Groupoid
Observe that:

e An A-path is a Lie algebroid map T1 — A;
e An A-homotopy is a Lie algebroid map T'(I x I) — A;

Both notions do not depend on the existence of G. They can
be expressed solely in terms of data in A!

For any Lie algebroid A, define a groupoid:
s:G(A) — M, [a] — 7(a(0))

G(A) = P(A)/ ~ where | t:G(A) — M, [a]— 7m(a(l))

M — G(A), x> [0,]

Proposition. G(A) is a topological groupoid with source
simply-connected fibers.
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EXAMPLES A o (A4) G G(A)
Ordinary Geometry de Rham
(M a manifold) Tjw cohomology Ll \[L il Hll(j/[)
M M M
Lie Theory g Lie algebra a Duistermaat-Kolk
(g a Lie algebra) l cohomology \L \L construction of G
{*} {+}
Foliation Theory foliated
(F a regular foliation) e cohomology Hol IL (%)
M M M
Equivariant Geometry invariant
(p:g— X(M) an action) Mxg cohomology G i Glg) x M
M M M
Poisson Geometry . Poisson 299 Poisson o-model
(M Poisson) M cohomology T (Cattaneo & Felder)

Lie Algebroids
Groupoids

Integrability

Applications of . ..



http://www.math.ist.utl.pt/~rfern

Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid
G with A as associated Lie algebroid.

Lie Algebroids
Groupoids

Integrability

Applications of . ..
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Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid
G with A as associated Lie algebroid.

Lemma. A is integrable iff G(A) is a Lie groupoid.

@
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Groupoids
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Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid
G with A as associated Lie algebroid.

Lemma. A is integrable iff G(A) is a Lie groupoid.

In general, G(A) is not smooth: there are obstructions to
integrate A.

@

Lie Algebroids
Groupoids

Integrability

Applications of . ..
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Obstructions to Integrability
Fix leat L C M and x € L:

0 — g, —A, 2 TL — 0
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Obstructions to Integrability
Fix leaf L C M and x € L:
0 — g, ——A;, 25 TL —0

4
e 7T2<L7x) i) g(gL)x _>g<A>$ — 7T1(L,33) — 1

The monodromy group at x is

N.(A)=1Imo C Z(gy).

@

Lie Algebroids
Groupoids

Integrability

Applications of . ..
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Obstructions to Integrability
Fix leaf L C M and x € L:
0 — g, —A, 2 TL — 0
Y
(L, x) <5 G(gr)e ~G(A)y — m(L,z) — 1

The monodromy group at x is
N.(A)=1Imo C Z(gy1).

Theorem (Crainic and RLF, 2002). A Lie algebroid is in-
tegrable iff both the following conditions hold:
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Obstructions to Integrability
Fix leaf L C M and x € L:

0 — g, ——A;, 25 TL —0
Y
e 7T2(L733) i) g(QL):n _>g(A)$ — 771([/7 ﬂf) — 1

The monodromy group at x is
N.(A)=1Imo C Z(gy1).

Theorem (Crainic and RLF, 2002). A Lie algebroid is in-
tegrable iff both the following conditions hold:

(i) Each monodromy group is discrete, and
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Obstructions to Integrability
Fix leaf L C M and x € L:

0 — g, ——A;, 25 TL —0
Y
e 7T2(L7:’C) i) g(QL):n _>g(A)$ — 771([/7 ﬂf) — 1

The monodromy group at x is
N.(A)=1Imo C Z(gy1).

Theorem (Crainic and RLF, 2002). A Lie algebroid is in-
tegrable iff both the following conditions hold:
(i) Each monodromy group is discrete, and

(i) The monodromy groups are uniformly discrete.
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Obstructions to Integrability (cont.)

e This theorem allows one to deduce all previous known

Crlterla Lie Algebroids

Lie (1890’s), Chevaley (1930’s), Van Est (1940’s), Palais
(1957), Douady & Lazard (1966), Phillips (1980), Applicatons of...
Almeida & Molino (1985), Mackenzie (1987), Weinstein

(1989), Dazord & Hector (1991), Alcade Cuesta & Hector P
(1995), Debord (2000), Mackenzie & Xu (2000), Nistor
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Obstructions to Integrability (cont.)

e This theorem allows one to deduce all previous known

Crlterla Lie Algebroids
Lie (1890’s), Chevaley (1930’s), Van Est (1940’s), Palais
(1957), Douady & Lazard (1966), Phillips (1980), Applicatons of...
Almeida & Molino (1985), Mackenzie (1987), Weinstein
(1989), Dazord & Hector (1991), Alcade Cuesta & Hector PR
(1995), Debord (2000), Mackenzie & Xu (2000), Nistor —
(2000). e
. 1 4 I 44
e Simple cases: o
Corollary. A Lie algebroid is integrable if, for all leaves P
L € F, either of the following conditions holds:
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Obstructions to Integrability (cont.)

e This theorem allows one to deduce all previous known

criteria: Lie Algebroids
Lie (1890s), Chevaley (1930’s), Van Est (1940s), Palais
(1957), Douady & Lazard (1966), Phillips (1980), Applicatons of...

Almeida & Molino (1985), Mackenzie (1987), Weinstein
(1989), Dazord & Hector (1991), Alcade Cuesta & Hector
(1995), Debord (2000), Mackenzie & Xu (2000), Nistor ,
(200()) Title Page
L]
I [

Home Page

il

e Simple cases:

Corollary. A Lie algebroid is integrable if, for all leaves S
L € F, either of the following conditions holds: —
(i) mo(L) is finite (e.g., L is 2-connected); e
(ii) Z(gyr) is trivial (e.q., g1 is semi-simple); G
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Computing the Obstructions

In many examples it is possible to compute the monodromy
groups:

Integrability
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Computing the Obstructions

In many examples it is possible to compute the monodromy
groups:

Proposition. Assume there exists a splitting:

0 gr A;r s TL 0

~—
(o

with center-valued curvature 2-form

Qo(X,Y) = o([X,Y]) = [0(X),0(Y)] € Z(gr), VX, Y € X(L).

@

Lie Algebroids
Groupoids
Integrability

Applications of . ..
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Computing the Obstructions

In many examples it is possible to compute the monodromy
groups:

Proposition. Assume there exists a splitting:

0 gr A;r s TL 0

~—
(o

with center-valued curvature 2-form

Qo(X,Y) = o([X,Y]) = [0(X),0(Y)] € Z(gr), VX, Y € X(L).

N,(A) = {LQ ] € WQ(L,@}.

Then:

@

Lie Algebroids
Groupoids

Integrability

Applications of . ..
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Example - Presymplectic geometry

Take A = TM x R the Lie algebroid of a presymplectic
manifold (M, w):

0—> M xR —>TM xR TM —>0

-
g
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Take A = TM x R the Lie algebroid of a presymplectic
manifold (M, w):

0—> M xR —>TM xR TM —>0

-
g

For the obvious splitting, the curvature is €2, = w.
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Example - Presymplectic geometry

Take A = TM x R the Lie algebroid of a presymplectic
manifold (M, w):

0—> M xR —>TM xR TM —>0

-
g

For the obvious splitting, the curvature is €2, = w.

We obtain:
N, = {Lw: ] € f@(L,x)}.

@
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Groupoids
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Example - Presymplectic geometry

Take A = TM x R the Lie algebroid of a presymplectic
manifold (M, w):

OHMXRHTMXR# TM 0

-~
o

For the obvious splitting, the curvature is €2, = w.

We obtain:
N, = {lw: ] € @(L,x)}.

Theorem. A = T'M x R s integrable iff the group of
spherical periods of w is a discrete subgroup of R.
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Example: Poisson geometry

Let (M,{, }) be a reqular Poisson manifold. Fix a sym-
plectic leaf L C M and x € L.

Integrability
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Example: Poisson geometry

Let (M,{, }) be a reqular Poisson manifold. Fix a sym-
plectic leaf L C M and x € L.
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Example: Poisson geometry

Let (M,{, }) be a reqular Poisson manifold. Fix a sym-
plectic leaf L C M and x € L.

Proposition. For a foliated family v, : S* — M, the
derivative of the symplectic areas

d

EA(%)

Y

z=0

depends only on the class |y € mo(L, x) and

vary (1) = [dye/dt|i=o] € v(L)a-

@
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@

Lie Algebroids

Example: Poisson geometry (cont.) Groupoids
,
Defining the wvariation of symplectic variations Applications o ..

A'(vo) € vi(L) by

d

<A,(70>7varu(’7t)> - %A<7t)

t=0

we conclude that:

N, = {A'(3) : ] € malL,2)} € V(D).
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Example: Poisson geometry (cont.)

e Every two dimensional Poisson manifold is integrable;

Applications of . ..
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Example: Poisson geometry (cont.)

e Every two dimensional Poisson manifold is integrable;

e A Poisson structure in M = R* — {0} with leaves the
spheres 22 +1?+ 2> =const. is integrable iff the symplectic
areas of the spheres have no critical points.
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Example: Poisson geometry (cont.)

e Every two dimensional Poisson manifold is integrable;

e A Poisson structure in M = R* — {0} with leaves the
spheres 22 +1?+ 2> =const. is integrable iff the symplectic
areas of the spheres have no critical points.

e The Reeb foliation of S, with the area form on the leaves,
is an integrable Poisson manifold.
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Example: Poisson geometry (cont.)

e Every two dimensional Poisson manifold is integrable;

e A Poisson structure in M = R* — {0} with leaves the
spheres 22 +1?+ 2> =const. is integrable iff the symplectic
areas of the spheres have no critical points.

e The Reeb foliation of S, with the area form on the leaves,
is an integrable Poisson manifold.
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4. Applications of Integrability

Integrability as many applications:

e Poisson geometry:;
e Quantization;
e Cartan’s equivalence method;
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)

Applications to Poisson geometry: symplectic re-
alizations A
Lie Algebroids

Groupoids

Definition. A symplectic realization of a Poisson man- Integrability
ifold (M, { , }) is a symplectic manifold (.S, w) together with
a surjective, Poisson submersion p : S — M.
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Applications to Poisson geometry: symplectic re-
alizations

Definition. A symplectic realization of a Poisson man-
ifold (M, { , }) is a symplectic manifold (.S, w) together with
a surjective, Poisson submersion p : S — M.

A complete symplectic realization is a symplectic re-
alization for which p is a complete Poisson map.
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Applications to Poisson geometry: symplectic re-
alizations

Definition. A symplectic realization of a Poisson man-
ifold (M, { , }) is a symplectic manifold (.S, w) together with
a surjective, Poisson submersion p : S — M.

A complete symplectic realization is a symplectic re-
alization for which p is a complete Poisson map.

Theorem (Karasev, Weinstein (1989)). A Poisson mani-
fold always admits a symplectic realization.

Lie Algebroids
Groupoids
Integrability

Applications of . ..

Home Page

il

Title Page
44 I 44
< I | 2
Page 28 of 45
Go Back
Full Screen

Close

1

Quit


http://www.math.ist.utl.pt/~rfern

Applications to Poisson geometry: symplectic re-
alizations

Definition. A symplectic realization of a Poisson man-
ifold (M, { , }) is a symplectic manifold (.S, w) together with
a surjective, Poisson submersion p : S — M.

A complete symplectic realization is a symplectic re-
alization for which p is a complete Poisson map.

Theorem (Karasev, Weinstein (1989)). A Poisson mani-
fold always admits a symplectic realization.

Does it admit a complete one?
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Applications to Poisson geometry: symplectic re-
alizations

Theorem (Crainic & RLF (2004)). A Poisson manifold
admits a complete symplectic realization iff it is inte-
grable.

Note: One can compute monodromy and decide if it is inte-
grable.
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Applications to Poisson geometry: linearization

Let (M, {, }) be a Poisson manifold, such that { , }(xy) = 0.
In local coordinates (xy, ..., x,,) around xy:

{zi,2;} = cfjxk + O(2).
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Applications to Poisson geometry: linearization

Let (M, {, }) be a Poisson manifold, such that { , }(xy) = 0.
In local coordinates (xy, ..., x,,) around xy:

{zi,2;} = cfjxk + O(2).

Definition. (M, { , }) is said to be linearizable at x,
if there exist new coordinates where the higher order terms
vanish identically.
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Applications to Poisson geometry: linearization

Let (M,{, }) be a Poisson manifold, such that { , }(xy) = 0.
In local coordinates (xy, ..., x,,) around xy:

{z;,z;} = cfjack + O(2).

Definition. (M, { , }) is said to be linearizable at x,
if there exist new coordinates where the higher order terms
vanish identically.

Linearization problem: When is a Poisson bracket lineariz-
able?
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@

Applications to Poisson geometry: linearization DT

Groupoids
Integrability

Theorem (Conn (1984)). Assume that the Killing form
K(X,Y) = ¢, ; XY/ is negative definite. Then { , } is

linearizable.
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@

Applications to Poisson geometry: linearization DT

Groupoids
Integrability

Theorem (Conn (1984)). Assume that the Killing form
K(X,Y) = ¢, ; XY/ is negative definite. Then { , } is

linearizable.

e Conn’s proof uses hard analysis and no other proof was
known.
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Applications to Poisson geometry: linearization

Theorem (Conn (1984)). Assume that the Killing form
K(X,Y) = ¢, ; XY/ is negative definite. Then { , } is
linearizable.

e Conn’s proof uses hard analysis and no other proof was
known.

e A geometric proof can be give using the integrability of
Lie algebroids (Crainic & RLF (2004)).
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Applications to quantization:

Let (M, w) be a simply connected symplectic manifold.

Applications of . ..
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Applications to quantization:

Let (M, w) be a simply connected symplectic manifold.
Theorem. A =TM x R is integrable iff

{/w:WEWQ(M)}:rZCR, for some r € R.

gl
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Applications to quantization:

Let (M, w) be a simply connected symplectic manifold.

Theorem. A =TM x R is integrable iff
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Theorem. (M, w) is quantizable iff

v

{/w:wEWQ(M)}:rZCR, for some r € R.

{/w:*yéwg(M)}szCR, for some k € Z.
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Applications to quantization:

Let (M, w) be a simply connected symplectic manifold.
Theorem. A =TM x R is integrable iff
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{/w:vEWQ(M)}—'rZCR, for some r € R.

v

Theorem. (M, w) is quantizable iff

I [
{/w Ly € 7r2(M)} = kZ C R, for some k € Z. S

v
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This is no accident. . . (Crainic (2005) Cattaneo et al. (2005)). S
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The Leibniz Identity

For any sections «, 3 € T'(A) and function f € C*°(M):

o, f8] = flav, B] + #a(f)B.

Applications of . ..
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The Tangent Lie Algebroid Lie Algebroids

Groupoids
Integrability

M - a manifold
e bundle: A =TM:;
e anchor: # : T'M — T'M, # =id;

e Lie bracket [, | : X(M) x X(M) — X(M), is the usual
Lie bracket of vector fields;

e characteristic foliation: F = {M}.
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Lie Algebroids

The Lie Algebroid of a Lie Algebra Groupoids

Integrability

g - a Lie algebra
e bundle: A =g — {x};
e anchor: # = 0;
e Lie bracket [, | : g X g — g, is the given Lie bracket;

e characteristic foliation: F = {x}.
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The Lie Algebroid of a Foliation e

Groupoids
Integrability

F - a regular foliation
e bundle: A =TF — M;
e anchor: # : T'F — T'M, inclusion;

e Lie bracket: [, | : X(F) x X(F) — X(F), is the usual
Lie bracket restricted to vector fields tangent to F;

e characteristic foliation: F.
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The Action Lie Algebroid Lo Algabroids

Groupoids
Integrability

p: g — X(M) - an infinitesimal action of a Lie algebra
e bundle: A= M xg— M,;
e anchor: #: A — TM, #(x,v) = p(v)|,;
e Lie bracket [,] : C*(M,g) x C*(M,g) — C>*(M, g) is:

[, wl(z) = [v(z), w(z)]+(p(v(z)) - W)| = (p(w(z))-V)]2;

e characteristic foliation: orbit foliation.
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The Lie Algebroid of a Presymplectic manifold

M - an presymplectic manifold with closed 2-form w
e bundle: A=TM xR — M;
o anchor: #: A — TM, #(v,\) = v;
e Lic bracket I'(A) = X(M) x C*(M) is:

[(Xa f)? (Y7 g)] - ([X7 Y]?X(g> - Y(f) - w(Xv Y)),

e characteristic foliation: F = {M}.
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The Cotangent Lie Algebroid

Lie Algebroids
Groupoids
Integrability

M - a Poisson manifold with Poisson tensor 7
e bundle: A =T"M;
e anchor: # : T'M* — TM, #a = 1,.q;
e Lie bracket [, | : QY(M) x Q' (M) — QY (M), is the
Kozul Lie bracket:
(@, B] = Lyall = Lypa — dn(e, B);

e characteristic foliation: the symplectic foliation.
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Lie Algebroids

The Pair Groupoid Groupoids

Integrability

M - a manifold
e arrows: G = M x M;
e objects: M;

e target and source: s(z,y) =z, t(z,y) = y;

e product: (z,y) - (y, 2) = (x, 2);
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The Fundamental Groupoid (of a space)
M - a manifold

S
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The Fundamental Groupoid (of a space)
M - a manifold

Lie Algebroids
Groupoids
Integrability

e arrows: G = {[y] :v:[0,1] — M};

e objects: M;

e target and source: s([y]) = v(0), t([y]) = ~(1);
e product: [v|[y2] = [ - 72 (concatenation);
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Lie Algebroids

The Lie Groupoid of a Lie Group Groupoids

Integrability

G - a Lie group

e arrows: G = G;
e objects: M = {x};
e target and source: s(z) = t(z) = *;

e product: g - h = gh;
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Lie Algebroids

The Holonomy Groupoid Groupoids

Integrability

F - a regular foliation in M

e arrows: G = {[|y] : holonomy equivalence classes};
e objects: M:;

e target and source: s([y]) = v(0), t([y]) = v(1);
e product: [7] - [v] = [y-7];


http://www.math.ist.utl.pt/~rfern

)

Lie Algebroids

The Fundamental Groupoid (of a foliation) Groupoids

Integrability

F - a regular foliation in M

e arrows: G = {[y] : homotopy classes inside leafs};
e objects: M:;

e target and source: s([y]) = v(0), t([y]) = v(1);
e product: |7 - || =[y-7;
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Lie Algebroids

The Action Groupoid Groupoids

Integrability

G X M — M - an action of a Lie group on M

e arrows: G = G x M,;
e objects: M:;
e target and source: s(g,z) =z, t(g,z) = gz;

e product: (h,y) . (g,x) = (hg,x);
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