Classical field theories with nonholonomic constraints Some general remarks

Joris Vankerschaver

Joris.Vankerschaver@UGent.be

Ghent University

Classical field theories with nonholonomic constraints - p. 1/18

Aim: to show that geometric methods from nonholonomic mechanics carry over quite naturally to classical field theory, and to make a start on some examples.

Overview of this talk

- 1. Geometric formalism;
- 2. Derivation of the constrained field equations;
- 3. The nonholonomic projector;
- 4. Example: ideal incompressible fluids;
- 5. A tentative example: the nonholonomic Cosserat rod.
- 6. Conclusions.

Not in this talk: Cauchy formalism, aspects of symmetry, nonholonomic momentum map & Noether theorem; linear constraints ...

References

Based on work together with F. Cantrijn, M. de León & D. Martín de Diego. In particular, see:

- 1. F. Cantrijn, M. de León, D. Martín de Diego, J. Vankerschaver: *Geometric aspects of nonholonomic field theories*. To appear in *Rep. Math. Phys.*
- 2. J. Vankerschaver: *The momentum map for nonholonomic field theories with symmetry*. To appear in *Int. J. Geom. Meth. Mod. Phys.*

All proofs omitted in this talk (as well as lots more) can be found in these articles.

Classical field theories: overview

- Fields: sections of a bundle π : Y → X. dim X = n + 1, coordinate system (xⁱ) dim Y = n + 1 + m, coordinate system (xⁱ, u^a) We take X to be oriented with vol. form μ.
- First-order jet bundle J¹π, coordinate system (xⁱ, u^a; u^a_i). Projections: source π₁ : J¹π → X π₁(j¹_xφ) = x target π_{1,0} : J¹π → Y π(j¹_xφ) = φ(x)

Classical field theories: overview

- **First-order field theory:** characterised by a Lagrangian $L : J^1 \pi \to \mathbb{R}$. Regularity: $\frac{\partial^2 L}{\partial u_i^a \partial u_j^b}$ is invertible.
- Euler-Lagrange equations:

$$\frac{\partial L}{\partial u^a}(j^1\phi) - \frac{\mathrm{d}}{\mathrm{d}x^i}\frac{\partial L}{\partial u^a_i}(j^1\phi) = 0.$$

• Associated multisymplectic form: $\Omega_L = -d\Theta_L \in \Omega^{n+2}(J^1\pi)$, with

$$\Theta_L = \frac{\partial L}{\partial u_i^a} (\mathrm{d} u^a - u_j^a \mathrm{d} x^j) \wedge \mathrm{d}^n x_i + L \mathrm{d}^{n+1} x.$$

 De Donder-Weyl equations: look for a connection in π₁ with horizontal projector h satisfying

$$i_{\mathbf{h}}\Omega_L - n\Omega_L = 0.$$

Geometric formalism: ingredients

We start from a fibre bundle $\pi : Y \to X$ and a first-order Lagrangian $L : J^1 \pi \to \mathbb{R}$.

Constraints: modelled by

1. a *constraint submanifold* $C \hookrightarrow J^1 \pi$, (locally) given as the zero set of k independent functions φ^{α} , $\alpha = 1, ..., k$:

$$\mathcal{C} = \left\{ \gamma \in J^1 \pi : \varphi^{\alpha}(\gamma) = 0 \right\}.$$

We assume that $(\pi_{1,0})_{|\mathcal{C}} : \mathcal{C} \to Y$ is a fibre bundle.

2. a *bundle of constraint forms* $F \subset \wedge^{n+1}(J^1\pi)$ along C, locally generated by forms

$$\Phi^{\alpha} = (C^{\alpha})^i_a (\mathrm{d} u^a - u^a_j \mathrm{d} x^j) \wedge \mathrm{d}^n x_i.$$

Geometric formalism: Chetaev principle

A priori, C and F are completely unrelated!

Chetaev principle: assumes that *F* is linked to *C*, by defining

$$\Phi^{\alpha} = S^{*}_{\mu}(\mathrm{d}\varphi^{\alpha})$$
$$= \frac{\partial \varphi^{\alpha}}{\partial u^{a}_{i}}(\mathrm{d}u^{a} - u^{a}_{j}\mathrm{d}x^{j}) \wedge \mathrm{d}^{n}x_{i},$$

and putting $F_{\gamma} = \langle \Phi^{\alpha}(\gamma) \rangle$ for $\gamma \in C$.

Field equations

We take variations of the action and integrate by parts

$$\delta S = \int_{U} \left(\frac{\partial L}{\partial u^{a}} - \frac{\mathrm{d}}{\mathrm{d}x^{i}} \frac{\partial L}{\partial u^{a}_{i}} \right) \xi^{a} \mathrm{d}^{n+1}x,$$

where $\xi = \xi^a \frac{\partial}{\partial u^a}$ is an infinitesimal variation.

Principle of d'Alembert for field theories: restrict to variations ξ satisfying

$$\xi^a \frac{\partial \varphi^\alpha}{\partial u_i^a} = 0 \quad \text{for } \alpha = 1, \dots, k.$$

Affine constraints: $\varphi_i^{\alpha} = A_a^{\alpha} u_i^{a} + B_i^{\alpha}$. Hence we obtain that $\xi^a A_a^{\alpha} = 0$.

Constrained Euler-Lagrange equations

By use of the principle of d'Alembert, we conclude that $\phi \in Sec(\pi)$ is a solution of the *constrained field equations* if

$$\frac{\partial L}{\partial u^a}(j^1\phi) - \frac{\mathrm{d}}{\mathrm{d}x^i}\frac{\partial L}{\partial u^a_i}(j^1\phi) = \lambda_{\alpha i}\frac{\partial\varphi^{\alpha}}{\partial u^a_i}$$

together with the constraint equations $\varphi^{\alpha} \circ j^{1}\phi = 0$.

$$\frac{\partial L}{\partial u^a}(j^1\phi) - \frac{\mathrm{d}}{\mathrm{d}x^i}\frac{\partial L}{\partial u^a_i}(j^1\phi) \equiv \lambda_{\alpha i}\frac{\partial\varphi^{\alpha}}{\partial u^a_i}$$

together with the constraint equations $\varphi^{\alpha} \circ j^{1}\phi = 0$.

Warning: $\lambda_{\alpha i}$ are Lagrange multipliers. Have to be determined from the constraint equations. *This is not possible in general*!

Solution:

- dependent on modelling;
- sometimes not all multipliers are needed

Constrained De Donder-Weyl equation

In De Donder-Weyl form, we look for connections **h** in π_1 satisfying

$$i_{\mathbf{h}}\Omega_L - n\Omega_L \in \mathcal{I}(F)$$
, and $\operatorname{Im} \mathbf{h} \subset T\mathcal{C}$.

If integrable, integral sections of **h** solve constrained Euler-Lagrange equations.

Our aim: to turn a connection **h** solving the (free) De Donder-Weyl equation

 $i_{\mathbf{h}}\Omega_L = n\Omega_L,$

into a solution \mathbf{h}' of the constrained field equations.

Geometric treatment: the bundle *D*

• Construct a "complement" *D* to *F*, in the sense that

 $X \in D \Leftrightarrow i_X \Omega_L \in F.$

Straightforward for symplectic manifolds ($D = F^{\perp}$), in general *impossible* for generic multisymplectic manifolds!

• Possible here because of special form of $\Phi^{\alpha} = S^*_{\mu}(d\varphi^{\alpha})$: there exist X_{α} such that $i_{X_{\alpha}}\Omega_L = \Phi^{\alpha}$, with

$$X_{\alpha} = (X_{\alpha})_{i}^{A} \frac{\partial}{\partial u_{i}^{A}} \quad \text{where } (X_{\alpha})_{i}^{A} \frac{\partial^{2} L}{\partial u_{i}^{A} \partial u_{j}^{B}} = \frac{\partial \varphi_{\alpha}}{\partial u_{j}^{B}}.$$

• *Compatibility*: we demand that, for each $\gamma \in C$, $D(\gamma) \cap T_{\gamma}C = 0$. This gives rise to a decomposition along C

$$T_{\gamma}J^{1}\pi = D(\gamma) \oplus T_{\gamma}\mathcal{C}$$

Geometric treatment: nonholonomic projector

We recall the decomposition

$$T_{\gamma}J^1\pi = D(\gamma) \oplus T_{\gamma}\mathcal{C}$$
 along \mathcal{C}

and consider the projector $\mathcal{P}: TJ^1\pi \to T\mathcal{C}$.

Claim: if **h** solves free DDW, then $\mathcal{P} \circ \mathbf{h}$ is a solution of the constrained field equations.

Proof:

1. By definition, $\operatorname{Im} \mathcal{P} \circ \mathbf{h} \subset T\mathcal{C}$. 2. On the other hand,

$$i_{\mathcal{P}\circ\mathbf{h}}\Omega_L - n\Omega_L = (i_{\mathbf{h}}\Omega_L - n\Omega_L) - i_{\mathcal{Q}\circ\mathbf{h}}\Omega_L$$
$$= \lambda_{\alpha i} \mathbf{d} x^i \wedge \Phi^{\alpha}.$$

(we omit the proof that $\mathcal{P} \circ \mathbf{h}$ is a connection).

Example: ideal incompressible fluids

- Setting: a fluid filling Euclidian space R³.
 X = R × R³, coordinates (t, X^I) Y = X × R³, coordinates (t, X^I; xⁱ)
 Jet bundle J¹π: coordinates (t, X^I; xⁱ; vⁱ, Fⁱ_I).
- **Barotropic fluid:** Lagrangian density

$$L = \frac{1}{2}\rho(X) \|v\|^2 d^4 x - \rho(X)W(J)d^4 x,$$

where $J = \det F_I^i$.

• **Incompressibility constraint:** $J = \det F_I^i = 1$. This is really a divergence:

$$J = \frac{\mathrm{d}}{\mathrm{d}X^{I}} \left(\frac{1}{3} J x^{i} (F^{-1})_{i}^{I} - X^{I}\right).$$

Example: ideal incompressible fluids

• Field equations:

$$\rho(X)\delta_{ij}\frac{\mathrm{d}v^{j}}{\mathrm{d}t} - \frac{\mathrm{d}}{\mathrm{d}X^{I}}\left(\rho(X)W'J(F^{-1})_{i}^{I}\right) = \lambda_{I}J(F^{-1})_{i}^{I},$$

supplemented with $J \equiv 1$.

• Comparison with vakonomic approach (Marsden et al.) shows that there exist a multiplier *p* ("pressure") such that

$$\lambda_I = \frac{\mathrm{d}p}{\mathrm{d}X^I}.$$

• In agreement with usual treatment of incompressibility. Not so surprising, given the divergence property...

A tentative example

Setting: imagine *N* wheels interconnected by flexible beams, being able to twist and to bend. Beams counteract twisting & binding.



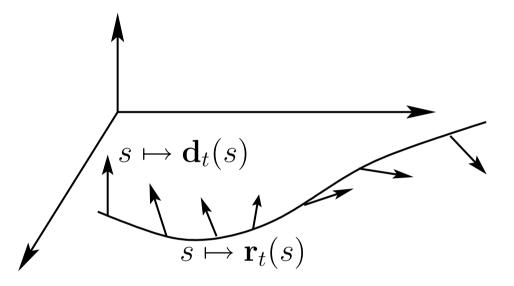
Lagrangian:

$$L = \sum_{i=1}^{N} L_{\text{r.d.}}(x_i, y_i, \phi_i, \theta_i) - \frac{A}{2} \sum_{i=1}^{N-1} (\theta_{i+1} - \theta_i)^2 - \frac{B}{2} \sum_{i=1}^{N-1} \frac{1}{r_i^2}$$

where $L_{r.d.} = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) + \frac{I}{2}\dot{\phi}^2 + \frac{J}{2}\dot{\theta}^2$. **Constraint:** each wheel rolls without sliding.

The Cosserat rod

• In the limit $N \to +\infty$, we obtain something called a *Cosserat rod*...



• Lagrangian density for such a model:

$$L = \frac{1}{2}(\dot{x}^2 + \dot{y}^2) + \frac{\pi}{4}\dot{\theta}^2 - \frac{\pi\mu}{4}(\rho - \theta')^2.$$

- Constraint (rolling without sliding) survives in the continuum limit as well.
- **Problem:** equations of motion very hard to make sense of!

Conclusions

- Mathematical formulation carries along nicely;
- Examples are a another question:
 - 1. Vakonomic equations are much more prominent;
 - 2. Field equations computationally very difficult!
- Future work:
 - 1. Examples, esp. computer simulations;
 - 2. Linear constraints: many interesting mathematical results;
 - 3. Classification of constraints: vakonomic vs. nonholonomic.

The End (for now)

Thank you for listening!