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Overview of this talk
(S

Aim: to show that geometric methods from nonholonomic
mechanics carry over quite naturally to classical field theory, and to
make a start on some examples.
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Overview of this talk
(S

1. Geometric formalism;

2. Derivation of the constrained field equations;

3. The nonholonomic projector;

4. Example: ideal incompressible fluids;

5. A tentative example: the nonholonomic Cosserat rod.

6. Conclusions.

Not in this talk: Cauchy formalism, aspects of symmetry, nonholonomic
momentum map & Noether theorem; linear constraints ...
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(]

Based on work together with F. Cantrijn, M. de Le6n & D. Martin de
Diego. In particular, see:

1. F Cantrijn, M. de Le6n, D. Martin de Diego, J. Vankerschaver:
Geometric aspects of nonholonomic field theories. To appear in Rep.
Math. Phys.

2. J. Vankerschaver: The momentum map for nonholonomic field theories
with symmetry. To appear in Int. . Geom. Meth. Mod. Phys.

All proofs omitted in this talk (as well as lots more) can be found in these
articles.
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Classical field theories: overview
(]

® Fields: sections of abundle 7: Y — X.
dimX =n+1, coordinate system (x')
dimY =n+1+4m, coordinate system (x', u?)
We take X to be oriented with vol. form pu.

e First-order jet bundle J'7t, coordinate system (x', u?; u?). Projections:

source 711 : J'm — X m(jle) = x
target r1 o : Jlr — Y 7(jle) = ¢(x)
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Classical field theories: overview
(]

e First-order field theory: characterised by a Lagrangian L : J'7r — R.

9°L

YRR is invertible.

Regularity:
® Euler-Lagrange equations:

oL ., d oL, ., .
W(] CP)—@W(] ¢) = 0.

® Associated multisymplectic form: O); = —dO; € QO"?(J1 ), with

oL

OL= E)u

— (du” — u“dx]) Adx; + Ld" iy,

® De Donder-Weyl equations: look for a connection in 77; with
horizontal projector h satisfying

ihQL — T’ZQL = 0.
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Geometric formalism: ingredients

We start from a fibre bundle 77 : ¥ — X and a first-order Lagrangian
L:'m— R.

Constraints: modelled by

1. a constraint submanifold C — J'7t, (locally) given as the zero set of k
independent functions ¢*, « =1, ..., k:

C = {’yE]lnzgo“('y) :O}.
We assume that (7110)|¢ : C — Y is a fibre bundle.

2. a bundle of constraint forms F C A" T1(J17) along C, locally generated by
forms

O = (C%)i(du" — uldxl) A d"x;.
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Geometric formalism: Chetaev principle
e —

A priori, C and F are completely unrelated!
Chetaev principle: assumes that F is linked to C, by defining

Ot = 54 (dg*)

OC .
= gi“ (du — ujdx!) Ad"x;,
1

and putting F, = (®*()) for ¢y € C.
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Field equations

We take variations of the action and integrate by parts

_ oL d JdL a n+1
03 = /u <8u” dux au?) G AT,

where ¢ = ¢ 887 is an infinitesimal variation.
Principle of d’Alembert for field theories: restrict to variations ¢

satistying

dp”
a _ -
g aulq _O for“—ll...,k.

Affine constraints: ¢f = Aju? + Bf. Hence we obtain that {? A7 = 0.
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Constrained Euler-Lagrange equations
G

By use of the principle of d’Alembert, we conclude that ¢ € Sec(7r) is a
solution of the constrained field equations if

aL .1 d aL .1 . 8g0“
W(] ¢) @W(] ‘P)_A“laug

together with the constraint equations ¢* o jl¢ = 0.

oL d oL, . 9"
3 —(j'¢) — @W(] ¢ /\“la—uf

together with the constraint equations ¢* o j1¢ = 0.

Warning: A,;"are Lagrange multipliers. Have to be determined from the
constraint equations. This is not possible in general!

Solution:
® dependent on modelling;
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Constrained De Donder-Weyl equation
e —

In De Donder-Weyl form, we look for connections h in 771 satisfying

ihQL—nQLEI(F), and Imh C TC.

If integrable, integral sections of h solve constrained Euler-Lagrange
equations.

Our aim: to turn a connection h solving the (free) De Donder-Weyl
equation
in Q) = nQ)yp,

into a solution h’ of the constrained field equations.
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Geometric treatment; the bundle D

® Construct a “complement” D to F, in the sense that
XeD<&ix() €F.

Straightforward for symplectic manifolds (D = F~), in general
impossible for generic multisymplectic manifolds!

® Possible here because of special form of ®* = 57 (d¢"):
there exist X, such thatix () = ®%, with

0 0°L 0
X, = (X“>ZAB— where (X“)ZAE)uAauB — azfg
! ] J

o Compatibility: we demand that, for each v € C, D(y) N T,C = 0.
This gives rise to a decomposition along C

T,J'm = D(7) & T,C
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Geometric treatment: nonholonomic projector
e —

We recall the decomposition
T,J'7t = D(y) ® T,C alongC

and consider the projector P : TJ'7t — TC.

Claim: if h solves free DDW, then P o h is a solution of the constrained
field equations.

Proof:
1. By definition, ImP oh C TC.
2. On the other hand,

iponQdp — nQp = (inQp — nQp) —igendr
= )\m‘dxi N DY,

(we omit the proof that P o h is a connection).
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Example: ideal incompressible fluids

® Setting: a fluid filling Euclidian space R>.
X =R xR3 coordinates (t, X')
Y = X xR3, coordinates (¢, X!; x')
Jet bundle J'7r: coordinates (¢, X!; x*; 0!, F})

® Barotropic fluid: Lagrangian density
1
L= p(X) [lo]*d*x — p(X)W(])d*x,

where | = det F}.

® Incompressibility constraint: | = det F} = 1. This is really a
divergence:

_od (1 gl
]_dXI(?;]x(F )i X)
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Example: ideal incompressible fluids
e —

¢ Field equations:

do/ d o B
p(X)05 4 — =57 (PCOWJ(ED]) = A (F )],

supplemented with | = 1.

¢ Comparison with vakonomic approach (Marsden et al.) shows that
there exist a multiplier p (“pressure”) such that

dp

® In agreement with usual treatment of incompressibility. Not so
surprising, given the divergence property...
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A tentative example

Setting: imagine N wheels interconnected by flexible beams, being able to
twist and to bend. Beams counteract twisting & binding.

2 s
-
=
01 |
4 I
\\\7“1 :
Lagrangian:
N N—-1 N—-1
A B 1
L=Y Lea(xi,yi ¢i0;)— 5 Y (61 —6;)% — o) >
= i= i=1 T

where L4 = Z(%* + %) + %(PZ + %92.
Constraint: each wheel rolls without sliding.
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The Cosserat rod

® In the limit N — 400, we obtain something called a Cosserat rod. ..

S — 14(8)

® [agrangian density for such a model:
1 .
L= 2( +97) + - QZ—E(p—G’)Z.

® Constraint (rolling without sliding) survives in the continuum limit
as well.

® Problem: equations of motion very hard to make sense of!
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Conclusions
(]

® Mathematical formulation carries along nicely;

® Examples are a another question:
1. Vakonomic equations are much more prominent;
2. Field equations computationally very difficult!

® Future work:
1. Examples, esp. computer simulations;
2. Linear constraints: many interesting mathematical results;
3. Classification of constraints: vakonomic vs. nonholonomic.

The Eﬂd (for now)

Thank you for listening!
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