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Overview of this talk

Aim: to show that geometric methods from nonholonomic
mechanics carry over quite naturally to classical field theory, and to

make a start on some examples.
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Overview of this talk

1. Geometric formalism;

2. Derivation of the constrained field equations;

3. The nonholonomic projector;

4. Example: ideal incompressible fluids;

5. A tentative example: the nonholonomic Cosserat rod.

6. Conclusions.

Not in this talk: Cauchy formalism, aspects of symmetry, nonholonomic
momentum map & Noether theorem; linear constraints . . .
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Based on work together with F. Cantrijn, M. de León & D. Martín de
Diego. In particular, see:
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Geometric aspects of nonholonomic field theories. To appear in Rep.
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All proofs omitted in this talk (as well as lots more) can be found in these
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Classical field theories: overview

• Fields: sections of a bundle π : Y → X.
dim X = n + 1, coordinate system (xi)

dim Y = n + 1 + m, coordinate system (xi, ua)

We take X to be oriented with vol. form µ.

• First-order jet bundle J1π, coordinate system (xi, ua; ua
i ). Projections:

source π1 : J1π → X π1(j1xφ) = x

target π1,0 : J1π → Y π(j1xφ) = φ(x)
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Classical field theories: overview

• First-order field theory: characterised by a Lagrangian L : J1π → R.

Regularity: ∂2L
∂ua

i ∂ub
j

is invertible.

• Euler-Lagrange equations:

∂L

∂ua
(j1φ) −

d

dxi

∂L

∂ua
i

(j1φ) = 0.

• Associated multisymplectic form: ΩL = −dΘL ∈ Ωn+2(J1π), with

ΘL =
∂L

∂ua
i

(dua − ua
j dxj) ∧ dnxi + Ldn+1x.

• De Donder-Weyl equations: look for a connection in π1 with
horizontal projector h satisfying

ihΩL − nΩL = 0.
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Geometric formalism: ingredients

We start from a fibre bundle π : Y → X and a first-order Lagrangian

L : J1π → R.

Constraints: modelled by

1. a constraint submanifold C →֒ J1π, (locally) given as the zero set of k
independent functions ϕα, α = 1, . . . , k:

C =
{

γ ∈ J1π : ϕα(γ) = 0
}

.

We assume that (π1,0)|C : C → Y is a fibre bundle.

2. a bundle of constraint forms F ⊂ ∧n+1(J1π) along C, locally generated by
forms

Φα = (Cα)i
a(dua − ua

j dxj) ∧ dnxi.
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Geometric formalism: Chetaev principle

A priori, C and F are completely unrelated!

Chetaev principle: assumes that F is linked to C, by defining

Φα = S∗
µ(dϕα)

=
∂ϕα

∂ua
i

(dua − ua
j dxj) ∧ dnxi,

and putting Fγ = 〈Φα(γ)〉 for γ ∈ C.
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Field equations

We take variations of the action and integrate by parts

δS =
∫

U

(

∂L

∂ua
−

d

dxi

∂L

∂ua
i

)

ξadn+1x,

where ξ = ξa ∂
∂ua is an infinitesimal variation.

Principle of d’Alembert for field theories: restrict to variations ξ
satisfying

ξa ∂ϕα

∂ua
i

= 0 for α = 1, . . . , k.

Affine constraints: ϕα
i = Aα

a ua
i + Bα

i . Hence we obtain that ξa Aα
a = 0.
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Constrained Euler-Lagrange equations

By use of the principle of d’Alembert, we conclude that φ ∈ Sec(π) is a
solution of the constrained field equations if

∂L

∂ua
(j1φ) −

d

dxi

∂L

∂ua
i

(j1φ) = λαi
∂ϕα

∂ua
i

together with the constraint equations ϕα ◦ j1φ = 0.

∂L

∂ua
(j1φ) −

d

dxi

∂L

∂ua
i

(j1φ) = λαi
∂ϕα

∂ua
i

together with the constraint equations ϕα ◦ j1φ = 0.

Warning: λαi are Lagrange multipliers. Have to be determined from the
constraint equations. This is not possible in general!

Solution:

• dependent on modelling;

• sometimes not all multipliers are needed. Classical field theories with nonholonomic constraints – p. 10/18



Constrained De Donder-Weyl equation

In De Donder-Weyl form, we look for connections h in π1 satisfying

ihΩL − nΩL ∈ I(F), and Im h ⊂ TC.

If integrable, integral sections of h solve constrained Euler-Lagrange
equations.

Our aim: to turn a connection h solving the (free) De Donder-Weyl
equation

ihΩL = nΩL,

into a solution h′ of the constrained field equations.
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Geometric treatment: the bundle D

• Construct a “complement” D to F, in the sense that

X ∈ D ⇔ iXΩL ∈ F.

Straightforward for symplectic manifolds (D = F⊥), in general
impossible for generic multisymplectic manifolds!

• Possible here because of special form of Φα = S∗
µ(dϕα):

there exist Xα such that iXα ΩL = Φα, with

Xα = (Xα)
A
i

∂

∂uA
i

where (Xα)
A
i

∂2L

∂uA
i ∂uB

j

=
∂ϕα

∂uB
j

.

• Compatibility: we demand that, for each γ ∈ C, D(γ) ∩ TγC = 0.

This gives rise to a decomposition along C

Tγ J1π = D(γ) ⊕ TγC
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Geometric treatment: nonholonomic projector

We recall the decomposition

Tγ J1π = D(γ) ⊕ TγC along C

and consider the projector P : TJ1π → TC.

Claim: if h solves free DDW, then P ◦ h is a solution of the constrained
field equations.

Proof:
1. By definition, ImP ◦ h ⊂ TC.
2. On the other hand,

iP◦hΩL − nΩL = (ihΩL − nΩL) − iQ◦hΩL

= λαidxi ∧ Φα.

(we omit the proof that P ◦ h is a connection).
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Example: ideal incompressible fluids

• Setting: a fluid filling Euclidian space R
3.

X = R × R
3, coordinates (t, X I)

Y = X × R
3, coordinates (t, X I ; xi)

Jet bundle J1π: coordinates (t, X I ; xi; vi, Fi
I).

• Barotropic fluid: Lagrangian density

L =
1

2
ρ(X) ‖v‖2 d4x − ρ(X)W(J)d4x,

where J = det Fi
I .

• Incompressibility constraint: J = det Fi
I = 1. This is really a

divergence:

J =
d

dX I

(

1

3
Jxi(F−1)I

i − X I

)

.
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Example: ideal incompressible fluids

• Field equations:

ρ(X)δij
dvj

dt
−

d

dX I

(

ρ(X)W ′ J(F−1)I
i

)

= λI J(F−1)I
i ,

supplemented with J ≡ 1.

• Comparison with vakonomic approach (Marsden et al.) shows that
there exist a multiplier p (“pressure”) such that

λI =
dp

dX I
.

• In agreement with usual treatment of incompressibility. Not so
surprising, given the divergence property. . .
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A tentative example

Setting: imagine N wheels interconnected by flexible beams, being able to
twist and to bend. Beams counteract twisting & binding.

r1

θ1

θ2

θ3

Lagrangian:

L =
N

∑
i=1

Lr.d.(xi, yi, φi, θi)−
A

2

N−1

∑
i=1

(θi+1 − θi)
2 −

B

2

N−1

∑
i=1

1

r2
i

,

where Lr.d. = m
2 (ẋ2 + ẏ2) + I

2 φ̇2 + J
2 θ̇2.

Constraint: each wheel rolls without sliding.
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The Cosserat rod

• In the limit N → +∞, we obtain something called a Cosserat rod. . .

s 7→ rt(s)

s 7→ dt(s)

• Lagrangian density for such a model:

L =
1

2
(ẋ2 + ẏ2) +

π

4
θ̇2 −

πµ

4
(ρ − θ′)2.

• Constraint (rolling without sliding) survives in the continuum limit
as well.

• Problem: equations of motion very hard to make sense of!
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Conclusions

• Mathematical formulation carries along nicely;

• Examples are a another question:

1. Vakonomic equations are much more prominent;

2. Field equations computationally very difficult!

• Future work:

1. Examples, esp. computer simulations;

2. Linear constraints: many interesting mathematical results;

3. Classification of constraints: vakonomic vs. nonholonomic.

The End (for now)

Thank you for listening!
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