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tThe Finslerian version of Hilbert's fourth problem is the problem of �nd-ing proje
tive Finsler fun
tions. �Alvarez Paiva (J. Di�. Geom. 69 (2005)353{378) has shown that proje
tive absolutely homogeneous Finsler fun
-tions 
orrespond to symple
ti
 stru
tures on the spa
e of oriented lines inRn with 
ertain properties. I give new and dire
t proofs of his main re-sults, and show how they are related to the more 
lassi
al formulations ofthe problem due to Hamel and Rap
s�ak.1 Introdu
tionFrom the point of view of Finsler geometry, Hilbert's fourth problem is usuallyregarded as the problem of �nding proje
tive Finsler fun
tions, that is, Finslerfun
tions on T ÆRn (the tangent bundle of Rn with zero se
tion removed) whosegeodesi
s, as point sets, are straight lines. As initially formulated, the problem wasto �nd metri
s (in the topologi
al sense) on Rn with the property that the shortest
urve joining two points is the straight line segment between them. The Finslerianversion is more spe
i�
 in that di�erentiability properties are assumed, but alsomore general in that Finsler fun
tions do not de�ne genuine metri
s. A generalFinsler fun
tion, one whi
h is merely positively homogeneous of degree one in thevelo
ity variables, de�nes a distan
e fun
tion whi
h has two of the properties ofa metri
 (it is positive and satis�es the triangle inequality) but la
ks the third,symmetry. For the latter property to hold the Finsler fun
tion must be absolutely1



homogeneous. The stri
t Finslerian version of Hilbert's fourth problem is to �ndproje
tive absolutely homogeneous Finsler fun
tions. This paper deals with boththe stri
t and the more general forms of the problem.There are in fa
t many proje
tive Finsler fun
tions (see for example [6, 7℄ and refer-en
es therein), so that `�nding' them, at least in the sense of listing them, be
omesrather a tall order. In fa
t this paper is 
on
erned with ways of 
hara
terizing pro-je
tive Finsler spa
es, or to be more pre
ise with two apparently rather dissimilarapproa
hes to the problem of doing so; indeed one of its aims is to re
on
ile theseapproa
hes.The �rst approa
h, whi
h might be 
alled 
lassi
al, is the reformulation of Hilbert'sfourth problem by Hamel in the early 20th 
entury, and the related work ofRap
s�ak. Hamel's 
onditions will be rederived below, but for some ba
kgroundand a more extensive dis
ussion with referen
es see [8℄.Mu
h more re
ently, a new approa
h to the problem using symple
ti
 geometryand Crofton formulae has been developed by �Alvarez Paiva [1℄. �Alvarez Paiva dealsentirely with the stri
t version of the problem. One aim of the present paper is toshow that most of �Alvarez Paiva's results 
an be derived by rather more elementarymethods than he uses. Of 
ourse one pays a pri
e in loss of elegan
e; on the otherhand, one gains some di�erent insights, and in parti
ular one sees that there is a
lose link between �Alvarez Paiva's 
hara
terization of proje
tive Finsler spa
es, inthe 
ase of absolute homogeneity, and that of Hamel.One unfortunate but unavoidable feature of the approa
h adopted here is that therequirement of a Finsler fun
tion that it be strongly 
onvex has to be treated sep-arately from the rest of the problem. Moreover, it turns out to be more 
onvenientto deal dire
tly with the Finsler fun
tion than with its energy, whereas in mosttreatments the 
ondition for strong 
onvexity is stated in terms of the energy. Ibegin therefore, in Se
tion 2, with a general dis
ussion of strong 
onvexity adaptedto the needs of the paper; some of the 
ontents of this se
tion are, I believe, new,and interesting in their own right.In Se
tion 3 I dis
uss Rap
s�ak's and Hamel's 
ontributions to the problem, andin Se
tion 4 I give a restatement of Hamel's 
onditions in terms of the existen
eon T ÆRn of a 2-form with 
ertain properties. This is a half-way stage to theformulation of the problem in terms of symple
ti
 geometry, whi
h will be foundin Se
tion 5. 2



2 Strong 
onvexityA Finsler fun
tion F on a slit tangent bundle T ÆM is required to be strongly 
onvex.The 
ondition for strong 
onvexity is usually given in terms of the Hessian of theenergy E = 12F 2 (`Hessian' will always mean `Hessian with respe
t to the natural�bre 
oordinates'); it is that for ea
h (x; y) 2 T ÆM the symmetri
 bilinear form onTxM whose 
omponents aregij = �2E�yi�yj = F �2F�yi�yj + �F�yi �F�yjis positive de�nite. For the purposes of this arti
le, however, it will be more usefulto state the 
ondition dire
tly in terms of the Hessian of F . (Of 
ourse the Hessianof F is, apart from a fa
tor of F , the angular metri
; but this identi�
ation doesnot seem to be parti
ularly helpful here.)One preliminary observation is ne
essary. As is pointed out in [2℄ for example,from this 
onventional de�nition it follows that if a fun
tion F on T ÆM is positivelyhomogeneous and strongly 
onvex then it is never vanishing, so that when de�ningwhat it is for a fun
tion to be a Finsler fun
tion it is enough to require that thefun
tion is nonnegative. In the following dis
ussion this point has to be treatedwith a 
ertain amount of 
are.Sin
e F is positively homogeneousyi �2F�yi�yj = 0:I will say that the Hessian of F is positive semide�nite at (x; y) if for all u 2 TxM ,�2F�yi�yj uiuj � 0; �2F�yi�yjuiuj = 0 if and only if ui = �yifor some s
alar �. Similar terminology will be used for 
ertain other bilinear formsthat o

ur later, but always with the understanding that at (x; y) it is y that isthe `null' ve
tor.Lemma 1. If F is positively homogeneous and nonnegative then F is strongly 
on-vex at (x; y) if and only if F (x; y) > 0 and the Hessian of F is positive semide�niteat (x; y).Proof. Suppose that F is strongly 
onvex. Then from the formula above for gij interms of F we have gijyj = F (x; y)�F�yi; gijyiyj = F (x; y)2;3



from the latter we see that F (x; y) is positive. Then for any u 2 TxM we may setui � 1F (x; y) �uk �F�yk� yi = vi;v 
an be thought of as the 
omponent of u tangent to the level set of F in whi
h(x; y) lies. It is easy to see that�2F�yi�yj uiuj = gijvivjF (x; y):So the left-hand side is nonnegative, and is zero only if v = 0, in whi
h 
ase u is as
alar multiple of y.Conversely, if F (x; y) > 0 and the Hessian of F is positive semide�nite at (x; y),then for any u gijuiuj = F (x; y) �2F�yi�yjuiuj +�uk �F�yk�2 � 0:Moreover, gijuiuj = 0 if and only if both terms on the right-hand side are zeroindividually. Then ui = �yi from the �rst, and then0 = �yk �F�yk = �F (x; y);so � = 0. So F is strongly 
onvex at (x; y).In general one 
annot dedu
e from positive-semide�niteness of the Hessian of Fthat F is nonvanishing. The following simple example is quite instru
tive. Themost obvious proje
tive Finsler fun
tion is the Eu
lidean length fun
tion, F (x; y) =jyj =pÆijyiyj. Then �2F�yi�yj = 1jyj3(jyj2Æij � yiyj)where yi = Æijyj. Consider now F̂ (x; y) = jyj + �iyi, where � is any 
onstant
ove
tor. The Hessian of F̂ is evidently identi
al to the Hessian of F . Whethersu
h a fun
tion F̂ is a Finsler fun
tion or not depends on j�j: we must have j�j < 1for it to be a Finsler fun
tion; if j�j � 1 there will be values of y for whi
h F̂ (y) = 0.That is to say, one 
annot tell in general from 
onsiderations of the Hessian alonewhether or not F̂ is nonvanishing. It is worth remarking that the Eu
lidean lengthfun
tion is uniquely distinguished in this 
lass of positively homogeneous fun
tionsby the fa
t that it is absolutely homogeneous; and it of 
ourse is nonvanishing. Iwill return to this point at the end of the se
tion.4



Returning to the general 
ase, we 
an evidently regard the Hessian of F at (x; y)as de�ning a symmetri
 bilinear form on TxM=hyi, whi
h is positive de�nite if andonly if the Hessian itself is positive semide�nite. More generally, if F is positivelyhomogeneous at (x; y) its Hessian de�nes a symmetri
 bilinear form on TxM=hyi,whi
h I 
all the redu
ed Hessian (and again the same terminology will be usedwithout 
omment in other situations later on). I will be interested below onlyin su
h fun
tions F for whi
h this form is nonsingular: a positively homogeneousfun
tion whose redu
ed Hessian is everywhere nonsingular but not ne
essarily pos-itive de�nite will be 
alled a pseudo-Finsler fun
tion. I will refer to the signatureof the redu
ed Hessian of a pseudo-Finsler fun
tion F as the signature of F . Thesignature of F at (x; y) is also the signature of the restri
tion of the Hessian of Fto any subspa
e of TxM whi
h is 
omplementary to hyi. For F (x; y) > 0, one su
hsubspa
e is the tangent spa
e to the level set of F in whi
h (x; y) lies.The following result is due to Lovas [5℄. Lovas's proof uses gij ; here, in keepingwith my earlier remarks, I prove the result using only the Hessian of F .Lemma 2. A pseudo-Finsler fun
tion whi
h takes only positive values is a Finslerfun
tion.Proof. I show that at any x 2 M there is a point of T ÆxM , the tangent spa
e atx with origin deleted, at whi
h the Hessian of the pseudo-Finsler fun
tion F ispositive semide�nite. Then sin
e the signature of F 
annot 
hange without theredu
ed Hessian be
oming singular, F must be positive semide�nite all over T ÆxM .The argument takes pla
e entirely within T ÆxM so I will ignore the fa
t that Fdepends on x and regard it as a fun
tion just on T ÆxM . I work in 
oordinates,whi
h is to say that I identify T ÆxM with Rn � f0g, and I equip the latter spa
ewith the Eu
lidean metri
.Consider the level set � of F of value 1. It 
annot 
ontain any 
riti
al points ofF , sin
e yi�F=�yi = 1 on �. It is therefore a submanifold of T ÆxM of 
odimension1, and at ea
h y 2 T ÆxM it is transverse to the ray f�y : � > 0g. Thus � istopologi
ally a sphere, and in parti
ular is 
ompa
t. The fun
tion on � whi
h mapsea
h y to its Eu
lidean length jyj a
hieves its maximumvalue. At a maximum, sayy0, we have �F�yi (y0) = Æij yj0jy0j2 ;by the method of undetermined multipliers. Now 
hoose any u 2 Ty0�, and let
(t) be a 
urve in � with 
(0) = y0, _
(0) = u. Thenui�F�yi (y0) = 0; �
i(0)�F�yi (y0) + uiuj �2F�yi�yj (y0) = 0:5



From the �rst of these we obtain u � y0 = 0. Now j
(t)j has a maximum at t = 0.Thus 0 � d2dt2 (j
(t)j)t=0 = 1jy0j(�
(0) � y0 + j _
(0)j2)= �jy0juiuj �2F�yi�yj (y0) + juj2jy0j :It follows that for every nonzero u 2 Ty0�,uiuj �2F�yi�yj (y0) � � jujjy0j�2 > 0:That is to say, the restri
tion of the Hessian of F to Ty0� is positive de�nite.I pointed out earlier that one 
annot in general tell from 
onsideration of theHessian of F alone whether or not F is nonvanishing, even when the Hessian ispositive semide�nite. However, if F is absolutely homogeneous (so that F (x;�y) =F (x; y)) it is possible to prove that when its Hessian is positive semide�nite it isnonvanishing, and in fa
t ne
essarily everywhere positive.Lemma 3. Suppose that the fun
tion F on T ÆM is absolutely homogeneous and itsHessian is positive semide�nite everywhere. Then F is everywhere positive, and sois a Finsler fun
tion.Proof. The key point about absolute homogeneity in this 
ontext is that if F (x; z) =0 for some (x; z) 2 T ÆM then F (x; �z) = 0 for all nonzero s
alars �. Again, I re-stri
t my attention to T ÆxM for arbitrary x, and drop expli
it mention of x informulae.The �rst point to establish is that F 
annot be everywhere negative on T ÆxM . Todo this I assume that it is everywhere negative, and argue as in Lemma 2, but withrespe
t to the level set � of value �1. As before, the Eu
lidean length fun
tiona
hieves its maximum on �, at y0 say; but this time we have�F�yi (y0) = �Æij yj0jy0j2 :But then the 
ondition that j
(t)j has a maximum along the 
urve 
(t) at t = 0reads 0 � d2dt2 (j
(t)j)t=0 = 1jy0j(�
(0) � y0 + j _
(0)j2)= jy0juiuj �2F�yi�yj (y0) + juj2jy0j ;6



whi
h is a 
ontradi
tion.Thus T ÆxM must 
ontain points where F is nonnegative. I next show that it must
ontain a point where F is positive.The zero set of F in T ÆxM is evidently 
losed. On the other hand, F 
annot vanishon an open subset of T ÆxM and still have positive semide�nite Hessian. So the zeroset of F in T ÆxM is 
losed without interior points, and its 
omplement (where F isnonzero) is open dense.The following argument is based on the proof of the so-
alled fundamental inequal-ity due to Bao et al., [2℄ page 9. Let y be any point of T ÆxM . For any u,F (y + u) = F (y) + ui �F�yi (y) + 12uiuj �2F�yi�yj (y + �u)for some �, 0 � � � 1, by the se
ond mean-value theorem applied to the fun
tiont 7! F (y + tu). Suppose that F (y) = 0. Then for any u (if y is a 
riti
al pointof F ), or for any u that is tangent to the level set � of F through y (if not),the se
ond term on the right-hand side is zero. The third term is nonnegative byassumption, and indeed positive if we ensure that u is not a s
alar multiple of y.Then if F (y) = 0, we have F (y + u) > 0 for su
h u.Next, from the same formula but now with F (y) > 0 it follows that at all pointson the tangent hyperplane to � at y the value of F is positive. Now if F has azero, at z say, then F vanishes on the whole line t 7! tz (ex
luding the origin);su
h a line therefore 
annot interse
t the tangent hyperplane. Thus at ea
h pointy where F (y) > 0 the line t 7! y + tz lies in the tangent hyperplane to the levelset of F through y. That is, zi�F�yi (y) = 0for all y where F (y) > 0. But the set of points y where F (y) > 0 is open, so therelation above holds on an open set. We may therefore di�erentiate with respe
tto yj to obtain zi �2F�yi�yj (y) = 0(zi is 
onstant). Clearly z is not a s
alar multiple of y (be
ause F (z) = 0 whileF (y) > 0). But this 
ontradi
ts the assumed positive-semide�niteness of F . Thereare therefore no points z where F (z) = 0. It follows that F is everywhere positive.7



3 Rap
s�ak's and Hamel's equationsRap
s�ak's equations are 
onditions for the geodesi
 spray of a Finsler fun
tion tobe proje
tively equivalent to a given spray (see for example [6℄ Chapter 12). They
an be derived rather simply as follows. Let F be an arbitrary Finsler fun
tion,and 
onsider the following version of the Euler-Lagrange equations in whi
h F istaken as the Lagrangian: S��F�yi�� �F�xi = 0;where S is assumed to be a spray. Then sin
euj �2F�yi�yj = 0if and only if u is a s
alar multiple of y, S is determined up to the addition of amultiple of the Liouville �eld C. That is to say, the Euler-Lagrange equations (forthe Finsler fun
tion rather than the energy), together with the assumption that Sis a spray, determine a proje
tive equivalen
e 
lass of sprays; this 
lass in
ludes the
anoni
al spray of F , and thus 
onsists of all those sprays proje
tively equivalentto it. Thus (taking F to be given) in order for a spray S to be proje
tivelyequivalent to the 
anoni
al spray of F it is ne
essary and suÆ
ient that it satis�esthe above Euler-Lagrange equations. For mu
h the same reasons (but now �xingS and regarding F as the unknown), a Finsler fun
tion F has the property that its
anoni
al spray is proje
tively related to S if and only F satis�es these equations.This is the essential 
ontent of Rap
s�ak's equations.Consider in parti
ular a Finsler fun
tion F on T oRn (one 
ould take F to bede�ned just on the slit tangent bundle of some open subset of Rn, but I leave thispossibilty to be understood). Then F has the property that its 
anoni
al spray isproje
tively related to the standard 
at spray S, given by yi�=�xi in re
tilinear
oordinates, if and only if yj �2F�xj�yi � �F�xi = 0:These are Rap
s�ak's equations applied to the 
ase of a proje
tive Finsler fun
tion;they are also one form of Hamel's equations. On di�erentiating again with respe
tto yj we obtain yk �3F�xk�yi�yj + �2F�xj�yi � �2F�xi�yj = 0:The part of this identity skew in i and j leads to the other Hamel equations, namely�2F�xj�yi = �2F�xi�yj ;8



these are easily seen to be equivalent to the �rst ones, assuming that F is positivelyhomogeneous. The part of the identity symmetri
 in i and j says that the Hessianof F is invariant under S.I have assumed in the dis
ussion above that F is a Finsler fun
tion. Thoughwe require F to be positively homogeneous, in fa
t it is enough that its redu
edHessian is nonsingular; so the results hold for a pseudo-Finsler fun
tion.I summarize the disussion in the following proposition (whi
h is of 
ourse well-known: see for example [6℄ Corollary 12.2.10 and [8℄ Corollary 8.1 for other ver-sions).Proposition 1. A pseudo-Finsler fun
tion F on T oRn is proje
tive if and only ifit satis�es either of the following equivalent 
onditions (in re
tilinear 
oordinates):yj �2F�xj�yi � �F�xi = 0; �2F�xj�yi = �2F�xi�yj :Further interesting 
onsequen
es 
an be drawn from the Hamel 
onditions. Itfollows from the se
ond version of these 
onditions that there is a fun
tion f su
hthat �F�yi = �f�xi :Indeed, one 
an write down an expli
it formula for f by adapting the usual formulafor a homotopy operator for the exterior derivative a
ting on 1-forms:f(x; y) = Z 1t=0 xi �F�yi (tx; y)dt;the fa
t that f satis�es the required relation is a straightforward 
al
ulation usingthe Hamel 
onditions. The point of giving this formula is that it shows that f maybe 
hosen to be positively homogeneous of degree zero in y. Addition to this f ofany fun
tion of y alone will give a new fun
tion satisfying the given relation, butnot ne
essarily one whi
h is homogeneous.Now from the de�ning relation above it follows thatyi �f�xi = S(f) = yi�F�yi = F;where (here and below) S is the standard 
at spray. This observation may beexpressed in another form. Consider, for �xed x0 and y0, the straight line 
(t) =x0 + ty0. For this 
urve F (
(t); _
(t)) = ddt(f(
(t); _
(t)):9



Thus the length of the line segment with 0 � t � 1 as measured using the Finslerfun
tion F is Z 1t=0 F (
(t); _
(t))dt = f(x0 + y0; y0)� f(x0; y0):That is, f determines the Finslerian distan
e fun
tion dF bydF (x1; x2) = f(x2; x2 � x1)� f(x1; x2 � x1):Of 
ourse, addition of a fun
tion of y alone to f has no e�e
t on this formula.In general dF will not be symmetri
; but if F is absolutely homogeneous then(appealing again to the homotopy formula) we 
an 
hoose f to satisfy f(x;�y) =�f(x; y), and thendF (x2; x1) = f(x1; x1 � x2)� f(x2; x1 � x2)= f(x2; x2 � x1)� f(x1; x2 � x1) = dF (x1; x2):It is worth noting expli
itly that�2f�xj�yi = �2F�yi�yj = �2f�xi�yj :Furthermore, yj �2f�xj�yi = 0 = S� �f�yi� ;and it is easy to see that, 
onversely, if S(�f=�yi) = 0 then�2f�xj�yi = �2f�xi�yj :Conversely, given a fun
tion f with su
h properties, we 
an �nd a proje
tive Finslerfun
tion.Proposition 2. Let f be a fun
tion on T oRn whi
h is positively homogeneous ofdegree zero in y and satis�es �2f�xj�yi = �2f�xi�yj ;where the redu
ed version of the symmetri
 bilinear form so de�ned is nonsingular:then S(f) is a proje
tive pseudo-Finsler fun
tion. If in addition the symmetri
bilinear form is positive semide�nite and S(f) > 0 then S(f) is a proje
tive Finslerfun
tion. 10



Proof. Set F = S(f) = yi �f�xi :Then F is positively homogeneous of degree 1; furthermore�F�yi = �f�xi + yj �2f�xj�yi = �f�xi + yj �2f�xi�yj = �f�xi ;and so �2F�xj�yi = �2F�xi�yj and �2F�yi�yj = �2f�xi�yj :This result is essentially equivalent to Proposition 8.1 of [8℄.4 The Hilbert forms of a proje
tive Finsler fun
-tionI now 
onsider the Hilbert 1-form of a proje
tive Finsler fun
tion F ,� = �F�yidxi;and the Hilbert 2-form d�. From general 
onsiderations the Hilbert 2-form has thefollowing properties:1. d� is singular, and its 
hara
teristi
 distribution is spanned by any spray Sproje
tively equivalent to the 
anoni
al spray of F , and the Liouville �eld C;this distribution 
ontains the whole proje
tive equivalen
e 
lass of S, and isintegrable by homogeneity;2. sin
e d� is evidently 
losed, its Lie derivative by any ve
tor �eld in its 
har-a
teristi
 distribution is zero;3. d�(V1; V2) = 0 for any pair of verti
al ve
tors V1, V2.These results hold for any Finsler fun
tion; but it is quite interesting to see howthey work out in the 
ase of interest. So suppose that F is a proje
tive Finslerfun
tion, and therefore satis�es the Hamel 
onditions stated in Proposition 1. Now
onsider the Hilbert forms of F . First of all,d� = �2F�xi�yj dxi ^ dxj + �2F�yi�yj dyi ^ dxj ;11



but the �rst term is zero sin
e its 
oeÆ
ient is symmetri
 in i and j. Thusd� = �2F�yi�yj dyi ^ dxj :Item 3 above follows immediately. We haveC d� = yk ��yk �2F�yi�yj dyi ^ dxj = yi �2F�yi�yj dxj;while S d� = yk ��xk �2F�yi�yj dyi ^ dxj = �yj �2F�yi�yj dyi;where again S denotes the standard 
at spray yi�=�xi; both are zero by homo-geneity, when
e item 1. Item 2 is a dire
t 
onsequen
e, but 
an also be derivedindependently. In fa
t LC� = 0 by homogeneity, whileLS� = yj �2F�xj�yidxi + �F�yidyi = �F�xidxi + �F�yidyi = dF:Re
all that for any proje
tive Finsler fun
tion F we 
an �nd a fun
tion f , positivelyhomogeneous of degree 0, su
h that�f�xi = �F�yi :The Hilbert 1-form 
an be expressed in terms of f as � = (�f=�xi)dxi, so thatd� = d� �f�xidxi� = d� �f�xi� ^ dxi:On the other hand, � = df � (�f=�yi)dyi, so that alsod� = �d� �f�yidyi� = dyi ^ d� �f�yi� ;this will turn out to be the more signi�
ant formula of the two.I now prove a partial 
onverse to the statements above about the Hilbert 2-formof a proje
tive Finsler fun
tion. This result in e�e
t restates Hamel's 
onditionsin terms of the properties of a 2-form on T ÆRn.Proposition 3. Let 
 be a 
losed 2-form on T oRn, whose 
hara
teristi
 distri-bution is 2-dimensional and is spanned by S, the standard 
at spray, and C, theLiouville �eld. Suppose further that 
 = 
ijdyi ^ dxj in re
tilinear 
oordinates,where 
ij is symmetri
 in its indi
es. Then 
 is the Hilbert 2-form of a proje
tivepseudo-Finsler fun
tion F on T oRn. 12



Proof. The 
ondition for the 
hara
teristi
 distribution of 
 to be spanned by Sand C is that 
ijuj = 0 if and only if u is a s
alar multiple of y.The 
losure of 
 is equivalent to the 
onditions�
ij�yk = �
ik�yj ; �
ij�xk = �
ik�xjon its 
oeÆ
ients. From the �rst, there are fun
tions �i, globally de�ned for n > 2,su
h that 
ij = ��i�yj = ��j�yi(using symmetry). Sin
e 
ijyj = 0,yj ��i�yj = 0:Set � = �iyi: then ���yi = �i + yj ��j�yi = �i + yj ��i�yj = �i;and therefore 
ij = �2��yi�yj :From the se
ond 
losure 
ondition�3��yi�yj�xk = �3��yi�yk�xj ;so that �2��xj�yk � �2��xk�yj =  jk(x);where  jk, whi
h is independent of the yi, is skew in its indi
es. Now� jk�xi + � ki�xj + � ij�xk= �3��xi�xj�yk � �3��xi�xk�yj + �3��xj�xk�yi � �3��xj�xi�yk+ �3��xk�xi�yj � �3��xk�xj�yi= 0:There are therefore fun
tions �i(x), again globally de�ned, su
h that ij = ��i�xj � ��j�xi :13



Now set F = �+ �iyi:Then yi �F�yi = yi ���yi + yi�i = yi�i + yi�i = �+ �iyi = F;so F is positively homogeneous of degree one in the yi. Moreover,�2F�yi�yj = �2��yi�yj = 
ij ;and �2F�xi�yj � �2F�xj�yi= �2��xi�yj + ��j�xi � �2��xj�yi � ��i�xj = �2��xi�yj � �2��xj�yi �  ij = 0:Thus F satis�es the Hamel 
onditions, and its redu
ed Hessian is nonsingular.Moreover, 
 is the exterior derivative of the Hilbert 1-form of F .If one 
an �nd a pseudo-Finsler fun
tion F whi
h is nonvanishing, then if F iseverywhere positive it is a Finsler fun
tion, by Lemma 2. If F is everywherenegative then one 
an simply repla
e 
 by �
 and start again.Corollary 1. Suppose that there is a pseudo-Finsler fun
tion F for 
 whi
h iseverywhere positive. Then F is a proje
tive Finsler fun
tion.Noti
e that a

ording to Proposition 3, F is determined up to the addition of atotal derivative, that is, a term of the form (��=�xi)yi where � is any fun
tion onRn.If we start with a Finsler fun
tion whi
h is absolutely homogeneous then d� 
hangessign under re
e
tion; that is to say, if � is the re
e
tion map, �(x; y) = (x;�y),and ��F = F then ��d� = �d� (indeed, ��� = ��). Conversely, suppose that 
satis�es the hypotheses of Proposition 3 and in addition ��
 = �
, or equivalently
ij(x;�y) = 
ij(x; y). Then if F is a pseudo-Finsler fun
tion for 
, so is �F = ��F ,and so is 12(F + �F ): the latter is absolutely homogeneous. Moreover, the absolutelyhomogeneous solution is unique: for any two solutions di�er by a total derivative;but su
h a term is linear in y, and therefore 
hanges sign under �; so distin
tsolutions 
annot both be absolutely homogeneous.In these 
ir
umstan
es we 
an also dedu
e that a pseudo-Finsler fun
tion is aFinsler fun
tion by applying Lemma 3. 14



Corollary 2. Suppose that in addition to satisfying the hypotheses of Proposi-tion 3, 
 
hanges sign under re
e
tion, and (
ij) is positive semide�nite. Thenthe 
orresponding absolutely homogeneous pseudo-Finsler fun
tion F is a proje
tiveFinsler fun
tion.5 Path spa
e and symple
ti
 stru
tureRe
all that the Hilbert 2-form of a proje
tive Finsler fun
tion F (indeed any Finslerfun
tion) has for its 
hara
teristi
 distribution the span of any geodesi
 spray S ofF and the Liouville �eld C. The distribution hC;Si is integrable, so we 
an (atleast lo
ally) take the quotient by its leaves. The result is a manifold of dimension2n � 2, ea
h of whose points represents an unparametrized geodesi
 of F : it isthe path spa
e �. It follows from its other properties (as set out in Se
tion 4)that d� de�nes a 2-form ! on � whi
h is 
losed and nonsingular, so is symple
ti
.Moreover, the set of all geodesi
 paths through any �xed point x0 determines an(n � 1)-dimensional submanifold of � whi
h is Lagrangian. This 
onstru
tion isdis
ussed at length in [3℄, as well as in [1℄.To give a bit more detail in the proje
tive 
ase: the 
ow of the 
at spray S onT oRn is just (xi; yi) 7! (xi+ tyi; yi), while that of C is (xi; yi) 7! (xi; esyi). In fa
twe have a left a
tion of the aÆne group of the line by (xi; yi) 7! (xi + tyi; esyi);the path spa
e �, that is, the spa
e of oriented straight lines in Rn, is the quotientof T oRn under this a
tion (noti
e that the zero se
tion of TRn is pointwise �xedunder the a
tion of the aÆne group, so must be 
ut out before taking the quotient).Let � : T oRn ! � be the proje
tion. Now d� is invariant under the group a
tion,and so passes to the quotient to de�ne a 2-form on �, that is, a 2-form ! su
hthat ��! = d�. Evidently ��d! = 0; but sin
e � is surje
tive it follows that ! is
losed. Moreover, sin
e we have quotiented out the 
hara
teristi
 distribution ofd�, ! is nonsingular. Thus ! is a symple
ti
 2-form. The form ! has one furtherimportant property: sin
e d� vanishes when restri
ted to any �bre of T oRn, !vanishes when restri
ted to the image of any �bre. The image of T ox0Rn in � is an(n� 1)-dimensional submanifold, whi
h 
onsists of all the lines through x0. Thus! has the property that ea
h submanifold of � 
onsisting of all the lines througha given point of Rn is a Lagrangian submanifold.One 
on
ept of a `solution' to Hilbert's fourth problem, due to �Alvarez Paiva [1℄, is asymple
ti
 form on the path spa
e su
h that lines through any point 
orrespond toLagrangian submanifolds, together with some 
ondition ensuring strong 
onvexity.His argument is indire
t, involving as it does so-
alled Crofton formulas. However,one 
an work more dire
tly, as I will show below.15



I �rst examine the symple
ti
 stru
ture obtained from a proje
tive Finsler fun
tiona little more 
losely; in fa
t the following 
omments apply equally to a proje
tivepseudo-Finsler fun
tion, ex
ept for those that 
on
ern positive de�niteness.I will de�ne 
ertain lo
al 
oordinates on path spa
e �. These are modelled partlyon the 
oordinates often used for real proje
tive spa
e. It is important to notehowever that � 
onsists of oriented lines, so that the same line (as a point set)traversed in opposite dire
tions determines two points of �. The map whi
h takesea
h point of � to the dire
tion of the 
orresponding oriented line de�nes a �brationof � over an (n�1)-sphere. Without the insisten
e on oriented lines the base wouldindeed be a proje
tive spa
e. In fa
t, by taking the base to be a metri
 sphere Sn�1(with respe
t to the Eu
lidean metri
) one 
an identify � with TSn�1 (see [4℄ forexample); but I do not use this identi�
ation here.We 
an 
over � by 2n open sets U�k , where k is an integer, 1 � k � n, and U+k
onsists of those lines whose dire
tions y satisfy yk > 0, U�k those whose dire
tionsy satisfy yk < 0. For 
oordinates on U+k we take(�1; �2; : : : ; �k�1; �k+1 : : : ; �n; �1; �2; : : : ; �k�1; �k+1; : : : ; �n);where the �i are the 
omponents of the dire
tion ve
tor of the line normalizedwith yk = 1, and the �i are the 
oordinates of the point where the line meets thehyperplane xk = 0. The 
oordinates on U�k are similarly de�ned, ex
ept that thenormalized dire
tion ve
tor has yk = �1. (The numbering of the 
oordinates issomewhat un
onventional, but this will not 
ause any problems.) The 
oordinatetransformation between, for example, U�n and U�n�1 is given by�̂� = (���n�1 � �n�1��)=�n�1; �̂n = ��(�n�1=�n�1);and �̂� = Æ(��=�n�1); �̂n = Æ�(1=�n�1)where (�̂�; �̂n; �̂�; �̂n), 1 � �; � � n� 2, are the 
ordinates of a point in U�n�1 \ U�nwith respe
t to U�n�1, (�a; �b), 1 � a; b � n � 1, the 
oordinates of the same pointwith respe
t to U�n ; Æ = +1 on U+n�1, Æ = �1 on U�n�1, and � is similarly de�nedfor U�n . (To 
larify the notation: U�k here stands for either U+k or U�k , so that forexample U�n�1 \ U�n stands for any one of four di�erent sets, and four 
oordinatetransformations are being dealt with simultaneously, distinguished by the valuesof Æ and �.) Similar formulae hold on the other interse
tions of 
oordinate pat
hes.On U�n , say, the proje
tion � has the 
oordinate representation �(x; y) = (�a; �b)where �a = (xayn � xnya)=yn; �a = ya=jynj;and similarly for the other 
oordinate pat
hes.16



Now suppose given a proje
tive Finsler fun
tion F . On U�n the homogeneity 
on-dition may be written �F�yn = 1ynF � yayn �F�ya :Thus �2F�ya�yn = � ybyn �2F�ya�yb ; �2F(�yn)2 = yayn ybyn �2F�ya�yb :Now 
onsider the Hilbert 2-form d�. On ��1(U�n ) we have ya = ��ayn, xa =�a + ��axn, when
edya � ��adyn = �ynd�a; dxa � ��adxn = d�a + �xnd�a:Now d� = �2F�ya�yb (dya ^ dxb � ��adyn ^ dxb � ��bdya ^ dxn + �a�bdyn ^ dxn)= �2F�ya�yb (dya � ��adyn) ^ (dxb � ��bdxn)= �yn �2F�ya�ybd�a ^ (d�b + �xnd�b) = �yn �2F�ya�ybd�a ^ d�busing the symmetry of the 
oeÆ
ients. By the general theory, or an easy 
al-
ulation, these must be fun
tions on the appropriate 
oordinate neighbourhoodsof �. Let me denote by F� the restri
tion of F to yn = �1. Then on U�n ,F (yi) = �ynF�(�a), when
e easily�yn �2F�ya�yb (yi) = �2F���a��b (�
):Like ea
h 
omponent of the Hessian of F , the right-hand side is invariant underthe 
ow of the 
at spray S. So for ea
h a, b the right-hand side is a fun
tion onU�n . Furthermore, from the earlier 
al
ulations, for any vi�2F�yi�yj vivj = �2F�ya�yb �va � yaynvn��vb � ybynvn� :By assumption, the left-hand side is nonnegative, and zero only if v is a s
alarmultiple of y. Thus all of three of the bilinear forms whose 
omponents are�2F�ya�yb and �2F���a��bmust be positive de�nite (note that �yn = jynj > 0). So the 2-form ! indu
ed on� by d� is given in U�n by ! = �2F���a��bd�a ^ d�b;17



where the 
oeÆ
ients are the 
omponents of a positive-de�nite bilinear form. Sim-ilar representations hold on the other 
oordinate pat
hes.The re
e
tion map on T ÆRn indu
es a map of �, also denoted by �, whi
h sendsea
h line to the same line (as a point set) traversed in the opposite dire
tion. Forits 
oordinate representation, we note that � maps U+k to U�k and vi
e versa, andin terms of the 
oordinates on those two sets it is represented by (�; �) 7! (�;��).If F is absolutely homogeneous then F�(��) = F+(�), and so ��! = �!.Finally, let us 
onsider a fun
tion f , positively homogeneous of degree zero, su
hthat �f�xi = �F�yi :We saw earlier that the Hilbert 1-form of F is given by� = df � �f�yidyi;so that d� = �d� �f�yidyi� :Let me set (�f=�yi)dyi = �. The homogeneity 
ondition on f givesyi �f�yi = 0; �f�yi + yj �2f�yi�yj = 0:Now S � = 0;C � = yi �f�yi = 0;LS� = yj �2f�xj�yidyi = yj �2F�yj�yidyi = 0;LC� = �yj �2f�yi�yj + �f�yi� dyi = 0:Thus � passes to the quotient �, unlike �, and de�nes there a 1-form, say '. Wehave ��(d') = d� = �d� = ���!; but � is surje
tive, so ! = �d'. Thus ! isexa
t.It is easy to see, by a 
al
ulation similar to the one leading to the 
oordinateformula for !, that the 
oordinate representation of ' on U�n is' = �f���a d�a18



where f� is the restri
tion of f to yn = �1.I now begin the proof of a 
onverse to these properties of !, that is, the demonstra-tion that a suitable symple
ti
 form on path spa
e determines a proje
tive Finslerfun
tion.Lemma 4. Let ! be a 2-form on � whi
h vanishes on ea
h submanifold of �
onsisting of all the lines through a point of Rn. Then on U�n , ! takes the form! = Babd�a^d�b, where Bba = Bab (and similarly on the other 
oordinate pat
hes).Proof. For x0 2 Rn, the submanifold of � 
onsisting of the lines through x0 is�(T ox0Rn), the image of the �bre T ox0Rn by the proje
tion �. Now �(T ox0Rn) 
onsistsof points (�a; �a) with�a = (xa0yn � xn0ya)=yn; �a = (ya=jynj);with xi0 �xed, yi varying. On eliminating the yi we �nd that �(T ox0Rn) is given by�a + �xn0�a = xa0:Noti
e that for any point (�a; �a) 2 � and any value of t 2 R we 
an �nd xa0 su
hthat �(T ox0Rn) passes through (�a; �a) and xn0 = t. Now let! = Aabd�a ^ d�b +Babd�a ^ d�b + Cabd�a ^ d�b;where A and C are skew in their indi
es. Choose any point of �, and take anarbitrary real number t. Take the 
orresponding point (xi0) 2 Rn su
h that�(T ox0Rn) passes through the 
hosen point of �, and xn0 = t. On �(T ox0Rn) wehave d�a = ��td�a, and so the restri
tion of ! to that submanifold is(t2Aab + �tBab + Cab)d�a ^ d�b:By assumption, this must be zero. But t may be 
hosen arbitrarily, and A and Care skew; thus Aab = Cab = 0, Bba = Bab, and! = Babd�a ^ d�b:If ! is symple
ti
 then (Bab) must be nonsingular. A symple
ti
, or even nonsingu-lar, 2-form with the lo
al representation des
ribed in the lemma has a well-de�nedsignature.Lemma 5. If ! takes the form given in Lemma 4 in ea
h 
oordinate pat
h, whereea
h (Bab) is everywhere nonsingular, then all of the bilinear forms (Bab) have thesame signature. 19



The 
ommon signature is 
alled the signature of !.Proof. It is enough to 
onsider the e�e
ts of the 
oordinate transformation betweenU�n and U�n�1. A short 
al
ulation leads to the following transformation rule forthe 
oeÆ
ients Bab:B̂�� = Æ�n�1B��B̂�n = �Æ� �(�n�1)2B�(n�1) � �n�1��B���B̂nn = Æ �(�n�1)3B(n�1)(n�1) + 2(�n�1)2��B�(n�1) + �n�1����B��� :This 
an be written as a matrix formula B̂ = Æ�n�1JTBJ , where the Ja
obian Jis given by J�� = Æ��; J (n�1)� = 0; Jan = ���a:(It is worth noti
ing that sin
e the determinant of J is���n�1, whi
h by assumptionis nonzero, J is nonsingular, and so B̂ is nonsingular if B is.) But sin
e Æ�n�1 =j�n�1j is positive on the interse
tion of 
oordinate pat
hes U�n�1 \ U�n , we see thatB and B̂ have the same signature.Now a symmetri
 matrix 
annot 
hange signature without be
oming singular; thusB has the same signature everywhere on its 
oordinate pat
h, and B and B̂ havethe same signature on the interse
tion of 
oordinate pat
hes; and similarly for all
oordinate pat
hes. So the 
oeÆ
ient matrix has the same signature everywhere.Theorem 1. Suppose that ! is a symple
ti
 2-form on � whi
h vanishes on allsubmanifolds 
orresponding to lines through a point of Rn. Then1. ��! = 
 satis�es the hypotheses of Proposition 3 and determines a proje
tivepseudo-Finsler fun
tion F on T ÆRn whi
h has the same signature as !, and��! is the Hilbert 2-form of F ;2. if ��! = �! and ! is positive de�nite then there is a unique proje
tiveabsolutely homogeneous Finsler fun
tion F on T ÆRn su
h that ��! is theHilbert 2-form of F .Proof. Consider the pull-ba
k of ! from U+n . To �nd an expression for it we justhave to substitute for �a and �a in terms of xi and yi. A
tually it is simpler tosubsitute just for �a in the �rst instan
e. We have �a = (xayn � xnya)=yn =xa � xn�a, when
e d�a = dxa � �adxn � xnd�a;20



so that ��! = Babd�a ^ (dxb � �bdxn � xnd�b) = Babd�a ^ (dxb � �bdxn)by symmetry of Bab. Thus��! = (yn)�3Bab(yndya � yadyn) ^ (yndxb � ybdxn);so that ��! takes the desired form: ��! = 
ijdyi ^ dxj where
ab = (yn)�1Bab; 
an = �(yn)�2ybBab = 
na; 
nn = (yn)�3yaybBab:The 
oeÆ
ients 
ij are symmetri
 in their indi
es. Moreover
ajuj = 
abub + 
anun = (yn)�2Bab(ynub � ybun);whi
h vanishes if and only if u is a s
alar multiple of y. It is easy to see that asimilar result holds for 
njuj = 0. These results have been established only forone 
oordinate pat
h; but of 
ourse 
 is globally well-de�ned (as ��!), and the
al
ulations above represent fairly what happens on ea
h 
oordinate pat
h. Finally,d��! = ��d! = 0. So ��! satis�es the 
onditions of Proposition 3. The remainingresults follow from that proposition and its se
ond 
orollary.It would be ni
e to have an intrinsi
 de�nition of what it would mean for a sym-ple
ti
 form ! on � satisfying the Lagrangian submanifold 
ondition to be positivede�nite. A

ording to �Alvarez Paiva this 
an be done in terms of 2-planes in Rn,as follows. Let � be a 2-plane in Rn. The set of all oriented lines in � de�nes a2-dimensional submanifold P of �. One then 
onsiders, for any point l of P (i.e.line l in �), the restri
tion of ! to TlP . I now show what happens in my formalism.Take a 2-plane � in Rn. This determines a submanifold �̂ of T oRn as follows:(x; y) 2 �̂ if x 2 �, y 2 Tx�. Then �̂ is 4-dimensional, but both S and Care tangent to it, and its proje
tion into � (whi
h is P ) is 2-dimensional. Let(x0; y0) 2 �̂. Then � 
ontains the line s 7! x0+ sy0. Let u 2 Tx0� with u linearlyindependent of y0; then � is the image of the mapR2 ! Rn by (s; t) 7! x0+sy0+tu,and �̂ is the image of the map R4 ! T oRn by(s; t; k; l) 7! (x0 + sy0 + tu; ky0+ lu):The tangent spa
e to �̂ at (x0; y0) is spanned byyi0 ��xi = S(x0;y0); yi0 ��yi = C(x0;y0); ui ��xi ; ui ��yi :21



I assume that yn0 6= 0. Then without loss of generality I 
an take xn0 = 0, un = 0. Inext determine T�(x0;y0)P . Using 
oordinates (�a; �a) 
orresponding to U+n we have��� ��xa� = ���a ; ��� ��ya� = 1yn � ���a � xn ���a� :Thus with xn0 = 0 and un = 0���ui ��xi� = ua ���a ; ���ui ��yi� = 1ynua ���aSo T�(x0;y0)P is spanned by ua ���a = �; ua ���a = �say. Thus at �(x0; y0) !(�; �) = �Babuaub:The value of ! on any pair of independent ve
tors in T�(x0;y0)P is a nonzero multipleof Babuaub. (There is no essential di�eren
e in U�n , though some signs are 
hanged).Thus if ! never vanishes when restri
ted to any su
h 2-dimensional submanifoldP then (Bab) is de�nite (positive or negative). We 
annot determine whi
h on thebasis of these data (sin
e one 
an 
learly 
hange the sign of ! without disturbinganything else). However, whi
hever it is, it is the same everywhere. We have thusestablished the following theorem of �Alvarez Paiva (Theorem 3.1 of [1℄, with somene
essary modi�
ations of the statement).Theorem 2. Let ! be a symple
ti
 form on the spa
e of oriented lines of Rnwhi
h has the property that the lines through any given point form a Lagrangiansubmanifold, and whi
h satis�es ��! = �!. If the pull-ba
k of ! to the spa
eof oriented lines lying on an arbitrary plane never vanishes, then either ! or �!is the symple
ti
 form indu
ed by some proje
tive absolutely homogeneous Finslerfun
tion on its spa
e of geodesi
s.A
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