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Abstract

The Finslerian version of Hilbert’s fourth problem is the problem of find-
ing projective Finsler functions. Alvarez Paiva (J. Diff. Geom. 69 (2005)
353 378) has shown that projective absolutely homogeneous Finsler func-
tions correspond to symplectic structures on the space of oriented lines in
R™ with certain properties. 1 give new and direct proofs of his main re-
sults, and show how they are related to the more classical formulations of
the problem due to Hamel and Rapcsik.

1 Introduction

From the point of view of Finsler geometry, Hilbert’s fourth problem is usually
regarded as the problem of finding projective Finsler functions, that is, Finsler
functions on T°R” (the tangent bundle of R™ with zero section removed) whose
geodesics, as point sets, are straight lines. As initially formulated, the problem was
to find metrics (in the topological sense) on R™ with the property that the shortest
curve joining two points is the straight line segment between them. The Finslerian
version is more specific in that differentiability properties are assumed, but also
more general in that Finsler functions do not define genuine metrics. A general
Finsler function, one which is merely positively homogeneous of degree one in the
velocity variables, defines a distance function which has two of the properties of
a metric (it is positive and satisfies the triangle inequality) but lacks the third,
symmetry. For the latter property to hold the Finsler function must be absolutely



homogeneous. The strict Finslerian version of Hilbert’s fourth problem is to find
projective absolutely homogeneous Finsler functions. This paper deals with both
the strict and the more general forms of the problem.

There are in fact many projective Finsler functions (see for example [6, 7] and refer-
ences therein), so that ‘finding’ them, at least in the sense of listing them, becomes
rather a tall order. In fact this paper is concerned with ways of characterizing pro-
jective Finsler spaces, or to be more precise with two apparently rather dissimilar
approaches to the problem of doing so; indeed one of its aims is to reconcile these
approaches.

The first approach, which might be called classical, is the reformulation of Hilbert’s
fourth problem by Hamel in the early 20th century, and the related work of
Rapcsak. Hamel’s conditions will be rederived below, but for some background
and a more extensive discussion with references see [8].

Much more recenfly, a new approach to the problem using symplectic geometry
and Crofton formulae has been developed by Alvarez Paiva [1]. Alvarez Paiva deals
entirely with the strict version of the problem. One aim of the present paper is to
show that most of Alvarez Paiva’s results can be derived by rather more elementary
methods than he uses. Of course one pays a price in loss of elegance; on the other
hand, one gains some different insights, and in particular one sees that there is a
close link between Alvarez Paiva’s characterization of projective Finsler spaces, in
the case of absolute homogeneity, and that of Hamel.

One unfortunate but unavoidable feature of the approach adopted here is that the
requirement of a Finsler function that it be strongly convex has to be treated sep-
arately from the rest of the problem. Moreover, it turns out to be more convenient,
to deal directly with the Finsler function than with its energy, whereas in most
treatments the condition for strong convexity is stated in terms of the energy. [
begin therefore, in Section 2, with a general discussion of strong convexity adapted
to the needs of the paper; some of the contents of this section are, | believe, new,
and interesting in their own right.

In Section 3 T discuss Rapcsdk’s and Hamel’s contributions to the problem, and
in Section 4 T give a restatement of Hamel’s conditions in terms of the existence
on T°R"” of a 2-form with certain properties. This is a half-way stage to the
formulation of the problem in terms of symplectic geometry, which will be found
in Section 5.



2 Strong convexity

A Finsler function F on a slit tangent bundle T°M is required to be strongly convex.
The condition for strong convexity is usually given in terms of the Hessian of the
energy I = %FQ (‘Hessian” will always mean ‘Hessian with respect to the natural
fibre coordinates’); it is that for each (z,y) € T°M the symmetric bilinear form on
T.M whose components are

I*FE d*F oF OF

gi; — Dy Oy - Ay oy’ + dy' dy?

is positive definite. For the purposes of this article, however, it will be more useful
to state the condition directly in terms of the Hessian of F. (Of course the Hessian
of F'is, apart from a factor of F', the angular metric; but this identification does
not seem to be particularly helpful here.)

One preliminary observation is necessary. As is pointed out in [2] for example,
from this conventional definition it follows that if a function I on T°M is positively
homogeneous and strongly convex then it is never vanishing, so that when defining
what it is for a function to be a Finsler function it is enough to require that the
function is nonnegative. In the following discussion this point has to be treated
with a certain amount of care.

Since F'is positively homogeneous

Y Ayidyi
I will say that the Hessian of F'is positive semidefinite at (x,y) if for all w € T, M,
IPF *r . ,
——u'u’ >0, ——u'u’ = (0 if and only if u' = Ay’
Ay dy’ Ay dy’

for some scalar A. Similar terminology will be used for certain other bilinear forms
that occur later, but always with the understanding that at (x,y) it is y that is
the ‘null” vector.

Lemma 1. If IV is positively homogeneous and nonnegative then F is strongly con-
ver at (x,y) if and only if F(x,y) > 0 and the Hessian of F' is positive semidefinite

at (x,y).

Proof. Suppose that I is strongly convex. Then from the formula above for ¢g;; in
terms of F' we have

aF

gy’ = F(z,; )a—yﬂ giy'y = F(r,y)%



from the latter we see that F'(x,y) is positive. Then for any u € T, M we may set

i | p OF i i
u*F(m,y) {7 o Yy =v;

v can be thought of as the component of u tangent to the level set of F' in which

(z,y) lies. Tt is easy to see that

PE g v
—— :
Ay dyi F(r,y)

K]
u! =
So the left-hand side is nonnegative, and is zero only if v = 0, in which case u is a

scalar multiple of y.

Conversely, if F(x,y) > 0 and the Hessian of I is positive semidefinite at (x,y),
then for any u

- PF o\’
giju'u’ = F(x,y) Gy 0 u'u’ 4 (uk—> > 0.

Moreover, g;;u‘u’ = 0 if and only if both terms on the right-hand side are zero
individually. Then v’ = Ay’ from the first, and then

so A = 0. So F'is strongly convex at (z,y). O

In general one cannot deduce from positive-semidefiniteness of the Hessian of F
that F' is nonvanishing. The following simple example is quite instructive. The
most obvious projective Finsler function is the Fuclidean length function, F(x,y) =

ly| = \/5i;y7y7. Then

0*F 1 )
= (Y% — yiy
Dy dyi |U|q(|y| 7] y,y])
where y; = 57;'741/.7'. (Consider now ]}(ij> = |y| + m:y’} where a is any constant

covector. The Hessian of F' is evidently identical to the Hessian of . Whether
such a function £ is a Finsler function or not depends on |ar]: we must have |a| < 1
for it to be a Finsler function; if |a| > 1 there will be values of y for which f?(y) = 0.
That is to say, one cannot tell in general from considerations of the Hessian alone
whether or not F is nonvanishing. It is worth remarking that the Euclidean length
function is uniquely distinguished in this class of positively homogeneous functions
by the fact that it is absolutely homogeneous; and it of course is nonvanishing. |
will return to this point at the end of the section.
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Returning to the general case, we can evidently regard the Hessian of F' at (,y)
as defining a symmetric bilinear form on T, M /{y), which is positive definite if and
only if the Hessian itself is positive semidefinite. More generally, if F'is positively
homogeneous at (z,y) its Hessian defines a symmetric bilinear form on T, M /{y),
which T call the reduced Hessian (and again the same terminology will be used
without comment in other situations later on). T will be interested below only
in such functions F' for which this form is nonsingular: a positively homogeneous
function whose reduced Hessian is everywhere nonsingular but not necessarily pos-
itive definite will be called a pseudo-Finsler function. T will refer to the signature
of the reduced Hessian of a pseudo-Finsler function F' as the signature of F'. The
signature of F at (x,y) is also the signature of the restriction of the Hessian of F
to any subspace of T, M which is complementary to (y). For F'(x,y) > 0, one such
subspace is the tangent space to the level set of F'in which (2, y) lies.

The following result is due to Lovas [5]. Lovas’s proof uses ¢;;; here, in keeping
with my earlier remarks, I prove the result using only the Hessian of F'.

Lemma 2. A pseudo-Finsler function which takes only positive values is a Finsler
function.

Proof. T show that at any = € M there is a point of T2M, the tangent space at
x with origin deleted, at which the Hessian of the pseudo-Finsler function £ is
positive semidefinite. Then since the signature of F' cannot change without the
reduced Hessian becoming singular, F' must be positive semidefinite all over T2 M.

The argument takes place entirely within ToM so T will ignore the fact that F
depends on x and regard it as a function just on T2M. T work in coordinates,
which is to say that T identify T°M with R™ — {0}, and T equip the latter space
with the Fuclidean metric.

Consider the level set Y of F' of value 1. Tt cannot contain any critical points of
F, since y'0F/dy" = 1 on X. Tt is therefore a submanifold of T°M of codimension
1, and at each y € T°M it is transverse to the ray {Ay : A > 0}. Thus ¥ is
topologically a sphere, and in particular is compact. The function on ¥ which maps
each y to its Euclidean length |y| achieves its maximum value. At a maximum, say
Yo, we have

dF yg)

hads — 520
(f)y, (UO) 7 |y0|2

by the method of undetermined multipliers. Now choose any u € T, X, and lef,
¢(t) be a curve in ¥ with ¢(0) = yo, ¢(0) = u. Then

op aF - OPF
w0 = 0. E0)7(we) + i 5o

(1/0) = 0.
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From the first of these we obtain u - yg = 0. Now |¢(#)| has a maximum at ¢ = 0.

Thus

2 . :
02 G (o = oy (E0) 30+ 14(0)F)
O Jul?
- BT i . + —.
lyo|u'u f)y’f)y'7(y0) o]

It follows that for every nonzero u € T} 3,

2 2
w'’ (f)' F -(yo) > <M> > 0.
dy'dy’ |30l

That is to say, the restriction of the Hessian of F' to T, X is positive definite. [

I pointed out earlier that one cannot in general tell from consideration of the
Hessian of F' alone whether or not F' is nonvanishing, even when the Hessian is
positive semidefinite. However, if F'is absolutely homogeneous (so that F(z, —y) =
F'(2,y)) it is possible to prove that when its Hessian is positive semidefinite it is
nonvanishing, and in fact necessarily everywhere positive.

Lemma 3. Suppose that the function F on T°M is absolutely homogeneous and its
Hessian is positive semidefinite everywhere. Then I is everywhere positive, and so
is a Finsler function.

Proof. The key point about absolute homogeneity in this context is that if F'(x,z) =
0 for some (2, z) € T°M then F(a,Az) = 0 for all nonzero scalars A\. Again, I re-
strict my attention to T°M for arbitrary =z, and drop explicit mention of x in
formulae.

The first point to establish is that ' cannot be everywhere negative on T°M. To
do this T assume that it is everywhere negative, and argue as in LLemma 2, but with
respect to the level set . of value —1. As before, the Fuclidean length function
achieves its maximum on X, at yg say; but this time we have

OF 1/'7
— - —57— 0 .
(f)y, (UO) 7 |y0|2

But then the condition that |e(#)| has a maximum along the curve ¢(t) at ¢+ = 0
reads

d? 1 . ) 9
0> T (el = [ rlé0) o+ O)P)

o (f)QF . 2
= |U0 71’171"7 . (UO) + Mv
Ay oy’ |yol




which is a contradiction.

Thus T2M must contain points where F' is nonnegative. [ next show that it must
contain a point where F'is positive.

The zero set of F'in T2 M is evidently closed. On the other hand, I’ cannot vanish
on an open subset of T? M and still have positive semidefinite Hessian. So the zero
set of Fin T2M is closed without interior points, and its complement (where F'is
nonzero) is open dense.

The following argument is based on the proof of the so-called fundamental inequal-
ity due to Bao et al., [2] page 9. Let y be any point of T°M. For any u,

OF 0K

Fly+u) = F(y)+ “1@(1/) + gt Dy

(y + eu)

for some ¢, 0 < ¢ < 1, by the second mean-value theorem applied to the function
t = F(y+ tu). Suppose that F(y) = 0. Then for any w (if y is a critical point
of I), or for any u that is tangent to the level set ¥ of F' through y (if not),
the second term on the right-hand side is zero. The third term is nonnegative by
assumption, and indeed positive if we ensure that u is not a scalar multiple of y.

Then if F(y) =0, we have F(y 4+ u) > 0 for such wu.

Next, from the same formula but now with F(y) > 0 it follows that at all points
on the tangent hyperplane to ¥ at y the value of F'is positive. Now if I’ has a
zero, at z say, then [ vanishes on the whole line ¢ — ¢z (excluding the origin);
such a line therefore cannot intersect the tangent hyperplane. Thus at each point
y where F(y) > 0 the line t — y + ¢z lies in the tangent hyperplane to the level
set of I through y. That is,

SOF

z 9

for all y where F/(y) > 0. But the set of points y where F(y) > 0 is open, so the

(y) =20

relation above holds on an open set. We may therefore differentiate with respect

to y’ to obtain
D

Z'ayiay.f(y) =0

(2" is constant). Clearly z is not a scalar multiple of y (because F'(z) = 0 while

F'(y) > 0). But this contradicts the assumed positive-semidefiniteness of F. There
are therefore no points z where F(z) = 0. Tt follows that F'is everywhere positive.

O



3 Rapcsak’s and Hamel’s equations

Rapcsak’s equations are conditions for the geodesic spray of a Finsler function to
be projectively equivalent to a given spray (see for example [6] Chapter 12). They
can be derived rather simply as follows. Tet I be an arbitrary Finsler function,
and consider the following version of the Euler-Lagrange equations in which F'is

G(IFN P
"\oyi ) 9

where S is assumed to be a spray. Then since

taken as the Lagrangian:

d*F

j _

u ——
dy'dy’

if and only if u is a scalar multiple of y, S is determined up to the addition of a
multiple of the Liouville field €. That is to say, the Euler-Lagrange equations (for
the Finsler function rather than the energy), together with the assumption that S
is a spray, determine a projective equivalence class of sprays; this class includes the
canonical spray of I, and thus consists of all those sprays projectively equivalent
to it. Thus (taking F to be given) in order for a spray S to be projectively
equivalent to the canonical spray of F' it is necessary and sufficient that it satisfies
the above Euler-Lagrange equations. For much the same reasons (but now fixing
S and regarding F' as the unknown), a Finsler function F' has the property that its
canonical spray is projectively related to S if and only F' satisfies these equations.
This is the essential content of Rapcsdk’s equations.

Consider in particular a Finsler function F on T°R” (one could take F to be
defined just on the slit tangent bundle of some open subset of R”, but I leave this
possibilty to be understood). Then F' has the property that its canonical spray is
projectively related to the standard flat spray S, given by y'd/dz" in rectilinear
coordinates, if and only if
DK OF
Yooy or

These are Rapcsak’s equations applied to the case of a projective Finsler function;

they are also one form of Hamel’s equations. On differentiating again with respect
to y’ we obtain
., OF n a*r B D
Y Axkoy oy’ dxidyt Odxidyl
The part of this identity skew in 7 and 7 leads to the other Hamel equations, namely

= 0.

IR
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these are easily seen to be equivalent to the first ones, assuming that F'is positively
homogeneous. The part of the identity symmetricin 2 and j says that the Hessian
of Fis invariant under S.

I have assumed in the discussion above that F' is a Finsler function. Though
we require F' to be positively homogeneous, in fact it is enough that its reduced
Hessian is nonsingular; so the results hold for a pseudo-Finsler function.

I summarize the disussion in the following proposition (which is of course well-
known: see for example [6] Corollary 12.2.10 and [8] Corollary 8.1 for other ver-
sions).

Proposition 1. A pseudo-Finsler function F' on T°R" is projective if and only if
it satisfies either of the following equivalent conditions (in rectilinear coordinates):

;o or IPFEOF
Y ridy  or dridyt  dr'oyl

Further interesting consequences can be drawn from the Hamel conditions. It

follows from the second version of these conditions that there is a function f such

that
dF B af

dy  da

Indeed, one can write down an explicit formula for f by adapting the usual formula

for a homotopy operator for the exterior derivative acting on 1-forms:

1
fora) = [ o Sty
Ji=0 Y
the fact that f satisfies the required relation is a straightforward calculation using
the Hamel conditions. The point of giving this formula is that it shows that f may
be chosen to be positively homogeneous of degree zero in y. Addition to this f of
any function of y alone will give a new function satisfying the given relation, but
not necessarily one which is homogeneous.

Now from the defining relation above it follows that

0 .
y' 8: =S(f)=yvy

F

Ay’ 0

where (here and below) S is the standard flat spray. This ohservation may be
expressed in another form. Consider, for fixed 2 and yq, the straight line ¢(1) =
2o + tyo. For this curve



Thus the length of the Tine segment with 0 <¢ <1 as measured using the Finsler
function Fis

1
[ Pttt = fon+ o) — o)
J1=0

That is, f determines the Finslerian distance function dg by

dF(?//?hfﬂz) = .f(fzaﬂfz - 771) - f(fﬂhﬂfz - 7’1)

Of course, addition of a function of y alone to f has no effect on this formula.
In general dr will not be symmetric; but if F' is absolutely homogeneous then
(appealing again to the homotopy formula) we can choose [ to satisfy f(z, —y) =
—f(x,y), and then

dF(?//?zaf/H) f(Th?W - '/2) - f(fﬂzafﬁ - 772)
f(T27T2 1)*]6('7717?172*?171) :dF(%ﬂfz)-

It is worth noting explicitly that

af  oF 0
D1y’ - Dyidy - Aridy’”

N of
7 - — — - .
Vaway 0= (aw) ’

and it is easy to see that, conversely, if S(9f/dy’) = 0 then

Furthermore,

> ro_’f
dridy’  Oxidys

Conversely, given a function f with such properties, we can find a projective Finsler
function.

Proposition 2. Let f be a function on T°R” which is positively homogeneous of
degree zero in y and satisfies

orf 9

where the reduced version of the symmetric bilinear form so defined is nonsingular:
then S(f) is a projective pseudo-Finsler function. If in addition the symmetric
bilinear form is positive semidefinite and S(f) > 0 then S(f) is a projective Finsler
function.
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Proof. Set

F=5f)=y—.
() =y'5
Then F'is positively homogeneous of degree 1; furthermore
ar _ af Ly Ff _of 0 f of
dyi O Y Dridyt O Y dridyi  Oxi’
and so
a*r D DK D*f
an

Jridy = 910y Dy Oy - Doy

This result is essentially equivalent to Proposition 8.1 of [8].

4 The Hilbert forms of a projective Finsler func-
tion

I now consider the Hilbert 1-form of a projective Finsler function F',

_oF
= o
and the Hilbert 2-form df. From general considerations the Hilbert 2-form has the

following properties:

0 da’,

1. df is singular, and its characteristic distribution is spanned by any spray S
projectively equivalent to the canonical spray of F', and the Liouville field (;
this distribution contains the whole projective equivalence class of 5, and is

integrable by homogeneity;

2. since df is evidently closed, its Lie derivative by any vector field in its char-

acteristic distribution is zero;

3. dO(Vi,V3) = 0 for any pair of vertical vectors Vi, V.

These results hold for any Finsler function; but it is quite interesting to see how
they work out in the case of interest. So suppose that F' is a projective Finsler
function, and therefore satisfies the Hamel conditions stated in Proposition 1. Now
consider the Hilbert forms of F. First of all,

DK D

dx' A dr? +

= —_dy' A da
Ox Oy Ay dy’ Y T

do
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but the first term is zero since its coefficient is symmetric in ¢ and 7. Thus

I*F ’
do = dy' A da’.
gy
Ttem 3 above follows immediately. We have
L, 0 0*F DK ,
Cadf = dy’ A da? = da’,
- y" f)yk Ayl oy’ y ndel =y Ayl oy’
while a o e
Sydf = dy' A dx’ = — ’
- y" Ak f)y'f)y7 Y g Y Ay Ay’ v

where again S denotes the standard flat spray y'd/dz"; both are zero by homo-
geneity, whence item 1. Ttem 2 is a direct consequence, but can also be derived
independently. In fact Lo0 = 0 by homogeneity, while

(7de +3F(]7_3F f)F
D10y’ oy’ oz’ oy

L0 =1y = dF.

Recall that for any projective Finsler function ' we can find a function f, positively
homogeneous of degree 0, such that

af _dF
drt Oyt

The Hilbert 1-form can he expressed in terms of f as § = (9f/dz")dx", so that

_ S (of af i
df = d(aTd> 4<W>/\dm.

On the other hand, 8 = df — (0f/dy")dy’, so that also

_ af af

this will turn out to be the more significant formula of the two.

I now prove a partial converse to the statements above about the Hilbert 2-form
of a projective Finsler function. This result in effect restates Hamel’s conditions
in terms of the properties of a 2-form on T°R™.

Proposition 3. et Q be a closed 2-form on T°R”, whose characteristic distri-
bution is 2-dimensional and is spanned by S, the standard flat spray, and C, the
Liouville field. Suppose further that @ = Q,;dy* A dz? in rectilinear coordinates,
where ;; 1is symmetric in its indices. Then Q is the Hilbert 2-form of a projective
pseudo-Finsler function F on T°R”.

12



Proof. The condition for the characteristic distribution of  to be spanned by S5
and C is that Q;;u/ = 0 if and only if u is a scalar multiple of y.

The closure of € is equivalent to the conditions

Ny Oy OV 00y
dyk oyl dxk Oxi

on its coefficients. From the first, there are functions ¢;, globally defined for n > 2,

such that

. — 99 _ 09,
o
Ay’ Jy'

(using symmetry). Since O,y = 0,
90,
y' o
’ ay7

Set ¢ = ¢y’ then

f)qb 7(7@57‘ f)qb

4 : 4 JUPE
and therefore o2
QM = - ¢ -
' Ay dy’

From the second closure condition
o B o
dyidyidxk  OyidyFoxi’

so that 7o 7o
= A~ Yirle),
A1y dx* oy’
where 93, which is independent of the y', is skew in its indices. Now
Noji | Mo | Iy
gor T Ger T Bk

P»Po P»Po P»Po P»Po
B D dxidyt  Da'dakdyi + Dxidz*dy'  Dridaidyk
P P»Po
DxkdT Dyl Dk dridy’

= 0.
There are therefore functions x;(x), again globally defined, such that

Ixi  Ix;

Vi = G e
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Now set
F=aé+ iy

Then
;OF 00
=Y

Y dyt 7 Oy

so F'is positively homogeneous of degree one in the y'. Moreover,

+y'xi =y tyxi= o+ = F

?F B D% P
Ay oy’ N Ay oy’ S

and
> ro 0r
dx'dy’ DIy’
L 0o oy 06 0w P Do
C Jdridyi o Oxt dxidy' Oxi Oxidyi Dxidy

ij = 0.

Thus F' satisfies the Hamel conditions, and its reduced Hessian is nonsingular.
Moreover, € is the exterior derivative of the Hilbert 1-form of F. O

If one can find a pseudo-Finsler function F' which is nonvanishing, then if F' is
everywhere positive it is a Finsler function, by Lemma 2. TIf I’ is everywhere
negative then one can simply replace 2 by — and start again.

Corollary 1. Suppose that there is a pseudo-Finsler function F for Q which is
everywhere positive. Then F is a projective Finsler function.

Notice that according to Proposition 3, F'is determined up to the addition of a
total derivative, that is, a term of the form (9y/dx")y" where y is any function on

R".

If we start with a Finsler function which is absolutely homogeneous then df changes
sign under reflection; that is to say, if p is the reflection map, p(z,y) = (=, —y),
and p*F = F then p*df = —df (indeed, p*0 = —0). Conversely, suppose that
satisfies the hypotheses of Proposition 3 and in addition p*QQ = —€), or equivalently
Qi(x,—y) = Q;(2,y). Then if Fis a pseudo-Finsler function for £, sois F' = p* [,
and so is %(F—I— F): the latter is absolutely homogeneous. Moreover, the absolutely
homogeneous solution is unique: for any two solutions differ by a total derivative;
but such a term is linear in y, and therefore changes sign under p; so distinct
solutions cannot both be absolutely homogeneous.

In these circumstances we can also deduce that a pseudo-Finsler function is a
Finsler function by applying Lemma 3.
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Corollary 2. Suppose that in addition to satisfying the hypotheses of Proposi-
tion 3, ) changes sign under reflection, and (€;;) is positive semidefinite. Then
the corresponding absolutely homogeneous pseudo-Finsler function F is a projective
Finsler function.

5 Path space and symplectic structure

Recall that the Hilbert 2-form of a projective Finsler function F' (indeed any Finsler
function) has for its characteristic distribution the span of any geodesic spray S of
I and the Liouville field C'. The distribution (C,5) is integrable, so we can (at
least locally) take the quotient by its leaves. The result is a manifold of dimension
2n — 2, each of whose points represents an unparametrized geodesic of F: it is
the path space T'. Tt follows from its other properties (as set out in Section 4)
that df defines a 2-form w on I" which is closed and nonsingular, so is symplectic.
Moreover, the set of all geodesic paths through any fixed point xq determines an
(n — 1)-dimensional submanifold of T" which is Lagrangian. This construction is
discussed at length in [3], as well as in [1].

To give a bit more detail in the projective case: the flow of the flat spray S on
TR™ is just (2',y") — (2 +ty',y"), while that of C'is (2%, y") = (2%, e*y"). In fact
we have a left action of the affine group of the line by (z',y") — (2 + ty', e*y');
the path space I', that is, the space of oriented straight lines in R”, is the quotient
of T°R" under this action (notice that the zero section of TR™ is pointwise fixed
under the action of the affine group, so must be cut out before taking the quotient).
Let m: T°R™ — T be the projection. Now df is invariant under the group action,
and so passes to the quotient to define a 2-form on I', that is, a 2-form w such
that m*w = df. Evidently m*dw = 0; but since 7 is surjective it follows that w is
closed. Moreover, since we have quotiented out the characteristic distribution of
df, w is nonsingular. Thus w is a symplectic 2-form. The form w has one further
important property: since dfl vanishes when restricted to any fibre of T°R", w
vanishes when restricted to the image of any fibre. The image of 77 R" in I' is an
(n — 1)-dimensional submanifold, which consists of all the lines through aq. Thus
w has the property that each submanifold of T' consisting of all the lines through
a given point of R™ is a Lagrangian submanifold.

One concept of a ‘solution’ to Hilbert’s fourth problem, due to Alvarez Paiva [1],is a
symplectic form on the path space such that lines through any point correspond to
Lagrangian submanifolds, together with some condition ensuring strong convexity.
His argument is indirect, involving as it does so-called Crofton formulas. However,
one can work more directly, as I will show below.
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I first examine the symplectic structure obtained from a projective Finsler function
a little more closely; in fact the following comments apply equally to a projective
pseudo-Finsler function, except for those that concern positive definiteness.

I will define certain local coordinates on path space I'. These are modelled partly
on the coordinates often used for real projective space. Tt is important to note
however that T' consists of oriented lines, so that the same line (as a point set)
traversed in opposite directions determines two points of I'. The map which takes
each point of I" to the direction of the corresponding oriented line defines a fibration
of I over an (n—1)-sphere. Without the insistence on oriented lines the base would
indeed be a projective space. In fact, by taking the base to be a metric sphere 5, _;
(with respect to the Fuclidean metric) one can identify I' with T7'S,,_; (see [4] for
example); but T do not use this identification here.

We can cover I' by 2n open sets U,f, where k is an integer, 1 < k < n, and U}
consists of those lines whose directions y satisfy y* > 0, U/,” those whose directions
y satisfy y* < 0. For coordinates on U} we take

(517527"'7£k717£k+1 "'75”’777177727'"777]{71777]{_‘—17"'777”1)7

where the n' are the components of the direction vector of the line normalized
with y* = 1, and the £ are the coordinates of the point where the line meets the
hyperplane ¥ = 0. The coordinates on U, are similarly defined, except that the
normalized direction vector has y* = —1. (The numbering of the coordinates is
somewhat unconventional, but this will not cause any problems.) The coordinate
transformation between, for example, U+ and U | is given by

R ) VL L N e )]

and
7;]0/ — (s(n(y/nn71)7 fln — 56(]/7777,71)
where (é”,é”‘jﬁﬁ,ﬁ”), 1 <a,8<n—2,are the cordinates of a point in UX N+

with respect to U | (€*,n"), 1 <a,b<n —1, the coordinates of the same point

with respect to U%; § = +1 on U |, § = —1 on U, and ¢ is similarly defined

for UZ. (To clarify the notation: U,f here stands for either U;f or U, , so that for
+

n—

example U | N UZF stands for any one of four different sets, and four coordinate
transformations are being dealt with simultaneously, distinguished by the values

of § and ¢.) Similar formulae hold on the other intersections of coordinate patches.

On U*

n 7
where

say, the projection m has the coordinate representation w(x,y) = (£*,1")

="y —a"y") Ym0t =y /1y,

and similarly for the other coordinate patches.
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Now suppose given a projective Finsler function F. On [U* the homogeneity con-

dition may be written

oF 1 *oF
1

Ay y” y" dy

Thus
a*r y" O D _y”’yh D

Wrdy g Ay oy (g Yty Oy
Now consider the Hilbert 2form df. On 7 '(UZF) we have y* = en’y", 2° =
£" + en®x”, whence

dy" — en"dy” = ey"dn", dx" — en"dz" = d£" + ex"dn".

Now
o*F b b b b
df) = ———(dy" Nda" — endy" AN da” — en’dy” N da" + n"ndy” A da")
Ay*dy®
(()QF a a g, n b b g mn
:W(dy —en"dy™) A (dx” — en’dx™)
DK DK
— " ———dn* A (dE" + ex"dn”) = ey” dn™ A dg’
el (d&" + ex"dn”) = ey g0 £

using the symmetry of the coefficients. By the general theory, or an easy cal-
culation, these must be functions on the appropriate coordinate neighbourhoods
of T. Tet me denote by FT the restriction of I to y" = +1. Then on UF,
F(y') = ey” FE(n"), whence easily

L O'F ol e ()

ey ——— = ——(n%).

Y Ay dyP Y an*on® 1

Like each component of the Hessian of F, the right-hand side is invariant under

the flow of the flat spray S. So for each a, b the right-hand side is a function on
U#*. Furthermore, from the earlier calculations, for any v

82 F i 82 F a ya n b yb n
- - = v — —v v — —v .
dy'dy? dydy® y" y"

By assumption, the left-hand side is nonnegative, and zero only if v is a scalar
multiple of y. Thus all of three of the bilinear forms whose components are
DK ol s
——— and —
Ay dy® an*on®
must be positive definite (note that ey” = |y"| > 0). So the 2-form w induced on
I' by df is given in U* by

JPE*
= _dnp* Ade
© = g &,
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where the coefficients are the components of a positive-definite bilinear form. Sim-
ilar representations hold on the other coordinate patches.

The reflection map on T°R”™ induces a map of I'; also denoted by p, which sends
each line to the same line (as a point set) traversed in the opposite direction. For
its coordinate representation, we note that p maps U7 to U, and vice versa, and
in terms of the coordinates on those two sets it is represented by (&,n) — (£, —n).
If I is absolutely homogeneous then F~(—n) = F'*(5), and so p*w = —w.

Finally, let us consider a function f, positively homogeneous of degree zero, such
that

of dF
drt Oyl
We saw earlier that the Hilbert 1-form of F'is given by
af . .
0 =df — —dy’
f (f)y7 y7

so that

af
do = —d | =Ldy' ) .
<3M y)

Let me set (3f/dy")dy' = ¢. The homogeneity condition on f gives

Ao
y(f)yi 7yt Y Ayl oy’

Now
Sib = 0;
mé—fgﬁ—&
£s¢-—yjaj;iﬂdyi—2/33i;/dyi—(k

Thus ¢ passes to the quotient T', unlike 8, and defines there a 1-form, say . We
have 7*(dy) = d¢ = —df = —7*w; but 7 is surjective, so w = —dp. Thus w is
exact.

It is easy to see, by a calculation similar to the one leading to the coordinate
formula for w, that the coordinate representation of ¢ on UZF is

_aft
Y= ana

dnﬂ,
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where f* is the restriction of f to y” = +1.

I now begin the proof of a converse to these properties of w, that is, the demonstra-
tion that a suitable symplectic form on path space determines a projective Finsler
function.

Lemma 4. Let w be a 2-form on ' which vanishes on each submanifold of T
consisting of all the lines through a point of R™. Then on U*, w takes the form

n

w = B,,,bdn”’/\dfb, where By, = By (and similarly on the other coordinate patches).

Proof. For x4 € R”, the submanifold of T consisting of the lines through zq is
m(T7 R™), the image of the fibre 7 R" by the projection . Now 7(77 R™) consists
of points (£*,n") with

& = (o —xgy)y", 0" ="/,

with 2! fixed, y* varying. On eliminating the y* we find that m(T; R™) is given by
" + ex(n® = xg.

Notice that for any point (£*,n") € I and any value of t € R we can find 2§ such
that m(T7 R") passes through (£%,7%) and 23 = 1. Now let

w = And® AdE” + Bopydn™ A dE” + Copdn™ A dn’,

where A and (' are skew in their indices. Choose any point of I', and take an
arbitrary real number t. Take the corresponding point (z5) € R" such that
m(T? R™) passes through the chosen point of I', and 25 = t. On (77 R") we
have d¢" = —etdn®, and so the restriction of w to that submanifold is

(tzA,,,;, + €t By + Cop)dn™ A dnh.

By assumption, this must be zero. But ¢ may be chosen arbitrarily, and A and
are skew; thus A,, = C,p =0, By, = B,p, and

w = Budn™ A dE".
0
If w is symplectic then (B,;) must be nonsingular. A symplectic, or even nonsingu-

lar, 2-form with the local representation described in the lemma has a well-defined
signature.

Lemma 5. Ifw takes the form given in Lemma 4 in each coordinate patch, where
cach (By) is everywhere nonsingular, then all of the bilinear forms (Bay) have the
same signature.
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The common signature is called the signature of w.

Proof. Tt is enough to consider the effects of the coordinate transformation between
U* and U* . A short calculation leads to the following transformation rule for
the coeflicients B,;:

lfg(,ﬁ = 57777'71 B(,ﬁ
Ban = =6 (0" ") Batn1y — 0" '1" Bag)
Bun =6 ((0" ")’ Bio 1)1y + 200" 0" Bay + 0" 'n"n" Bag) -

This can be written as a matrix formula B = "' JTB.J, where the Jacobian .J
is given by
JO=60 gD =0, J'=_—en"

(o3

(Tt is worth noticing that since the determinant of .J is —en™ ', which by assumption
is nonzero, J is nonsingular, and so B is nonsingular if B is.) But since dn" ' =
[n"~'| is positive on the intersection of coordinate patches U, N U*, we see that

n Y

B and B have the same signature.

Now a symmetric matrix cannot change signature without becoming singular; thus
B has the same signature everywhere on its coordinate patch, and B and B have
the same signature on the intersection of coordinate patches; and similarly for all
coordinate patches. So the coefficient matrix has the same signature everywhere.

O

Theorem 1. Suppose that w is a symplectic 2-form on 1" which vanishes on all
submanifolds corresponding to lines through a point of R”. Then

1. mw = § satisfies the hypotheses of Proposition 3 and determines a projective
pseudo-Finsler function F on T°R" which has the same signature as w, and

m*w is the Hilbert 2-form of F;

2. if p*w = —w and w s positive definite then there is a unique projective
absolutely homogeneous Finsler function F on T°R™ such thal n*w is the

Hilbert 2-form of F'.

Proof. Consider the pull-back of w from UF. To find an expression for it we just
have to substitute for €% and n® in terms of ' and y'. Actually it is simpler to
subsitute just for £* in the first instance. We have &% = (2%" — 2"y")/y" =
x” — a"n", whence

d¢® = dz" —ndx™ — 2" dn”,
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so that
7w = B,dn® A (d.?:b — nlda" — m”’dnb) = Bapdn® A (d.?:b — nbdm”)
by symmetry of B,,. Thus
7w = (y") P Bu(y dy” — y'dy™) A (y"da’ — y’dx"),
so that m*w takes the desired form: m*w = Q,;dy’ A dz’ where

Qab == (yn)71 Baba Qan == 7(2/”1)72be0,6 == Qnaa an == (l/n)fgyayb Bab-

The coefficients €);; are symmetric in their indices. Moreover
7 Yy
/ b n n\—2 n_ b b mn
Qo v’ = Qupu’ + Qo™ = (y") " Bup(y"u” — y'u”),

which vanishes if and only if « is a scalar multiple of y. Tt is easy to see that a
similar result holds for Qm‘uj = 0. These results have been established only for
one coordinate patch; but of course Q is globally well-defined (as 7*w), and the
calculations above represent fairly what happens on each coordinate patch. Finally,
dr*w = m*dw = 0. So m*w satisfies the conditions of Proposition 3. The remaining
results follow from that proposition and its second corollary. O

It would be nice to have an intrinsic definition of what it would mean for a sym-
plectic form w on T" satisfying the Lagrangian submanifold condition to be positive
definite. According to Alvarez Paiva this can be done in terms of 2-planes in R”,
as follows. Let I be a 2-plane in R"”. The set of all oriented lines in Il defines a
2-dimensional submanifold P of I'. One then considers, for any point [ of P (i.e.
line ['in 11), the restriction of w to T} P. Tnow show what happens in my formalism.

Take a 2-plane IT in R™. This determines a submanifold IT of T°R” as follows:
(r,y) € IMif » € I, y € T,II. Then T is 4-dimensional, but both S and
are tangent to it, and its projection into I' (which is P) is 2-dimensional. Let
(10,Y0) € I1. Then TT contains the line s — o+ syo. Let w € T, 1T with u linearly
independent of yo; then ITis the image of the map R* — R” by (s,1) = xo+syo+tu,
and 1T is the image of the map R* — T°R" hy

(s,t, k1) = (20 + syo + tu, kyo + [u).

The tangent space to IT at (20,Yo) is spanned by

9 9 9
(»/071/0) U (()1” U (()1/

pu— Aq(

yé(f)Ti mo,yo)v y6 (71/7 =
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I assume that y # 0. Then without loss of generality I can take 2y =0, u” = 0. 1

next determine T P. Using coordinates (£, n") corresponding to U} we have

To,l/o)

AN aN 1[0 0
T\owr) "o T \oyr )y \ap T oer)

Thus with 2§ =0 and v” =0

;0 , 0 ;0 T 0
T | U - = U =, T | U - = —U
(f),ln (f)ga (71/’ yw ana

P is spanned by

So T

To,l/o)

say. Thus at m(z0,yo)
w(p,v) = — B uu’.

The value of w on any pair of independent vectors in To P is a nonzero multiple

T0,Y0
of Byyu®u’. (There is no essential difference in U/, though s)ome signs are changed).
Thus if w never vanishes when restricted to any such 2-dimensional submanifold
P then (B,;) is definite (positive or negative). We cannot determine which on the
basis of these data (since one can clearly change the sign of w without disturbing
anything else). However, whichever it is, it is the same everywhere. We have thus
established the following theorem of Alvarez Paiva (Theorem 3.1 of [1], with some

necessary modifications of the statement).

Theorem 2. lLet w be a symplectic form on the space of oriented lines of R”
which has the property that the lines through any given point form a Lagrangian
submanifold, and which satisfies p*w = —w. [If the pull-back of w to the space
of oriented lines lying on an arbitrary plane never vanishes, then either w or —w
is the symplectic form induced by some projective absolutely homogeneous Finsler
function on its space of geodesics.
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