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tWe give formul� for two distin
t lo
al homotopy operators for the horizontaldi�erential in the variational bi
omplex. We dedu
e two di�erent representations ofthe 
lasses of forms in the Euler-Lagrange 
omplex, and hen
e two di�erent versionsof the Helmholtz-Sonin equations for the lo
al variationality of a sour
e form. Wegive expli
it relationships between these two versions of the equations.1 Introdu
tionA signi�
ant step in the development of the di�erential-geometri
 theory of the 
al
ulusof variations was taken when it was realised that the operation of deriving the Euler-Lagrange equations from a Lagrangian form 
ould be embedded in a 
omplex (in thesense of homologi
al algebra), the so-
alled Euler-Lagrange 
omplex or variational se-quen
e. Su
h problems as determining ne
essary and suÆ
ient 
onditions for a systemof di�erential equations to be variational (that is, to be the Euler-Lagrange equationsof some Lagrangian) and des
ribing variationally trivial or null Lagragians (those whoseEuler-Lagrange equations vanish identi
ally) have a natural pla
e in the 
ontext of theEuler-Lagrange 
omplex. A further signi�
ant step was taken when it was realised thatthe Euler-Lagrange 
omplex 
an in turn be embedded in a bi
omplex, the so-
alled vari-ational bi
omplex. The properties of the Euler-Lagrange 
omplex are thereby seen toderive ultimately from those of the bi
omplex and its maps, the horizontal and verti-
al di�erentials. A re
ent 
omprehensive dis
ussion of the bi
omplex, together with an1



a

ount of the history of the subje
t and an extensive list of referen
es, may be foundin Vitolo's survey arti
le in the Handbook of Global Ananlysis [18℄. An older, but veryuseful and sometimes more detailed, standard referen
e is Anderson's still unpublishedbook, whi
h is readily available from his website [1℄.One early diÆ
ulty in setting up the variational bi
omplex lay in �nding a satisfa
toryproof of the lo
al exa
tness of the horizontal di�erential. Various authors have by nowgiven proofs [15, 16, 17℄, and in [1℄ Anderson gives an extensive des
ription of the theoryusing the te
hnique of Euler operators. We use instead the Fr�oli
her-Nijenhuis theory ofderivations [4℄ to give expli
it formul� for two new homotopy operators for the horizontaldi�erential and to prove the homotopy property. We believe that by 
omparison withother e�orts our formul� are both approa
hable and elegant; however, the main interestof our paper derives from the dupli
ation.A lo
al homotopy operator for the variational bi
omplex 
an be used to 
onstru
t alo
al representation of the Euler-Lagrange 
omplex, and so 
orresponding to our twohomotopy operators we have two representations of this 
omplex. In parti
ular, thespa
e of representative (m+ 2)-forms (where m is the number of independent variables)di�ers in the two 
ases, and so the 
ondition for an (m+ 1)-form to be variational takesdi�erent forms. That is to say, the two representations produ
e di�erent versions ofthe Helmholtz-Sonin 
onditions | versions whi
h turn out to be markedly di�erent inappearan
e and properties. We shall give expli
it formul� for the two versions and therelation between them.(As an aside, we should point out that representations of the Euler-Lagrange 
omplex 
analso be obtained from the �nite-order variational sequen
e instead of from the variationalbi
omplex, whi
h is de�ned on a bundle of in�nite-order jets. The �nite-order sequen
ewas introdu
ed in [8℄, and a des
ription of a representation in this 
ontext is given in [7℄.The �nite-order sequen
e, as well as the bi
omplex, is dis
ussed in [18℄. We, however,have nothing more to say on this aspe
t of the subje
t.)In this paper we make 
onsiderable use of 
ertain type (1; 1) tensor �elds whi
h wedenote by Si. The prototype for these tensors is the 
anoni
al almost-tangent stru
tureon a tangent bundle, obtained by 
omposing the tangent proje
tion with the 
anoni
alisomorphism of a ve
tor spa
e with its tangent spa
e at any point. Considerable use hasbeen made of this operator over the years in the study of Lagrangian me
hani
s. Thereis a similar 
anoni
al stru
ture on any higher-order tangent bundle [2℄, and there arealso families of su
h stru
tures on bundles of (higher-order) velo
ities [3℄. With someadditional data, it is possible to 
onstru
t similar stru
tures on jet bundles, and [11℄des
ribes how to asso
iate a tensor S! with any 
losed 1-form ! on the base of any�bred manifold.In mu
h the greater part of the paper we 
onsider �bred manifolds of the spe
i�
 type� : E ! Rm, so that in e�e
t we �x the independent variables. We 
an therefore workwith the tensor Sdxi on J1� where xi are the 
anoni
al 
oordinates on Rm; this isthe tensor denoted by Si. In this parti
ular 
ontext, our 
onstru
tions are all de�ned2



globally. For a more general �bred manifold � : E ! M and a 
hart (U; xi) on M , su
htensors may be de�ned lo
ally on ��11 (U) and were used impli
itly in [16℄ to 
onstru
ta (lo
al) homotopy operator for the variational bi
omplex (see [12, Se
tion 7.3℄ for anexpli
it des
ription using Si). Note that both the homotopy operators we 
onstru
tin the present paper are di�erent from this earlier one, although one of the resultingproje
tion maps (giving a representation of the Euler-Lagrange 
omplex) turns out tobe the well-known `interior Euler operator'. We 
onsider the e�e
t of taking a generalmanifold M as the spa
e of independent variables rather than Rm with its 
anoni
al
oordinate system in the �nal se
tion of the paper.The stru
ture of this paper is as follows. In Se
tion 2 we des
ribe the variational bi
om-plex and re
all the basi
 properties of some geometri
 operators on J1�. In Se
tion 3we use these 
onstru
tions to de�ne the two homotopy operators for the bi
omplex, andin Se
tion 4 we 
onstru
t the representations of the Euler-Lagrange 
omplex. The twoversions of the Helmholtz-Sonin 
onditions are obtained in Se
tion 5. The �nal se
tionis devoted to a dis
ussion of our results.2 PreliminariesLet � : E ! Rm be a �bred manifold. We 
onsider the in�nite jet manifold J1�; thisis an in�nite-dimensional Fr�e
het manifold [12℄ but the diÆ
ulties sometimes asso
iatedwith su
h manifolds will not 
on
ern us: all our 
al
ulations 
ould be repeated, at the
ost of dealing with more 
ompli
ated formul�, by using obje
ts de�ned on �nite-orderjet bundles or along the proje
tion maps between them.Our notation mostly follows that of [13℄, whi
h (together with [12℄) we suggest as usefulreferen
es for this se
tion. We denote the 
anoni
al 
oordinates on Rm by xi, and of
ourse these are globally de�ned. Lo
al 
oordinates on the �bres of � will be denotedby u�, and jet 
oordinates by u�I . Here, I; J; : : : are `symmetri
' multi-indi
es, and areelements of Nm. The ith 
omponent of I will be denoted by I(i), and the multi-indexwith I(i) = 1, I(j) = 0 for j 6= i by 1i. We write jI j = I(1) + I(2) + � � �+ I(m) for thelength of I , and I ! = I(1)!I(2)! � � �I(m)! for its fa
torial.We use the summation 
onvention for summation over repeated indi
es i; j; : : : (whi
hindex the base 
oordinates), and �; �; : : : (whi
h index the �bre 
oordinates); however,we indi
ate sums involving multi-indi
es expli
itly.In adopting the multi-index 
onvention des
ribed above we follow [3, 5, 13, 18℄ for ex-ample. The alternative, adopted by Anderson in [1℄ for instan
e, is to use a symbol su
has I to stand simply for a 
olle
tion of ordinary indi
es: I = i1i2 : : : ik. The ratio jI j!=I !,often 
alled the weight of I , appears frequently in 
arrying out translations between thetwo 
onventions: it is used when 
onverting a sum over a multi-index into a sum over the
orresponding individual indi
es, so that if some obje
t  (I) depends on the multi-index3



I then XjIj=r jI j!I !  (I) = Xi1;i2;:::;ir  (1i1 + 1i2 + : : :+ 1ir) :The following result is an immediate 
onsequen
e of this observation.Lemma 1. For any quantitiy  (I) depending on the multi-index I, and any positiveinteger r, XjJj=r+1 jJ j!J !  (J) =Xi XjIj=r jI j!I !  (I + 1i) :We use this lemma several times below.For any variables �1, �2, . . . , �m, we write �I for the monomial (�1)I(1)(�2)I(2) � � � (�m)I(m).The following version of the binomial theorem holds: if �i = �i + �i,�I = XJ+K=I I !J !K!�J�K :The power notation extends to any m obje
ts whi
h have a 
ommutative multipli
ationrule de�ned on them, su
h as pairwise 
ommuting operators. Thus with �i = �=�xi wehave �I = � jIj(�x1)I(1)(�x2)I(2) � � � (�xm)I(m) ;whi
h gives a simple example of this usage.We set ddxi = ��xi +XI u�I+1i ��u�I(the ith total derivative), and denote by di the 
orresponding operator in the Fr�oli
her-Nijenhuis 
al
ulus, that is, the 
orresponding Lie derivative. Of 
ourse, di and dj 
om-mute, so we may de�ne dI as explained above. We set��I = du�I � u�I+1idxi(a 
onta
t 1-form). We have di(dxj) = 0 and di��I = ��I+1i .The 
onstru
tion of the type (1; 1) tensors Si was des
ribed in the Introdu
tion. Weshall in fa
t need only the 
oordinate representation of su
h tensors, whi
h is given bySi =XI (I(i) + 1)��I 
 ��u�I+1i :Note that Si(dxj) = 0. Sin
e Si and Sj 
ommute we 
an de�ne SI (as a type (1; 1)tensor), and we �nd that SI =XJ (I + J)!J ! ��J 
 ��u�I+J :4



We take S0 =XJ ��J 
 ��u�J ;this type (1; 1) tensor, 
ommonly known as the jet bundle 
onta
t stru
ture, di�ers fromthe identity by dxi
d=dxi; a
ting on ve
tor �elds, it is proje
tion onto the verti
al alongthe total derivatives, and so will be written PV . It is easy to show from the formulaabove that Ld=dxiSI = �I(i)SI�1i ;with the proviso that if I(i) = 0 then the right-hand side is zero (even though I � 1i isunde�ned).In the Fr�oli
her-Nijenhuis 
al
ulus, with ea
h type (1; 1) tensor Sj there is asso
iated aderivation of degree 0 and type i, denoted by iSj . Moreover, sin
e Sj and Sk 
ommute(as type (1; 1) tensors) the 
orresponding derivations 
ommute. It follows that with anymulti-index I we 
an asso
iate two operators on forms: on the one hand, the 
ompositeoperator obtained by applying the rule for formation of powers, namely(iS1)I(1)(iS2)I(2) � � �(iSm)I(m) ;on the other, the derivation of type i asso
iated with the type (1; 1) tensor SI . In general,these are distin
t; indeed, the �rst is not usually a derivation. One 
ould say that, so faras a
tion on forms is 
on
erned, there is an ambiguity in the meaning of SI . Now ourhomotopy operators make use in their de�nition of the operation of SI on forms. It isa surprising and interesting fa
t that either interpretation gives a homotopy operator, ifone 
hooses 
ertain 
onstant 
oeÆ
ients appropriately.The stri
t Fr�oli
her-Nijenhuis notation 
an be
ome rather 
umbersome. We thereforedistinguish the two possibilities notationally as follows: we write eSI to stand for theprodu
t of derivations of type i, while we re-use the symbol SI to represent the derivationof type i determined by the type (1; 1) tensor �eld SI . Noti
e that as operators on forms,eS0 = id, while S0 is the derivation of type i 
orresponding to PV . Of 
ourse eSi = Si fora single index i, and eSI = SI when a
ting on a 1-form.We now 
ome to the de�nition of the variational bi
omplex. As before, we 
onsider a�bration � : E ! Rm and let 
r;s denote the module of (r+ s)-forms on J1� 
ontainingr 
onta
t 
omponents and s horizontal 
omponents (semi-basi
 over M); that is to say,
r;s is spanned by the forms��1I1 ^ ��2I2 ^ � � � ^ ��rIr ^ dxi1 ^ dxi2 ^ � � � ^ dxis :Now d(
r;s) � 
r;s+1 � 
r+1;s. We 
an therefore de�ne maps dH : 
r;s ! 
r;s+1 anddV : 
r;s ! 
r+1;s, the horizontal and verti
al di�erentials, su
h that d = dH + dV .These maps satisfy d2H = d2V = dH Æ dV + dV Æ dH = 0. They are determined by theira
tions on fun
tions, basi
 
oordinate 1-forms and 
onta
t 1-forms. For dH we havedHf = (dif)dxi ; dH(dxi) = 0 ; dH(��I ) = ���I+1i ^ dxi :5



It follows that for any ! 2 
r;s we 
an writedH! = (�1)r+s(di!) ^ dxi :For dV , on the other hand,dV f =XI �f�u�I ��I ; dV (dxi) = dV (��I ) = 0 :The horizontal di�erential is an invariant obje
t in
orporating the total derivative oper-ators on jet bundles. In the 
ontext of �nite-order jet bundles it would map forms onJk� to forms on Jk+1�, but when 
onsidering J1� it is a mapping between forms on thesame manifold. On the other hand, the verti
al di�erential has many of the properties ofthe ordinary exterior derivative on the �bres of �. Using these operators we 
onstru
t thevariational bi
omplex, whose diagram appears as Figure 1 below (where 
r(Rm) denotesthe module of r-forms on Rm). Note that in this diagram the squares involving both dHand dV are not 
ommutative but anti-
ommutative. The formula dH Æ dV + dV Æ dH = 0arises naturally in the de�nition of these operators, and it seems appropriate that itshould to 
ontinue to hold in the diagram even if a little violen
e is done to the 
on
eptof a 
ommutative diagram as a result. It 
an easily be 
orre
ted for by the introdu
tionof some judi
ious minus signs, as is done for example in [18℄.We have written �r for the quotient 
r;m=dH(
r;m�1), and pr for the proje
tion. Theoperator ÆV : �r ! �r+1 is indu
ed from dV by the proje
tions: ÆV Æ pr = pr+1 Æ dV ; itsatis�es Æ2V = 0. In fa
t all the rows and 
olumns of the diagram are lo
ally exa
t. Thelo
al exa
tness of the rows is a 
onsequen
e of a version of the Poin
ar�e lemma, togetherwith the fa
t that for ! 2 
0;s, dV ! = 0 is the ne
essary and suÆ
ient 
ondition for! to be (the pull-ba
k of) an s-form on Rm. The lo
al exa
tness of the 
olumns, fors < m, follows from the existen
e of homotopy operators, two examples of whi
h will beexhibited later in this paper; indeed, sin
e the base is Rm with its 
anoni
al 
oordinatesour homotopy operators are globally de�ned and the 
olumns with r > 0 are thereforeglobally exa
t. The rest follows by standard arguments.The Euler-Lagrange 
omplex is0 �! R�! 
0;0 dH�! � � � dH�! 
0;m p1ÆdV�! �1 ÆV�! �2 ÆV�! � � � :It too is everywhere lo
ally exa
t. The most important part of this, so far as we are
on
erned, is the portion 
0;m�1 dH�! 
0;m p1ÆdV�! �1 ÆV�! �2 :The map p1 Æ dV : 
0;m ! �1 is the Euler-Lagrange operator. The image dH(
0;m�1) �
0;m 
an be identi�ed with the total divergen
es, that is, the formsdfidxidx1 ^ dx2 ^ � � � ^ dxm ;6
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�1 
orresponds to the so-
alled sour
e forms; and ÆV : �1 ! �2 is the Helmholtz-Soninoperator, whose kernel 
onsists of those sour
e forms whi
h are variational, that is, whi
h
an be identi�ed lo
ally as the Euler-Lagrange form of some Lagrangian.The Euler-Lagrange 
omplex is in part de�ned in terms of quotient spa
es; for 
omputa-tional purposes it is desirable to have a more expli
it representation, and we now addressthe question of how this may be a
hieved. The following remarks, though expressed interms of the variational bi
omplex, are in fa
t quite general and make no appeal to theway that bi
omplex is 
onstru
ted.Suppose (as we shall eventually show to be the 
ase) that for ea
h r > 0 we have anR-linear map � : 
r;m ! 
r;m su
h that � Æ dH : 
r;m�1 ! 
r;m is the zero map, andfor every ! 2 
r;m there is some � 2 
r;m�1 su
h that ! = �(!) + dH(�). It is easy toshow that1. ea
h � is a proje
tion operator: �2 = �;2. the image of � in 
r;m, say Er, is 
omplementary to the image of dH , and soisomorphi
 to �r ; for ! 2 
r;m, we have ! 2 Er if and only if �(!) = !;3. if we set �(dV (!)) = Æ(�(!)) then Æ is well-de�ned as a map Er ! Er+1, andÆ2 = 0.One way of �nding su
h a map � is to use a homotopy operator. Suppose that we knowa homotopy operator for the 
olumns with r > 0, say P ; that is, P : 
r;s ! 
r;s�1 for1 � s � m, and P Æ dH + dH ÆP : 
r;s ! 
r;s for 1 � s < m is the identity. (We should,of 
ourse, require also that P Æ dH : 
r;0 ! 
r;0 be the identity, but it is easy to see howto extend the de�nitions so that we may use the standard formula for this degeneratesituation too.)Now 
onsider � = id�dH Æ P : 
r;m ! 
r;m. Then for any � 2 
r;m�1, we have�(dH(�)) = dH(�)� dH(P (dH(�)) = dH(�)� dH(�� dH(P (�)) = 0 ;and for any ! 2 
r;m we have ! = �(!) + dH(P (!)). Thus � has the propertiesdis
ussed above, so that a homotopy operator for the 
olumns gives us a representationof the Euler-Lagrange 
omplex, in the form of spa
es Er � 
r;m representing �r, andmaps Æ : Er ! Er+1 representing ÆV .As in e�e
t we remarked earlier, one of the main points of interest addressed in this paperis the fa
t that sin
e we 
an 
onstru
t two di�erent homotopy operators for the 
olumns,we have two distin
t ways of de�ning proje
tion operators �. The 
orresponding tworepresentations of the Euler-Lagrange 
omplex are of 
ourse isomorphi
, in an obvioussense. In fa
t the two spa
es E1 are identi
al, and so is the map 
0;m ! E1. Sin
e this isthe operator that produ
es the Euler-Lagrange equations from a given Lagrangian, thisis all to the good. However, di�eren
es set in after this point. As a result, Æ(E1) � 
2;mdi�ers in the two 
ases, and so the 
ondition for " 2 E1 to be variational, namely Æ" = 0,8



takes di�erent forms. That is to say, the two representations produ
e di�erent versionsof the Helmholtz-Sonin 
onditions.3 The homotopy operatorsFor ! 2 
r;s with r > 0 we de�neP (!) = ddxj P j(r;s)(!) ; eP (!) = ddxj eP j(r;s)(!) ;where P j(r;s) : 
r;s ! 
r;s is given byP j(r;s) =XJ (�1)jJj(m� s)!jJ j!r(m� s + jJ j+ 1)!J !dJ Æ SJ+1jand eP j(r;s) : 
r;s ! 
r;s byeP j(r;s) =XJ (�1)jJj(m� s)!jJ j!rjJj+1(m� s+ jJ j+ 1)!J !dJ Æ eSJ+1j :We 
laim that for s < m both P and eP are homotopy operators for dH .Theorem 1. For ! 2 
r;s, where s < m and r > 0,(dHP + PdH)(!) = ! = (dH eP + ePdH)(!) :Proof. We give the argument for P in detail, and then explain how it may be modi�edso as to apply to eP .First, two remarks about hook and wedge. For any ! 2 
r;s we have� ddxj !� ^ dxi = ddxj �! ^ dxi�� (�1)r+sÆij!sin
e is an (anti-)derivation with respe
t to ^. Furthermore,ddxi �! ^ dxi� = (�1)r+s(m� s)! :To see this, 
onsider ! = � ^ dxi1 ^ dxi2 ^ � � � ^ dxis with i1 < i2 < � � � < is, where� 2 
r;0. Thenddxi �! ^ dxi� = (�1)r� ^0� Xi62fi1;i2;:::;isg ddxi (dxi1 ^ dxi2 ^ � � � ^ dxis ^ dxi)1A= (�1)r� ^0� Xi62fi1;i2;:::;isg(�1)sdxi1 ^ dxi2 ^ � � � ^ dxis1A= (�1)r+s(m� s)! : 9



From the formula for Ld=dxiSI it follows that (as a 
ommutator of derivations)[di; SI℄ = �I(i)SI�1i :Here, S0 is the derivation of type i de�ned by PV . In parti
ular, a
ting on 
r;s we haveS0 = r id.We now turn to the proof of the homotopy property. We have(dHP + PdH)(!)= (�1)r+s�1di � ddxj P j(r;s)(!)� ^ dxi + (�1)r+s ddxj P j(r;s+1) �di! ^ dxi�= (�1)r+s�1 � ddxj diP j(r;s)(!)� ^ dxi + (�1)r+s ddxj �P j(r;s+1)(di!) ^ dxi�= diP i(r;s)(!) + (�1)r+s ddxj �(P j(r;s+1)di � diP j(r;s))(!)^ dxi� ;so the main part of the proof is the 
al
ulation of P j(r;s+1) Æ di� di ÆP j(r;s). The �rst stepis to 
ommute the di through the SJ+1j terms in P j(r;s+1) Æ di. From the 
ommutatorformula we have SJ+1j Æ di = di Æ SJ+1j + J(i)SJ+1j�1i + ÆjiSJ :It follows thatP j(r;s+1) Æ di=XJ (�1)jJj(m� s� 1)!jJ j!r(m� s + jJ j)!J ! �dJ+1i Æ SJ+1j + J(i)dJ Æ SJ+1j�1i + Æji dJ Æ SJ� :In the term 
ontaining J(i) the summation e�e
tively starts from J = 1i, and we may
hange the summation variable from J to J � 1i to getXJ�1i (�1)jJj(m� s� 1)!jJ j!r(m� s+ jJ j)!J ! J(i)dJ Æ SJ+1j�1i= �XJ (�1)jJj(m� s� 1)!(jJ j+ 1)!r(m� s + jJ j+ 1)!J ! dJ+1i Æ SJ+1j :
10



Then P j(r;s+1) Æ di � di Æ P j(r;s) =XJ (�1)jJj(m� s� 1)!jJ j!r(m� s + jJ j)!J ! dJ+1i Æ SJ+1j�XJ (�1)jJj(m� s � 1)!(jJ j+ 1)!r(m� s+ jJ j+ 1)!J ! dJ+1i Æ SJ+1j�XJ (�1)jJj(m� s)!jJ j!r(m� s+ jJ j+ 1)!J !dJ+1i Æ SJ+1j+ Æji XJ (�1)jJj(m� s � 1)!jJ j!r(m� s+ jJ j)!J ! dJ Æ SJ :Inspe
tion of the 
oeÆ
ients reveals that the �rst three terms 
an
el, and we are leftwith (�1)r+s ddxj �(P j(r;s+1)di � diP j(r;s))(!)^ dxi�= (�1)r+s ddxi  XJ (�1)jJj(m� s � 1)!jJ j!r(m� s + jJ j)!J ! dJSJ! ^ dxi!=XJ (�1)jJj(m� s)!jJ j!r(m� s+ jJ j)!J ! dJSJ! :Thus (dHP + PdH)(!) = diP i(r;s)(!) + (�1)r+s ddxj �(P j(r;s+1)di � diP j(r;s))(!) ^ dxi�=XI (�1)jIj(m� s)!jI j!r(m� s + jI j+ 1)!I !dI+1iSI+1i! +XI (�1)jIj(m� s)!jI j!r(m� s+ jI j)!I ! dISI! :There is of 
ourse an implied summation over i in the �rst term in this formula. If weapply Lemma 1 with  (I) = (�1)jIj(m� s)!r(m� s+ jI j)!dISI!we see that the 
ontributions to the �rst sum in the formula with jI j = s 
an
el with the
ontributions to the se
ond sum with jI j = s + 1. All that remains is the term in these
ond sum with I = 0, whi
h is just 1rS0! = ! :Thus (dHP + PdH)(!) = !, as asserted.The 
al
ulation for eP is very similar. The main di�eren
e is in the 
ommutator, whi
hin this 
ase is 
al
ulated as follows. On 
r;s we have [di; Sj℄ = �rÆjiPV . Now for any11



operators A, B and C we have [A;BC℄ = [A;B℄C+B[A;C℄, so that in 
omputing [di; eSI ℄we need only 
onsider the terms in eSI involving Si; that is to say[di; eSI℄ = (S1)I(1)(S2)I(2) � � � [di; (Si)I(i)℄ � � �(Sn)I(n) :Moreover, [di; (Si)I(i)℄ = �rI(i)(Si)I(i)�1, and so [di; eSI ℄ = �rI(i)eSI�1i. It follows that[di; eSJ+1j ℄ = �r�J(i)eSJ+1j�1i + Æji eSJ� :The o

uren
e of the extra 
oeÆ
ient r is a

ommodated by the di�eren
e in the 
oef-�
ient in the de�nition of eP 
ompared to P . See [14℄ for the detailed 
al
ulation in adi�erent but related 
ontext.4 Representations of the Euler-Lagrange 
omplexIn the 
ase of the homotopy operator P the proje
tion operator on 
r;m is � = id�dHÆP .Let us denote an element of 
r;m by � ^ dmx, � 2 
r;0, and set�(� ^ dmx) = �r(�)^ dmx :We derive two expli
it formul� for �r.Theorem 2. For � 2 
r;0�r(�) = 1rXI (�1)jIj 1I !dISI(�) = 1r �� ^XI (�1)jIjdI � ��u�I �� :Proof. We havedH(P (� ^ dmx)) = (�1)r+m�1di� ddxj (P j(r;m)(�) ^ dmx)� ^ dxi= djP j(r;m)(�) ^ dmx :But P j(r;m) =XJ (�1)jJjjJ j!r(jJ j+ 1)!J !dJ Æ SJ+1j ;and so �r = id�XJ (�1)jJjjJ j!r(jJ j+ 1)!J !dJ+1j Æ SJ+1j :By Lemma 1 again,�XJ (�1)jJjjJ j!r(jJ j+ 1)!J !dJ+1j Æ SJ+1j = XjJj>0 (�1)jJjjJ j!r(jJ j)!J ! dJ Æ SJ ;12



and so �r = 1rXJ (�1)jJj 1J !dJ Æ SJ :The alternative formula for �r is obtained as follows. In the Fr�oli
her-Nijenhuis 
al
ulusthe derivation of type i 
orresponding to the type (1; 1) tensor �
V (where � is a 1-formand V a ve
tor �eld) is just i�
V � = � ^ (V �). Using the expression for SI as a sumof tensor produ
ts, and remembering that SI stands for iSI , we �nd that�r(�) = 1rXI;J (�1)jIj (I + J)!I !J ! dI ���J ^ � ��u�I+J ��� :We now use the Leibniz rule, and the fa
t that dK��J = ��J+K , to obtain�r(�) = 1rXI;J (�1)jIj (I + J)!I !J ! XK+L=I (K + L)!K!L! ��J+K ^ dL � ��u�J+K+L ��= 1r XJ;K;L(�1)jK+Lj (J +K + L)!J !K!L! ��J+K ^ dL� ��u�J+K+L ��= 1r XL;M(�1)jLj (L+M)!L!M !  XJ+K=M(�1)jKj M !J !K!! ��M ^ dL� ��u�L+M �� :By the multi-index binomial theorem, for M 6= 0XJ+K=M(�1)jKj M !J !K! = (1� 1)jM j = 0 :Thus only the terms with M = 0 
ontribute to the sum; it follows that�r(�) = 1r�� ^XI (�1)jIjdI � ��u�I �� :This latter expression identi�es �r with the interior Euler operator (see [18℄), and so theEr are the spa
es of variational forms (or fun
tional forms as they are 
alled in [1℄).In the 
ase of e� we have only one formula, 
orresponding to the �rst of those for �.Theorem 3. e�r =XI ��1r�jIj 1I !dI Æ eSI :The derivation of this formula is similar to that of the one for �r.Next, we give a simple 
hara
terisation of the image eEr of the proje
tion operator e�.13



Theorem 4. The subspa
e eEr of 
r;m 
onsists of forms � ^ dmx su
h that Si(�) = 0,i = 1; 2; : : : ; m.Proof. Clearly if � satis�es the given 
ondition then eSI(�) = 0 for all I 6= 0, and soe�r(�) = �. For the 
onverse we use the fa
t that Si Æ dj = dj ÆSi+ rÆij (when a
ting onan element of 
r;s), whi
h generalises to Si Æ dI = dI Æ Si + rI(i)dI�1i. ThenSi Æ e�r =XI ��1r�jIj 1I !Si Æ dI Æ eSI=XI ��1r�jIj 1I ! �dI Æ eSI+1i + rI(i)dI�1i Æ eSI�=XI ��1r�jIj 1I !dI Æ eSI+1i �XI�1i��1r�jIj�1 1(I � 1i)!dI�1i Æ eSI= 0 :Thus if e�r(�) = �, then Si(�) = 0.When r = 1, SI = eSI , and so �1 = e�1, and E1 = eE1. The latter 
onsists of all forms�^dmx with � 2 
1;0 and Si(�) = 0; it follows that E1 is spanned by the forms ��^dmx.Moreover, the Euler-Lagrange map 
0;m ! E1 is given by Ldmx 7! �1(dVL)^ dmx, and�1(dVL) = �1 XI �L�u�I ��I ! =XI (�1)jIjdI � �L�u�I � �� :It is a 
onsequen
e of Theorem 4 that the ve
tor spa
es eEr are modules over the ringof fun
tions on J1�. In 
ontrast, the spa
es Er are not modules when r � 2: to see anexample of this, take the �bred manifold � : R�R2! R and 
onsider the 3-form �^ dxwhere � = (du1(2) ^ du2 + du1 ^ du2(2)) 2 
2;0 :A simple 
al
ulation shows that dH(P (� ^ dx)) = 0, so that � ^ dx 2 E2. On the otherhand, taking  = u1� we �nd thatdH(P ( ^ dx)) = �dH(u1(1)du1 ^ du2) 6= 0so that  ^ dx 62 E2. Indeed, 
hara
terizing Er for r � 2 is known to be a diÆ
ultproblem; we dis
uss the 
ase r = 2 later.5 The Helmholtz-Sonin 
onditionsWe now 
ompute Æ" and ~Æ" for an arbitrary sour
e form " = "���^dmx (where Æ = �ÆdVand ~Æ = e� Æ dV ). We start with Æ". 14



Theorem 5. Æ" = �12XI HI���� ^ ��I ^ dmxwhere HI�� = �"��u�I �XJ (�1)jI+Jj (I + J)!I !J ! dJ � �"��u�I+J � :Proof. We haveÆ" = �(dV ") = 12XI (�1)jIj 1I !dISI  XJ �"��u�J ��J ^ �� ^ dmx! :Now SI(��J ) = 8><>: J !(J � I)!��J�I if J � I0 otherwise.In parti
ular, SI(��) = 0, unless I = 0: S0(��) = �� . ThusÆ" =XJ �"��u�J ��J ^ �� ^ dmx+ 12 XjIj>0XJ (�1)jIj (I + J)!I !J ! dI  �"��u�I+J ��J ^ �� ^ dmx!= 12XJ �"��u�J ��J ^ �� ^ dmx+ 12XI;J (�1)jIj (I + J)!I !J ! dI  �"��u�I+J ��J ^ �� ^ dmx! :We evaluate the se
ond term on the right. Of 
ourse dK(dmx) = 0 for K > 0, andXI;J (�1)jIj (I + J)!I !J ! dI  �"��u�I+J ��J ^ ��!=XI;J (�1)jIj (I + J)!I !J ! XK+L+M=I (K + L +M)!K!L!M ! dK  �"��u�I+J! dL(��J ) ^ dM (��)= XJ;K;L;M(�1)jK+L+M j (J +K + L+M)!J !K!L!M ! dK  �"��u�J+K+L+M ! ��J+L ^ ��M= XK;M;N(�1)jK+M j (K +M +N)!K!M !N !  XJ+L=N(�1)jLj N !J !L!!dK  �"��u�K+M+N! ��N ^ ��M :Using the multi-index binomial theorem again we obtainÆ" = 12XJ �"��u�J ��J ^ �� ^ dmx� 12XI;J (�1)jI+Jj (I + J)!I !J ! dI � �"��u�I+J � ��J ^ �� ^ dmx :15



Our result agrees verbatim with [5℄ (mutatis mutandis). For purposes of 
omparisonwith the formul� in other arti
les, su
h as [6, 9℄, it is useful to writeHI�� = �"��u�I � (�1)jIj �"��u�I � XjJj>0(�1)jI+Jj (I + J)!I !J ! dJ � �"��u�I+J � :Note in parti
ular that only the terms not involving dJ are 
olle
tively skew or symmetri
in � and �; the rest involve just "� . The Helmholtz-Sonin 
onditions, in this version, areHI�� = 0; I 6= 0; H�� � H�� = 0 :(We believe that insuÆ
ient attention has sometimes been paid to the seeming anomalythat arises for I = 0.)The Helmholtz-Sonin 
onditions derived from ~Æ are interestingly quite di�erent in ap-pearan
e. In deriving them we take advantage of the fa
t that eE2 
onsists of (m+2)-formsannihilated by Si for all i. We begin by using this fa
t to obtain an expli
it basis of eE2.Lemma 2. For any I, �, � set���I = XJ+K=I(�1)jKj I !J !K!��J ^ ��K ^ dmx :(Noti
e that ���I is `graded skew-symmetri
' in � and �: that is, ���I = �(�1)jIj���I .)The set of forms f���I : � < � for jI j even, � � � for jI j oddg is a basis for E2.Proof. We show �rst that ���I 2 E2. Remembering that Si is a derivation of degree 0,we haveSi(���I ) = XJ+K=I(�1)jKj I !J !K! (J(i)��J�1i ^ ��K ^ dmx+K(i)��J ^ ��K�1i ^ dmx) :If I(i) = 0 then Si(���I ) = 0. So suppose that I(i) 6= 0, and 
onsider the 
oeÆ
ient ofthe term in Si(���I ) involving ��L^��M ^dmx, where L andM are �xed multi-indi
es withL+M = I�1i. Su
h a term has two ante
edents: ��L+1i^��M ^dmx and ��L^��M+1i^dmx;their joint 
ontribution to the 
oeÆ
ient is(�1)jM j I !(L+ 1i)!M !(L(i) + 1) + (�1)jM j+1 I !L!(M + 1i)!(M(i) + 1) = 0 :Thus Si(���I ) = 0 for all i, as asserted. It is not diÆ
ult to show, by an extension ofthe same te
hnique, that the ���I span eE2. Finally, it is 
lear that the ���I for di�erentI are linearly independent (making allowan
e for the fa
t that they are graded skew in� and �).We next 
ompute ~Æ" for an arbitrary sour
e form " = "��� ^ dmx.16



Theorem 6. ~Æ" = �12XI eHI�����Iwhere eHI�� =XJ (�12)jI+Jj (I + J)!I !J ! dJ  �"��u�I+J � (�1)jIj �"��u�I+J! :Note espe
ially that like ���I , but in sharp 
ontrast to HI��, eHI�� is graded skew-symmetri
 in � and �.Proof. We have~Æ" = e�(dV ") =XI (�12)jIj 1I !dI eSI  XJ �"��u�J ��J ^ �� ^ dmx! :Sin
e Si(��) = 0, the evaluation of eSI(��J ^ �� ^ dmx) is parti
ularly simple:eSI(��J ^ �� ^ dmx) = eSI(��J) ^ �� ^ dmx = SI(��J ) ^ �� ^ dmx :The initial stages of the 
al
ulation are 
onsequently similar to those in Theorem 5, andwe �nd the following expression for ~Æ":XK;M;N(�12)jK+M j (K +M +N)!K!M !N ! XJ+L=N �(�12)jLj N !J !L!� dK  �"��u�K+M+N! ��N^��M^dmx :This time the multi-index binomial theorem givesXJ+L=N(�12)jLj N !J !L! = (1� 12)jN j = (12)jN j ;and the subsequent steps are quite di�erent. In fa
t~Æ" = � XK;M;N(�12)jK+M+N j(�1)jN j(K +M +N)!K!M !N ! dK  �"��u�K+M+N ! ��M ^ ��N ^ dmx ;but equally~Æ" = � XK;M;N(�12)jK+M+N j(�1)jM j (K +M +N)!K!M !N ! dK � �"��u�K+M+N � ��N ^ ��M ^ dmx17



(just 
hanging the names of some of the summation indi
es). So we 
an write~Æ" = �12 XK;M;N(�12)jK+M+N j (K +M +N)!K!M !N ! �� dK  (�1)jN j �"��u�K+M+N � (�1)jM j �"��u�K+M+N ! ��M ^ ��N ^ dmx= �12 XK;M;N(�12)jK+M+N j(�1)jN j (K +M +N)!K!M !N ! �� dK  �"��u�K+M+N � (�1)jM+N j �"��u�K+M+N! ��M ^ ��N ^ dmx= �12XK;P (�12)jK+P j (K + P )!K!P ! dK  �"��u�K+P � (�1)jP j �"��u�K+P !�� XM+N=P(�1)jN j P !M !N !��M ^ ��N ^ dmx ;as required.The Helmholtz-Sonin 
onditions, in this version, are just eHI�� = 0.The two versions of the Helmholtz-Sonin 
onditions, though super�
ially so di�erent,must of 
ourse at some deeper level be equivalent. We next investigate the relationshipbetween them. For this purpose it will be 
onvenient to refer to the �rst version (involvingHI��) as the standard version, sin
e indeed it is the version most usually found in theliterature; we 
all the se
ond version the new version. In fa
t the relationship in questionis a bit subtle, be
ause, as Anderson says in [1℄, there are `
ertain interdependen
iesamongst the [standard℄ Helmholtz 
onditions'. The pre
ise meaning of this somewhatobs
ure utteran
e will be
ome 
lear in the following dis
ussion.Before dealing with the 
onditions themselves, we shall examine the relation between thespa
es E2 and eE2. These two spa
es must 
learly be isomorphi
, and in fa
t �jeE2 : eE2 !E2 and e�jE2 : E2 ! eE2 are mutually inverse isomorphisms. We know a great deal abouteE2; we shall use our information, together with �, to investigate E2.We shall use Roman letters to indi
ate general elements of the spa
es E2 and eE2, retaining
alligraphi
 letters for the parti
ular 
ase where the elements arise as the images ofHelmholtz-Sonin maps. Any eH 2 eE2 
an be written eH = PI eHI�����I , where theimplied summation on � and � is taken over all �; � and the 
oeÆ
ients eHI�� are gradedskew-symmetri
, i.e. eHI�� = �(�1)jIj eHI��. The 
al
ulation of �( eH) follows a by nowfamiliar pattern, and we won't repeat it; the result is�( eH) =XI HI���� ^ ��I ^ dmx ; where HI�� = (�2)jIjXJ (�1)jJj (I + J)!I !J ! dJ eHI+J�� :18



But the eHI�� are graded skew-symmetri
, and thereforeHI�� = �2jIjXJ (I + J)!I !J ! dJ eHI+J�� :We shall show below that, as a result, the HI�� must satisfyHI�� = �(�1)jIjXJ (�1)jJj (I + J)!I !J ! dJHI+J�� :This is our equivalent of a 
ondition given by Anderson for a 2-form to be a fun
tionalform (see [1℄ Eq.3.14, for 2-forms). We 
all it Anderson's 
ondition.Consider on the other hand an (m + 2)-form H = PI HI���� ^ ��I ^ dmx where the
oeÆ
ients satisfy Anderson's 
ondition. De�neeHI�� = (�12)jIjXJ (�12)jJj (I + J)!I !J ! dJHI+J�� ;again, we show below that the eHI�� are graded skew-symmetri
, and if we set eH =PI eHI�����I 2 eE2 we have H = �( eH).To prove the assertions just made, we shall let U be the spa
e of families of fun
tionson J1� indexed by the multi-index I , that is, the spa
e of maps Nm ! C1(J1�); forU 2 U the value of U at I is denoted by U I (rather than U(I)). For p 2 R, de�neD(p) :U! U by(D(p)U)I =XJ pjJj (I + J)!I !J ! dJU I+J = U I + XjJj>0 pjJj (I + J)!I !J ! dJU I+Jso that, in parti
ular, D(0) is the identity. Then D(p)D(q) = D(p+ q):(D(p)D(q)U)I =XJ pjJj (I + J)!I !J ! dJ  XK qjKj (I + J +K)!(I + J)!K! dKU I+J+K!=XJ;K pjJjqjKj (I + J +K)!I !J !K! dJ+KU I+J+K=XL (I + L)!I !L!  XJ+K=L pjJjqjKj (J +K)!J !K! !dLU I+L=XL (p+ q)jLj (I + L)!I !L! dLU I+L ;by the binomial theorem. Noti
e that D(�p) = (D(p))�1.19



We now return to the formul�HI�� = (�2)jIjXJ (�1)jJj (I + J)!I !J ! dJ eHI+J��and eHI�� = (�12)jIjXJ (�12)jJj (I + J)!I !J ! dJHI+J�� ;relating 
oeÆ
ients of elements of E2 and eE2. If we set bHI�� = (�12)jIjHI�� these formul�
an be written bH�� = D(�1)( eH��); eH�� = D(1)( bH��) ;with eH��; bH�� 2 U, making it obvious that they are inverse. Moreover, in derivingthe 
onsequen
es for HI�� of the graded skew-symmetry of eHI�� we found in e�e
t that�HI�� = 12 jIjHI�� satis�es �H�� = �D(1)( eH��). It follows that �H�� = �D(2)( bH��), whi
hwhen written out is the Anderson 
onditionHI�� = �(�1)jIjXJ (�1)jJj (I + J)!I !J ! dJHI+J�� :It follows that the set of forms H =PI HI���� ^ ��I ^ dmx where the 
oeÆ
ients satisfyAnderson's 
ondition is the image of eE2 under �; but this is just E2.Now for any sour
e form ", Æ" = �12PI HI���� ^ ��I ^ dmx. But of 
ourse Æ" 2 E2, sothe 
oeÆ
ients must satisfy Anderson's 
ondition. In this sense the standard Helmholtz-Sonin 
onditions are not independent; the role of Anderson's 
ondition in the de�nitionof E2 is the sour
e of the interdependen
ies between them.In the 
ourse of the dis
ussion we have established expli
it relationships between the twoforms of Helmholtz-Sonin expressions. In parti
ular,HI�� = (�12)jIjXJ (�12)jJj (I + J)!I !J ! dJ eHI+J�� ;a formula whi
h 
an be established also by a straightforward 
al
ulation using the expli
itexpressions for HI�� and eHI�� in terms of " given earlier.Sin
e there are no a priori interdependen
ies among the new Helmholtz-Sonin 
onditions,they are easier to work with than the standard ones. Consider for example the 
asewhen there is a single dependent variable. The new Helmholtz-Sonin 
onditions vanishidenti
ally when jI j is even and giveXJ (�12)jJj (I + J)!I !J ! dJ � �"�uI+J � = 020



when jI j is odd. This 
an be written�"�uI + XjJj>0(�12)jJj (I + J)!I !J ! dJ � �"�uI+J � = 0 :Anderson obtains an expression of a similar form, but with less straightforward 
oef-�
ients, for this 
ase (Eq.3.19 of [1℄) by a 
ompli
ated series of eliminations from thestandard 
onditions.6 Dis
ussionIn this paper we have 
onstru
ted two di�erent versions of the Helmholtz-Sonin 
ondi-tions, and demonstrated the relationship between them. One version, involving HI��, iswell-known in the literature; the other, involving eHI�� , is new. In some respe
ts, thenew 
onditions have better properties than the older ones. We have, however, 
hosen aparti
ular type of �bred manifold, where the base is Rm with its 
anoni
al 
oordinatesystem. In su
h a 
ontext our 
onstru
tions are global, and the expressions HI��, eHI��transform 
orre
tly under 
hanges of �bre 
oordinates as the 
omponents of di�eren-tial forms. There are appli
ations where su
h a 
ontext is appropriate, for instan
e inme
hani
s with a 1-dimensional base R and a given time 
oordinate t. But in otherappli
ations we would wish to take a general base manifold M , and it is well-known thata transformation of the independent variables in a variational problem 
an destroy 
o-varian
e (see, for instan
e, the remarks in [10℄). We 
an be sure only that our operatorsP and eP will be lo
al homotopy operators in this more general 
ase (though it is knownthat for r > 0 and s < m the 
olumns are globally exa
t: see [18℄).It is, indeed, the 
ase that 
ovarian
e fails for eHI�� , as we now show. Taking m = 1,n = 2 and the 3-form � ^ dx with� = duxx ^ dv ^ dx 2 
2;0(we must modify the notation here to allow for the fa
t that we are going to 
hange theindependent variables) a simple 
al
ulation givese�x(� ^ dx) = 14(duxx ^ dv � 2dux ^ dvx + du ^ dvxx) ^ dxwhere the supers
ript indi
ates that the 
al
ulation of e� has been performed using xas the independent variable. On the other hand, taking a new 
oordinate y on M withx = ey , we 
an write e�x(� ^ dx) in the new 
oordinates ase�x(� ^ dx) = 14e�y�(duyy � duy) ^ dv � 2duy ^ dvy + du ^ (dvyy � dvy)	^ dy ;whereas a dire
t 
omputation givese�y(�^ dy) = 14e�2y�duyy ^ dv + du ^ dvyy � 2duy ^ dvy � du^ dv	^ dy ;21



showing that the expression for e�(� ^ dx) does not transform 
orre
tly under a 
hangeof independent variables.Using the same example, we see also that�x(� ^ dx) = 12e�y�(duyy � duy) ^ dv + du ^ (dvyy � dvy)	 ^ dy = �y(� ^ dy) ;and indeed several authors have shown (see [18℄ and referen
es therein) that the interiorEuler operator is globally well-de�ned under an arbitrary �bred 
hange of 
oordinateson � : E !M .In 
on
lusion: the interior Euler operator and the variational (fun
tional) forms whi
h itprodu
es are 
ovariant but awkward to work with, and lead to Helmholtz-Sonin 
ondi-tions whi
h are inelegant and not independent; our version avoids these diÆ
ulties, butat the 
ost of being dependent on a parti
ular 
hoi
e of base 
oordinates.A
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