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Abstract

We give formulae for two distinct local homotopy operators for the horizontal
differential in the variational bicomplex. We deduce two different representations of
the classes of forms in the Euler-T.agrange complex, and hence two different, versions
of the Helmholtz-Sonin equations for the local variationality of a source form. We
give explicit relationships between these two versions of the equations.

1 Introduction

A significant step in the development of the differential-geometric theory of the calculus
of variations was taken when it was realised that the operation of deriving the Euler-
Lagrange equations from a Lagrangian form could be embedded in a complex (in the
sense of homological algebra), the so-called Euler-TLagrange complex or variational se-
quence. Such problems as determining necessary and sufficient conditions for a system
of differential equations to be variational (that is, to be the Euler-Lagrange equations
of some Lagrangian) and describing variationally trivial or null Lagragians (those whose
FEuler-Tagrange equations vanish identically) have a natural place in the context of the
Euler-Lagrange complex. A further significant step was taken when it was realised that
the Fuler-T.agrange complex can in turn be embedded in a bicomplex, the so-called vari-
ational bicomplex. The properties of the Fuler-l.agrange complex are thereby seen to
derive ultimately from those of the bicomplex and its maps, the horizontal and verti-
cal differentials. A recent comprehensive discussion of the bicomplex, together with an



account of the history of the subject and an extensive list of references, may be found
in Vitolo’s survey article in the Handbook of Global Ananlysis [18]. An older, but very
useful and sometimes more detailed, standard reference is Anderson’s still unpublished
book, which is readily available from his website [1].

One early difficulty in setting up the variational bicomplex lay in finding a satisfactory
proof of the local exactness of the horizontal differential. Various authors have by now
given proofs [15, 16, 17], and in [1] Anderson gives an extensive description of the theory
using the technique of Fuler operators. We use instead the Frélicher-Nijenhuis theory of
derivations [4] to give explicit formula for fwo new homotopy operators for the horizontal
differential and to prove the homotopy property. We believe that by comparison with
other efforts our formula are both approachable and elegant; however, the main interest
of our paper derives from the duplication.

A local homotopy operator for the variational bicomplex can be used to construct a
local representation of the Fuler-Lagrange complex, and so corresponding to our two
homotopy operators we have two representations of this complex. In particular, the
space of representative (m + 2)-forms (where m is the number of independent variables)
differs in the two cases, and so the condition for an (m + 1)-form to be variational takes
different forms. That is to say, the two representations produce different versions of
the Helmholtz-Sonin conditions versions which turn out to be markedly different in
appearance and properties. We shall give explicit formula for the two versions and the
relation between them.

(As an aside, we should point out that representations of the Euler-Lagrange complex can
also be obtained from the finite-order variational sequence instead of from the variational
bicomplex, which is defined on a bundle of infinite-order jets. The finite-order sequence
was introduced in []], and a description of a representation in this context is given in [7].
The finite-order sequence, as well as the bicomplex, is discussed in [18]. We, however,
have nothing more to say on this aspect of the subject.)

In this paper we make considerable use of certain type (1,1) tensor fields which we
denote by S7. The prototype for these tensors is the canonical almost-tangent structure
on a tangent bundle, obtained by composing the tangent projection with the canonical
isomorphism of a vector space with its tangent space at any point. Considerable use has
been made of this operator over the years in the study of Lagrangian mechanics. There
is a similar canonical structure on any higher-order tangent bundle [2], and there are
also families of such structures on bundles of (higher-order) velocities [3]. With some
additional data, it is possible to construct similar structures on jet bundles, and [11]
describes how to associate a tensor S“ with any closed 1-form w on the base of any

fibred manifold.

In much the greater part of the paper we consider fibred manifolds of the specific type
7w I — R"™, so that in effect we fix the independent variables. We can therefore work
with the tensor S%" on J®r where 2/ are the canonical coordinates on R™; this is
the tensor denoted by S*. In this particular context, our constructions are all defined



globally. For a more general fibred manifold = : ' — M and a chart (U, 2") on M, such
tensors may be defined locally on 7' (I/) and were used implicitly in [16] to construct
a (local) homotopy operator for the variational bicomplex (see [12, Section 7.3] for an
explicit description using S”:). Note that both the homotopy operators we construct
in the present paper are different from this earlier one, although one of the resulting
projection maps (giving a representation of the FEuler-Lagrange complex) turns out to
be the well-known ‘interior Fuler operator’. We consider the effect of taking a general
manifold M as the space of independent variables rather than R™ with its canonical
coordinate system in the final section of the paper.

The structure of this paper is as follows. In Section 2 we describe the variational bicom-
plex and recall the basic properties of some geometric operators on J*x. In Section 3
we use these constructions to define the two homotopy operators for the bicomplex, and
in Section 4 we construct, the representations of the Euler-Lagrange complex. The two
versions of the Helmholtz-Sonin conditions are obtained in Section 5. The final section
is devoted to a discussion of our results.

2 Preliminaries

let # : ¥ — R™ be a fibred manifold. We consider the infinite jet manifold J*x; this
is an infinite-dimensional Fréchet manifold [12] but the difficulties sometimes associated
with such manifolds will not concern us: all our calculations could be repeated, at the
cost of dealing with more complicated formulae, by using objects defined on finite-order
jet bundles or along the projection maps between them.

Our notation mostly follows that of [13], which (together with [12]) we suggest as useful
references for this section. We denote the canonical coordinates on R™ by z*, and of
course these are globally defined. local coordinates on the fibres of © will be denoted
by u?, and jet coordinates by u7. Here, I,.J,... are ‘symmetric’ multi-indices, and are
elements of N™. The ith component of I will be denoted by (i), and the multi-index
with T(:) =1, I(j) = 0 for j # ¢ by 1,. We write |[I| = T(1)+ 1(2)+ ---+ I(m) for the
length of 7, and It = T(1)!1(2)!---T(m)! for its factorial.

We use the summation convention for summation over repeated indices 4,7, ... (which
index the base coordinates), and a, 3,... (which index the fibre coordinates); however,
we indicate sums involving multi-indices explicitly.

In adopting the multi-index convention described above we follow [3, 5, 13, 18] for ex-
ample. The alternative, adopted by Anderson in [1] for instance, is to use a symbol such
as T to stand simply for a collection of ordinary indices: T = iyiy. ... The ratio |T|1/T,
often called the weight of I, appears frequently in carrying out translations between the
two conventions: it is used when converting a sum over a multi-index into a sum over the
corresponding individual indices, so that if some object 1 () depends on the multi-index



I then

Zm' Z ¢ (i, + 14+ 14)

|f|:7’ 11,09,..

The following result is an immediate consequence of this observation.

Lemma 1. For any quantitiy (I) depending on the multi-index T, and any positive

> e =2 X e+,

[ T|=r+1 7 [T]=r

integer r,

We use this lemma several times below.

For any variables &', &2, ..., &7, we write &/ for the monomial (51),(1)(52),(2) ‘e (Em‘)f(
The following version of the binomial theorem holds: if ¢* = & + 7",

I -
T _ J K
C= 0 gt
J+K=T
The power notation extends to any m objects which have a commutative multiplication

rule defined on them, such as pairwise commuting operators. Thus with 9; = 9/dz" we
have

alll
(D2 T (Da2)T(2) ... (Pam)T(m)

which gives a simple example of this usage.

;=

We set,

dT’: +Z H'1(3?”

(the ith total derivative), and denote by d; the corresponding operator in the Frélicher-
Nijenhuis calculus, that is, the corresponding Lie derivative. Of course, d; and d; com-
mute, so we may define dy as explained above. We set

07 = duj — uf,, dz’

(a contact 1-form). We have d; ((]W) =0 and 4,07 = 91+1

The construction of the type (1,1) tensors S* was described in the Introduction. We
shall in fact need only the coordinate representation of such tensors, which is given by

7 . a 0
ST=Y (1) + 167 @ e
T +1;

Note that S*(dz7) = 0. Since S* and S7 commute we can define S’ (as a type (1,1)
tensor), and we find that

!
ST=>" T+ )y ® 0

1 J P -
- J! (()?I,H_J



We take 5
SO=N 070 ——;
27: 7 dug !

this type (1, 1) tensor, commonly known as the jet bundle contact structure, differs from
the identity by dz’ @d/dz"; acting on vector fields, it is projection onto the vertical along
the total derivatives, and so will be written Py. It is easy to show from the formula
above that

LypgeiST = —T(1)S" 1,

with the proviso that if 7(¢) = 0 then the right-hand side is zero (even though I — 1, is
undefined).

In the Frélicher-Nijenhuis calculus, with each type (1,1) tensor S7 there is associated a
derivation of degree 0 and type i, denoted by ig;. Moreover, since S7 and S* commute
(as type (1, 1) tensors) the corresponding derivations commute. It follows that with any
multi-index T we can associate two operators on forms: on the one hand, the composite
operator obtained by applying the rule for formation of powers, namely

(i) D (ig2) ) - (i.gm) 7

on the other, the derivation of type i associated with the type (1,1) tensor S’. In general,
these are distinct; indeed, the first is not usually a derivation. One could say that, so far
as action on forms is concerned, there is an ambiguity in the meaning of S’. Now our
homotopy operators make use in their definition of the operation of S’ on forms. Tt is
a surprising and interesting fact that either interpretation gives a homotopy operator, if
one chooses certain constant coefficients appropriately.

The strict Frolicher-Nijenhuis notation can become rather cumbersome. We therefore
distinguish the two possibilities notationally as follows: we write ST to stand for the
product of derivations of type 7, while we re-use the symbol S7 to represent the derivation
of type i determined by the type (1, 1) tensor field S’. Notice that as operators on forms,
S0 = id, while S9 is the derivation of type i corresponding to Py. Of course St =S for
a single index 1, and ST =57 when acting on a 1-form.

We now come to the definition of the variational bicomplex. As before, we consider a
fibration 7: K — R™ and let Q™* denote the module of (r 4 s)-forms on .J*r containing
r contact components and s horizontal components (semi-basic over M); that is to say,
Q"* is spanned by the forms

07 AOT2 A= AOTT A da’t Ada A Adats

Now d(Q"*) C Q5+ @ Q15 We can therefore define maps di : Q7% — Q75*1 and
dy + Q% — Q"t1% the horizontal and vertical differentials, such that d = dp + dy.
These maps satisfy d% = d¥ = dy ody + dy ody = 0. They are determined by their
actions on functions, basic coordinate 1-forms and contact 1-forms. For di we have

dpf = (d;f)yda', dp(da’)y =0, dy(87) =07, Ada’.



It follows that for any w € Q™° we can write
dpw = (1) (dw) A da’ .

For dy, on the other hand,
dvf = Za 07 (s’ = dv(97) = 0

The horizontal differential is an invariant object incorporating the total derivative oper-
ators on jet bundles. In the context of finite-order jet bundles it would map forms on
JF7 to forms on J*H 7, but when considering J*x it is a mapping between forms on the
same manifold. On the other hand, the vertical differential has many of the properties of
the ordinary exterior derivative on the fibres of . Using these operators we construct the
variational bicomplex, whose diagram appears as Figure 1 below (where Q" (R”) denotes
the module of r-forms on R™). Note that in this diagram the squares involving both dp
and dy are not commutative but anti-commutative. The formula dgody +dyody =0
arises naturally in the definition of these operators, and it seems appropriate that it
should to continue to hold in the diagram even if a little violence is done to the concept
of a commutative diagram as a result. It can easily be corrected for by the introduction
of some judicious minus signs, as is done for example in [18].

We have written =" for the quotient Q™ /dg(Q7™"), and p, for the projection. The
operator dy : =7 — ="t is induced from dy by the projections: dy o p, = p.4q o dy; it
satisfies 6% = 0. In fact all the rows and columns of the diagram are locally exact. The
local exactness of the rows is a consequence of a version of the Poincaré lemma, together
with the fact that for w € Q% dyw = 0 is the necessary and sufficient condition for
w to be (the pull-back of) an s-form on R™. The local exactness of the columns, for
s < m, follows from the existence of homotopy operators, two examples of which will be
exhibited later in this paper; indeed, since the base is R™ with its canonical coordinates
our homotopy operators are globally defined and the columns with r > 0 are therefore
globally exact. The rest follows by standard arguments.

The Euler-Lagrange complex is

d d prody —1 & —9 &
0 —R—— Q025 . TFQ0m ALYy 2t TV, =2 7Y,
It too is everywhere locally exact. The most important part of this, so far as we are
concerned, is the portion

—

QOm—1 dpy QOm piody —1 Sv. —9

The map py ody : Q%™ — =1 is the FEuler-TLagrange operator. The image dg(Q%™ 1) C
Q% can be identified with the total divergences, that is, the forms

df;

Ldx" Nda? AN da™
dx’



R R 0
T d
0 QO(RM) 00,0 01,0
T dy
0 Q' (R™) 00,1 Ol

*

*
T oo d

0 Qm (Rm) —_— QO,WL QLTn
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0 I :0 L E1
0 0

Figure 1: The variational bicomplex

0 0
dv
QT,O Qr+1,0
dv
QTJ Qr+1,1

dv
Qrm Qr+1 ,m
Pr l Pr41 l
by
=r > —=r+1
0 0



=1

=' corresponds to the so-called source forms; and §y : =!

— =% is the Helmholtz-Sonin
operator, whose kernel consists of those source forms which are variational, that is, which
can be identified locally as the Euler-Lagrange form of some lagrangian.

The Euler-Lagrange complex is in part defined in terms of quotient spaces; for computa-
tional purposes it is desirable to have a more explicit representation, and we now address
the question of how this may be achieved. The following remarks, though expressed in
terms of the variational bicomplex, are in fact quite general and make no appeal to the
way that bicomplex is constructed.

Suppose (as we shall eventually show to be the case) that for each r > 0 we have an
R-linear map TT : Q"™ — Q™™ such that MTody : Q"™ 1 — Q™™ is the zero map, and
for every w € Q7™ there is some ¢ € Q7! such that w = T(w) + dy(¢). Tt is easy to
show that

1. each T is a projection operator: 112 = 1T;

2. the image of IT in Q"™ say &7, is complementary to the image of dg, and so

=r

isomorphic to Z7; for w € Q7 we have w € £ if and only if 1T(w) = w;

3. if we set TI(dy(w)) = &(IM(w)) then § is well-defined as a map £ — £+ and
52 =0.

One way of finding such a map I is to use a homotopy operator. Suppose that we know
a homotopy operator for the columns with r > 0, say P; that is, P : Q™ — Q™! for
1<s<m,and Podg+dpgoP : Q" — Q" for 1 <s < mis the identity. (We should,
of course, require also that Podgy : Q"% — Q™0 be the identity, but it is easy to see how
to extend the definitions so that we may use the standard formula for this degenerate
situation too.)

Now consider T1 =id —dg o P : Q™™ — Q"™ Then for any ¢ € Q"1 we have

W(dr(¢)) = di(¢) — dn(P(dn(9)) = di(¢) — du(d — dn(P(¢)) = 0;

and for any w € Q7" we have w = Il(w) + dy(P(w)). Thus IT has the properties
discussed above, so that a homotopy operator for the columns gives us a representation
of the Fuler-lagrange complex, in the form of spaces & C Q™ representing =", and
maps 6 : &7 — £t representing dy.

As in effect we remarked earlier, one of the main points of interest addressed in this paper
is the fact that since we can construct two different homotopy operators for the columns,
we have two distinct ways of defining projection operators Il. The corresponding two
representations of the Fuler-Lagrange complex are of course isomorphic, in an obvious
sense. In fact the two spaces &' are identical, and so is the map QU — £'. Since this is
the operator that produces the FEuler-Lagrange equations from a given Lagrangian, this
is all to the good. However, differences set in after this point. As a result, §(&') C Q2™
differs in the two cases, and so the condition for ¢ € £' to be variational, namely §¢ = 0,



takes different forms. That is to say, the two representations produce different versions
of the Helmholtz-Sonin conditions.

3 The homotopy operators

For w € Q™% with r > 0 we define
d . d .
P((.U) = (]T7J P(]r,s) (w) ’ P((.U) = (]T7J P(]r,s) (w) 9

where P(jr 9 Q"% — Q"% is given by

7
E | | )'|]|' (]]OSJ_F]]
Irm79—|—|]|—|—1)']'

and P’

(rs) ° Q"% — Q" by

oy |'7|(m79)1|]|1 ~
Pl = ) dyo STt
(r.5) zf:r|7|+1( st ]+ D! Jo

We claim that for s < m both P and P are homotopy operators for dg.

Theorem 1. Forw € Q™°, where s < m and r > (),

(AP + Pdp)(w) =w = (dg P+ Pdy)(w) .
Proof. We give the argument for P in detail, and then explain how it may be modified
so as to apply to P.

First, two remarks about hook and wedge. For any w € Q™* we have

d . d . .
7 7 r4s ¢
<—dT7Jw> Adzx = J (w/\dm ) — (=1 5,7‘“

since 1 is an (anti-)derivation with respect to A. Furthermore,

dg;iJ (w A dmi) = (1) (m - s)w.

To see this, consider w = ¢ A da't A dz™ A --- Ada's with iy < iy < --- < i, where
é € Q0 Then

pied (wAda’) = (1) A | Z T (dz™' A dzi> A - Ada's A dat)
1€{01 00,0
= (-1)"pA oo (0)dat Ada AN da
i@ Lin i eis}

= (-1 (m - s)w.



From the formula for £,/ ST it follows that (as a commutator of derivations)
[d;, ST = —1(i)s""i.

Here, SU is the derivation of type i defined by Py. In particular, acting on Q™* we have
SO = rid.

We now turn to the proof of the homotopy property. We have

d : : d , :
_ r4s5—1 7 7 1y r+s 7 . 7
=(-1) d; <—dm7J P(T’s)(w)> Adx'+ (1) e P sty (diw A da’)
r4s— d ] 7 r+s d 7
— (1) (WJ dipgm)(w)> Ada 4 (1) = 3 (Pl gy (di) A dir?)

7 r4s d 7
= diP, @)+ (~1)+ 3 (Pl = diPl ) (@) Ada')
so the main part of the proof is the calculation of P(j +1)© d; —d; o P(jr 5" The first step

J+1

is to commute the d; through the S od;. From the commutator

7 terms in P(7
formula we have

s+1)

STt o d; = dio ST 4 g () ST 4 518
It follows that,
P?

(r 9-{—1)

N m — s — D! ,
Z (m —s — 1)1J] (d,,ﬂos”‘f +J(1:)d,,os'7+‘f‘f?+5gd,,os") .
J

od;

m79—|—|]|)'7'

In the term containing .J(7) the summation effectively starts from .J = 1;, and we may
change the summation variable from J to J — 1; to get

W m — s — 1T
Z ( ]) (777/ S ‘l)‘|']|‘e](7:)djOs«]—l—1]71,‘,
=t r(m— s+ |J)J!

|7| 5
772 (m—s ])(“H_])dp”o?”‘ _
~ r(m—s+|J|+ 1)LJ!

10



Then

, Iflm,g, DI
P.? (] (] P? — (] ‘ SJ—H]
(rys+1) © o Z r(m — s+ [T J+1; ©

|7| g
72 (m — s — DIJ]+1)! Lo STH
r(m— s+ |J|+ 1! '

J

_Nl — \n
B Z ( ]) (777/ S)-|']|- (1_]_{_1. o S«J—l—1]
r(m— s+ |J|+ 1)LJ! :

4 ~OHlm — s — D!
55 dyoS7.
+ 27: P —— L T

Inspection of the coefficients reveals that the first three terms cancel, and we are left
with

s 7:
( ]) + dm] ((P{r g+‘|)(] (] P(7 ))(w)/\dT)

d (—)Hl(m — s — 1)!]|! 7 :
= (1)t — d;S’'w A da’
(=1 da” (Z: r(m— s+ |J)J! I e

(71)|‘7|(mfs)!|,]|! 7
p— d s ’
Z r(m— s+ |J)J! 757w

Thus

7 r4s d 7
(AP + Pdﬁ)(w):dip(rm)( W)+ (1) ((P{MH)(J APl ) @) Ada')

—1) |f| (m — g)v|[|v |f| (m — I
— Gt drs’
Z mf9+|7|+1)'7' T w+z m*‘>‘+|7|)"' o

There is of course an implied summation over 2 in the first term in this formula. If we
apply Lemma 1 with

O =)t

= /7.

() r(m— s+ 1)1
we see that the contributions to the first sum in the formula with |7| = s cancel with the
contributions to the second sum with || = s+ 1. All that remains is the term in the

second sum with I = 0, which is just

1
-5% = w.
r

Thus (dg P 4+ Pdy)(w) = w, as asserted.

The calculation for P is very similar. The main difference is in the commutator, which
in this case is calculated as follows. On Q"% we have [d;, S7] = —rd/Py. Now for any

11



operators A, B and C' we have [A, BC] = [A, B]C'4 B[A, (], so that in computing [d;, SN

we need only consider the terms in S involving S§%: that is to say
[d;, §f] - (31)7(1)(52)7(2) oo [d, (gi)f(i)] .. (gn)f(n) )
Moreover, [d;, (§9)70] = —r1(i)(S)D and so [d;, 8] = —rI(:)ST-"i. Tt follows that
[, §7419) = = (J() ST+ 4 6157

The occurence of the extra coefficient r is accommodated by the difference in the coef-
ficient in the definition of P compared to P. See [14] for the detailed calculation in a
different, but related context. O

4 Representations of the Euler-Lagrange complex

In the case of the homotopy operator P the projection operator on Q"™ is Il = id —dgo P.
Let us denote an element of Q"™ by ¢ Ad™z, ¢ € Q"0 and set

(A d™z) =TT,(¢) A d™a .

We derive two explicit formulae for T1,.

Theorem 2. For ¢ € Q"0
M(6) = =S 0la s (o) mAZ 1)/, 8 5u?)
re I

Proof. We have

dp(P(oAd™2)) = (1)t 14, <%J (Pl (@) A d” )) A dz
= ;P (S Ad"w
o 7 COME
oo = it o5
and so

I :]dfz ( )|7||]|' (] Oq.7+1‘7
" — r(|J] + 1)1J! T 2 ‘

By l.emma 1 again,

)M11]! ()M
S«J—l—1] — 7’(1 S«J
Zr|]|—|—]']' T+, 0 2. s e

7 |7>0

12



and so

1
mo==Y (- ﬂ”]d,o€

J

The alternative formula for T, is obtained as follows. In the Frolicher-Nijenhuis calculus
the derivation of type i corresponding to the type (1, 1) tensor a@V (where « is a 1-form
and V a vector field) is just inqveé = o A (V1 ¢). Using the expression for ST as a sum
of tensor products, and remembering that S’ stands for igr, we find that

M, (6) = %;( )M%d; <9f} A <(()?IL(;+7J¢>> .

We now use the Leibniz rule, and the fact that dx 07 = 67, to obtain

(I +. K+ 1), d
m<¢>:—2 it Im) > %”’"M"(f’im)

0 UILK 4T,

K+I=T
1 cr (T + K+ 1) d
_ 1 KLl T 8 g Ad
" .L%,:L( ) S R J+K+L T
- W_____ NIl —— ) 65, A d :
Z LMY <7+;M( ) J!K!) M En 3?t%+MJ¢

By the multi-index binomial theorem, for M £ 0

J+K=M

Thus only the terms with M = 0 contribute to the sum; it follows that

_ 1 g, (2
¢) =6 A};(])(h<8“? ).

0

This latter expression identifies 11, with the interior Euler operator (see [18]), and so the
E" are the spaces of variational forms (or functional forms as they are called in [1]).

In the case of 1T we have only one formula, corresponding to the first of those for I1.

Theorem 3.

- Nt
=3 (1) pares”
7

The derivation of this formula is similar to that of the one for T1,.

Next, we give a simple characterisation of the image E" of the projection operator 1.

13



Theorem 4. The subspace g of Q"™ consists of forms ¢ A d™x such that S*(¢) = 0,
1=1,2,...,m.

Proof. Clearly if ¢ satisfies the given condition then §,(¢) = 0 for all 7 # 0, and so
1T, (¢) = ¢. For the converse we use the fact that S"od; = d; 0 S + r(S;Z (when acting on

an element of Q™*), which generalises to S"od; = djo S+ rI(i)d;_ .. Then

- ity -
Sioll, =Y <;> wStodros!
I

IR It . &
- !
NUE ~ 1\ =1 1 ~
_ 0 —d SH—H . - — dr_q. SJ
Z:( r) ntre ; r (Tf]i)!,ho
=10.
Thus if ﬁ,{(b) = ¢, then S”(¢) = 0. -

When r =1, 5/ = §,, and so I} = ﬁh and &' = &'. The latter consists of all forms
dAd™z with ¢ € Q10 and S7(¢) = 0; it follows that £' is spanned by the forms 82 Ad™ 2.
Moreover, the Euler-Lagrange map Q%™ — £ is given by Ld™z v Ty (dy L) Ad™z, and

oL oL
_ 1o] _ - |f| 1o]
M (dyT) =TT, ( , 8“?9,) - E, (—1) d,(au?>0 .

It is a consequence of Theorem 4 that the vector spaces £" are modules over the ring
of functions on J®x. In contrast, the spaces £ are not modules when r > 2: to see an
example of this, take the fibred manifold 7 : R x R? — R and consider the 3-form ¢ A dz:
where

¢ = (duEQ) A du® + du' A du(QQ)) c Q.

A simple calculation shows that dg(P(¢ A dz)) = 0, so that ¢ A dz € £2. On the other
hand, taking ¢ = u'¢ we find that

d(P(Y Ndz)) = —dﬁ(?l,g1)d?/,1 A du?) # 0

so that ¥ Adx ¢ £%. Tndeed, characterizing £ for r > 2 is known to be a difficult
problem; we discuss the case r = 2 later.

5 The Helmholtz-Sonin conditions

We now compute de and bz for an arbitrary source form e = £,0% Ad™ (where & = ody
and § = o dy). We start with de.

14



Theorem 5.

:——Z% PN AN

where

deg (r+.J)! de
T _ [T+.7| B
= > i d,( . )

I}
duf ¥ duf, ;

Proof. We have

de = Tl(dye) = %Z( )ITI ;'dﬂ (Zg

IACAAN )

T T uf T
Now /i
6 T >T
o v I-T =
SThy = (-1}
0 otherwise.

In particular, S7(8%) = 0, unless I = 0: S°(#%) = 6°. Thus

880/ Iel 1o] m, |f| [+ ) 880/ Iel 1o] m,
&gzzawﬁa,w ANdPr 4+ 5y Y (- o ™. N AN

1711>0 J 1]

de (Ir+J)! de
=1 ”05A0“Aqu«+ 17l dr LI N CNY L I
’ z7: 3“’.7 Z Iy 8“?4-.7 !

We evaluate the second term on the right. Of course dg(d™2) = 0 for K > 0, and

(I + )t Do 18, oo
d -1 Tl b e A

I.J T+.J

_ n(r+J)! (K+L+M)! [ 9, 5 N
=20 ) O\ o | ll) Adu(67)
I,.J K+TIL+M=T T+.7
_ |I«+r+M|( +K+L+M)!d> Oc,, o .
- - 'K A6
z,: JUKVLIM! : 3“?+K%+M T+ MM

- ¥ ﬂf«+M|%( e )ITIIZ'V;'>(J (L> N

K,M,N J+T=N o’ K+M+N

Using the multi-index binomial theorem again we obtain

T 0
58—52280/05/\00//\(17)7 722( )|,+7|( +]) df((:) 85 >057/\00//\me

nn ue
J "J 7.7 J] I+.1

15



Our result agrees verbatim with [5] (mutatis mutandis). For purposes of comparison
with the formulae in other articles, such as [6, 9], it is useful to write

e, Jeg (r+.J)! Jeg
M= (OVIZE ST IR ()
O oul dug %;0 [ dug,

Note in particular that only the terms not involving d; are collectively skew or symmetric
in o and f3; the rest involve just £g. The Helmholtz-Sonin conditions, in this version, are

Hls=0, T#0;  Hag— Hpa =0.

(We believe that insufficient attention has sometimes been paid to the seeming anomaly
that arises for I = 0.)

The Helmholtz-Sonin conditions derived from & are interestingly quite different in ap-
pearance. In deriving them we take advantage of the fact that £? consists of (m+2)-forms
annihilated by S* for all i. We begin by using this fact to obtain an explicit basis of £2.

Lemma 2. For any I, o, (3 set

q I
af F o 163 m
07" = § (71)|‘|J!K!0.7A0,‘,Ad .

J+K=T

(Notice that G)(;B is ‘graded skew-symmetric’ in o« and 3: that is, @?a = f(f])m@(;ﬁ.)
The set of forms {G)(;B s < B for |1 even, o« < 3 for |I| odd} is a basis for 2.

Proof. We show first that (*)(;ﬁ € £2. Remembering that S7 is a derivation of degree 0,
we have

s'@7) = % (-t

J+K=T

J!%(.I(y:) S AN d e £ K (DS A0 Ad™) .

If I(i) = 0 then S”T(G)(;B) = 0. So suppose that (i) # 0, and consider the coefficient of
the term in 5'77(@(;5) involving 0;’1/\9%/\(1”7‘97, where I, and M are fixed multi-indices with
L+M = T-—1;. Such a term has two antecedents: 9;’14_” /\HBM/\dmm and 9(,’1/\0@”” Ad™
their joint contribution to the coefficient is

I

(7])|M|(L—|-1,;)!/\/I!

(LG + 1)+ (L (M (i) +1) = 0.

L'(M—I— ]7;)

Thus 5'77(@(;5) = () for all 2, as asserted. It is not difficult to show, by an extension of

the same technique, that the G)(;B span £2. Finally, it is clear that the G)(;B for different
I are linearly independent (making allowance for the fact that they are graded skew in

a and ). O
We next compute o for an arbitrary source form € = £,0” A d™ .

16



Theorem 6.

where

0 N~y TR 05 0%
Hos 27:( 2) e (‘)u%_‘, (=1 oGy, ’

Note especially that like G)(;B, but in sharp contrast to HLB, ﬁfyﬁ is graded skew-
symmetric in o and .

Proof. We have
Se = M(dye) = Z(f%)”l%d,ﬁf (Z ﬁge(j AB” A qu«) :
T | 7 Ouy
Since S'(A) = 0, the evaluation of §,(0§ A B A d™z) is particularly simple:
STO5 A0 A dme)y =ST(O5) A6 Ad™e = ST(O0) A B> A d™ .

The initial stages of the calculation are consequently similar to those in Theorem 5, and
we find the following expression for de:

ke (K+ M+ N)! NI i Dea B\ go A qm
2. () vt 2\ g ) de 9u° O nd e
K M,N J+L=N YR A M4N

This time the multi-index binomial theorem gives

> ChMTE =0 pN = (i,

J+IL.=N

and the subsequent steps are quite different. In fact

: K+M+N N (K 4+ M 4+ N)! deq a B\ gm
be=— 3 (-~ HIFHMENT( )N TN 5 O3y A Oy Ad™ s
K,M,N UK LMAN

but equally

N - K+ M+ N)! deg 3
de = — (fl)|"+M+N|(f1)|M'(,—drr S | O Ay A dT
K,%:,N ’ KIMING 0 0wy ) Y

17



(just changing the names of some of the summation indices). So we can write

N . K+ M4+ N)!
58:715 Z (715)|R+M+N|( + + )

E KIMI!N!
K,M,N

de, ad
X dg (7])|N|+7 (*1)|M|7a =0 0(;(/,/\05]\,/\(17”’.77
QMg nien Qg nien

1 CIREMEN] v (K M+ N
2 Z (—3) (=1) KVINT
K,M,N

e, 0
(()/”’R'_l_]\/[_l_]\f (()?I’f\"-l—M—I—N

Z( )IT\+PI%(1,\< 0o (])Iplaai)x

dus-
s (()?I,‘_l_P K+P

)

NI

P
1IN a AB A ATy
X § (—1) /\/I'N'e Ny Nd
M+N=P

as required. [l

The Helmholtz-Sonin conditions, in this version, are just ﬁfyﬁ = 0.

The two versions of the Helmholtz-Sonin conditions, though superficially so different,
must of course at some deeper level be equivalent. We next investigate the relationship
between them. For this purpose it will be convenient to refer to the first version (involving
H(Iyﬁ) as the standard version, since indeed it is the version most usually found in the
literature; we call the second version the new version. In fact the relationship in question
is a bit subtle, because, as Anderson says in [1], there are ‘certain interdependencies
amongst the [standard] Helmholtz conditions’. The precise meaning of this somewhat
obscure utterance will become clear in the following discussion.

Before dealing with the conditions themselves, we shall examine the relation between the
spaces £2 and £2. These two spaces must clearly be isomorphic, and in fact I1|z : RN
£% and ﬂ|52 €2 5 £2 are mutually inverse isomorphisms. We know a great deal about
52; we shall use our information, together with II, to investigate £2.

We shall use Roman letters to indicate general elements of the spaces £2 and (‘::2 retaining
calligraphic letters for the particular case where the elements arise as the images of
Helmholtz-Sonin maps. Any H € £ can be written H = > HT (),B7 where the

implied summation on « and § is taken over all o, § and the coefficients HT are graded

skew-symmetric, i.e. ﬁﬁf(y = f(f])mﬁ(iﬁ. The calculation of TI(H ) foﬂowq a by now
familiar pattern, and we won’t repeat it; the result is
o B A d7 i )l |7| (I +J)! 4T
ZHﬁﬂ NG ATz, where HI ;= Z A

18



But the Ff(gﬁ are graded skew-symmetric, and therefore

r ol r+7
Z g

We shall show below that, as a result, the H(iﬁ must, satisfy

mz |,| (I +- ),,,Hm_

T
Hyg T

This is our equivalent of a condition given by Anderson for a 2-form to be a functional
form (see [1] Eq.3.14, for 2-forms). We call it Anderson’s condition.

Consider on the other hand an (m 4 2)-form H = Y, H{iﬁf)” A 0? A d™a where the
coefficients satisfy Anderson’s condition. Define

~ (I+.J)!
_ 1 I 1 J I+.7
7§||27§|| o

again, we show below that the Ff, are graded skew-symmetric, and if we set H =
Z,HT QBEEQ we have H = W(H)

To prove the assertions just made, we shall let U be the space of families of functions
on J™7 indexed by the multi-index I, that is, the space of maps N — C'™(J>7); for
U/ € U the value of I/ at T is denoted by U (rather than U/(I)). For p € R, define
D(p): U= U by

J)!

|7| I+.7 _ |7|7 T+.7

E I'I' d U —U'+ E iNE dyU
[7]>0

so that, in particular, D(0) is the identity. Then D(p)D(q) = D(p + q):

I+ J+ K)!
|7| IT\ T+J+K
(P(p)D § ,,], <§ eI )

(I+J+ K)!
_ |.7] |f\ T+ I+ K
Z TR —ier U
JK
U+ 0! 17 1 L+ K)! T+,
Z 17! ( > P
J+K=I,

by the binomial theorem. Notice that D(—p) = (D(p)) "
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We now return to the formulae

|r|z |7| (r+J)! dlﬁ(igj

(’5 - 717!

and

(Ir+J)!
(~1 |f|271|7|7 T+
Hs = (=5) ) g g

relating coefficients of elements of £2 and E2.1f we set ﬁiﬁ = (f%)lnﬁiﬁ these formulae

can be written

Hos=D(-1)(Hap), Hap=D(1)(H.p),

with ﬁ(,g, ﬁ(,g € U, making it obvious that they are inverse. Moreover, in deriving
the consequences for HT of the graded skew-symmetry of Hiﬁ we found in effect that

H(iﬁ = 1| |H, satisfies Hg, = 77)(1)(17[(,5). It follows that Hg, = 77)(2)([?[(,5), which
when er‘r‘ren 011‘r is the Anderson condition

mz S0 (r+J)! dyHI

T
s 7!

o =

It follows that the set of forms H =5, H{iﬁf)” A 0? A d” 2 where the coefficients satisfy

Anderson’s condition is the image of £2 under IT; but this is just £2.

Now for any source form ¢, de = 715 > 7—[(559” A 0? Ad™z. But of course e € £2, so
the coefficients must satisfy Anderson’s condition. In this sense the standard Helmholtz-
Sonin conditions are not independent; the role of Anderson’s condition in the definition
of £% is the source of the interdependencies between them.

In the course of the discussion we have established explicit relationships between the two
forms of Helmholtz-Sonin expressions. In particular,

I+, ~
7 71_ |I|§ : 71_ |7| T+.7
H(yﬁ 2 2 [iNi dJH(,ﬁ s

a formula which can be established also by a straightforward calculation using the explicit
expressions for 7—[(@5 and 7—[(@5 in terms of & given earlier.

Since there are no a priori interdependencies among the new Helmholtz-Sonin conditions,
they are easier to work with than the standard ones. Consider for example the case
when there is a single dependent variable. The new Helmholtz-Sonin conditions vanish
identically when |7] is even and give

> (=3) T Dursy =0

J
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when |T| is odd. This can be written

88 1 |7|([+J)' 88 .
(()?I,[_I_Z(iQ) ny & Ouryy =0

[.7]>0

Anderson obtains an expression of a similar form, but with less straightforward coef-
ficients, for this case (FEq.3.19 of [1]) by a complicated series of eliminations from the
standard conditions.

6 Discussion

In this paper we have constructed two different versions of the Helmholtz-Sonin condi-
tions, and demonstrated the relationship between them. One version, involving HLB, is

well-known in the literature; the other, involving ﬁfyﬁ, is new. In some respects, the
new conditions have better properties than the older ones. We have, however, chosen a
particular type of fibred manifold, where the base is R™ with its canonical coordinate
system. In such a context our constructions are global, and the expressions 7—[(@5, ﬁfyﬁ
transform correctly under changes of fibre coordinates as the components of differen-
tial forms. There are applications where such a context is appropriate, for instance in
mechanics with a 1-dimensional base R and a given time coordinate t. But in other
applications we would wish to take a general base manifold M, and it is well-known that
a transformation of the independent variables in a variational problem can destroy co-
variance (see, for instance, the remarks in [10]). We can be sure only that our operators
P and P will be local homotopy operators in this more general case (though it is known
that for r > 0 and s < m the columns are globally exact: see [18]).

It is, indeed, the case that covariance fails for ﬁfyﬁ, as we now show. Taking m = 1,
n = 2 and the 3-form ¢ A dx with

¢ = dtigy ANdvo Adx € 00

(we must modify the notation here to allow for the fact that we are going to change the
independent variables) a simple calculation gives

ﬁT(¢ Adx) = ]I(dum Adv— 2du, A dv, + du A dog,) A dx

where the superscript indicates that the calculation of I has been performed using =
as the independent variable. On the other hand, taking a new coordinate y on M with
x = ¢eY, we can write I1”7(¢ A dx) in the new coordinates as

ﬁT(¢ Adx) = ]Iefy{(duyy — duy) A dv — 2du, A dvy, + du A (dv,, — d?)y)} A dy,
whereas a direct computation gives

e (A dy) = 126721’{(1?1% A dv 4 du N dvy, — 2duy, A dv, — du A d?)} Ady,
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showing that the expression for ﬁ((b A dz) does not transform correctly under a change
of independent variables.

Using the same example, we see also that
M7 (o Adx) = %efy{(duyy — duy) A dv + du A (dv,, — d?)y)} ANdy=T1Y(p Ndy),

and indeed several authors have shown (see [18] and references therein) that the interior
Euler operator is globally well-defined under an arbitrary fibred change of coordinates
onrw:F— M.

In conclusion: the interior Euler operator and the variational (functional) forms which it
produces are covariant but awkward to work with, and lead to Helmholtz-Sonin condi-
tions which are inelegant and not independent; our version avoids these difficulties, but
at the cost of being dependent on a particular choice of base coordinates.
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