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1 Introduction

A Berwald space is a Finsler space whose canonical Berwald connection is affine; a
Landsberg space is one whose Berwald connection, while not affine, satisfies a property
reminiscent of that which typifies the Levi-Civita connection in Riemannian geometry.
Every Berwald space is a Landsberg space. Whether there are Landsberg spaces which
are not of Berwald type is a long-standing question in Finsler geometry, which is still far
from being resolved in all generality; for the sake of brevity I have called it in the title
the Landsberg-Berwald problem. This paper contains several not very closely related
observations and results about Landsberg spaces, which are connected however by the
fact that they were inspired by consideration of that problem; they should nevertheless
be of value in their own right, at least until the problem is finally settled.

Interest in the Landsberg-Berwald problem has been rekindled recently by the discovery
by Asanov [1] of examples of non-Berwaldian Landsberg spaces, of dimension at least 3.
The reason why this development has rekindled interest rather than resolving the whole
issue is that in Asanov’s examples the Finsler functions are not defined for all values of
the fibre coordinates y': in the jargon, they are y-local (as opposed to y-global).

Whether or not there are y-global non-Berwaldian Landsberg spaces remains an open
question, therefore. Partly inspired by Asanov’s results, Shen has studied the class of
(ev, B) metrics of Landsberg type, of which Asanov’s examples are particular cases; he
finds [2, 12] that though there are y-local non-Berwaldian Landsberg spaces with («a, )
metrics, there are no y-global ones. Bao [3] has initiated a different line of attack on the
problem, involving a method of constructing non-Berwaldian Landsberg spaces by suc-
cessive approximation; but this method has so far failed to produce even an approximate
metric which is y-global.

The elusiveness of y-global non-Berwaldian Landsberg spaces leads Bao to describe them
as the unicorns of Finsler geometry. Indeed, the evidence quoted above suggests that,



just like unicorns, in reality there are none, at least of dimension greater than or equal
to 3. This paper contains, among other things, some further additions to that evidence.
(As Asanov’s results suggest, dimension 2 is special, and I will not consider it here. To
avoid excessive repetition I state now that all Finsler spaces considered below are over
manifolds of dimension greater than or equal to 3.)

In fact the role of y-globality in the Landsberg-Berwald problem is more complicated
than the discussion above may suggest. It is true that the general form of the non-
existence conjecture must be ‘there are no y-global non-Berwaldian Landsberg spaces’,
as Asanov’s examples show. On the other hand, the best known partial result in this
direction, namely that every Landsberg space with vanishing Douglas tensor is a Berwald
space, is y-local: I give a manifestly y-local proof in an appendix to this paper to confirm
that this is the case.

If one’s aim is to prove that the canonical connection of a Finsler space of a certain type
is affine, to make an auxiliary assumption that the space is projectively affine seems very
natural. This is of course equivalent to assuming that its Douglas tensor vanishes, the
situation just discussed. In the same context, an alternative natural auxiliary assump-
tion to make is that the space’s Riemann curvature, like that of any space with an affine
connection, depends only on position. Such a space is said to be R-quadratic. More
particularly, a space whose Riemann curvature vanishes is called R-flat. Another partial
result, due to Shen ([11] Theorem 10.3.7), states that a forward-complete R-flat Lands-
berg space in which certain boundedness conditions are satisfied is a Berwald space. In
Shen’s theorem as it is stated, the R-flat Landsberg space is not required to be y-global;
however, the most obvious way of satisfying the conditions is to take the space to be
y-global and the underlying manifold to be compact, and the theorem is then a y-global
one. My first result in this paper is the extension of Shen’s theorem to R-quadratic
spaces, using his methods. This will be found in Section 3.

Each indicatrix of a y-global Finsler space is a compact Riemannian manifold; one char-
acteristic property of a Landsberg space is that its holonomy groups are composed of
isometries of the indicatrices [9]. This brings into play the geometrical features of the
indicatrices, and in particular their isometries, which one can study in infinitesimal form
via Killing’s equation. Landsbergian geometry differs from Riemannian geometry in that
the isometry algebra of the indicatrix is not predetermined; indeed, there is no reason
to assume that there are any (non-zero) infinitesimal isometries at all. But if this is the
case the Landsberg space, if y-global and over a compact base, must be Berwaldian. I
discuss these matters, beginning with an account of the holonomy group of a Landsberg
space and its Lie algebra, in Section 4.

It is well known that for any Berwald space one can find a Riemannian metric whose
Levi-Civita connection coincides with the Berwaldian affine connection. One way of
constructing such a metric, devised by Vincze [16], involves averaging the fundamental
tensor over indicatrices; to do this, of course, one requires the space to be y-global. This
construction can in fact be carried out in any y-global Landsberg space; the Levi-Civita



connection of the resulting metric is then an obvious candidate for the Berwaldian affine
connection, if one seeks to prove that the Landsberg space is actually a Berwald space.
As a step in this direction I show in Section 5 that the Berwald connection coefficients
of a Landsberg space, written in a suitable form, can be averaged over indicatrices, and
the result is the Levi-Civita connection of the averaged metric.

When I first wrote this paper I was not aware that Szabd had recently claimed, mistakenly
as it turned out, to have proved that y-global Landsberg spaces are always Berwaldian
(Szabé’s original paper is at [13], Matveev’s refutation at [10], and Szabd’s acceptance of
his error at [14]). Since the claim did turn out to be wrong, and the Landsberg-Berwald
problem remains open as Matveev, and now Szabd, state, I have not found it necessary
to make any changes to my paper apart from the insertion of this paragraph. I do want
to point out, however, that Szabd’s original argument was based on the construction
described in Section 5; his error was to claim that the Berwald connection coincides with
the Levi-Civita connection of the averaged metric, which need not be the case; and that
my result should perhaps be seen as the strongest correct general statement that can be
made about the relation between the two connections.

The paper begins with a brief account of the definitions and main local properties of
Landsberg spaces, in tensorial form, which serves the dual purpose of establishing nota-
tions and of making the paper reasonably self-contained by providing a compendium of
known results.

2 Definitions and known results

Let M be a differential manifold, with dim M > 3. I denote by = : TM — M the tangent
bundle of M, and by #° : T°M — M the tangent bundle with the zero section deleted.
Coordinates on T°M will generally be written (27, y').

Most of the geometric objects of interest in this paper are tensors along 7°. A contravari-
ant vector field along 7°, for example, is a section of the pull-back bundle 7*TM — T°M.
More generally, a tensor field along 7° is a section of the pull-back of a tensor bundle
over M. To put it more crudely, a tensor along #° has components which transform as
those of a tensor on M but which are functions of the y' as well as the z'. Such objects
will just be called tensors for brevity, even though this is strictly incorrect.

A spray ' on T°M is a second-order differential equation field
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such that the coefficients I'* are positively homogeneous of degree 2 in the y'; if they
are quadratic then the spray is affine. (Homogeneity, below, will always be positive
homogeneity unless it is explicitly mentioned otherwise.)



The Berwald curvature is the tensor whose components B;‘kl are given by
T i S
Ikl dyi 3yk3yl :

The Berwald curvature is symmetric in its lower indices, and by homogeneity B;klyj =0.
The vanishing of B is the necessary and sufficient condition for the spray to be affine.

The horizontal distribution associated with a spray is spanned by the vector fields
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Ff is of homogeneity degree 1. The horizontal lift of v € T, M to (z,y) € T°M is
v = v'H;(z,y) (where v = v'd/0z"); and similarly for other appropriate objects on M.
The bracket of a pair of horizontal vector fields from the basis is given by
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where the Réﬂ»j are the components of the Riemann curvature of the spray (that is, the
Riemann curvature of the associated Berwald connection):
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More generally, for vector fields X, Y on M,

(X" YH] = [X, Y] — RY(X, Y)a%, R'(X,Y) = R, X'Y".

The Riemann curvature satisfies the cyclic identity
l J l
Ry + Ry + Ry, = 0.
If Réﬂ»j = 0 the space is said to be R-flat; if 8R2ij/8ym = 0 it is said to be R-quadratic
(because then Rﬁ»j depends quadratically on the y*).

The covariant derivatives of a contravariant vector V' with respect to the Berwald con-
nection associated with a spray may be written as follows:

s
= o

Vi =H;(VY) +T},VF, Ve

The semicolon will be used to indicate covariant differentiation in a horizontal direction,
the comma covariant differentiation in a vertical direction. Covariant differentiation of
other tensors follows the usual pattern. It is a consequence of the homogeneity of the
connection coeflicients that yi;j = 0. The spray I' is horizontal, and T,,,;kyk are the
components of the covariant derivative of the tensor T along I'; it will be convenient to



denote this by VT, where V is the so-called dynamical covariant derivative associated
with I'. Just as for an ordinary covariant derivative one can think of V as an operator
on any vector field defined along any integral curve of I'; or indeed any base integral
curve (projection of an integral curve into M ); we call such curves in M geodesics of I'.
A vector field V along a geodesic of [' which satisfies VV' = 0 is said to be parallel. As
a consequence of the fact that yi;j = 0 we see that the tangent vector field to a geodesic
is parallel.

We have the following Ricci identities for repeated covariant differentiation:
Vi =Vig =0
Ve = Vi = B V!
Ve = Vi LV RV

the final term coming from the bracket of horizontal fields. The Bianchi identities are
BZ’Lk,l - BZ’Ll.k =0
BZ’Lk;l - BZ’LI;k = —R%m

Rl + Rig; + Ry, = 0.

The middle one of these implies that R = R but this follows from the relation
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Let F be a Finsler function on T°M, E = %FQ its energy and g its fundamental tensor,
with components g;;. It will be convenient to write y; for g;;y’; note that y;y* = F? and

dy: /0y’ = gij.

The canonical geodesic spray of I is the unique spray such that
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A Berwald space is a Finsler space whose geodesic spray is affine, or equivalently whose
Berwald connection is affine; in other words, one whose Berwald curvature vanishes.

It is easy to see that in any Finsler space the horizontal vector fields associated with I
satisfy H;(£) = 0, and thence that

l
Gij:k = leijk-

Notice that Vg;; = 0. It follows, in the usual way, that along geodesics parallelism
preserves scalar products determined by g¢.

The Cartan tensor C;, = g;; 1 satisfies

Cijkg = Gijuk + Biggim + Biigjm



by the second Ricci identity, so that
VCijk = Cijrty' = (ym BE) kY = Y By = 4 By’ = —ym By,

since Bg?lyl = 0 and B[}, is homogeneous of degree —1. We have the following (well-
known) result.

Proposition 1. The following conditions on a Finsler space are equivalent:

1. the fundamental tensor is covariant constant along horizontal curves;

2. the Berwald tensor is such that at any (z,y) € T°M, for any vertical vectors u, v,
waty e TyM, By(u,v,w) is orthogonal to the radial vector y (with respect to the
fundamental tensor);

3. the Cartan tensor is covariant constant along geodesics.

A Finsler space in which one, and hence all, of these properties holds is a Landsberg
space. Every Berwald space is a Landsberg space. The question of interest is whether
the converse holds.

In a Landsberg space, parallelism preserves scalar products determined by g along any
horizontal curve.

Corollary 1. In a Landsberg space the Berwald connection coincides with the Chern-
Rund connection.

Proof. The difference tensor between the two connections is essentially

C;:k;lyl = (glmcm]k),lyl = gimcmjk;lyl
(see [5, 7]). O
I set Bijr = gimBjyy and Rijr = gim B}

Corollary 2. In a Landsberg space

1. Bijri + Bjirt = Cijkys

2. Rijki + Rjiwe = —RpCijm.

Proof. Apply the second Ricci identity to ¢;;.k1 — ¢ij,1:k, and the third Ricci identity to
Gijskl — Gijilk, Tespectively. O

The following two results are due to Vattamany [15].



Proposition 2. A Finsler space is a Landsberg space if and only if B;;r is completely
symmetric in its indices.

Proof. Clearly, if 9im By = 9im B then yigmBﬂl = yigijgzl = 0 and the space is
Landsberg. Conversely, suppose that the space is Landsberg. Then

0= (y" Bujrt)i = Bijrt + " (9mnBir))
= Bijri + YY" (Crnni By + Gmn Bl ;)
= Bijri + yn Bl

But BY}, ; is completely symmetric in its lower indices, so B;;j; is completely symmetric
in its indices. O

Corollary 3. A Finsler space is a Landsberg space if and only if Cijpy is completely
symmetric in its indices.

Proof. If Cijk;l = Cijl;k then VCijk = Ciﬂ;kyl = (Ciﬂyl);k = 0 and the space is Lands-
berg. If the space is Landsberg, so that B is completely symmetric, it follows from
Corollary 2 part 1 that Cjy = 2B;;1 and so Cyjpy is completely symmetric. O

Corollary 4. Let B;ji; be the Berwald tensor of a Landsberg space. Suppose that for
x € M, for every y € ToM such that F(x,y) =1 (that is, every point of the indicatriz)
and for every v € T, M such that g(, ) (v,v) = 1 (that is every unit vector) we have
Biini(z, y)vivlvkol = 0. Then Bijri = 0 all over T, M. If this property holds at every x
then the Landsberg space is a Berwald space.

Proof. This is a simple consequence of the symmetry and homogeneity of B;;j. O

In fact since Bijklyl = 0 it is enough to have v satisfy g(l,’y)(y,v) = 0, that is, to be
tangent to the indicatrix.

3 R-quadratic Landsberg spaces

Shen has shown that a forward-complete R-flat Landsberg space in which the Cartan
tensor satisfies a certain boundedness condition must be a Berwald (in fact a Minkowski)
space (Theorem 10.3.7 of [11]). By generalizing his method I extend his result to R-
quadratic Landsberg spaces, which 1 assume to be y-global.

Consider the submanifold N of the pull-back of TM to SM, the sphere bundle or in-
dicatrix bundle over M, which consists of those v € T, M, (x,y) € SM, such that
g(Ly)(v,v) = 1. Any symmetric covariant tensor A defines a function @ on N by
a(z,y,v) = Ay (z,y)v'v? ---. The tensor A is said to be bounded if the function «



is bounded. In particular, if M is compact so will NV be, and then any symmetric tensor
is automatically bounded. Furthermore, a Finsler space over a compact base is neces-
sarily forward complete, indeed complete in both directions.

Theorem 1. A forward-complete, R-quadratic Landsberg space for which the symmetric
tensor Cijpy s bounded is a Berwald space. In particular, an R-quadratic Landsberg
space over a compact base is a Berwald space.

Proof. In an R-quadratic space we have Bj, ,— B[, = 0, by the second Bianchi identity,
since R7, ;= 0. Thus in an R-quadratic Landsberg space VB, = 0. Furthermore, by
the second Ricci identity

Cijkiim — Cijkmt = Bl Chik + Bl Cink + Bl Cigin,s
and therefore in any Landsberg space
VCiki = —Cijrg = —2Bjm.
So in an R-quadratic Landsberg space VZCZ']‘M =0.

Now consider any geodesic v(t) of I', parametrized by arc length (so that ¢(¥,%) = 1),
and let v(t) be any unit parallel vector field along . Define a function C'(t) by

C(t) = Cijra(v(8), 5(0) ' (1)o7 () 0" (1) 0! (1);
we can think of C'(¢) as being defined along a curve in N. Then

d*C
@ =
so C'(t) = C(0)t + C(0). Now ¢ can take any positive value, but by assumption C'(t)
is bounded: thus C'(0) must vanish. But 7(0) = 2, 4(0) = y and v(0) = v may be
chosen arbitrarily (subject to the conditions Fi(z,y) = 1 and g(, 4)(v,v) = 1), s0 C(0) =
—2B;ni(z, y)vivjvkvl = 0 for every z, y and v. By Corollary 4 the space is a Berwald
space. [l

Now according to Shen’s Theorem 10.3.2 a forward-complete, R-quadratic Finsler space
for which the symmetric tensor C};, is bounded is a Landsberg space. This is proved by
an argument very similar to the one above (indeed, an argument on which the one above
is partly based). In any R-quadratic space VBZl»jk = 0, and since Vy; = V(g1,y™) = 0 we
have V(lef»jk) = 0. But VCjj;, = _lezl'jkv so V2Cy;; = 0. The argument now proceeds
as before but with (1 in place of ;1 ;. The conclusion is that lezl'jk = 0, so the space
is Landsberg. We therefore have the following result.

Corollary 5. A forward-complete, R-quadratic Finsler space for which the symmetric
tensors Cyji, and Cijp are both bounded is a Berwald space. In particular, an R-quadratic
Finsler space over a compact base is a Berwald space.



4 Holonomy

Holonomy in a Finsler space is defined as follows (for more details see [4, 8, 9]).

Take a pair of points z,2’ € M, and any piecewise smooth curve ¢ in M with ¢(0) = z,
c(l) = a'. For any y € T2M let t — c™(t,y) be the horizontal lift of ¢ through y. We
may define a smooth map, indeed diffeomorphism, p : TeM — T2M by p(y) = ¢"(1,y).

I denote by S, the indicatrix at @, S, ={y € T2M : F'(z,y) = 1}. In any Finsler space,
for any v € T, M, v*(F) = 0. It follows that p maps S, onto S,.

Next, consider the differential of p. Since T2M is a vector space (though deprived of its
origin), its tangent space at any point may be canonically identified with itself (with origin
restored); so for any y € TM, p., may be regarded as a (linear) map T,M — T, M.
This map may be described as follows. For v € T,M, y € T/M, let v(t) be the parallel
field along ¢"(t,y) with v(0) = v. Then p.,(v) = v(1).

In any Finsler space the fundamental tensor ¢ = (g;;) defines on each fibre ToM a
Riemannian metric, namely g, = gij(x,-)dyi ® dy’. In a Landsberg space, parallel
transport along horizontal curves is isometrical. Thus p is an isometry of T)M onto T),M,
where these spaces are equipped with the Riemannian metrics g, and g,.. Moreover,
since p maps S, onto S,/ it is an isometry of these manifolds equipped with the metrics
induced on them by ¢, and ¢,.

Now specialize to 2’ = x, so that the curves in M under consideration are closed. Com-
bining such curves in the usual way gives rise to a multiplication of corresponding trans-
formations p, with respect to which they form a group, the holonomy group at z. For
a Landsberg space this is a closed subgroup of the group of isometries of the compact
Riemannian manifold S;, and is therefore a Lie group.

At each € M, the Lie algebra of the holonomy group at z may be realised as an R-linear
space of vector fields on T2M, tangent to S, (indeed, to each level set of F'), which are
infinitesimal isometries of g,, that is, which satisfy Killing’s equation. Moreover, for any
pair of points z, 2’ € M and any curve joining them the corresponding map p defines an
isomorphism of both isometry groups and holonomy subgroups, and its differential an
isomorphism of isometry algebras and holonomy subalgebras.

I should like to propose a possible candidate for a (fairly) explicit construction of the
holonomy algebras, as follows.

I first define a collection Z of vertical vector fields on T°M by the following requirements:
1. for any pair of vector fields X, Y on M, T contains [X,Y]" — [X", Y¥] (which is
vertical);
2. for every £ that Z contains, it also contains [X", £] (which is vertical);

3. 7 is closed under addition and scalar multiplication by smooth functions on M;



4. 7 is closed under bracket;

5. 7 is the smallest set of vertical vector fields with these properties.

It is not to be assumed that 7 is a distribution, or in other words that it is closed under
multiplication by functions on T°M (though of course there is at least one distribution of
vertical vector fields which satisfies requirements 1 to 4, namely the vertical distribution
itself). But by requirement 3, 7 is a C°°(M)-module. Note that for f € C*(M),

(X, AT = X YT = I YT + X (YT = fIXE Y] - XY
= f ([Xv Y]H - [XHvyH])

since of course X" (f) = X (f). Secondly
(X7, 7€) = X (NE+ FIXT £

So requirement 3 is consistent with requirements 1 and 2, if not actually forced to hold

by them. Moreover, if £, € 7 and f € C*(M), [&, fn] = fI&, n].

The idea is that for « € M, Z,, the restriction of Z to T2M, should be the holonomy
algebra at x, realised as a Lie algebra of vector fields on T2M. It is implicit in this
statement, of course, that each vector field in Z, can be extended to a vertical vector
field on T°M which is an element of Z. However, for the purpose of specifying the
holonomy algebra at @ one should really be interested only in vector fields defined locally
near z: for example, it should be enough to take X and Y in requirement 1 to be defined
in a neighbourhood of z. We can however extend such vector fields to the whole of M
by using bump functions defined around z. This justifies the use below of locally-defined
vector fields, such as coordinate fields, in discussing the properties of Z,. Indeed, the
requirement that Z should be a C'°°(m)-module, combined with the availability of bump
functions on M, ensures that Z, is a local construct. This point may be expressed more
precisely as follows. Let 7, be the set of germs of elements of 7 at z. (By a germ of
an element of 7 at z I mean the following. An element of 7 is a vertical vector field on
T°M. Define an equivalence relation on elements of Z by setting two elements equivalent
if as vector fields they agree over some neighbourhood of z; a germ is an equivalence
class.) Then Z, is a vector space (over R), and each element of 7, determines a vector
field on T°M. Now let Z0 be the subspace of Z,. consisting of those elements for which
the corresponding vector field on T2M vanishes. Then Z, = jx/jg

The necessity of including requirement 1 in the specification of Z may be seen as follows.
Suppose that the vector fields X and Y commute (they may be coordinate fields, for
example). Consider a piecewise smooth closed curve in M which is a ‘square’ whose
sides are integral curves alternately of X and Y, of parametric length ¢; take z to be
one vertex. The horizontal lift of this curve to T°M, with the initial end at a fixed point
(x,y) say, will not in general be closed. As ¢ varies the other end sweeps out a curve
(x,y(t)) in T2M, which is the image of (z, y) under the action of a curve in the holonomy
group at «. The tangent vector to this curve at ¢ = 0 vanishes, but its second-order
tangent is just [X, Y¥]|(z,y).

10



Requirement 2 is, roughly speaking, the infinitesimal version of the fact that the map p
corresponding to the horizontal lift of some curve in M is an isomorphism of holonomy
groups. | shall discuss this point in more detail below.

Since X is homogeneous of degree 0, and this property is preserved under addition,
multiplication by functions on M and taking brackets, all members of 7 are homogeneous
of degree 0.

Since X®(F) = 0, and this property too is preserved under addition, multiplication by
functions on M and taking brackets, all members of 7 annihilate F', and so on restriction
to T'?M are tangent to level sets of F.

I'shall present three further pieces of evidence in support of the claim that for a Landsberg
space Z; is the holonomy algebra at z. The first is that if the Landsberg space reduces
to a Berwald space then 7, is indeed the holonomy algebra of the corresponding affine
connection. Notice that

1:.6] = () + T4 5 =

The construction of 7 starts with

0
ley dy m’

It follows that when the connection is affine, by repeated bracketing with horizontal
fields and judicious use of requirement 3, starting with the vector field above we obtain
all vector fields of the form 9

m {
Rlij;kle...kry —Gym

These vector fields (and indeed all of those in Z) are linear in y*, and so for each =,
7, is the Lie algebra of linear vector fields generated by the curvature and its covariant
differentials; but in the afline case this is just the holonomy algebra at z.

This is one piece of evidence that Z, should be regarded as the holonomy algebra at z.
For a second I show that in general in a Landsberg space the elements of Z,., though they
can no longer be assumed to be linear vector fields, are infinitesimal isometries of g,., or
Killing (vector) fields.

Theorem 2. In a Landsberg space, I, is a subalgebra of the Lie algebra of Killing fields
of the metric g, on ToM.

Proof. The condition for & = £€9/9y" to be a Killing field is

d9g;

ok ak
,§+Z€ 5

ay J

gk g Czyk ‘|’gzk€ ‘|’g]k€k =0.

In the proof below £ is to be taken to be defined over a neighbourhood U of z in M,
and to satisfy this equation (Killing’s equation) for all y # 0 and all 2’ € U. Then the
restriction of & to ToM will certainly be a Killing field of ¢,.

11



Now sums, constant multiples and brackets of Killing fields are Killing fields; moreover,
if € satisfies Killing’s equation over a neighbourhood U of z in M and f is a function
defined on U then f¢ also satisfies the equation on U. So it is enough to show that
&k = Rfm satisfies Killing’s equation and that if & satisfies it so does [H;, &].

Firstly, with &% = Rfm the left-hand side of Killing’s equation is
RE.Cij + gz’kR?;m + giu R, = Rijim + Rjitm + B, Cijn,

which is zero in a Landsberg space by Corollary 2 part 2. Now suppose that § satisfies
Killing’s equation and consider [H;,&] = E;]ia/@y]. Killing’s equation is supposed to hold
over some neighbourhood of z; we may therefore take the horizontal covariant derivative,
to get

EiCik+ E Cijra + ginty + g1y = 0
(using the fact that g;;;; = 0). When the second Ricci identity is applied to the last two
terms we obtain

EiCk + ECijra + gin (€5 5 — Bh.E™) + g (€, — Bl ™) = 0.

The terms involving undifferentiated &s cancel by Corollary 2 part 1. The remainder
says that for each [, E,’?@/@yk is a Killing field. O

So for each x € M, 7, is a subalgebra of the isometry algebra of g,, and in particular is
finite dimensional and a Lie algebra. Moreover, since each element of 7, is tangent to the
indicatrix it is a Killing vector of the induced metric on the indicatrix. The maximum
dimension of Z,, is therefore £n(n — 1), and if this is achieved the indicatrix is a space of
positive constant curvature.

The fact that Z, is finite dimensional for each x suggests that Z should be finite dimen-
sional as a C'°°(M)-module. Let us suppose that this is indeed the case, so that for some
integer p there are elements Z,, a = 1,2, ..., pof Z (perhaps defined only locally over M)
such that each element & of Z may be expressed as £ = > _ £*E, with £* € C*°(M).
Suppose further that for each z, {E,(z)} is a basis for Z,. Using these assumptions |
shall now show that for any points x, 2’ € M the spaces Z, and 7, are isomorphic via
the horizontal lift of any piecewise smooth curve joining them. It will be evident from
the argument below that this is primarily a consequence of requirement 2.

As before, take any piecewise smooth curve ¢ in M with ¢(0) = 2, ¢(1) = 2/, and let
p:TM — TSM be the corresponding diffeomorphism. Then p.(Z,) is certainly a Lie
algebra of Killing fields on 770 T have to show that it is the restriction of Z to T)M. 1
shall first assume that ¢ is smooth and can be embedded in the flow of some local vector

field X on M.

We know that [X®, =,] belongs to Z; it may therefore be expressed as a linear combination
of the Z,, say [X¥, E,] = K'Z, for some functions K’ on M. I propose to modify the Z,
so as to obtain a new basis {Z/,} for Z such that [X®, =] = 0. Consider the equations

XA+ ASK =0

12



for functions A% on M. These are effectively first-order linear ordinary differential equa-
tions for the unknowns A’ along the integral curves of X, and have a unique solution
for initial conditions specified on a codimension 1 submanifold of M transverse to X.
Moreover, if we take the initial conditions to be A%(0) = 6% then the solution, considered
as a matrix, will be nonsingular at all points sufficiently close to the initial submanifold.
We can take the initial submanifold to pass through z, and assume that 2’ lies within the
neighbourhood on which (A%) is nonsingular. Then if =/ = A% =, {Z/} is a new (local)
basis for Z such that [X",=/] = 0. But this is just the condition for Z/ to be parallel
along the integral curves of X®. Thus any vector field which has constant coefficients
with respect to {=/ } is an element of 7 and is parallel along integral curves of X". Given
any element &, of Z,., we can take the element £ of 7 which has the same coefficients with
respect to {Z]}, and let &,/ be its value at z’. But p, is defined by parallel transport
along horizontal lifts of ¢, which by assumption is an integral curve X; so & = p.&,.
Thus p.«(Z,) C Z,.. By reversing the direction of ¢ we obtain p;*(Z,/) C Z,, and so
p«(Zz) = L. For any points 2, 2" € M and any piecewise smooth curve joining them, by
breaking the curve up into sufficiently short smooth portions and applying the argument
above to each portion in turn we obtain the same result in the general case. Thus a third
necessary condition for the 7, to be holonomy algebras is satisfied.

In a Riemannian space the indicatrix is to all intents and purposes a Euclidean sphere,
and so its isometry algebra has the maximum dimension quoted above. However, in a
Finsler space we have no a priori information about how symmetric the indicatrix is. This
strikes me as an interesting and so far unconsidered aspect of the structure of a Landsberg
space. To repeat: in a Riemannian space the isometry algebra of the indicatrix is always
so(n — 1), the holonomy algebra may in principle be any subalgebra of it; whereas in
a Landsberg space the isometry algebra of the indicatrix is not determined in advance,
though again the holonomy algebra may in principle be any subalgebra of it.

In fact there is no obvious reason why the indicatrix of a Landsberg space should have
any non-zero Killing vectors. But if the indicatrix at one, and hence every, point z should
have no non-zero Killing vectors then 7, consists of just the zero vector, and so Rfj =0.
The space is therefore R-flat. We therefore have the following corollary of Theorems 1
and 2.

Corollary 6. If in a Landsberg space which is forward complete and satisfies the bound-
edness condition, the indicatriz at some point v € M should admil no non-zero Killing
vectors then the space is a Berwald space.

Indeed, the space is even a Minkowski space, according to Shen.

So a Landsberg space whose indicatrices have no symmetry is a Berwald space. At the
other end of the spectrum, it would be of interest to know more about those Landsberg
spaces whose indicatrices have the maximum symmetry, that is, are spaces of constant
curvature. (It is important to be clear that I am talking about the curvature of the
indicatrix calculated with respect to the metric induced on it by the fundamental tensor
g, regarded as a metric on ToM. There is no suggestion that the Finsler space is a
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space of scalar curvature in the usual sense.) Here we make contact again with Asanov’s
examples.

The Finsler function for any of Asanov’s non-Berwaldian Landsberg spaces depends on
a constant say ¥, which we can take to satisfy —7 /2 < ¢ < x/2. The Finsler function is
given by

F(z,y) = exp(tan 9 W)\/32 4 2sin d Bg + ¢

where
a = Ja;(@)y'yi, B=0bi2)y, g¢=+a®- 32,

the a;; are the components of a Riemannian metric, and ¥ is a certain function whose
exact form need not concern us. For n > 3 this is the Finsler function of a Landsberg
space, which for 9 # 0 is not a Berwald space, but is only y-local. When 9 = 0, on
the other hand, the Finsler function reduces to that of the Riemannian metric (a;;), and
of course the space is y-global. It turns out that such a Finsler space has the property
that its indicatrices are spaces of constant curvature C' = cos? ¥ (see [1, 4]). Notice
firstly that all indicatrices have the same constant curvature: this is to be expected,
since in a Landsberg space the indicatrices are isometric. Notice secondly that C' < 1,
with equality only in the Riemannian case ¥ = 0. Thus within the class of Asanov’s
Landsberg spaces the only y-global one has €' = 1, and it is Riemannian; those with
C' < 1 are non-Berwaldian but y-local.

There is one result on Finsler spaces with indicatrices of constant curvature which it
is worth mentioning in this context: there can be no y-global absolutely homogeneous
Finsler space whose indicatrices have constant curvature less than 1, for the following
reason. For each x, ToM is a Minkowski space whose Minkowski norm is absolutely
homogeneous. In such a Minkowski space

voly (9) < vol(S),

where S is the (unit) indicatrix, vol,(S) its volume measured by the induced metric ¢,
S is the standard unit sphere in Euclidean n-space and vol(S) its Euclidean volume; and
equality holds if and only if the norm is that of an inner product (this is Proposition 14.9.1
of Bao, Chern and Shen [5]). If S has constant curvature 1/r then it is isometric to the
standard sphere S, of radius r, and then vol;(S) = vol(S,), and of course vol(S,) > vol(S)
if r > 1. Soif a y-global absolutely homogeneous Finsler space has indicatrices of constant
curvature then their curvatures must be greater than or equal to 1, and equality holds
everywhere if and only if the space is Riemannian.

The remarks in the preceeding paragraph have nothing directly to do with Landsberg
spaces; nor do they have any direct relevance to Asanov’s examples (which are not abso-
lutely homogeneous except, again, for the Riemannian case 9 = 0, C' = 1). Nevertheless
they are quite striking.
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5 The averaged metric in a Landsberg space

Vincze showed in [16] that in a y-global Berwald space one can find a Riemannian metric
whose Levi-Civita connection is the Berwald connection by averaging the fundamental
tensor over the indicatrix. In fact one can carry out the averaging construction in any
y-global Finsler space. 1 shall show that, roughly speaking, in a Landsberg space the
Levi-Civita connection of the averaged metric is obtained by averaging the Berwald
connection over the indicatrix.

For z € M let S, C T;M be the indicatrix at @ and w, the volume form on .5, induced
by ¢, (that is, induced by the volume form on T2M determined by g,). For any function
fon S; I denote by f its average over S,,

Js, T(y) wx

fsm Wy

f=

9

and for any function f on T°M 1 denote by f the function on M obtained by averaging
over indicatrices. I shall in fact apply the averaging process componentwise to geomet-
ric objects on T°M whose transformation laws under coordinate transformations on M
depend only on the coordinates on M. Then the averaging process defines a geometric
object on M with the same transformation law. For example, the g;; transform like the
components of a type (0,2) tensor on M, and so their averages are the components of a
type (0,2) tensor on M.

Set g;; = Gi;- Then g,; are the components of a symmetric type (0,2) tensor field g on
M. Moreover, for any v € T, M

Jo ou(epvivio.

fsm i -

7ij (@)oo’ =

with equality if and only if v = 0, so § is a Riemannian metric on M.

Proposition 3. In a Landsberg space, for any function f on T°M and any v € T, M,

v(f) = vt (f).

Proof. As 1 have pointed out before, in any Finsler space, for any v € T, M, v*(F) = 0,
and in a Landsberg space, parallel transport along horizontal curves is isometrical. Take
a curve ¢ in M with ¢(0) = 2, ¢(0) = v, and let ¢ — ¢"(¢,y) be the horizontal lift of
¢ through y € T2M. For t in the domain of ¢ define a map p(t) : ToM — TyM by
p(t)(y) = c*(t,y): then p(t) maps S, isometrically onto S.). Thus in particular p(t) is
volume preserving: p(t)*we(y) = wy. It follows that

/Sc(t) fwc(t) = /p(t)(Sm) fwc(t) = /m p(t)*(fwc(t)) — /m P (f) we.
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Clearly fsc(t) we(ty = [g, we (thisis in fact a well-known result of Bao and Shen [6]). Thus

fle@®) = p@)*(f)-

Now p(¢)*(f)(z,y) = f(c"(t,y)), so on differentiating with respect to ¢t at t = 0 we obtain
the stated result. O

For the Berwald connection coefficients ka, set I';jp = gilelk (the order of indices is
important: in particular I';;; is symmetric in the second pair of indices). Let ij be the
coefficients of the Levi-Civita connection of g, and set T';;; = gﬂfjlk. Now in a Landsberg
space
Hi(gij) = Uik + Ujir,
from which it follows by the usual method that
Dije = 5 (Hj(ga) + Hi(gij) — Hi(gjn)) 5

and of course

ijk = 3 -

T 1 (990 | 99 07y
dxd Pk Ok )

Since H; is the horizontal lift of 3/0z', from the lemma we have the following result.

Theorem 3. In a Landsberg space

Uijk = Liji.

Appendix: Landsberg spaces with vanishing Douglas tensor

The proof below is of interest for the following reasons. In the first place, it is manifestly
y-local in character. Secondly, unlike two recently published proofs [11, 15] it makes no
appeal to Deicke’s Theorem, and in that sense it is elementary. Thirdly, it uses what is
to my mind the characteristic property of the Douglas tensor, namely that its vanishing
is the necessary and sufficient condition for the spray from which it is derived to be
(locally) projectively equivalent to an affine spray — and indeed this seems a natural
way to start the proof of an assertion which amounts to the claim that a certain spray
is affine.

Theorem 4. A Landsberg space over a manifold M with dim M > 3, whose Douglas
tensor vanishes, is a Berwald space.

Proof. A Finsler space whose Douglas tensor vanishes is projectively affine, that is, the
coefficients of its geodesic spray are of the form G* = G+ Ay' where the G, are those of
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an affine spray, and A is a function of homogeneity degree 1. Now G does not contribute
to the Berwald tensor, which takes the form

B;‘k; = \iuy' + /\,kl(S; + X85 4 A wdi;

of course for any pair of indices, A ;. ;.. = A ;. k.. The condition Bj = Biju
(Proposition 2) gives

YAkl F Gik A1+ G i = YA ikt + GikA i+ G\ ik
On contracting this with »° and using homogeneity one obtains the following expression
for A i
F2X ik = =X jyi — Ajiyk — A jryr-
With the aid of this expression the condition above can be reduced to

Akthim + X jithim = A pmbji + A jm b
where h is the angular metric,
hij = gij — %yzy]
Now ¢/%hy, = 55 — F~%yy?, and g'h;; = (nl— 1) where n = dim M. Contract the
equation for the second derivatives of A with ¢/ and use homogeneity again to get
(n—1)A g = Lhy, L=g9)\;j;
L is of homogeneity degree —1. Now it follows from the definition of A;;, and the fact

that 9kiym = Gkm,ls that

1
It — b = ﬁ(gkmyl — GklYm)-

Differentiate the equation for A j; again and use this fact, and symmetry, to obtain

L
Ly — L hyy, + ﬁ(gklym — grmyi) = 0.

Contract with ¢ to get
L

Then for n > 2 we have (F'L),, = 0, or in other words L = K/F for some function K
on M. Thus

K
(n — 1)A7k1 = fhkl-

Then by differentiating

K K
(n—1D)Aju = —ﬁhklyj + fhkl,j
K K 3K
L ﬁ(gklyj + giyk + giey) + 5 Vi YkUL,
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while from the formula F2X ju + A y; + Ajye + A ey = 0 we have

K
(n—1)A ju = —ﬁ(hklyj + hijyk + hikyr)

K 3K
= — 73 nyi + 959+ 9ikyn) + T Y-
It follows that K gy ; = 0, so either gy ; = 0 and the space is Riemannian, or K = 0,
whence Ay = 0, A is linear in the y', the geodesic spray is affine, and the space is
Berwaldian. O
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