On projective connections: the general case

M. Crampin
Department, of Mathematical Physics and Astronomy;,
Ghent University,
Krijgslaan 281, B-9000 Gent, Belgium
and D.J. Saunders
Department of Applied Mathematics, The Open University,
Walton Hall, Milton Keynes MK7 6AA, UK

June 29, 2004

Abstract

We derive a Cartan normal projective connection for a system of second-order ordi-
nary differential equations (extending the results of Cartan from a single equation to
many)); we generalize the concept of a normal Thomas-Whitehead connection from
affine to general sprays; and we show how to obtain the former from the latter by a
global construction. This completes a study of projective connections begun in [4].
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1 Introduction

This paper is the second of a pair devoted to the study of the relationship between the
two classical approaches to projective differential geometry. One of these is associated
almost entirely with the name of Cartan, and is described in ‘Sur les variétés a connexion
projective’ [1]. Many authors have contributed to the other, but for our present purposes
the most appropriate choice of representative paper is Douglas’s ‘The general geometry
of paths’ [5].

In our first paper [4] we discussed the affine case, the geometry of what Douglas calls
restricted path spaces; that is, the projective differential geometry of affine connections
and their geodesics, which is the subject of the first and longer part of Cartan’s paper. We
based our discussion of the path space approach on Roberts’s exposition [8] of the work
of Thomas and Whitehead, which is crystallized in the concept of a Thomas-Whitehead



connection (TW-connection). We showed how to define intrinsically for any manifold M
a principal fibre bundle CM — M with group the projective group PGL(m + 1), m =
dim M, which is the carrier space of the global connection form of any Cartan projective
connection on M; we called this bundle the Cartan bundle. We showed further how, given
a projective equivalence class of affine connections, to construct from the Ehresmann
connection form of the corresponding T'W-connection a global Cartan connection form
on the Cartan bundle.

In the present paper we will extend these results to the case of a general path space,
that is, to the projective differential geometry of sprays in general. In doing so we
have had to face two problems. In the first place, though Cartan dealt in [1] with the
affine case in arbitrary dimension, his account there of the general case is restricted to
dimension 2. Secondly, the theory of the T'W-connection applies only to the affine case.
We have therefore had to develop a theory of Cartan projective connections in the general
case for dimension greater than 2, and to generalize the theory of TW-connections from
scratch. On the other hand, the bundle constructions we used in the first paper turn
out, perhaps somewhat surprisingly, to serve their turn here as well, mutatis mutandis.
A preliminary account of some of our results has been given in [9].

What we have described above as Cartan’s theory of the projective connection in the
general case in dimension 2 actually appears in [1] as being concerned with a single
second-order differential equation
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One interpretation of the theory is that it is a method of obtaining invariants of such
equations under coordinate transformations. From this point of view it is of course im-
portant to be clear what class of transformations is considered: it is the class of so-called
point transformations, that is, transformations of the form z = Z(x,y), ¥ = §(z,y).
Thus dependent and independent variables are mixed up under the allowed coordinate
transformations, and it is this fact that creates the link with the projective differential
geometry of sprays in two dimensions. Likewise, our theory of Cartan projective connec-
tions in the general case in higher dimensions may be thought of as a method for finding
invariants of a system of second-order differential equations

@ = f (t,xj, dxz>

dt? dt
under point transformations ¢ = #(t,27), &* = #*(t,z7). It is therefore distinct from the
theory of invariants of such equations under the restricted class of transformations which
preserve the independent variable, that is, those with ¢ = t. There is a large literature on
the latter problem. So far as the study of systems of second-order differential equations
under point transformations is concerned, on the other hand, we need to refer to one

previous publication only, the paper by Fels [6]. In this paper the invariants of second-
order equations under point transformations are found by Cartan’s other method, the




method of equivalence. Our interests are more geometrical and global than those of Fels,
but it may be reassuring to know that we obtain the same invariants as he does.

The paper is organized as follows. In Section 2 we review the projective geometry
of sprays, both in general terms and with reference to systems of second-order ordi-
nary differential equations. Section 3 contains the generalization of the concept of a
TW-connection, which we call the Berwald-Thomas-Whitehead projective connection,
or BTW-connection; it is based on the formulation of the conditions that determine the
normal T'W-connection in terms of affine sprays that we gave in [4]. The Cartan theory
is discussed in Section 4, though the actual calculations leading to the explicit formulse
for the normal projective connection are relegated to an appendix since they are com-
plicated and not especially illuminating. Section 5 deals with the Cartan bundle, and
Section 6 with construction of the Cartan connection form on the Cartan bundle from
the BT W-connection.

In our previous paper we defined, for a given manifold M, several associated manifolds;
these will reappear in the present paper, so we repeat their definitions here for ease of
reference.

e The (unoriented) volume bundle v : VM — M is the set of pairs [£6] where
0 € N"T; M is a non-zero volume element at z € M. We use adapted coordinates
(20, 2%, ..., 2™) on VM such that

0 = £(z¥)mH (dml A ..d:cm> , 2Y>0.

The volume bundle is a principal bundle over M under the multiplicative action of
R given by pu,[+0] = sV D [+6]; the corresponding fundamental vector field is
Y = 200/0x°.

e The Cartan algebroid p : WM — TM is the quotient of T(VM) by YC, the
complete lift of T to T'(VM). It is a vector bundle — indeed, a Lie algebroid —
over M, with fibre dimension m + 1, and admits a global section eq, the image of
T considered as a section of T'(VM).

e The Cartan projective bundle POAVM) is the quotient of the Cartan algebroid by
the equivalence relation of non-zero scalar multiplication in the fibres.

e The simplex bundle SyyM is the quotient of the frame bundle of WM by the
equivalence relation of non-zero scalar multiplication in the fibres. A point of
SwM over x € M is a reference (m + 1)-simplex for the m-dimensional projective
space POW, M ); SyyM is a principal PGL(m + 1)-bundle over M.

e The Cartan bundle CM C SyyM consists of those simplices with first element a
multiple of the global section ey of p. It is a reduction of Syy M to the group
Hy+1 € PGL(m + 1) which is the stabilizer of the point [1,0,...,0] of projective
space P™. The Cartan bundle is the carrier of global Cartan projective connection
forms in the affine case.



Our dicussion of the Cartan projective connection is based on the account of Cartan’s
theory of connections given by Sharpe [11]. We repeat Sharpe’s definition of a Cartan
connection here for convenience. It depends on the previous concept of a Klein geometry.
A Klein geometry is a homogeneous space of a Lie group G, that is, a manifold on
which G acts effectively and transitively to the left. Let H be the stabilizer of some
chosen point of the manifold; then the homogeneous space may be identified with the
coset space G/H, and we may refer to the pair (G, H) as the Klein geometry. We
denote by g and h the Lie algebras of G and H. A Cartan geometry on a manifold M,
modelled on a Klein geometry (G, H), is a right principal H-bundle P — M such that
dim P = dim G = dim H + dim M, together with a g-valued 1-form w on P, the Cartan
connection form, such that

1. for each p € P, wp : T, P — g is an isomorphism;
2. for each h € H, Rjw = ad(h™1)w;

3. if A € b then (AT, w) = A, where AT is the vertical vector field on P generated by
A through the action of H.

A local section k of P — M is called a gauge; the local g-valued form x*w on M is the
connection form in that gauge. Given two gauges x and < with overlapping domains, the
corresponding local g-valued forms x*w and £*w are related by the transformation rule
#*w = ad(h™ 1) (k*w) + h*(0y), where 0y is the Maurer-Cartan form of H and h is the
local H-valued function on M relating the two gauges.

Any curve o(t) in P determines a curve (¢,w) in g, which can be integrated up to give
a curve in G, and then projected onto a curve in G/H; the resulting curve depends only
on the projection of ¢ into M, and is called a development of the curve in M into G/H.
Let v be a gauge on G/H: then we can express any curve in G in the form Rj,)y(£(t))
where £(t) is a curve in G/H and h(t) one in H. Then the development £(t) of a curve
x(t) in M, when expressed with respect to gauges for both the Cartan and the model
geometry, satisfies the differential equation

ad(h™")(§, 7 0a) + (b, 0n) = (&, K*w);

this comprises dim g equations for dim g/f unknowns ¢ and dim b unknowns h. If the
model geometry contains straight lines a curve in M is a geodesic if its developments are
straight lines.

We use the Einstein summation convention for repeated indices. Indices a,b, ... range
and sum from 1 to m, indices «, 3, ... from 0 to m, and indices i, j, ... from 2 to m.

2 Projective differential geometry of sprays

We review here the projective geometry of sprays. A useful reference for this material is
Shen’s book [12]; however, our approach differs from his in that we put more emphasis



on the similarities between the general case and the affine case as described for example
in Schouten’s ‘Ricci-Calculus’ [10]. Douglas [5] also covers much of this ground of course.

2.1 Sprays and Berwald connections

We denote by 73, : T°M — M the slit tangent bundle of M (T'M with the zero section
deleted). Coordinates on T°M will generally be written (x®,u®*). The Liouville field
u®d/0u® is denoted by A.

A spray S on T°M is a second-order differential equation field

o 0 o 0
S=u 8:6“_2F ou?

whose coefficients I'® are positively homogeneous of degree 2 in the u®; if they are
quadratic in the u® (so that S is the geodesic field of a symmetric affine connection)
then the spray is said to be affine.

Homogeneity occurs frequently and is always with respect to the u?, so we will just say,
for example, that « is of degree 1. Moreover, the distinction between being positively
homogeneous and being homogeneous without qualification won’t be important in this
subsection, so we won’t repeat the qualifier ‘positively’.

The horizontal distribution associated with a spray is spanned by the vector fields

0 w0 o _or

Ho=532 T Ta= g

' is of degree 1. It will often be convenient to denote the vertical vector field 9/0u® by
Va.

The Berwald connection (see for example [2]) associated with a spray S is a connection
on the pullback bundle 737 (TM) — T°M. We will use tensor calculus methods, so we
write sections of 73;(TM) as X*0/0x* where the coefficients X are local functions on
T°M. The Berwald connection can be specified by giving its covariant differentiation
operator V operating on d/0z® (regarded as a local section of 737 (T M), or vector field
along the projection 73;), together with the usual rules of covariant differentiation: in

fact 5 5 9
Vg, —=14—, Vy— =0,
Ha ggb — “abgae Ve oab
where the connection coefficients are given by

_org 9T

c —

@ gub T Gurdub’

they are symmetric, of degree 0, and reduce to the usual connection coefficients in the
affine case.



Note that covariant differentiation with respect to the vertical vector field V, of any
tensor field along 7, amounts simply to partial differentiation of the components of the
field with respect to u®; and that therefore if one takes a tensor field along 73, and
partially differentiates its components with respect to the u® one obtains another tensor
field, with one more covariant index.

We will use index notation, so that (for example) if 7" is a type (1,1) tensor along 73,
and £ a vector field on T°M, (V1)) is just written VeTP.

The so-called total derivative T is the vector field along 73, whose coordinate represen-
tation is u*0/0x"; its covariant derivative in any horizontal direction vanishes.

The curvature of the connection is defined in the usual way, but can be broken down
into various components according to whether the vector field arguments are taken to be
horizontal or vertical. First, evidently

0

— =0.
0x¢

(VVGVV,) - Vy,Vy, — V[Va,Vb]>

Next, we have
0 g 0

(VVGVHb ~Vu,Vv, — V[Va,Hb}) Fpc — Beabg

where (since [V, Hy| is vertical)

Bl _ org _ 01
cab = gua T Qusdubouc”

This component of the curvature has no affine counterpart — in fact its vanishing is the
necessary and sufficient condition for the spray to be affine. It is completely symmetric
in the lower indices, is homogeneous of degree —1, and satisfies Bffabuc = 0. It is called
the Berwald curvature.

Finally,

i — R4 i

Ox¢ cab yd’

where Rgab, the counterpart of the usual curvature, is given by

(v 1. Ve, —Va,Vi, — V[Ha,Hb])

Rgab = H, (Fbafz) - Hy (Fcflc) + Fciierec - deeraec'
It has the usual symmetries, is of degree 0, and reduces to the ordinary curvature tensor
when the spray is affine. It is called the Riemann curvature.

We can also express the curvatures conveniently using forms. We write @ for the 1-form
du®+T$da®, so that {dz?, ¢*} is the local basis of 1-forms on 7°M dual to the local basis
{H,,V,} of vector fields. Define connection forms wf = Ii.dz®; if Qf = dwj + wd A wf
are the associated curvature forms then

Qp = 1Rz Adx® + BiLg© A da.



By taking traces of the curvatures we obtain tensors

Bab = Bgaba Rab = R,

ach*

The first is symmetric. The second is not in general symmetric; moreover, by the cyclic
identity

gab - _Rcctbc - Rgca = Rap — Rpa-
By differentiating the formula for the Riemann curvature with respect to u® one obtains
the following relation between the two curvatures:

VV Rgab = vHaBgce - vaBd )

e ace’
this is in fact part of the second Bianchi identity for the curvature taken as a whole.
From this formula, by taking a trace one obtains
vaRab = dengc - vaBacv

d
abc

va(Rab - Rba) = vHaBbc - vaBaca

whence using the symmetry of B

which turns out to be useful later. Furthermore, it follows from the last equation but
one, again using symmetry, that

vVa Rbc = vaRac-

We will also be concerned with the associated tensor
S

Oxb
This type (1,1) tensor field is often called the Jacobi endomorphism, because it is the
curvature term that appears in the Jacobi equation. It contains the same information as
the Riemann tensor, which can be recovered from it by use of the formula

Riw = 3 (VVCVVbRg - chVvaRg> -

R¢ = RY u‘u? = — S(T'§) — T9T%.

We denote by R the trace of Rj; we have R = Requfu®. Tt follows from the relationship
Vv, Rpe = Vv, R4 and the fact that Ry, is homogeneous of degree 0 that ubVVaRbc =0,
whence

O’R B
Outdub

OR
ou?

= (Rab + Rba)ub7 Rab + Rba-

A spray whose Jacobi endomorphism has the property that for any v € T,,(T°M), R{v®
is a linear combination of u® and v® is said to be isotropic. For an isotropic spray Rj
takes the form R} = Aoy + ppu® for some scalar A and vector py,. Since Rgub = 0 we have

A = —mpul, and then by taking the trace we find that (m — 1)\ = R, so for an isotropic

spray .
Ry — — Réy = ppu®,
m—

with ppu® = —R/(m — 1).



2.2 Projective equivalence

Two sprays 5, S are projectively equivalent if S —8=—2aA, or I'* = I'* 4+ au®, where
the function « is positively homogeneous of degree 1 in the u®.

From the basic projective transformation rule it follows that the horizontal vector fields
associated with the spray S are given by

H,=H, — oV, — a,A,

where
Oa

= Jue’

Qg is of degree 0, and u*a, = «. Furthermore,

Qg

L5 =I5 + (ap® + aadf + apdl)

where
2
Qgp = ————
= Huedud’

Qgp is symmetric and of degree —1, and agpu’ = 0.

By taking a trace in the equation for the transformation of the I'j we obtain (writing
L, for TY)
Ipy=Ts+ (m+1)ay,,

whence the quantity
1

is projectively invariant. Douglas calls it the fundamental invariant and says in effect
that every projective invariant is expressible in terms of it and its partial derivatives.
However, the II G are not components of a tensor, nor even of a connection, and this has
to be borne in mind when forming projective invariants from it.

Note that Hab = Hb’z = 0.
It may appear that if we set ' = FZ and take

1 1 ord

_m—i—l __m+1w

then the transformed spray has II§ for its connection coefficients. However, I' is not
strictly speaking a function: its transformation law under coordinate transformations
of the z% (and the induced transformations of the u®) involves the determinant of the
Jacobian of the coordinate transformation; however, it transforms as a function under
coordinate transformations for which the determinant of the Jacobian is 1.



We will derive the projective transformation formulae we require entirely tensorially; we
will however point out the simplifications that arise when one chooses the spray whose
connection coefficients with respect to some coordinates are the II . We will denote
objects calculated in this way by setting their kernel letters in black-letter. Thus it
follows from the observation above that the traces of II G vanish that B,, = 0.

It follows from the vanishing of the traces of IL G that R, = 0, and thus that Ry, = Rep.

2.3 Projective transformation of the curvatures

An easy calculation leads to the following transformation formula for Bglab:
Bgab = Bgab + aabcud + aab(sg‘l + abcég + aac(sgv

where agp. denotes a third partial derivative of «; it satisfies agpeu® = —agqp. Then by
taking a trace
Bab = Bab + (m + 1)aab7

whence

1
Dgab = B(C:lab - m+1 (udecBab + Babégl + Bbcég + Bacég)

is a projectively invariant tensor — the Douglas tensor. It is symmetric in its lower
indices, of degree 0, it satisfies D‘cjabuC = 0, and all of its traces vanish.

Since B, = 0,

4 ong

cab — ouc

Di =98

cab

The vanishing of the Douglas tensor is the necessary and sufficient condition for a spray
to be projectively equivalent to an affine one.

The projective transformation of the Riemann curvature is given by
pd d d d d d
Rcab - Rcab + vHaOébc - vaaac + (OéOébC + abac)éa - (OéOéac + aaac)5b7
where o is the difference tensor of the connection coefficients,
gy = Qg + gy + apdy.

Using the fact that Vg, T = 0, so that multiplying by u® commutes with covariant
differentiation with respect to H,, we obtain

Vi, ok = u'V i, ape + (Vi a)d8 + (Vi, )8
We know that

Qgp = m;—f—l (Bab - Bab) .



It can be shown that

~

Vi, Bve = Vi,Bac =V Bye — Vg, Bac,
whence the transformation law for Rgab can be rewritten in the form

S = 5%, — Aped? + Auebi + (Agy — Apa)6L,

cab —
where
1
Sgab = Rgab - m—HUd (vHa,BbC - vaBac)
1
- Rgab - m+1 (udec(Rab - Rba)) ’
and

Agp = Vi, ap — acgy — aqoyp.

The modified Riemann curvature Sgab has the usual symmetries, is of degree 0, and

reduces to the Riemann curvature in the affine case. We set S, = S ; then

Sab = Sab + Aab - mAbav

whence
1

Agy = —
ab m2_1

(Qab - Qab) ; Qab = Sab + mea'
It follows that

1
Pcdab = Sgab - m2 1 (chég - Qacég - (Qab - Qba)ég)

is a projectively invariant tensor. It is the counterpart of the projective curvature tensor
of the affine theory, to which it reduces in the affine case. It is of degree 0; it has the
same symmetries as the Riemann curvature, and in addition all of its traces vanish.

Since Ry is symmetric with respect to a canonically parametrized spray, &%, = R%
whence G4, = Ryp, and Qg = (m + 1)NRyp, so that

cab — YYeab —

P, — ;e ?ﬁfé‘I (Riedd — Red)

The Jacobi endomorphism of a spray S transforms as follows:
R = R} + Ayu® — A8f,
where the vector A, and scalar A are given by

Ay, =2H,(0) — Vs, — g, A=S8(a) —a® =u"Ay;

10



A, is homogeneous of degree 1. For the trace of the Jacobi endomorphism we have
R=R—(m—1)A.

Using these formulae one can show that

1 1 1
Wg =Ry — ——RO, — uVv <RC — —R(SC>
b b 1 T Ve (% T T b
is projectively invariant. It is called the Weyl tensor. It is tracefree and satisfies Wélub =
0. The Weyl tensor bears the same relationship to the projective curvature tensor as the
Jacobi endomorphism does to the Riemann curvature: that is to say, Pc‘gducud = Wy,

and P, can be expressed in terms of second vertical covariant derivatives of W

Recall that an isotropic spray is one for which
Ry — ;Réa = ppu®

From the transformation laws it is easy to see that the property of being isotropic is
projectively invariant. Moreover, by substituting into the expression for W' and using
the evident fact that j;, is homogeneous of degree —1 we see that W, = 0 for an isotropic
spray; the converse is obvious. Thus a spray is isotropic if and only if W = 0; and
equivalently if and only if ¢, = 0.

We will also need the following result. If we carry out the projective transformation with

B 1
 om+1
we obtain ) ) ) 1
R = R S(T) + ——TI?.
m—1 m—1 +m—|—1 ()+(m+1)2

When m > 2 the vanishing of both the Douglas and the projective curvature tensors is the
necessary and sufficient condition for a spray to be projectively flat, that is, projectively
equivalent to a spray that can be written u*9/0z in some coordinates. In dimension 2,
however, a tensor with the symmetries of the Riemann tensor is determined by its traces,
and if they vanish so does the tensor; so the projective curvature tensor is identically
zero in dimension 2. We will therefore assume that m > 2 hereafter.

2.4 Systems of differential equations
The base integral curves of a spray are the solutions of the equations
4+ 2T (z,2) = 0;

all sprays in a projective equivalence class have the same base integral curves up to
change of parameter which preserves sense. Thus a projective equivalence class of sprays

11



determines, and in fact is is determined by, a path space, that is, a collection of paths
(unparametrized but oriented curves) in M with the property that there is a unique path
of the collection through each point in each direction. A choice of spray in a projective
equivalence class amounts to a choice of parametrization of the corresponding paths;
Douglas calls the parametrization resulting from the choice with I';}, = I, the canonical
parametrization for the given coordinates.

Since sprays are required to be only positively homogeneous, reversing the initial direction
may give a different path. We will be interested in a restricted class of sprays, those
having the property that the integral curve through x with initial tangent vector —u is
just the integral curve through x with initial tangent vector u traversed in the opposite
sense; we call such sprays, and their base integral curves, reversible. Reversible sprays
are such that the coefficients I'* are homogeneous of degree 2 without qualification,
that is, satisfy T'%(2?, Au®) = A2I'%(2®, u®) for all non-zero A. Alternatively, they satisfy
(2, —u) = (2%, u®) in addition to being positively homogeneous. The corresponding
path space has the property that given a point x € M and a line in 7, M there is a unique
path (now an unparametrized and unoriented curve) through x whose tangent line at x
is the given line. The set of lines in T, M is just PT, M, the projective tangent space at
x; thus a path space in this sense determines and is determined by a congruence of paths
on PTM, the projective tangent bundle of M (one and only one path of the congruence
passes through each point of PTM); the corresponding projective equivalence class of
sprays determines and is determined by a line element field on PTM, the tangent line
element field of the congruence of paths.

From here on we will deal only with reversible sprays.

In a local coordinate system we can choose to parametrize suitable paths of a projective
class of sprays with one of the coordinates, say x'; with such a parametrization @' = 1,
#! = 0, and the differential equations take the form

dle — fz (fI,'l .%'] @) .
d(z1)? T dat
In other words, there is always locally a member of the projective class for which I'! = 0;
then fi(z% y') = —2I' (2%, 1,’) where y/ = v/ /u'. Conversely, given a system of m — 1
second-order differential equations in the variables z?, with parameter !
recover a spray by setting

I =0, Tia®u®) = — L)) fi(e, o fud).

, we can locally

Such a spray is reversible.

If we make a point transformation (a coordinate transformation involving all of the co-
ordinates z%) the spray corresponding to the new system of differential equations will
not be the same as that corresponding to the original one; but it will be projectively
equivalent to it. The invariants of the system of second-order ordinary differential equa-
tions under point transformations will be the projective invariants of the corresponding
projective equivalence class of sprays.

12



It will be useful to be able to represent the projective quantities in terms of the f¢. We
therefore compute the fundamental invariants I}, of the spray

0 9 5ra 9

u
oz Oou®’

=0, D% u®) = ~ 32 f (@, o fud).

We set ) B
; oft ; oy
i _ 1 e _J = k L = — = k
’Y] - 73 ay] ) ’V]k 8yk’ Y Yesr Vi ayz Yik

and so on, and

i Of d
;= i @(Vj) + VK75
where
4 _9 . ii+fi 9
dot ozt Y or oy’

f1>§- is called in the relevant literature, with an unfortunate disagreement over sign, the
Jacobi endomorphism of the second-order differential equation field [3]. We will show that
for m > 2 the Douglas tensor Dj_ ; and the Weyl tensor W' are completely determined
by the quantities

1

i Kk
ek

K = Yik — e (5}%1 + 6151 + 5f7jk) , Lj=®)—
Since the projective curvature tensor Fj.; determines and is determined by the Weyl
tensor, it too is completely determined by these quantities. This is related to a result
of Fels [6], who showed, using Cartan’s method of equivalence, that K]‘:kl and L; are
the fundamental invariants of the system of second-order ordinary differential equations

under point transformations.

We need to compute several quantities from the I'* by differentiating with respect to the
u® and taking traces. The calculations are much simplified by the fact that the quantities
involved are homogeneous of various degrees in the u®. Any function ¢ of degree n is
determined by its value at u! = 1, since ¢(u®) = (u')"¢(1,y") (this is of course just the
principle used to define the spray coefficients). Moreover, we have Euler’s theorem at
our disposal.

First we have Fé = 0, while
L) =ulyj, T =)' +y"i).
For the I}, we obtain
Fblc =0, Fﬁc = ’Yﬁw Flij = Fjil = ’Y]i' - yl’inlv Flil = —fi - 2yl’>’li + ylym’mlﬁ'

Next, the traces:
P=uly; Ti=v, Ti=v-yu;

13



and their derivatives
1.1 m

Ty =) 1y, Tu=Ta= —(uh) v Ti= @) Y Y™ i

The fundamental invariants are given by
1
0 = T~ — (D46 + Todf + Toca?);

in terms of f* and its derivatives we have

I = mil(%—?yvﬁyy Vim)

I, = _%H(Vi — y'a)

Hilj = _m;—i—lw

Y = —f =24y + o'y v — %y 'Y Yim
L %ﬂ((v — )85 — vyl v)

. 1
&= ik — o ———(7;6% + 05 + ¥ Vi)
Thus with u!' = 1,

. A 1
Dipr =Yg — 1 ——— (V10 + ’7kl5 + Y01 + Y vik1)-
We differentiate KJZ 1 With respect to y™ to obtain

8sz:kl i 1 i i i
R ——— <5ﬂklm + 0k Yjim + O] ’ijm) ;

then take a trace to get

m—2 o 0K ﬂl
m+1H = oym’
whence K
A A 1 o
Djn = K — —5¥' 6y]
Furthermore DK™
1 1 el
Dl = 1
jkl 1 k= —2 oym
Now udDgcd = 0, whence Dy, = —y’Dﬁci, so that the remaining components of D}, are

determined by those which have already been calculated.

14



For the Jacobi endomorphism of the spray we have R! = 0,

so that R = —(u!)?®¥. Thus

. 1 . . 1
Thus when u! =1,
) . 1 .OLk 1 OL®
Wi =_[t % J Wl — J .
J ]+m+1y oYk’ T m+10yk

As before, the remaining components of W' are determined by these, since Wb“ub = 0.

It follows that Lé» = 0 is a necessary and sufficient condition for the spray to be isotropic.

3 BT W-connections

In our previous paper [4] we showed that the geometry of a projective equivalence class
of affine sprays on T'M can be described in terms of a single affine spray on T(VM),
where VM is the volume bundle (see the Introduction), whose corresponding symmetric
affine connection is known as the normal TW-connection. In that paper we followed
the historical order of events, by developing the theory of T'W-connections first, basing
our account on the work of Roberts [8], and subsequently showing that the defining
properties of a T'W-connection can be specified in terms of its spray. We are now faced
with the problem of generalizing these ideas to the case of a projective equivalence class of
(not necessarily affine) sprays. The properties formerly used to define a T'W-connection
do not translate straightforwardly into properties of Berwald connections; however, the
equivalent properties for an affine spray carry over almost without change to general
sprays. We will therefore approach the definition of the Berwald connection on T°(VM)
which generalizes the normal T'W-connection, which we will call the Berwald-Thomas-
Whitehead projective connection, or BT W-connection for short (we will deal only with
the analogue of the normal TW-connection and therefore need no qualifier), by first
proving the existence of a uniquely determined spray on 7'°(VM) which carries all the
information about a given projective class of sprays on T°M. We call this spray the
BTW-spray, and define the BT W-connection as the Berwald connection of this spray.

For a spray S on T°(VM),

~ 0 -, 0
=ut— -2 —
S=u Ox® ou’
we denote by Rg its Jacobi endomorphism,
N ore . . -
Rj = QW - 8(I'g) — I‘g‘I‘g,



and by R the trace of ]:2%‘
There is a well-defined volume form vol on T°(VM),
vol = (29)2™dz Adat A~ Adz™ Adu® Adut A - A du™.
In the affine case the affine spray S on T(VM) whose corresponding symmetric affine

connection is the normal TW-connection of a given projective equivalence class of sprays
on M is uniquely determined by the following conditions:

ETCS = 07
ETVS = TC - QA,

L gvol = 0;

e R=0.

These conditions apply without change to general sprays on T°(VM).

We will derive their consequences in terms of coordinates adapted to VM, thus showing
that sprays satisfying them exist locally; we postpone the proof of the global existence
of such sprays until later.

Locally,
LycS = {xO%wLuo%,u“%—Qfa%]
= —2<x°g%+u°gzz>(;% QfO%,

while

So in order for S to satisfy the first pair of conditions we must have

ore ore ore ore ore ore
xoﬁ —f—uow S xoﬁ —f—uow =0, 900 — 0, :anuo =u’.
It follows that _
08_110 — 10
020 ’
whence
0



so that
0 — 0G0

say, where G is a function on 7°M homogeneous of degree 2. Moreover
ore
0z

—(:EO)_2u0ua,
so that .
e — (xO)fluOua + Ga’

where again G is a function on T°M homogeneous of degree 2. Thus a spray satisfies
the first pair of conditions if locally it takes the form

Qo ai_ a Ofloai_ 0 Oi
S=u 5 2(G* + (V) uu)aua QxGauO.

The remaining two conditions impose further restrictions on G* and G°. We have

u! u”
Lgzvol = 2mE -2 GH+ m—g vol,

so, setting G = Gy, we see that Lgvol = 0 if and only if G = 0. Now

0 =0 0,~0 ce o u” a a u’ a
FOZO, Fa:.fC Ga, FOZ—, Fb:Gb+ 61)’

xV 20
whence T' = I'? = mu®/2°, and
AN
aleds b
wﬂzqg+mhm«ﬁ>,
using G = 0 and the homogeneity of G°. Thus

~ a 0\ 2 0\ 2
R :2<gi+G®+m(<%>%Qd)—Gﬂﬂ—Mﬁ—m(%)
oz T x

0G°
ox?®

= 2 — GG +2(m —1)G,

so that the fourth condition is satisfied (given that the others are) if and only if
1 ( 0G*

2
2(m—1) \ 0z

GO = — —%Q)

Now ETcg = 0 is the necessary and sufficient condition for S to project to a vector field
on W°M, say Syy. With coordinate w = u®/z° we have
0 0 0 0
0 2 0
202 =
80 ow a0 ow’



so that 5 5 5
S« — Wt —2(GY ay_ Y 2 QGO—
w=uto D = 2G" twut) ot — (W7 +2GT) 5
with G¢, G as above. Now p : W°M — T°M is a line bundle. It admits global sections.
A section o is homogeneous if 0, (A) = Ayyoo, where A is the Liouville field of T°M and
Ayy is that of the vector bundle 7 : WM — M restricted to W°M. For any homogeneous
section o, p«(Sw|s) is a spray on T°M, given locally by

0 0
a el a )
u o (G* 4+ ou )ﬁua

The difference between two homogeneous sections is a homogeneous function on 7°M,
so the corresponding sprays are projectively equivalent. The fundamental invariant of
this equivalence class of sprays on T°M is just

9?Ge

e = Gt

whence G* = %Hg‘cubuc by homogeneity. Furthermore,

0 1 oG a b 1 c, d
G’ = “m =) (28xa —GbGQ) = T3m-1) l)ﬂ%cdu u.
Suppose given a projective equivalence class of sprays on T°M; then over each coordi-
nate patch U on M there is a unique spray Sy on (T°(VM))|y which satisfies the four
conditions given earlier and generates the class by the construction just given. Since the
conditions which determine Sy are coordinate independent, and determine it uniquely,
the Sy agree on overlaps of coordinate patches, and therefore fit together to give a global
spray. This is the BT W-spray of the projective equivalence class.

The Berwald connection coefficients of the BT W-spray of a projective equivalence class
are

1
m—1

Lo =Ta =0, Tg=-

[

xofﬁab, fo% =0, f&, = fb% = (:co)*lag, fg; = II;;
these are of course the connection coeflicients of the BT W-connection.

The BT W-spray of a reversible spray is itself reversible.

4 A Cartan connection for a system of second-order ordi-
nary differential equations

We show how to construct a normal Cartan connection associated with a system of
second-order ordinary differential equations, using Cartan’s method from the second
part of his projective connections paper [1], in the framework set out by Sharpe [11].
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4.1 Model geometry and choice of gauge

We take as model geometry PT(P™), the projective tangent bundle of m-dimensional
real projective space P™. Each point of PT(P™) consists of a line through the origin
in R™"! and a 2-plane containing the line. The group PGL(m + 1) acts transitively
on PT(P™). The stabilizer of the point consisting of the first coordinate axis and the
2-plane containing the first two coordinate axes is the subgroup K,,+1 of PGL(m + 1)
which is the image of the subgroup of GL(m + 1) consisting of matrices with zeros below
the main diagonal in the first and second columns; so we can identify PT(P™) with
PGL(m + 1)/Ky,+1. Note the difference between this and the affine case, where the
model geometry is P = PGL(m + 1)/H,+1, Hy,q1 being the projective image of the
subgroup of GL(m + 1) consisting of matrices with zeros below the diagonal in the first
column only. Of course K,,11 is a subgroup of H,,,+1.

We consider a Cartan geometry on the projective tangent bundle PT'M of an m-dimensional
manifold M, modelled on PT(P™) = PGL(m+1)/K;,41, in which the projective tangent
bundle structures are compatible in the following sense. First, note that any curve in
M has a natural lift to PT'M obtained by adjoining, to each point on it, its tangent line
at that point. The compatibility conditions are that the development into PT(P™) of a
vertical curve in PTM is vertical, and the development into PT'(P™) of a lifted curve in
PTM is a lifted curve.

We can introduce local coordinates on PT'M by taking local coordinates (z®) on M and
by noting that every equivalence class of tangent vectors

0
ox?®

ua

for which u' # 0 has a unique representative of the form

o0
ozt Y ot

then (2¢,y') are local coordinates on PTM. We are effectively using affine (jet-bundle-
like) coordinates on PTM, in which we identify an open subset of the fibre of PT'M with
an affine submanifold (a hyperplane) of the corresponding fibre of TM, by (y?) — (1,4°).

Before proceeding, in order to examine gauge transformations it will be useful to calculate
the effect of conjugation by an element of K,,;1, particularly on the entries below the
main diagonal in the first and second columns in an arbitrary (m + 1) x (m + 1) matrix.
Let us write an element k € K,, 1 as a matrix

KKK
k= 0 & K|,
OOk;.
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where the (m — 1) x (m — 1) matrix (k;) is non-singular and |kJk} det(k§)| = 1. Then

ko —kokORL g

El=1 0 ki —kik,ii%;? ,
0 0 @

where the overbar indicates an inverse, and g; = k§ (kYkik} — k,g)l?:f . One finds that

* ok % * ok %
if M= u ok X then &k 'Mk = U x %
vvowt % 0wt *

@ = kQki(u—kjkiv?), o =kokiv/, @' =k (k{v) + kjw?).
Note that (9%) depends only on (v*) and that (i, %) depends only on (u,v?).
A curve in PT'M is vertical if its tangent vector is annihilated by the dx®, and a curve in

PTM is a natural lift if its tangent vector is annihilated by the so-called contact forms
dz' — yidx'. Tt is easy to see that

| 1 0 0
€)= & 1.0
é‘l ,,72 6";

is a local section of PGL(m+1) — PT(P™), and that the corresponding gauged Maurer-
Cartan form is

0 0 O
det 0 0
dfi — nidfl dni 0

We take some gauge on PT'M and write the connection form in the chosen gauge as

W W) Wl
w=| wh oWl oWl
wh Wi wj

note that the component forms are forms on PTM. It follows from the conditions for a
Cartan connection that the forms w}, wi, w$ must be linearly independent. The equations
for the development of a curve o in PT'M into PT(P™) give

aél - bz(fz - Uiél) = <O",Ldé>, C;(fj - Ujél) = <O",bd6>

for some functions a(t), bi(t), ¢;(t). The compatibility conditions therefore require that
if o is vertical (6, w() = (¢,wd) = 0, while if o is a lift (¢, w)) = 0. It follows that w} is a
linear combination of the dz® and each wy is a linear combination of the contact forms

dz? — y/dzt, which we will denote by #7. We can set w} = ardr! + ;0% and wi = ﬁjiﬂj
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for some functions «, and B;- on PT'M, where oy # 0 and (ﬂ;) is non-singular since the
w§ (in particular) must be linearly independent. Then a change of gauge with

1 0 1 0 ) 03t
kl = koal, kz = koaz‘, kj = kO/Bj7

and for m even

kg = (an det(g)) /"D,

while for m odd '
k) = |ay det(8])| 71/ (MY,

makes wcl] = dz! and wé =6

This does not fix the gauge: the remaining freedom is

1K) K I e
k=0 1 0 |, with &'=|0 1 0
0o 0 o 0o 0 4

A gauge transformation with such k takes w to wi — k¥dx! — k:?@j. We may therefore
choose kU such that w8 is independent of dz®, that is, such that w8 = k;dy’ for some
functions k;. This finally fixes the gauge; we call the resulting gauge the standard gauge
for the given coordinates.

Our standard gauge is not the same as Cartan’s in the case m = 2. In the last step he
uses kY to simplify w?, and then eliminates 6 from w{ — wi; but the first of these moves
does not work for m > 2, and the choice of gauge made above seems to be preferable
because it leads to a coordinate transformation rule between connections in standard
gauge which depends only on the general geometry of the spaces concerned, not on the

details of the connection forms.

A geodesic of this connection is a curve whose development satisfies fl — niél =0 and
n* = 0; that is, a geodesic is a curve whose tangents are annihilated by both 6% and
wt. Now we can write w} = A;dyj + Bidz!' mod(#*), where by linear independence (A;)
is non singular; so we may equivalently write w{ = Aé (dy? — fidz') mod () for some

functions f?(z®,%7). Then a geodesic is a solution of the system of m — 1 second-order
differential equations

Lt Iay

d(z1)2 " dat

To put it another way, the geodesics are the integral curves of the vector field

d 0 0 0

dxl ot Yow T gy

+ f°

we call this the second-order differential equation field corresponding to the Cartan con-
nection.
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4.2 The normal Cartan connection

We now show that we can fix the connection uniquely by imposing conditions on the
curvature; the connection obtained in this way is called the normal connection.

The process of choosing a normal connection is carried out in a coordinate system with
the connection in standard gauge; but we want the normal connection to be a global
connection, and the conditions imposed on the curvature form when specifying it must
respect this. Suppose that w, @ are the normal connection forms with respect to coordi-
nates (z%,3%), (£%,4") (where the transformation of the y is induced from that of the z:%);
thus @ is in standard form with respect to the coordinates ¢. Then there is a unique
gauge transformation which puts @ into standard form with respect to the coordinates
(%), and the gauge transform of & must be normal, that is, @ = k~'wk + k~'dk where k
is determined by the transformation rules for dz', #* and dy’ under a coordinate transfor-
mation. Then = k~1Qk. It will therefore be possible to work out the transformation
rules for the components of €2; and any condition on the components of €2 imposed in
the course of making w normal must hold for the corresponding components of Q.

The following conditions on the curvature satisfy this requirement:

0 =0

Q) is semi-basic;

! is semi-basic;

if we set Q) = K]Z:kldyk A 0 mod(dz® A dz®) then K,if =0 and Kkk =0;
o if we set Qf = L;l.al:c1 A 67 mod (6% A 0') then L¥ = 0.
(Recall that the Q5 are 2-forms on PT'M; semi-basic here means semi-basic with respect

to the projection PTM — M.) These conditions uniquely determine the coefficients of
the connection in standard gauge to be

w) = 0, wp=dz', wy=6"
2 1 ;
1 1 7
= ———dx — ——,0
w1 m+ 17 x m+ 1'Yz
1 1
| . pk
Yi T TV 1k
A A A 1
wy = dy' - f’dﬂc1 + (72 Tl 27) &
W) = odz'+ QZ‘HZ, w) = g;dzt + Qiﬂj
where 1 ) p )
o=l )

m—1 m + 1dz! (m—l—l)z’y

22



and

100 0ok _ 1 9%
Qj - Qaij Q]k - ay] - 28y]8yk’
with ‘
. . 6fl d . Pk
¢=2a;, )= 907 T w(ﬂ') + 775 -

The components KJZ i and L;- of the curvature which are used to fix the connection are
determined by the stated conditions and are given by
1

i b
(m — 1)5](1)1“

T 1 1 T A Tn, . i Ht
Kjkl = Ykl — —— 1 (5j’Ykl + 5k’YJl + 5l%k> ) Lj - (I’j
they are the quantities given earlier.

Since in general Q% # 0, the normal connection does not necessarily have zero torsion.

The calculations that lead to these results (including the demonstration that the condi-
tions on the curvature are gauge invariant) are given in an appendix.

The wj can be expressed in terms of the fundamental invariants of the corresponding
projective equivalence class of sprays, using the formulae found earlier. These can be
solved for the expressions occuring in the connection coefficients: one finds that

_mi—i-l'y = I} + 29"y, + oy,
_%HVi = I + ¢,
%~ %4-15;‘7 =TI + ¢ T, — y' Ty — o'y T
Vit — %ﬂ%ﬂ: +d) = L+ y T

—f = I+ kanlik; + Z/kylnlgl-
It follows that

wi = (I +y* T, )da

wjl- Hjladxa

Wi = dy'+ ([ — y' T, + T, — y'y T, )da?
w§ = (sz‘a — yil'[jla)daca.

We now consider w{ and w?. Using results obtained earlier we have

1 1 d 1

= o — () — ———~2
° m—1 m—i—ldml(w ('m—l—l)2’y

o 1y=2 1 = ~2)

S— (m_1R+S(F)+F

1
(-2
= —() T —R



As a function on T°M, R is homogeneous of degree 2, so o is homogeneous of degree 0;
moreover on u' = 1, bearing in mind the symmetry of MRy, we have

1 4 -
0=~ —— R +2Ruy" + Ryjy'y’).

Now Dﬁifab, while not a tensor, still satisfies the properties of the Riemann curvature in

the coordinate patch in which it is defined. In particular, by a result obtained earlier we
have

ubambc _
ou? ’
whence on u! =1
ayz ayz
It follows that
00 1 » %0 1
_1 _ . y =1 — R
0i = Qayi = —m(%u + 9 Rji), 0= 29yoy . m— 1mz3,
whence 1 1
Wt = Tm—1 (Ria + y"Ria)da?, W) = _mmiadxa'

So the connection form of the normal Cartan connection in standard gauge is

1 , 1
0 - (%M + yliﬁm)dxa ——%mdx“
m—1 m—1
dz? (I, + y*II,L Ydz® Hjladxa

d.%'i _ yidxl dyl 4 (Hlia _ yil-[lla 4 yknkz’a _ yikakla)dxa (Hjia _ yiHjla)dxa

This expression may be simplified further, though at the expense of carrying out what in
the context of the Cartan theory is an illegitimate gauge transformation. Even so, what
we are about to do is perfectly acceptable if regarded as a purely computational device
at this stage; we will explain the geometrical significance of the step later.

We denote by Y the locally defined (m + 1) x (m + 1)-matrix-valued function

1 0 0 0
0 1 0 0

y=| 0 - 1 01,
0 —y™ 0 1
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and define a new matrix-valued 1-form @ by @ = Y ~lwY + Y ~1dY, where w is the normal
connection form given above. Now

1 0 0 0
0 1 0 0
y-l1_-]0 ¢* 1 01,

0 y™ 0 1
whence

0 0 0 0

0 0 0 0

yldy =| 0 —dy* 0 0 |,

0 —dy™ 0 --- 0

and we find that 1
0 ——MNRy.dx
o= m—1
dz® e dx

Thus @ is formally identical to the normal Cartan connection form in the affine case,
though of course it is defined on PTM, not M. However, it is semi-basic over M, and
the coefficients II%, and PRy, are functions on T°M, homogeneous of degree 0. We may
therefore think of & as the restriction to u' = 1 of a (locally defined) form on 7°M. The
‘curvature’ of @ is the restriction to u! = 1 of

1 R
R 0 —m (mb[dd]dxc A d.’Ed + aTI;ngc VAN dl‘d)
0=
0 TP dxc A\ dx? + Dy A dat

We may therefore express the normal Cartan connection form in standard gauge as
YoY ! —Y~1dY, and its curvature as YQY ~!, with & and ) given above.

As we noted above, the normal connection is not necessarily torsion-free. For it to be so
we must have Qi = 0. A necessary condition for this to hold is that Lé» = 0. We show
that it is also sufficient. We know that if L;- = 0 then P2, = 0. Now Q¢ depends only
on the components Q¢ and does so linearly; moreover Qi is semi-basic. It follows that
if P2, =0 then Q% = 0. Thus Q} = 0 if and only if Lé- = 0, and the normal connection
is torsion-free if and only if the sprays of the corresponding projective equivalence class
are isotropic.

4.3 Coordinate transformations

Consider a coordinate transformation on M, from (z%) to (Z%), with the induced trans-
formation of the y*. Let (J') be the Jacobian matrix of the transformation, J its deter-
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minant.

With each coordinate system we have a unique gauged normal connection form, which we
can express in standard form with respect to the appropriate coordinates. By hypothesis
these two local connection forms are gauged versions of the same global connection
form, and are therefore related by a gauge transformation. Let w, @ be the two gauged
normal connection forms, and set w§ = kgwgkg + Eg‘dkg Then the gauge transformation
matrix (kg) is the transition function for the principal bundle on which the global normal
connection form lives, with respect to the open sets on which the coordinates are defined.

We can determine the gauge transformation simply by using the same trick as in the
previous subsection. Let us write Y for the matrix

1 0 0 0

0 1 0 0

0 —3% 1 0

0 —g™ 0 1

Then )
0 ——19%bcd92 )
Yoy + Y ldY = - = Q.

di® 2 dze
But just as in the affine case B
=g 'og+ g tdg

where g is the projection into PGL(m + 1) of the matrix-valued function

1 QOloglJ|

1
G = m+1 Ozb
0 Jy
It follows that w = k~'@k+k~'dk where k = Y¢gY 1. But Y and Y are both unimodular,
so we can express k as the projection into PGL(m + 1) of YGY ~L. It is self-evident that

this defines an element of H,,,1; it is easy to check, though it is not self-evident, that in
fact it defines an element of K, ;.

It would be possible to determine k explicitly from this expression, using the fact that
L it iy

but fortunately we do not need to do so. An alternative expression for k is given in the
appendix.
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4.4 'What happens when the spray is projectively affine

If the second-order differential equation field is projectively equivalent to an affine spray,
the connection w should reduce to a connection on M gauge equivalent to the normal
projective connection associated with the affine spray. But what could one mean by
‘reduce’? We can obtain a connection on M by pulling w back by any local section of
PTM — M. Of course, different sections will give different reduced connections; the
requirement is that the different reduced connections should all be gauge equivalent,
with the gauge transformation being taken from the gauge group appropriate to the
affine case, namely H,,;1; we call such a gauge transformation a gauge transformation
of the first kind. This will be the case if, for every transformation ¢ of PT'M fibred
over the identity, ¥*w is a gauge transform of w by a gauge transformation of the first
kind. An equivalent condition is that for any vector field V' vertical with respect to the
projection PT'M — M, Ly w should be infinitesimally gauge equivalent to w by a gauge
transformation of the first kind. That is to say, there should be a function H taking its
values in b,,,;, the Lie algebra of H,,,1, such that Lyw = [w, H] + dH (the equation
obtained by differentiating the gauge transformation equation at the identity). Now

Lyw=Vidw+d{V,w) =ViQ+ |w,(V,w)] +d(V,w),

and (V,w) takes its values in f,,, ;. So if V1 Q = 0 then w satisfies the requisite condition
with H = (V,w).

Now Y from the previous subsection does define a gauge transformation of the first kind,
and so the argument above applies equally as well to @ as to w. Thus the condition for
the connection to reduce to M can equivalently be expressed as V Q0 = 0. On the face
of it, this amounts to two conditions, namely D ; = 0 and 0Rpq/0u® = 0. The first of
these, the vanishing of the Douglas tensor, is just the necessary and sufficient condition
for the second-order differential equation field to be projectively equivalent to an affine
spray. But then II is independent of u?, and therefore MRy is independent of u®.

We have shown that a necessary and sufficient condition for the second-order differential
equation field associated with the normal Cartan connection to be projectively equiva-
lent to an affine spray is that the curvature satisfies V12 = for all vector fields V on
PTM vertical over M; and that this latter condition is necessary and sufficient for the
connection to be reducible to a projective connection of affine type. When the condi-
tion V1 = 0 holds we may choose any local section of PT'M over M to obtain the
reduced connection form. The obvious choice is y* = 0, and with this choice the reduced
connection is the normal Cartan connection associated with the affine spray in standard
form.
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5 The Cartan bundle

In our investigation of projective equivalence classes of symmetric affine connections [4]
we demonstrate how any such class of affine connections gives rise to a normal Cartan
projective connection on the Cartan bundle CM having the same geodesics. In the present
paper we have seen how to construct a Cartan connection corresponding to more general
families of paths — those generated by an arbitrary reversible spray on T°M rather than
by the geodesic spray of an affine connection — and so it is natural to look for a similar
geometric interpretation, involving suitable bundles, in this more general situation.

We have expressed the normal Cartan connection in gauged form, but with the implicit
understanding that there is a global Cartan connection on a principal K,,4i-bundle
over PT'M of which the gauged connection is a local representative; and in effect we
defined this bundle when we gave its transition functions corresponding to coordinate
transformations. In the affine case we carried out a similar procedure to obtain the gauged
normal projective connection before giving an explicit description of the principal bundle
which is the home of the global connection. This is the Cartan bundle CM, which is a
principal H,,+1-bundle over M. We wish now to describe explicitly the carrier of the
global connection in the general case. As a space it is in fact CM again — but of course
CM with a different bundle structure. As we now show, CM is a principal K,,1-bundle
over PTM; and by computing the transition functions for it in this new guise we will
show that it is the bundle found implicitly through the normal connection calculations.

The Cartan bundle CM consists of the Cartan simplices of the Cartan algebroid WM,
that is, the simplices with first element a multiple of the global vector section ey of
T: WM — M. Let [(,] be a Cartan simplex of WM at some point = € M, so that (g is
a multiple of (eg),. Now (; is an element of W, M independent of (eg),, and therefore
determines a non-zero element of T, M under p : WM — TM, the anchor map of the
Cartan algebroid. By projectivizing we obtain a unique element of PT, M corresponding
to the simplex element [(1]. Let ¢ : CM — PTM be the map so defined. We show that
¢ is the projection map of a principal K,,+1-bundle structure on CM. We define a right
action of K,,41 on CM as follows. First we consider a transformation of frames ((,) of
the form (Co) — (Co) Where

Co=kSCo, Ci=kiG +EC, &=k

where k§ki det(k:;'-) % 0; we then projectivize. The corresponding transformation of

simplices defines an element of K, 1, and [(,] is a Cartan simplex if [¢,] is. We obtain
in this way an action of K,,11 which is clearly an effective right action. Now p(eg) is
the zero section of T'M, so the orbit of a point of CM under the action of K,,,+1 is just a
fibre of the projection ¢ : CM — PTM.

We can define local sections of ¢ as follows. Given coordinates (z®) on M, and adapted
coordinates (z®) on VM, we obtain the global section ey and local sections e, of WM —
M as the images of T and 9, respectively. In a coordinate patch on TM where u' # 0,
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so that we can use coordinates (z%,%%) on PTM, we set
o=eo, G=e+y'e (=e;

then [(,] is a local section of <. Thus ¢ : CM — PTM is a principal K,,1-bundle. We
call CM with this bundle structure the projective Cartan bundle.

Notice that ¢, = Y%es. We showed in [4] that the transition function for the Cartan bun-
dle CM relative to local trivializations (over M) of the form [e,] is given by projectivizing
the GL(m + 1)-valued function G where

1 QOloglJ|

1
G = m+1 Oxb
0 Jo

Thus the transition function for CM relative to local trivializations (over PT'M) of the
form [(,] given above is the projection into PGL(m + 1) of YGY !, which is exactly the
transition function obtained earlier by consideration of the normal Cartan connection.
Thus the global normal Cartan connection of any projective equivalence class of sprays
is a connection on the projective Cartan bundle.

We will now give an interpretion of this construction in the light of Cartan’s approach.

As we have pointed out, Cartan’s study of projective connections [1] covers both the affine
and the general cases, although he describes the latter explicitly only when m = 2. In the
affine case, he envisages a projective space attached to each point of the manifold. Our
interpretation of this is that, for each point x € M, we should study the m-dimensional
projective space PW, M; this space has a distinguished point [(eg),], the point at which
the space is ‘attached’ to M. The geodesics of the connection are the curves in M whose
developments into these projective spaces are straight lines.

In the more general case, we can no longer describe the developments of curves into a
single projective space at each point. Instead, we have to use a family of projective spaces
at each point, with the family parametrized by the set of rays (1-dimensional subspaces
of the tangent space) at that point: the projective spaces will therefore need, not just a
distinguished point, but also a distinguished ray through that point. This is consistent
with Cartan’s view in [1], where he takes as a base manifold not M itself, but instead
the ‘manifold of elements’, where an ‘element’ is a ray at a point.

This suggests that we should consider the pull-back bundle 737 (7) : 73 (WM ) — T°M.
The canonical global section eq : M — WM gives rise to a global section of this pull-back
bundle which we will continue to denote by eg. There is now, however, a distinguished
1-dimensional affine sub-bundle 7y C 757 (WM), defined by specifying that (v,() € T
whenever p(¢) = v: here we consider the pull-back as a fibre product 73;(WM) =
T°M X WM. Any section of Ty — T°M maps, under p, to the total derivative section
T of 737 (TM) — T°M, and any two such sections differ by a multiple of eg.
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We now projectivize this construction, both in the fibre and in the base, to give the pull-
back bundle 7},(7) : 73,(PWM) — PTM where mpr : PTM — M and 7 : PWM — M
are the projective tangent bundle and projective Cartan algebroid respectively. This
new bundle also has a global section which we continue to denote by [eg]; thus each
projective fibre of 7},(PWM) has a distinguished point, the image of this global section.
But now each fibre also has a distinguished line containing that point: we define P7y; C
v (PWM) by specifying that ([v],[¢]) € P7)y if either [p(¢)] = [v], or else p(¢) =0 (so
that, in the latter case, [(] = [eo]., and then ([v], [(]) is the distinguished point in the fibre
at [v]). Another way of constructing P73, would be to take the 2-dimensional linear hull
of the affine sub-bundle 73/, giving a projective line in each fibre of 737 (PWM) — T°M,
these lines then map consistently to lines in the fibres of 7},(PWM) — PTM.

We construct the pull-back bundle 73,(SywM) — PTM in the same way: this is, of course,
a principal PGL(m + 1)-bundle. Then the projective Cartan bundle ¢ : CM — PTM
is the sub-bundle of 7},;(SywM) — PTM containing pairs ([v],[(s]) where [(o] is the
distinguished point and [(;] is some other element of the distinguished line, so that
[Co] = [eo]z and [p(¢1)] = [v] (here, of course, (y and (3 must be linearly independent, so
the case p(¢1) = 0 does not arise).

6 The projective connections

In this section we will show how to construct the normal Cartan connection form of a
projective equivalence class of sprays from the BT W-connection, at the global level.

Our plan is to use the same general approach as in the affine case [4]. There we start with
a TW-connection on the volume bundle VM giving rise to a gl(m+1)-valued Ehresmann
connection form on the frame bundle F(VM) — VM, and we show how to construct
from it a Cartan connection on the Cartan bundle CM — M, such that the geodesics of
the Cartan connection are precisely the geodesics of the projective equivalence class of
symmetric affine connections associated with the T'W-connection. In particular, the nor-
mal T'W-connection corresponds under this construction to the normal Cartan projective
connection.

In the more general case we will limit our ambitions to generalizing this last step of the
affine programme; that is, we will deal only with the normal connections. Now, therefore,
we will start with the BT W-connection on the volume bundle, and we will show how to
construct from it the normal Cartan connection as a global Cartan connection form on
the projective Cartan bundle ¢ : CM — PTM.

6.1 Passing to the quotient

The first step of the process can be described in quite general terms.
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Consider a manifold A/ with reversible spray S and corresponding Berwald connection
V, such that there is defined on N a nowhere-vanishing complete vector field X such
that

e N is fibred over an m-dimensional manifold M where the fibres are the integral
curves of X;

e the complete lift X© of X to TN satisfies £ycS = 0;

e the vertical lift XV of X to T°N satisfies £LyvS = X© — 2A.

The Lie derivative conditions are modelled on the first two conditions for a BT W-spray,
of course.

Let £ : N — M be the projection. Note that the vector fields X© and XV define an
integrable distribution on TN whose leaves are the fibres of the projection &, : TN —
T M. The inverse image of the zero section of T M under &,, £,1(0), is the 1-dimensional
vector sub-bundle of TN spanned by X (considered as a section of 7 : TN — N).
Denote by TXN the complement of £,1(0) in TV} it is an open submanifold of TN,
fibred over NV, contained in T°N'. We denote by 777 : T“N — N the restriction of 7y to
TXN.

We denote by ¢; the 1-parameter group on N whose infinitesimal generator is X.

Let FN be the frame bundle of N, 73-(FN) its pullback over TN. We define a group
structure on R? x R, x R, where R, is the multiplicative group of non-zero reals, by
(g,7,8,8)- (¢, r' 8", ') = (q+¢',rs’ +1', 55, tt"). This group acts on 7x-(FN) to the right
by

Q;Z)(q,r,s,t) : ('T) u, {ea}) = (¢qx’ ¢q*(5u + T’Xx), {t¢q*ea})-

Note that this action is fibred over the action 1 of R? x R, on T\ given by
Digrs) + (2,1) = (Gg, Su(su+1Xy)).

This action leaves TN invariant, and the quotient of T*A\ by it is PT M. Furthermore,
the ¢ action commutes with the right action of GL(m + 1) on 73/(FN), and leaves
T (FN) invariant. Let Sy (PTM) be the quotient of 7%*(FN) under the ¢ action; it
is a principal fibre bundle over PT' M with group PGL(m+1), and for any a € GL(m+1),
7XoR, = Ro(a)OﬂX where 7% : T3 (FN) — Sy (PTM) and 0 : GL(m+1) — PGL(m+1)
are the projections.

Introduce local coordinates (z%,u®, z§) on 7x,(FN), where for a frame {e,}, e = z805.
The infinitesimal generator of the 1-parameter group %, 0,1,1) on Txr(FN) is the vector

field ¥ where 9 axe 9 axe 9
U =X p ) :
Oz tu 0B Oue s Oz Oz
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The generator of ¥(g.1,1) 18

0
HE=X—r0
ou’
while that of g g es 1) 18
% 0
A =u*——;
" ue’

= is formally identical to XV, and A to A, but both are vector fields on 75(FAN).
The generator of 9 (g1 ¢t) is the vertical vector field on the GL(m 4 1)-bundle 75/(FN)
corresponding to the identity matrix I € gl(m + 1), that is

a0
The pairwise brackets of the vector fields ¥, =, A and IT all vanish except that =, A] =Z.
These vector fields, when restricted to 77*(FA), are linearly independent, and span an
integrable distribution D there whose leaves are just the orbits of the ¥, cs (t) action.
The distribution is invariant under ¢ 11 +1). The leaves of D, quotiented by the action
of 1(0,0,41,41), are the fibres of the projection 7 : TiX (FN) — Sy(PTM).

With respect to the Berwald connection V, any curve ¢ in T°N has a horizontal lift o
to 737 (FN) starting at a given frame {e, } at o(0), defined as follows: o' (¢) is the frame
at o(t) obtained by parallelly transporting {e,} to o(t) along o; a frame field { £, } along
o is parallel if V4FE, = 0. Thus any vector field Z on T°N has a horizontal lift ZH to
75 (FN); in particular the horizontal lift (X ©)H of X is given by

0 0X®* 0 0
C\H _ Jé; . 9
(XV)" = Xa_axa_ +u 527 Juo z 05X e
where of course
0 0 o*re
: _ o« _ « o
if S=u oo or e then Fﬁw = 5B

Thus

G B,
C\H _ a o
v — (X9 _xg(aﬂ + 7(SX)—(%C%.

Now for any vector field X on N and Berwald connection V, the condition that £ yvS =

X© —2A, in coordinates, is
ox«
0P Loy X7 = 95;

so this condition is equivalent to
¥ — (X9 =T,
We denote by w the connection form on 73(FN) corresponding to V; in terms of local

coordinates the matrix components of w are given by

wg‘ = ’ﬁf&x%dme + :E:dxg
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where the matrix (Z§) is the inverse of the matrix (zf). A straightforward calculation
shows that the condition £ xcS = 0 entails that Lyw§ = 0 (it would be natural therefore

to say that X© is an infinitesimal affine transformation of the Berwald connection). It
is also the case that Lzwj' = 0: we have

ory,
Lzw§ = 18 <XA3_6A6> w¥dat,
u

and it follows from the coordinate form of the condition ¥ — (X©)H = It above, on
differentiating with respect to u*, that the coefficient vanishes. Furthermore, £ Aw =0
by homogeneity, and Liw = [I,w] = 0.

We now restrict to TN *(FN). We can write any vector field in D in the form Z =
U+ g= + hA + EIT, so that

Lrw=(fLy + gLz +hLx +kLpt)w + (W, w)df + (Z,w)dg + (A, w)dh + (IT,w)dk.

But (Z,w) = (A,w) = 0, while (¥,w) = (I, w) = I. Tt follows that Lzw = I(df + dk),
that is, for any Z € D, Lzw is a multiple of the identity element of gl(m + 1). Finally, w
is invariant under 9 +1,1) because S is reversible by assumption, and under ¥ 1,+1)
by inspection.

We can therefore define an sl(m + 1)-valued 1-form @ on Sy (PTM) as follows: for
Q€ Sy(PTM), w e ToSy(PTM),

(w,wq) = (v, 0xwp)

for any P € 7" (FN) such that 7X(P) = @, and any v € Tp(rix*(FN)) such that
X0 = w, Where 04 : gl(m—+1) — sl(m+1) is the homomorphism of Lle algebras induced
by o: GL(m + 1) — PGL(m + 1); @ is well-defined because o.wp(v) is unchanged by a
change of choices of P and v satisfying the same conditions. We have 7X*& = o,w, and

so for any a € GL(m + 1),

T (By@) = By(rtw) = Ry(o.w)
= ( w) = ox(ad(a™)w) = ad(o(a) ")oww
= " (ad(o(a) @)
is surjective, RY @ = ad(o(a)_l)d). Moreover, for any A € gl(m + 1)
we have 17X AT = (0,A)T, and therefore

and so since 1%

D((0n(A)F) = (¥ @)(AT) = o,(AT) = 0. A.

Thus @ is the connection form of an Ehresmann connection on the principal PGL(m+1)-
bundle Sy, (PTM).

We now turn to a further consequence of the condition £yvS = X — 2A. We can
regard X, which is a vector field on NV, as a section of 73T, and therefore calculate its
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Berwald covariant differential: using the coordinate form of this condition we find that

0
VX =da® ®@ —.
e Ox®
We also have for the total derivative T = u“09/dx“
0
VT =% ® —
e ox™

where as we explained in Section 2, ¢ is the 1-form du® + ngxﬁ , so that {dz®, ¢~}
is the local basis of 1-forms on TN dual to the local basis {H,,V,} of vector fields
associated with the Berwald connection. With an eye to the description of the structure
of CM — PTM given in the previous section, we seek those vector fields n on T°N with
the properties that V, (fX) = 0 for some non-vanishing function f, and V, (¢T+hX) =0
for some functions g and h with g non-vanishing; or equivalently, with the properties that
V,X is a multiple of X, and V,T is a linear combination of X and T. Such 7 must
satisfy (n,dz®) = AX® and (n,¢%) = pX* + vu®. It follows that » must be a linear
combination of X©, XV and A.

Note that X and T are linearly independent over TXA. Let us denote by FxN C
Tﬁ*(}"]\/ ) the sub-bundle consisting of those frames whose first member is a multiple of
X and whose second member is a linear combination of T and X. Then at any point
P € FxN, we have Hp N Tp(FxN) = (XOB (XV)H AR} that is, the horizontal
subspace at P (the kernel of wp) intersects the tangent space to FxN at P in the
3-dimensional subspace spanned by the horizontal lifts of X€, XV and A to P. But
(XVH ==, AH = A and (XO)H = & — I, Thus kerwp NTp(FxN) C Dp; so when we
pass to the quotient, at any point @ € 7% (FxN) we have ker &g NTg(m* (FxN)) = {0}.

6.2 The connection forms

We can apply the above results with N' = VM, X =T, S the BT W-spray of a projective
equivalence class of sprays. The manifold M is just M, and Sy (PTM) is w3,(SwM), a
principal PGL(m + 1)-bundle over PTM. Then @ is an Ehresmann connection form on
T (SwM) — PTM. Now the projective Cartan bundle CM — PTM is a sub-bundle
of 3, (SywM) — PTM. This sub-bundle has codimension 2m — 1 = dim(PTM), and
so the restriction w of @ to CM will define a Cartan connection if the intersection (in
T(m3,(SwM))) of kerw and TCM contains only zero vectors ([11], Proposition A.3.1;
[7]). But CM is the image in 7}, (SwM) of the sub-bundle of 75 F (VM) consisting of
those frames with first element a multiple of T and second a linear combination of T
and T, so this follows from the results of the final paragraph of the previous subsection.

The Ehresmann connection form @ of the BT W-connection in the coordinate gauge (9,,)
is given by
1
0 — 2R da¢
- m—1 .
W(0a) = ’
(%) tdz*  TIAdac + 68 (2%) " da®
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this is formally the same as in the affine case, but it must be borne in mind that wy,) is
a local matrix-valued 1-form on 7T°M rather than on M; it is semi-basic over T°M — M.
We first change the gauge to (T, d,); we obtain

1

(29)"1da® P "Ry dz”
Wr,0.) =
dz® H2dze + 6§ (29) 1 dz?
0 — "Ry dz’
= (%) 'da®) + m-l
dz® T da®

The Ehresmann connection @ on the simplex bundle 7},(SywM), in the gauge [eq], is

therefore .

m—1

0 — "Ry da”

Wlea] =
dx® 1 dx¢
To obtain the Cartan connection form we need to change the gauge to [(,] where
o=eo, CG=e+y'e, §=ei

the result is

. 1
0 - (%M + yliﬁm)dxa ——%mdx“
m—1 m—1
dz? (I1, + y*IL,L )dae Hjladxa ’

da' —y'dat dy' + (T, — y' T, + YT, — o'y T )dat (T, — y'TL, )dat

the connection form of the normal Cartan connection in standard gauge. Indeed, the
last step is just the inverse of the illegitimate gauge transformation of Subsection 4.3,
and we see that the simplified connection form introduced there is Wi, .

Finally, we review the result of Subsection 4.4 — what happens when the spray is affine
— from the present point of view. We have in any case a global Cartan connection form
w on the manifold CM, which satisfies the defining conditions

1. the map wy : T,CM — sl(m + 1) is an isomorphism for each p € CM;
2. Rjw = ad(k™!)w for each k € K,;,+1; and

3. w(A") = A for each A € &, 41, where £, ;1 is the Lie algebra of K,,,1 and where
At is the fundamental vector field corresponding to A.
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A Cartan projective connection form in the affine case is a form w on the same manifold,
satisfying the same conditions but with H,,;1 replacing K,, 1, and with condition (3)
being replaced, explicitly, by

3a. w(A}) = Aforeach A€ b, , whereb,, ., is the Lie algebra of H,, ;1 and where
At is the fundamental vector field corresponding to A.

Now w is the restriction to CM of the Ehresmann connection form & on 7},(SywM); and
@, being an sl(m + 1)-valued connection form, satisfies ©(A") = A for all A € sl(m +1),
and in particular for all A € H,,1;. The submanifold CM C 7},(SywM) is not invariant
under the action of Hy,11 on 7}, (SywM), and so the restriction of the fundamental vector
field A" to CM is not tangent to CM and, in particular, is not the same as A¥. It is,

however, easy to check that
(AT = w(Ah)

at all points of CM for any connection form w arising in this way: thus, in order for w to
be of affine type, it is enough for the condition that Rjw = ad(h~!)w for each h € H,,11
to be satisfied. The differential version of this condition is that £ 1w = [w, A] for all
A € H,,,1; if we express this in terms of the curvature Q of w it becomes A*1Q = 0, so
this is the necessary and sufficient condition for w to be of affine type. Since b, /€11
parametrizes the vertical subspaces of PT'M — M at each point, and since necessarily
At 1Q =0 for A € K, 41, this condition can be seen to be essentially equivalent to the
local one found in Subsection 4.4.

Appendix: determination of the normal Cartan connection

In this appendix we give the detailed calculations leading to the normal Cartan con-
nection using the curvature conditions from Subsection 4.2, which we repeat here for
convenience:

. Q8 =0;

e Y is semi-basic;

] is semi-basic;

if we set Q; = K]Z:kldyk A 0 mod(dz® A da®) then K,fij =0 and Kllgk = 0;

if we set Qf = L;dxl A 67 mod (6% A 0') then L¥ = 0.

The connection form in standard gauge is given by

0 0 0

wy wi wj

w=| w wi wjl»
wy Wi wj



where w{ = dr!, Wi = 0%, W) = K;dy’, and W} = A;-(dyj — fidz') mod(6*) where (A;) is
non singular.

We first consider ¢, leaving ) until later. It is clear from the gauge transformation
formulee that if Qf = 0, then Qf = 0 also, so making this part of the torsion zero is a
valid first step in determining a normal connection.

We now proceed to make the Qf zero. First,
Qf = da' A (W) — wi) +w]1- NE
in order for this to be zero, it must be the case that
Wy —wi = Mz’ + N0, wi = —Njda' 4+ N6
for some functions A, A; and Aj, with Ap; = Aji.
Next,
Q) = db'+ 6" Nw + wi Adat +wif?
= —(dyi — w’l) Adz' + (wé — 5;@8) A6,
For this to be zero we must first have that w! = dy’ — fidxr! mod 6’ (in other words, Aé» =
§%), and that w}—&jwy is semi-basic (take the inner product with §/8y*). (The component
forms of the connection, and also of the curvature, are forms on PTM; semi-basic will
always mean semi-basic from this point of view). Then if we set w} = dy* — fidz! + u;@j

we must have

% 1 i nk : i
jdx + l/jkﬁ Wlth l/k‘j = I/jk"

Now w takes its values in sl(m + 1), so

7 i .0 __

0=w) +wl +w} = (m+ 1wy — (\dz' + N0") + pida’ + 7,07,

and therefore '
wg =0, A=pu, N= I/JJZ
We must now consider gauge transformations between connections in standard form in
more detail. Take a coordinate transformation on M, from (z%) to (2%), with the induced
transformation of the y’. Let (J{) be the Jacobian matrix of the transformation,

oz®

T =55 =det(Jf).
Then
dit = (J}+ JP)dat + TEeF
d@t = (Ji+ JiyP)dae' + Jio"
T+ Ty

N . Ji 4 Jiyk .
0 = | J - |55 J) )¢
(- (5 2
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Suppose that we have two (gauged) connection forms, one associated with each of the two
coordinate systems, each in standard form with respect to its coordinates, and both hav-
ing zero in the top left-hand corner. Suppose further that these are local representatives
of the same global connection form, so that they are related by a gauge transformation.
Then the gauge transformation relating them is uniquely determined in terms of the
coordinate transformation, and is given by

k= koL + Jiy®), k) =kaJ), ki = ko8, koda® = kjdky,

where
10 J—1/(m+1) m odd
07 £|J|-VimtD m even

with ‘ -
i i Ji+ Jry 1
P =Jj - <4J11 n Jliyk> Jj-

Note in particular that dz! is a linear combination of dz' and the 6%, while dg* depends
on all of dy?, dz' and 6*.

For a curvature form with Qf = 0, and with k& as described above, we have

EIQE = 0 kI =« 0 O = 0 ki ki
0 O k; 0 Q; 0 O k;

98 Q(l) *

= 0 * *

0 kikpQF kiklQF + kiELOF

where Q9 is a linear combination of Q3, 99, Q! and Qj. Tt follows, first of all, that
requiring that €2} is semi-basic is a coordinate independent condition; our next move is
to impose it.

We have
Q= dwl 4+ 0 AW+ (Wi —diwl) AWk
= —df'ndzt + dps N 07 — pidy’ A dz' +0° AW + (Wi — Siwl) AWk,

wh — iwl = (pb + SN da! + (V) + 5EA,)0".

Now we cannot make 2] vanish, but we can ensure that it is semi-basic. In fact

0 i _ of’ i i 1 Ouj, i i i k
a—ijﬁl——<a—yj+2uj+5j)\>dm +<8_yj_ jk—éj)\k—ékwlj 0,

9 0
Wiy = @,wl .
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So we must take

. 4 oft . . 4 4 8%
25+ G =55 = 20 Vet e+ 0wy = 5
where A
. afi
v _ 1
V= T2 oy

On taking the trace of the first equation, recalling that A = !, we find that

A= mLH% ="
and so
M= = O
Thus o A A 1
Vik + 05 Ak + 0w = Yk — 0k,
where

: 87,@ _ a’Y]i'

2

_ Yk _ 1 —Ad

Taking two traces in the equation for V;- &> using its symmetry, and recalling that \; = I/]]-‘i,
we obtain

m
A = r
MAE + wig mrl k
2
2 -1 = I
g+ (m— 1wy 1Lk
whence )
A = =0
k m+1’7k7 Wik

for m > 2, and therefore
Vik = Vjk m1 1 i Yk k7V5)-

We now turn to Q;
A A . ) . 0 A )
Q) = dwi +wp Aw; + 0" ANwj +wi Aw;.

We wish to calculate the terms in Q; involving dy*, which we do as follows. Taking into
account the terms we know to be semi-basic we have

0 ) 0 ) 7 7 0
ByF Qf = ByF dw' — 750" + 6. (= Njda + X0"), T = <a—yk,w]°.>.
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Now

0 7 7 7 1 7 1 7 1 ) { l
gyt = e = L (o) = i) e+ (o= g (O 00) 1)),

Vi = 0/0y*. But L’Vkﬁl = —5fgdx1, whence

8y + 0ty )el, L S Ly
]Vkl l’7]k> fy‘]kl 8yl Ykl 8yl

. 1 4 1
Loy = S donda + (’YJZ"“’ “i

So finally

0 i i 1 i i i s

This means that
Q= Klpydy" A 0" (mod da® A da®)
with
Ki, =~ —L(az‘- + 3k ) + At — i
Gkl = Yjkl ma 1 VKl 1Vijk kAl 1Tjk
We will now find the transformation rule for KJZM To do so, we need to demonstrate

a relationship between 99%/dy' and k; We have 6% = kgﬁfel, whence, on taking the
exterior derivative,

dif ndi' = = ——dy' Adz' (mod dz® A da?)
vy O0x

= KkFdy' Adx'  (mod da® A da?),

so that 3
9y Tk
oyt~ M
for some non-vanishing function ¢. Now
IA(JZ:klko‘ NG = cl_ffnl%f(jkldym AO"  (mod dz® A dab)

= kikSKDudy* A 0" (mod da® A dz®)
using the fact that Qf is semi-basic. Thus

A;kld@k A él = Cil]%:'k;klrcnk? gmn’
from which it follows that R’fkl = 0 if and only if K}, = 0, and also that IA(,fu.Zl =0 if
and only if K};, = 0. We may therefore validly impose the condition that both of these
traces of this component of Qé vanish. These conditions give

+ A 0, — + ( 1A 0
— Tk = S m — — Tk = 0.
m+ 1’Ykl kl Ik ; m+ 1’Ykl kl kl
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It follows that
Aol = —

) :07
1 ke TH

and

. : 1 4 : :
Kl = Yim — o (5§’Ykl + 0751 + 5?%’1:) :

Note that with this choice K]i-k.l is completely symmetric in its lower indices and com-
pletely trace-free.

In the course of the argument so far we have shown that w9 and w? are semi-basic. Since
Q) is unchanged by a gauge transformation we can require that it is zero: for this to
be the case we must have w{ A dzt + wP A 07 = 0. So if we set w) = odz' + 0;0° then
w = gida! + 0,67 where 0j; = 0;j.

Since € takes its values in sl(m + 1), and Qf = 0, Q} + Q! = 0. Since Kfjk =0, Q! is
semi-basic, and therefore Q1 is semi-basic. Now Q? is a linear combination of 9, QJ, O}
and Q¢, all of which except the first we now know to be semi-basic. It follows that Q(f
will be semi-basic if and only Q9 is, and so we can validly impose the condition that Q9

is semi-basic. But
0 = dw? + ) Awi + W Awi,

whence

0
oyt

- do 00; ,
a1 Q? = Eviw? — (gidxl + Ql‘j@]) = (8yi — QQi) da?! + (63/? - Qz‘j) 67,

so that 09 is semi-basic if and only if

1 Do doj , 9%

SR L T

We have now determined the whole of the connection except for o. To fix it we go
back to Q¢, which is known to be semi-basic. We can therefore write Q} = Lé»dml A6
mod 6™ A §". Then

O = Lidi' AG7 (mod 6™ AG™)
= k%ja—@lzid NE d o™ A Q"
= Kk G Lide' A6 (mo )

= kikpLidz' A67  (mod 0™ A O™,

whence

A il Tk

where c is a scalar factor. Thus f/lg = 0 if and only if ng = 0, and we may validly impose
the condition that the trace of this component of 2] vanishes. Now

EJQI = LjH]
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_(of A ik s 1 d 1 ﬁ i
B <8xj - dml(fyj) T = (Q+ m+ 1daxt )+ (m+1)2fy o

= (9] - 0;0)¢
where <I>§- is the Jacobi endomorphism of the second-order differential equation field,

i _Of d ik
Oy =55t g () T

and we have set
1 d 1 9

mr 1 DY e
Thus LY = 0 if and only if (m — 1) = ®¢, and then

o=o+

A A 1 -
L= &% - o= 1)5;%.

The connection is now completely determined; it is the normal connection corresponding
to the given system of second order differential equations.
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