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Abstract

We derive a Cartan normal projective connection for a system of second-order ordi-
nary differential equations (extending the results of Cartan from a single equation to
many)); we generalize the concept of a normal Thomas-Whitehead connection from
affine to general sprays; and we show how to obtain the former from the latter by a
global construction. This completes a study of projective connections begun in [4].
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1 Introduction

This paper is the second of a pair devoted to the study of the relationship between the
two classical approaches to projective differential geometry. One of these is associated
almost entirely with the name of Cartan, and is described in ‘Sur les variétés à connexion
projective’ [1]. Many authors have contributed to the other, but for our present purposes
the most appropriate choice of representative paper is Douglas’s ‘The general geometry
of paths’ [5].

In our first paper [4] we discussed the affine case, the geometry of what Douglas calls
restricted path spaces; that is, the projective differential geometry of affine connections
and their geodesics, which is the subject of the first and longer part of Cartan’s paper. We
based our discussion of the path space approach on Roberts’s exposition [8] of the work
of Thomas and Whitehead, which is crystallized in the concept of a Thomas-Whitehead
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connection (TW-connection). We showed how to define intrinsically for any manifold M
a principal fibre bundle CM → M with group the projective group PGL(m + 1), m =
dimM , which is the carrier space of the global connection form of any Cartan projective
connection onM ; we called this bundle the Cartan bundle. We showed further how, given
a projective equivalence class of affine connections, to construct from the Ehresmann
connection form of the corresponding TW-connection a global Cartan connection form
on the Cartan bundle.

In the present paper we will extend these results to the case of a general path space,
that is, to the projective differential geometry of sprays in general. In doing so we
have had to face two problems. In the first place, though Cartan dealt in [1] with the
affine case in arbitrary dimension, his account there of the general case is restricted to
dimension 2. Secondly, the theory of the TW-connection applies only to the affine case.
We have therefore had to develop a theory of Cartan projective connections in the general
case for dimension greater than 2, and to generalize the theory of TW-connections from
scratch. On the other hand, the bundle constructions we used in the first paper turn
out, perhaps somewhat surprisingly, to serve their turn here as well, mutatis mutandis.
A preliminary account of some of our results has been given in [9].

What we have described above as Cartan’s theory of the projective connection in the
general case in dimension 2 actually appears in [1] as being concerned with a single
second-order differential equation

d2y

dx2
= f

(

x, y,
dy

dx

)

.

One interpretation of the theory is that it is a method of obtaining invariants of such
equations under coordinate transformations. From this point of view it is of course im-
portant to be clear what class of transformations is considered: it is the class of so-called
point transformations, that is, transformations of the form x̂ = x̂(x, y), ŷ = ŷ(x, y).
Thus dependent and independent variables are mixed up under the allowed coordinate
transformations, and it is this fact that creates the link with the projective differential
geometry of sprays in two dimensions. Likewise, our theory of Cartan projective connec-
tions in the general case in higher dimensions may be thought of as a method for finding
invariants of a system of second-order differential equations

d2xi

dt2
= f i

(

t, xj,
dxi

dt

)

under point transformations t̂ = t̂(t, xj), x̂i = x̂i(t, xj). It is therefore distinct from the
theory of invariants of such equations under the restricted class of transformations which
preserve the independent variable, that is, those with t̂ = t. There is a large literature on
the latter problem. So far as the study of systems of second-order differential equations
under point transformations is concerned, on the other hand, we need to refer to one
previous publication only, the paper by Fels [6]. In this paper the invariants of second-
order equations under point transformations are found by Cartan’s other method, the
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method of equivalence. Our interests are more geometrical and global than those of Fels,
but it may be reassuring to know that we obtain the same invariants as he does.

The paper is organized as follows. In Section 2 we review the projective geometry
of sprays, both in general terms and with reference to systems of second-order ordi-
nary differential equations. Section 3 contains the generalization of the concept of a
TW-connection, which we call the Berwald-Thomas-Whitehead projective connection,
or BTW-connection; it is based on the formulation of the conditions that determine the
normal TW-connection in terms of affine sprays that we gave in [4]. The Cartan theory
is discussed in Section 4, though the actual calculations leading to the explicit formulæ
for the normal projective connection are relegated to an appendix since they are com-
plicated and not especially illuminating. Section 5 deals with the Cartan bundle, and
Section 6 with construction of the Cartan connection form on the Cartan bundle from
the BTW-connection.

In our previous paper we defined, for a given manifold M , several associated manifolds;
these will reappear in the present paper, so we repeat their definitions here for ease of
reference.

• The (unoriented) volume bundle ν : VM → M is the set of pairs [±θ] where
θ ∈

∧mT ∗
xM is a non-zero volume element at x ∈M . We use adapted coordinates

(x0, x1, . . . , xm) on VM such that

θ = ±(x0)m+1
(

dx1 ∧ . . . dxm
)

x
, x0 > 0.

The volume bundle is a principal bundle over M under the multiplicative action of
R+ given by µs[±θ] = s1/(m+1)[±θ]; the corresponding fundamental vector field is
Υ = x0∂/∂x0.

• The Cartan algebroid ρ : WM → TM is the quotient of T (VM) by ΥC, the
complete lift of Υ to T (VM). It is a vector bundle — indeed, a Lie algebroid —
over M , with fibre dimension m+ 1, and admits a global section e0, the image of
Υ considered as a section of T (VM).

• The Cartan projective bundle P(WM) is the quotient of the Cartan algebroid by
the equivalence relation of non-zero scalar multiplication in the fibres.

• The simplex bundle SWM is the quotient of the frame bundle of WM by the
equivalence relation of non-zero scalar multiplication in the fibres. A point of
SWM over x ∈M is a reference (m+ 1)-simplex for the m-dimensional projective
space P(WxM); SWM is a principal PGL(m+ 1)-bundle over M .

• The Cartan bundle CM ⊂ SWM consists of those simplices with first element a
multiple of the global section e0 of ρ. It is a reduction of SWM to the group
Hm+1 ⊂ PGL(m + 1) which is the stabilizer of the point [1, 0, . . . , 0] of projective
space Pm. The Cartan bundle is the carrier of global Cartan projective connection
forms in the affine case.
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Our dicussion of the Cartan projective connection is based on the account of Cartan’s
theory of connections given by Sharpe [11]. We repeat Sharpe’s definition of a Cartan
connection here for convenience. It depends on the previous concept of a Klein geometry.
A Klein geometry is a homogeneous space of a Lie group G, that is, a manifold on
which G acts effectively and transitively to the left. Let H be the stabilizer of some
chosen point of the manifold; then the homogeneous space may be identified with the
coset space G/H, and we may refer to the pair (G,H) as the Klein geometry. We
denote by g and h the Lie algebras of G and H. A Cartan geometry on a manifold M ,
modelled on a Klein geometry (G,H), is a right principal H-bundle P → M such that
dimP = dimG = dimH + dimM , together with a g-valued 1-form ω on P , the Cartan
connection form, such that

1. for each p ∈ P , ωp : TpP → g is an isomorphism;

2. for each h ∈ H, R∗
hω = ad(h−1)ω;

3. if A ∈ h then 〈A†, ω〉 = A, where A† is the vertical vector field on P generated by
A through the action of H.

A local section κ of P → M is called a gauge; the local g-valued form κ∗ω on M is the
connection form in that gauge. Given two gauges κ and κ̂ with overlapping domains, the
corresponding local g-valued forms κ∗ω and κ̂∗ω are related by the transformation rule
κ̂∗ω = ad(h−1)(κ∗ω) + h∗(θH), where θH is the Maurer-Cartan form of H and h is the
local H-valued function on M relating the two gauges.

Any curve σ(t) in P determines a curve 〈σ̇, ω〉 in g, which can be integrated up to give
a curve in G, and then projected onto a curve in G/H; the resulting curve depends only
on the projection of σ into M , and is called a development of the curve in M into G/H.
Let γ be a gauge on G/H: then we can express any curve in G in the form Rh(t)γ(ξ(t))
where ξ(t) is a curve in G/H and h(t) one in H. Then the development ξ(t) of a curve
x(t) in M , when expressed with respect to gauges for both the Cartan and the model
geometry, satisfies the differential equation

ad(h−1)〈ξ̇, γ∗θG〉 + 〈ḣ, θH〉 = 〈ẋ, κ∗ω〉;

this comprises dim g equations for dim g/h unknowns ξ and dimh unknowns h. If the
model geometry contains straight lines a curve in M is a geodesic if its developments are
straight lines.

We use the Einstein summation convention for repeated indices. Indices a, b, . . . range
and sum from 1 to m, indices α, β, . . . from 0 to m, and indices i, j, . . . from 2 to m.

2 Projective differential geometry of sprays

We review here the projective geometry of sprays. A useful reference for this material is
Shen’s book [12]; however, our approach differs from his in that we put more emphasis
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on the similarities between the general case and the affine case as described for example
in Schouten’s ‘Ricci-Calculus’ [10]. Douglas [5] also covers much of this ground of course.

2.1 Sprays and Berwald connections

We denote by τ ◦M : T ◦M → M the slit tangent bundle of M (TM with the zero section
deleted). Coordinates on T ◦M will generally be written (xa, ua). The Liouville field
ua∂/∂ua is denoted by ∆.

A spray S on T ◦M is a second-order differential equation field

S = ua
∂

∂xa
− 2Γa

∂

∂ua

whose coefficients Γa are positively homogeneous of degree 2 in the ua; if they are
quadratic in the ua (so that S is the geodesic field of a symmetric affine connection)
then the spray is said to be affine.

Homogeneity occurs frequently and is always with respect to the ua, so we will just say,
for example, that α is of degree 1. Moreover, the distinction between being positively
homogeneous and being homogeneous without qualification won’t be important in this
subsection, so we won’t repeat the qualifier ‘positively’.

The horizontal distribution associated with a spray is spanned by the vector fields

Ha =
∂

∂xa
− Γba

∂

∂ub
, Γba =

∂Γb

∂ua
;

Γba is of degree 1. It will often be convenient to denote the vertical vector field ∂/∂ua by
Va.

The Berwald connection (see for example [2]) associated with a spray S is a connection
on the pullback bundle τ ◦∗M (TM) → T ◦M . We will use tensor calculus methods, so we
write sections of τ ◦∗M (TM) as Xa∂/∂xa where the coefficients Xa are local functions on
T ◦M . The Berwald connection can be specified by giving its covariant differentiation
operator ∇ operating on ∂/∂xa (regarded as a local section of τ ◦∗M (TM), or vector field
along the projection τ ◦M ), together with the usual rules of covariant differentiation: in
fact

∇Ha

∂

∂xb
= Γcab

∂

∂xc
, ∇Va

∂

∂xb
= 0,

where the connection coefficients are given by

Γcab =
∂Γca
∂ub

=
∂2Γc

∂ua∂ub
;

they are symmetric, of degree 0, and reduce to the usual connection coefficients in the
affine case.
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Note that covariant differentiation with respect to the vertical vector field Va of any
tensor field along τ ◦M amounts simply to partial differentiation of the components of the
field with respect to ua; and that therefore if one takes a tensor field along τ ◦M and
partially differentiates its components with respect to the ua one obtains another tensor
field, with one more covariant index.

We will use index notation, so that (for example) if T is a type (1, 1) tensor along τ ◦M
and ξ a vector field on T ◦M , (∇ξT )ba is just written ∇ξT

b
a .

The so-called total derivative T is the vector field along τ ◦M whose coordinate represen-
tation is ua∂/∂xa; its covariant derivative in any horizontal direction vanishes.

The curvature of the connection is defined in the usual way, but can be broken down
into various components according to whether the vector field arguments are taken to be
horizontal or vertical. First, evidently

(

∇Va
∇Vb

−∇Vb
∇Va

−∇[Va,Vb]

) ∂

∂xc
= 0.

Next, we have
(

∇Va
∇Hb

−∇Hb
∇Va

−∇[Va,Hb]

) ∂

∂xc
= Bd

cab

∂

∂xd
,

where (since [Va,Hb] is vertical)

Bd
cab =

∂Γdbc
∂ua

=
∂3Γd

∂ua∂ub∂uc
.

This component of the curvature has no affine counterpart — in fact its vanishing is the
necessary and sufficient condition for the spray to be affine. It is completely symmetric
in the lower indices, is homogeneous of degree −1, and satisfies Bd

cabu
c = 0. It is called

the Berwald curvature.

Finally,
(

∇Ha
∇Hb

−∇Hb
∇Ha

−∇[Ha,Hb]

) ∂

∂xc
= Rdcab

∂

∂xd
,

where Rdcab, the counterpart of the usual curvature, is given by

Rdcab = Ha

(

Γdbc

)

−Hb

(

Γdac

)

+ ΓdaeΓ
e
bc − ΓdbeΓ

e
ac.

It has the usual symmetries, is of degree 0, and reduces to the ordinary curvature tensor
when the spray is affine. It is called the Riemann curvature.

We can also express the curvatures conveniently using forms. We write ϕa for the 1-form
dua+Γabdx

b, so that {dxa, ϕa} is the local basis of 1-forms on T ◦M dual to the local basis
{Ha, Va} of vector fields. Define connection forms ωab = Γabcdx

c; if Ωa
b = dωab + ωac ∧ ω

c
b

are the associated curvature forms then

Ωa
b = 1

2R
a
bcddx

c ∧ dxd +Ba
bcdϕ

c ∧ dxd.
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By taking traces of the curvatures we obtain tensors

Bab = Bc
cab, Rab = Rcacb.

The first is symmetric. The second is not in general symmetric; moreover, by the cyclic
identity

Rccab = −Rcabc −Rcbca = Rab −Rba.

By differentiating the formula for the Riemann curvature with respect to ue one obtains
the following relation between the two curvatures:

∇Ve
Rdcab = ∇Ha

Bd
bce −∇Hb

Bd
ace;

this is in fact part of the second Bianchi identity for the curvature taken as a whole.
From this formula, by taking a trace one obtains

∇Vc
Rab = ∇Hd

Bd
abc −∇Hb

Bac,

whence using the symmetry of Bd
abc

∇Vc
(Rab −Rba) = ∇Ha

Bbc −∇Hb
Bac,

which turns out to be useful later. Furthermore, it follows from the last equation but
one, again using symmetry, that

∇Va
Rbc = ∇Vb

Rac.

We will also be concerned with the associated tensor

Rab = Racbdu
cud = 2

∂Γa

∂xb
− S(Γab ) − ΓacΓ

c
b.

This type (1, 1) tensor field is often called the Jacobi endomorphism, because it is the
curvature term that appears in the Jacobi equation. It contains the same information as
the Riemann tensor, which can be recovered from it by use of the formula

Rdcab = 1
3

(

∇Vc
∇Vb

Rda −∇Vc
∇Va

Rdb

)

.

We denote by R the trace of Rab ; we have R = Rcdu
cud. It follows from the relationship

∇Va
Rbc = ∇Vb

Rac and the fact that Rab is homogeneous of degree 0 that ub∇Va
Rbc = 0,

whence
∂R

∂ua
= (Rab +Rba)u

b,
∂2R

∂ua∂ub
= Rab +Rba.

A spray whose Jacobi endomorphism has the property that for any v ∈ Tu(T
◦M), Rabv

b

is a linear combination of ua and va is said to be isotropic. For an isotropic spray Ra
b

takes the form Rab = λδab +µbu
a for some scalar λ and vector µb. Since Rabu

b = 0 we have
λ = −µbu

b, and then by taking the trace we find that (m− 1)λ = R, so for an isotropic
spray

Rab −
1

m− 1
Rδab = µbu

a,

with µbu
b = −R/(m− 1).
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2.2 Projective equivalence

Two sprays S, Ŝ are projectively equivalent if Ŝ − S = −2α∆, or Γ̂a = Γa + αua, where
the function α is positively homogeneous of degree 1 in the ua.

From the basic projective transformation rule it follows that the horizontal vector fields
associated with the spray Ŝ are given by

Ĥa = Ha − αVa − αa∆,

where

αa =
∂α

∂ua
;

αa is of degree 0, and uaαa = α. Furthermore,

Γ̂cab = Γcab + (αabu
c + αaδ

c
b + αbδ

c
a) ,

where

αab =
∂2α

∂ua∂ub
;

αab is symmetric and of degree −1, and αabu
b = 0.

By taking a trace in the equation for the transformation of the Γ c
ab we obtain (writing

Γa for Γbab)
Γ̂a = Γa + (m+ 1)αa,

whence the quantity

Π c
ab = Γcab −

1

m+ 1
(Γaδ

c
b + Γbδ

c
a +Babu

c)

is projectively invariant. Douglas calls it the fundamental invariant and says in effect
that every projective invariant is expressible in terms of it and its partial derivatives.
However, the Π c

ab are not components of a tensor, nor even of a connection, and this has
to be borne in mind when forming projective invariants from it.

Note that Π b
ab = Π b

ba = 0.

It may appear that if we set Γ = Γdd and take

α = −
1

m+ 1
Γ = −

1

m+ 1

∂Γd

∂ud

then the transformed spray has Π c
ab for its connection coefficients. However, Γ is not

strictly speaking a function: its transformation law under coordinate transformations
of the xa (and the induced transformations of the ua) involves the determinant of the
Jacobian of the coordinate transformation; however, it transforms as a function under
coordinate transformations for which the determinant of the Jacobian is 1.
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We will derive the projective transformation formulæ we require entirely tensorially; we
will however point out the simplifications that arise when one chooses the spray whose
connection coefficients with respect to some coordinates are the Π c

ab. We will denote
objects calculated in this way by setting their kernel letters in black-letter. Thus it
follows from the observation above that the traces of Π c

ab vanish that Bab = 0.

It follows from the vanishing of the traces of Π c
ab that Rc

cab = 0, and thus that Rba = Rab.

2.3 Projective transformation of the curvatures

An easy calculation leads to the following transformation formula for Bd
cab:

B̂d
cab = Bd

cab + αabcu
d + αabδ

d
c + αbcδ

d
a + αacδ

d
b ,

where αabc denotes a third partial derivative of α; it satisfies αabcu
c = −αab. Then by

taking a trace
B̂ab = Bab + (m+ 1)αab,

whence

Dd
cab = Bd

cab −
1

m+ 1

(

ud∇Vc
Bab +Babδ

d
c +Bbcδ

d
a +Bacδ

d
b

)

is a projectively invariant tensor — the Douglas tensor. It is symmetric in its lower
indices, of degree 0, it satisfies Dd

cabu
c = 0, and all of its traces vanish.

Since Bab = 0,

Dd
cab = Bd

cab =
∂Π d

ab

∂uc
.

The vanishing of the Douglas tensor is the necessary and sufficient condition for a spray
to be projectively equivalent to an affine one.

The projective transformation of the Riemann curvature is given by

R̂dcab = Rdcab + ∇Ha
α dbc −∇Hb

α d
ac + (ααbc + αbαc)δ

d
a − (ααac + αaαc)δ

d
b ,

where α c
ab is the difference tensor of the connection coefficients,

α c
ab = αabu

c + αaδ
c
b + αbδ

c
a.

Using the fact that ∇Ha
T = 0, so that multiplying by ua commutes with covariant

differentiation with respect to Ha, we obtain

∇Ha
α dbc = ud∇Ha

αbc + (∇Ha
αb)δ

d
c + (∇Ha

αc)δ
d
b .

We know that

αab =
1

m+ 1

(

B̂ab −Bab
)

.
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It can be shown that

∇Ha
B̂bc −∇Hb

B̂ac = ∇̂Ĥa
B̂bc − ∇̂Ĥb

B̂ac,

whence the transformation law for Rd
cab can be rewritten in the form

Ŝdcab = Sdcab −Abcδ
d
a +Aacδ

d
b + (Aab −Aba)δ

d
c ,

where

Sdcab = Rdcab −
1

m+ 1
ud (∇Ha

Bbc −∇Hb
Bac)

= Rdcab −
1

m+ 1

(

ud∇Vc
(Rab −Rba)

)

,

and
Aab = ∇Ha

αb − ααab − αaαb.

The modified Riemann curvature Sdcab has the usual symmetries, is of degree 0, and
reduces to the Riemann curvature in the affine case. We set Sab = Scacb; then

Ŝab = Sab +Aab −mAba,

whence

Aab = −
1

m2 − 1

(

Q̂ab −Qab
)

, Qab = Sab +mSba.

It follows that

P dcab = Sdcab −
1

m2 − 1

(

Qbcδ
d
a −Qacδ

d
b − (Qab −Qba)δ

d
c

)

is a projectively invariant tensor. It is the counterpart of the projective curvature tensor
of the affine theory, to which it reduces in the affine case. It is of degree 0; it has the
same symmetries as the Riemann curvature, and in addition all of its traces vanish.

Since Rab is symmetric with respect to a canonically parametrized spray, Sd
cab = Rd

cab,
whence Sab = Rab, and Qab = (m+ 1)Rab, so that

P dcab = Rd
cab −

1

m− 1

(

Rbcδ
d
a − Racδ

d
b

)

.

The Jacobi endomorphism of a spray S transforms as follows:

R̂ab = Rab +Abu
a −Aδab ,

where the vector Aa and scalar A are given by

Aa = 2Ha(α) −∇Sαa − ααa, A = S(α) − α2 = uaAa;
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Aa is homogeneous of degree 1. For the trace of the Jacobi endomorphism we have

R̂ = R− (m− 1)A.

Using these formulæ one can show that

W a
b = Rab −

1

m− 1
Rδab −

1

m+ 1
ua∇Vc

(

Rcb −
1

m− 1
Rδcb

)

is projectively invariant. It is called the Weyl tensor. It is tracefree and satisfies W a
b u

b =
0. The Weyl tensor bears the same relationship to the projective curvature tensor as the
Jacobi endomorphism does to the Riemann curvature: that is to say, P a

cbdu
cud = W a

b ,
and P abcd can be expressed in terms of second vertical covariant derivatives of W a

b .

Recall that an isotropic spray is one for which

Rab −
1

m− 1
Rδab = µbu

a.

From the transformation laws it is easy to see that the property of being isotropic is
projectively invariant. Moreover, by substituting into the expression for W a

b and using
the evident fact that µb is homogeneous of degree −1 we see that W a

b = 0 for an isotropic
spray; the converse is obvious. Thus a spray is isotropic if and only if W a

b = 0; and
equivalently if and only if P a

bcd = 0.

We will also need the following result. If we carry out the projective transformation with

α = −
1

m+ 1
Γ

we obtain
1

m− 1
R =

1

m− 1
R+

1

m+ 1
S(Γ) +

1

(m+ 1)2
Γ2.

Whenm > 2 the vanishing of both the Douglas and the projective curvature tensors is the
necessary and sufficient condition for a spray to be projectively flat, that is, projectively
equivalent to a spray that can be written ua∂/∂xa in some coordinates. In dimension 2,
however, a tensor with the symmetries of the Riemann tensor is determined by its traces,
and if they vanish so does the tensor; so the projective curvature tensor is identically
zero in dimension 2. We will therefore assume that m > 2 hereafter.

2.4 Systems of differential equations

The base integral curves of a spray are the solutions of the equations

ẍa + 2Γa(x, ẋ) = 0;

all sprays in a projective equivalence class have the same base integral curves up to
change of parameter which preserves sense. Thus a projective equivalence class of sprays
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determines, and in fact is is determined by, a path space, that is, a collection of paths
(unparametrized but oriented curves) in M with the property that there is a unique path
of the collection through each point in each direction. A choice of spray in a projective
equivalence class amounts to a choice of parametrization of the corresponding paths;
Douglas calls the parametrization resulting from the choice with Γabc = Π a

bc the canonical
parametrization for the given coordinates.

Since sprays are required to be only positively homogeneous, reversing the initial direction
may give a different path. We will be interested in a restricted class of sprays, those
having the property that the integral curve through x with initial tangent vector −u is
just the integral curve through x with initial tangent vector u traversed in the opposite
sense; we call such sprays, and their base integral curves, reversible. Reversible sprays
are such that the coefficients Γa are homogeneous of degree 2 without qualification,
that is, satisfy Γa(xb, λub) = λ2Γa(xb, ub) for all non-zero λ. Alternatively, they satisfy
Γa(xb,−ub) = Γa(xb, ub) in addition to being positively homogeneous. The corresponding
path space has the property that given a point x ∈M and a line in TxM there is a unique
path (now an unparametrized and unoriented curve) through x whose tangent line at x
is the given line. The set of lines in TxM is just PTxM , the projective tangent space at
x; thus a path space in this sense determines and is determined by a congruence of paths
on PTM , the projective tangent bundle of M (one and only one path of the congruence
passes through each point of PTM); the corresponding projective equivalence class of
sprays determines and is determined by a line element field on PTM , the tangent line
element field of the congruence of paths.

From here on we will deal only with reversible sprays.

In a local coordinate system we can choose to parametrize suitable paths of a projective
class of sprays with one of the coordinates, say x1; with such a parametrization ẋ1 = 1,
ẍ1 = 0, and the differential equations take the form

d2xi

d(x1)2
= f i

(

x1, xj ,
dxj

dx1

)

.

In other words, there is always locally a member of the projective class for which Γ1 = 0;
then f i(xa, yj) = −2Γi(xa, 1, yj) where yj = uj/u1. Conversely, given a system of m− 1
second-order differential equations in the variables xi, with parameter x1, we can locally
recover a spray by setting

Γ1 = 0, Γi(xa, ua) = −1
2(u1)2f i(xa, uj/u1).

Such a spray is reversible.

If we make a point transformation (a coordinate transformation involving all of the co-
ordinates xa) the spray corresponding to the new system of differential equations will
not be the same as that corresponding to the original one; but it will be projectively
equivalent to it. The invariants of the system of second-order ordinary differential equa-
tions under point transformations will be the projective invariants of the corresponding
projective equivalence class of sprays.
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It will be useful to be able to represent the projective quantities in terms of the f i. We
therefore compute the fundamental invariants Π a

bc of the spray

ua
∂

∂xa
− 2Γa

∂

∂ua
, Γ1 = 0, Γi(xa, ua) = −1

2(u1)2f i(xa, uj/u1).

We set

γij = −1
2

∂f i

∂yj
, γ i

jk =
∂γij
∂yk

, γ = γkk , γi =
∂γ

∂yi
= γ kik

and so on, and

Φi
j =

∂f i

∂xj
+

d

dx1
(γij) + γikγ

k
j

where
d

dx1
=

∂

∂x1
+ yi

∂

∂xi
+ f i

∂

∂yi
;

Φi
j is called in the relevant literature, with an unfortunate disagreement over sign, the

Jacobi endomorphism of the second-order differential equation field [3]. We will show that
for m > 2 the Douglas tensor Da

bcd and the Weyl tensor W a
b are completely determined

by the quantities

Ki
jkl = γijkl −

1

m+ 1

(

δijγkl + δikγjl + δilγjk
)

, Lij = Φi
j −

1

(m− 1)
δijΦ

k
k.

Since the projective curvature tensor P a
bcd determines and is determined by the Weyl

tensor, it too is completely determined by these quantities. This is related to a result
of Fels [6], who showed, using Cartan’s method of equivalence, that K i

jkl and Lij are
the fundamental invariants of the system of second-order ordinary differential equations
under point transformations.

We need to compute several quantities from the Γa by differentiating with respect to the
ua and taking traces. The calculations are much simplified by the fact that the quantities
involved are homogeneous of various degrees in the ua. Any function φ of degree n is
determined by its value at u1 = 1, since φ(ua) = (u1)nφ(1, yi) (this is of course just the
principle used to define the spray coefficients). Moreover, we have Euler’s theorem at
our disposal.

First we have Γ1
b = 0, while

Γij = u1γij , Γi1 = −(u1)(f i + ylγil ).

For the Γabc we obtain

Γ1
bc = 0, Γ i

jk = γ i
jk , Γ i

1j = Γ i
j1 = γij − ylγ ijl , Γ i

11 = −f i − 2ylγil + ylymγ i
lm .

Next, the traces:
Γ = u1γ; Γi = γi, Γ1 = γ − ylγl;

13



and their derivatives

Γij = (u1)−1γij, Γ1i = Γi1 = −(u1)−1ylγil Γ11 = (u1)−1ylymγlm.

The fundamental invariants are given by

Π a
bc = Γabc −

1

m+ 1
(Γbδ

a
c + Γcδ

a
b + Γbcu

a) ;

in terms of f i and its derivatives we have

Π 1
11 = −

1

m+ 1
(2γ − 2ylγl + ylymγlm)

Π 1
1i = −

1

m+ 1
(γi − ylγil)

Π 1
ij = −

1

m+ 1
γij

Π i
11 = −f i − 2ylγil + ylymγ i

lm −
1

m+ 1
yiylymγlm

Π i
1j = γij − ylγ ijl −

1

m+ 1
((γ − ylγl)δ

i
j − yiylγjl)

Π i
jk = γ i

jk −
1

m+ 1
(γjδ

i
k + γkδ

i
j + yiγjk).

Thus with u1 = 1,

Di
jkl = γijkl −

1

m+ 1
(γjlδ

i
k + γklδ

i
j + γjkδ

i
l + yiγjkl).

We differentiate K i
jkl with respect to ym to obtain

∂Ki
jkl

∂ym
= γijklm −

1

m+ 1

(

δijγklm + δikγjlm + δilγjkm
)

,

then take a trace to get
m− 2

m+ 1
γjkl =

∂Km
jkl

∂ym
,

whence

Di
jkl = Ki

jkl −
1

m− 2
yi
∂Km

jkl

∂ym

Furthermore

D1
jkl = −

1

m+ 1
γjkl = −

1

m− 2

∂Km
jkl

∂ym
.

Now udDa
bcd = 0, whence Da

bc1 = −yiDa
bci, so that the remaining components of Da

bcd are
determined by those which have already been calculated.
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For the Jacobi endomorphism of the spray we have R1
a = 0,

Rij = −(u1)2
(

∂f i

∂xj
+

d

dx1
(γij) + γikγ

k
j

)

= −(u1)2Φi
j,

so that R = −(u1)2Φk
k. Thus

Rij −
1

m− 1
Rδij = −(u1)2Lij, R1

j −
1

m− 1
Rδ1j = 0.

Thus when u1 = 1,

W i
j = −Lij +

1

m+ 1
yi
∂Lkj
∂yk

, W 1
j =

1

m+ 1

∂Lkj
∂yk

.

As before, the remaining components of W a
b are determined by these, since W a

b u
b = 0.

It follows that Lij = 0 is a necessary and sufficient condition for the spray to be isotropic.

3 BTW-connections

In our previous paper [4] we showed that the geometry of a projective equivalence class
of affine sprays on TM can be described in terms of a single affine spray on T (VM),
where VM is the volume bundle (see the Introduction), whose corresponding symmetric
affine connection is known as the normal TW-connection. In that paper we followed
the historical order of events, by developing the theory of TW-connections first, basing
our account on the work of Roberts [8], and subsequently showing that the defining
properties of a TW-connection can be specified in terms of its spray. We are now faced
with the problem of generalizing these ideas to the case of a projective equivalence class of
(not necessarily affine) sprays. The properties formerly used to define a TW-connection
do not translate straightforwardly into properties of Berwald connections; however, the
equivalent properties for an affine spray carry over almost without change to general
sprays. We will therefore approach the definition of the Berwald connection on T ◦(VM)
which generalizes the normal TW-connection, which we will call the Berwald-Thomas-
Whitehead projective connection, or BTW-connection for short (we will deal only with
the analogue of the normal TW-connection and therefore need no qualifier), by first
proving the existence of a uniquely determined spray on T ◦(VM) which carries all the
information about a given projective class of sprays on T ◦M . We call this spray the
BTW-spray, and define the BTW-connection as the Berwald connection of this spray.

For a spray S̃ on T ◦(VM),

S̃ = uα
∂

∂xα
− 2Γ̃α

∂

∂uα
,

we denote by R̃αβ its Jacobi endomorphism,

R̃αβ = 2
∂Γ̃α

∂xβ
− S̃(Γ̃αβ) − Γ̃αγ Γ̃

γ
β,
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and by R̃ the trace of R̃αβ .

There is a well-defined volume form vol on T ◦(VM),

vol = (x0)2mdx0 ∧ dx1 ∧ · · · ∧ dxm ∧ du0 ∧ du1 ∧ · · · ∧ dum.

In the affine case the affine spray S̃ on T (VM) whose corresponding symmetric affine
connection is the normal TW-connection of a given projective equivalence class of sprays
on M is uniquely determined by the following conditions:

• LΥC S̃ = 0;

• LΥV S̃ = ΥC − 2∆̃;

• LS̃vol = 0;

• R̃ = 0.

These conditions apply without change to general sprays on T ◦(VM).

We will derive their consequences in terms of coordinates adapted to VM , thus showing
that sprays satisfying them exist locally; we postpone the proof of the global existence
of such sprays until later.

Locally,

LΥCS̃ =

[

x0 ∂

∂x0
+ u0 ∂

∂u0
, uα

∂

∂xα
− 2Γ̃α

∂

∂uα

]

= −2

(

x0∂Γ̃α

∂x0
+ u0∂Γ̃α

∂u0

)

∂

∂uα
+ 2Γ̃0 ∂

∂u0
,

while

LΥV S̃ − ΥC =

[

x0 ∂

∂u0
, uα

∂

∂xα
− 2Γ̃α

∂

∂uα

]

− x0 ∂

∂x0
− u0 ∂

∂u0

= −2x0 ∂Γ̃α

∂u0

∂

∂uα
− 2u0 ∂

∂u0
.

So in order for S̃ to satisfy the first pair of conditions we must have

x0∂Γ̃0

∂x0
+ u0∂Γ̃0

∂u0
= Γ̃0, x0 ∂Γ̃a

∂x0
+ u0∂Γ̃a

∂u0
= 0,

∂Γ̃0

∂u0
= 0, x0 ∂Γ̃a

∂u0
= ua.

It follows that

x0∂Γ̃0

∂x0
= Γ̃0,

whence
∂

∂x0
((x0)−1Γ̃0) = 0,
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so that
Γ̃0 = x0G0

say, where G0 is a function on T ◦M homogeneous of degree 2. Moreover

∂Γ̃a

∂x0
= −(x0)−2u0ua,

so that
Γ̃a = (x0)−1u0ua +Ga,

where again Ga is a function on T ◦M homogeneous of degree 2. Thus a spray satisfies
the first pair of conditions if locally it takes the form

S̃ = uα
∂

∂xα
− 2(Ga + (x0)−1u0ua)

∂

∂ua
− 2x0G0 ∂

∂u0
.

The remaining two conditions impose further restrictions on Ga and G0. We have

LS̃vol =

(

2m
u0

x0
− 2

(

Gaa +m
u0

x0

))

vol,

so, setting G = Gaa, we see that LS̃vol = 0 if and only if G = 0. Now

Γ̃0
0 = 0, Γ̃0

a = x0G0
a, Γ̃a0 =

ua

x0
, Γ̃ab = Gab +

(

u0

x0

)

δab ,

whence Γ̃ = Γ̃αα = mu0/x0, and

Γ̃αβ Γ̃βα = GabG
b
a + 4G0 +m

(

u0

x0

)2

,

using G = 0 and the homogeneity of G0. Thus

R̃ = 2

(

∂Ga

∂xa
+G0

)

+m





(

u0

x0

)2

+ 2G0



−GabG
b
a − 4G0 −m

(

u0

x0

)2

= 2
∂Ga

∂xa
−GabG

b
a + 2(m− 1)G0,

so that the fourth condition is satisfied (given that the others are) if and only if

G0 = −
1

2(m− 1)

(

2
∂Ga

∂xa
−GabG

b
a

)

.

Now LΥCS̃ = 0 is the necessary and sufficient condition for S̃ to project to a vector field
on W◦M , say S̃W . With coordinate w = u0/x0 we have

u0 ∂

∂x0
7→ −w2 ∂

∂w
, x0 ∂

∂u0
7→

∂

∂w
,
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so that

S̃W = ua
∂

∂xa
− 2(Ga + wua)

∂

∂ua
− (w2 + 2G0)

∂

∂w
,

with Ga, G0 as above. Now ρ : W◦M → T ◦M is a line bundle. It admits global sections.
A section σ is homogeneous if σ∗(∆) = ∆W ◦σ, where ∆ is the Liouville field of T ◦M and
∆W is that of the vector bundle τ : WM →M restricted to W ◦M . For any homogeneous
section σ, ρ∗(S̃W |σ) is a spray on T ◦M , given locally by

ua
∂

∂xa
− 2(Ga + σua)

∂

∂ua
.

The difference between two homogeneous sections is a homogeneous function on T ◦M ,
so the corresponding sprays are projectively equivalent. The fundamental invariant of
this equivalence class of sprays on T ◦M is just

Π a
bc =

∂2Ga

∂ub∂uc
,

whence Ga = 1
2Π a

bcu
buc by homogeneity. Furthermore,

G0 = −
1

2(m− 1)

(

2
∂Ga

∂xa
−GabG

b
a

)

= −
1

2(m− 1)
Rcdu

cud.

Suppose given a projective equivalence class of sprays on T ◦M ; then over each coordi-
nate patch U on M there is a unique spray S̃U on (T ◦(VM))|U which satisfies the four
conditions given earlier and generates the class by the construction just given. Since the
conditions which determine S̃U are coordinate independent, and determine it uniquely,
the S̃U agree on overlaps of coordinate patches, and therefore fit together to give a global
spray. This is the BTW-spray of the projective equivalence class.

The Berwald connection coefficients of the BTW-spray of a projective equivalence class
are

Γ̃ 0
0α = Γ̃ 0

α0 = 0, Γ̃0
ab = −

1

m− 1
x0Rab, Γ̃a00 = 0, Γ̃a0b = Γ̃ab0 = (x0)−1δab , Γ̃abc = Π a

bc;

these are of course the connection coefficients of the BTW-connection.

The BTW-spray of a reversible spray is itself reversible.

4 A Cartan connection for a system of second-order ordi-

nary differential equations

We show how to construct a normal Cartan connection associated with a system of
second-order ordinary differential equations, using Cartan’s method from the second
part of his projective connections paper [1], in the framework set out by Sharpe [11].
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4.1 Model geometry and choice of gauge

We take as model geometry PT (Pm), the projective tangent bundle of m-dimensional
real projective space Pm. Each point of PT (Pm) consists of a line through the origin
in Rm+1 and a 2-plane containing the line. The group PGL(m + 1) acts transitively
on PT (Pm). The stabilizer of the point consisting of the first coordinate axis and the
2-plane containing the first two coordinate axes is the subgroup Km+1 of PGL(m + 1)
which is the image of the subgroup of GL(m+1) consisting of matrices with zeros below
the main diagonal in the first and second columns; so we can identify PT (Pm) with
PGL(m + 1)/Km+1. Note the difference between this and the affine case, where the
model geometry is Pm = PGL(m + 1)/Hm+1, Hm+1 being the projective image of the
subgroup of GL(m+ 1) consisting of matrices with zeros below the diagonal in the first
column only. Of course Km+1 is a subgroup of Hm+1.

We consider a Cartan geometry on the projective tangent bundle PTM of anm-dimensional
manifold M , modelled on PT (Pm) = PGL(m+1)/Km+1, in which the projective tangent
bundle structures are compatible in the following sense. First, note that any curve in
M has a natural lift to PTM obtained by adjoining, to each point on it, its tangent line
at that point. The compatibility conditions are that the development into PT (Pm) of a
vertical curve in PTM is vertical, and the development into PT (Pm) of a lifted curve in
PTM is a lifted curve.

We can introduce local coordinates on PTM by taking local coordinates (xa) on M and
by noting that every equivalence class of tangent vectors

ua
∂

∂xa

for which u1 6= 0 has a unique representative of the form

∂

∂x1
+ yi

∂

∂xi
;

then (xa, yi) are local coordinates on PTM . We are effectively using affine (jet-bundle-
like) coordinates on PTM , in which we identify an open subset of the fibre of PTM with
an affine submanifold (a hyperplane) of the corresponding fibre of TM , by (y i) 7→ (1, yi).

Before proceeding, in order to examine gauge transformations it will be useful to calculate
the effect of conjugation by an element of Km+1, particularly on the entries below the
main diagonal in the first and second columns in an arbitrary (m+ 1)× (m+ 1) matrix.
Let us write an element k ∈ Km+1 as a matrix

k =







k0
0 k0

1 k0
j

0 k1
1 k1

j

0 0 kij






,
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where the (m− 1) × (m− 1) matrix (kij) is non-singular and |k0
0k

1
1 det(kij)| = 1. Then

k−1 =







k̄0
0 −k̄0

0k
0
1 k̄

1
1 gj

0 k̄1
1 −k̄1

1k
1
kk̄

k
j

0 0 k̄ij






,

where the overbar indicates an inverse, and gj = k̄0
0(k

0
1 k̄

1
1k

1
k − k0

k)k̄
k
j . One finds that

if M =







∗ ∗ ∗
u ∗ ∗
vi wi ∗






then k−1Mk =







∗ ∗ ∗
û ∗ ∗
v̂i ŵi ∗







where
û = k0

0 k̄
1
1(u− k1

i k̄
i
jv
j), v̂i = k0

0 k̄
i
jv
j , ŵi = k̄ij(k

0
1v
j + k1

1w
j).

Note that (v̂i) depends only on (vi) and that (û, v̂i) depends only on (u, vi).

A curve in PTM is vertical if its tangent vector is annihilated by the dxa, and a curve in
PTM is a natural lift if its tangent vector is annihilated by the so-called contact forms
dxi − yidx1. It is easy to see that

(ξa, ηi) 7→







1 0 0
ξ1 1 0
ξi ηi δij







is a local section of PGL(m+1) → PT (Pm), and that the corresponding gauged Maurer-
Cartan form is







0 0 0
dξ1 0 0

dξi − ηidξ1 dηi 0






.

We take some gauge on PTM and write the connection form in the chosen gauge as

ω =







ω0
0 ω0

1 ω0
j

ω1
0 ω1

1 ω1
j

ωi0 ωi1 ωij






;

note that the component forms are forms on PTM . It follows from the conditions for a
Cartan connection that the forms ω1

0 , ω
i
0, ω

i
1 must be linearly independent. The equations

for the development of a curve σ in PTM into PT (Pm) give

aξ̇1 − bi(ξ̇
i − ηiξ̇1) = 〈σ̇, ω1

0〉, cij(ξ̇
j − ηj ξ̇1) = 〈σ̇, ωi0〉

for some functions a(t), bi(t), c
i
j(t). The compatibility conditions therefore require that

if σ is vertical 〈σ̇, ω1
0〉 = 〈σ̇, ωi0〉 = 0, while if σ is a lift 〈σ̇, ωi0〉 = 0. It follows that ω1

0 is a
linear combination of the dxa and each ωi0 is a linear combination of the contact forms
dxj − yjdx1, which we will denote by θj. We can set ω1

0 = α1dx
1 + αiθ

i and ωi0 = βijθ
j
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for some functions αa and βij on PTM , where α1 6= 0 and (βij) is non-singular since the
ωa0 (in particular) must be linearly independent. Then a change of gauge with

k1
1 = k0

0α1, k1
i = k0

0αi, kij = k0
0β

i
j ,

and for m even
k0
0 = (α1 det(βij))

−1/(m+1),

while for m odd
k0
0 = ±|α1 det(βij)|

−1/(m+1),

makes ω1
0 = dx1 and ωi0 = θi.

This does not fix the gauge: the remaining freedom is

k =







1 k0
1 k0

j

0 1 0
0 0 δij






, with k−1 =







1 −k0
1 −k0

j

0 1 0
0 0 δij






.

A gauge transformation with such k takes ω0
0 to ω0

0 − k0
1dx

1 − k0
j θ
j. We may therefore

choose k0
a such that ω0

0 is independent of dxa, that is, such that ω0
0 = κidy

i for some
functions κi. This finally fixes the gauge; we call the resulting gauge the standard gauge
for the given coordinates.

Our standard gauge is not the same as Cartan’s in the case m = 2. In the last step he
uses k0

1 to simplify ω2
1, and then eliminates θ from ω0

0 − ω1
1; but the first of these moves

does not work for m > 2, and the choice of gauge made above seems to be preferable
because it leads to a coordinate transformation rule between connections in standard
gauge which depends only on the general geometry of the spaces concerned, not on the
details of the connection forms.

A geodesic of this connection is a curve whose development satisfies ξ̇i − ηiξ̇1 = 0 and
η̇i = 0; that is, a geodesic is a curve whose tangents are annihilated by both θ i and
ωi1. Now we can write ωi1 = Aijdy

j +Bidx1 mod(θk), where by linear independence (Aij)

is non singular; so we may equivalently write ωi1 = Aij(dy
j − f jdx1) mod(θk) for some

functions f i(xa, yj). Then a geodesic is a solution of the system of m − 1 second-order
differential equations

d2xi

d(x1)2
= f i

(

xa,
dxj

dx1

)

.

To put it another way, the geodesics are the integral curves of the vector field

d

dx1
=

∂

∂x1
+ yi

∂

∂xi
+ f i

∂

∂yi
;

we call this the second-order differential equation field corresponding to the Cartan con-
nection.
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4.2 The normal Cartan connection

We now show that we can fix the connection uniquely by imposing conditions on the
curvature; the connection obtained in this way is called the normal connection.

The process of choosing a normal connection is carried out in a coordinate system with
the connection in standard gauge; but we want the normal connection to be a global
connection, and the conditions imposed on the curvature form when specifying it must
respect this. Suppose that ω, ω̂ are the normal connection forms with respect to coordi-
nates (xa, yi), (x̂a, ŷi) (where the transformation of the yi is induced from that of the xa);
thus ω̂ is in standard form with respect to the coordinates x̂a. Then there is a unique
gauge transformation which puts ω̂ into standard form with respect to the coordinates
(xa), and the gauge transform of ω̂ must be normal, that is, ω̂ = k−1ωk+k−1dk where k
is determined by the transformation rules for dx1, θi and dyi under a coordinate transfor-
mation. Then Ω̂ = k−1Ωk. It will therefore be possible to work out the transformation
rules for the components of Ω; and any condition on the components of Ω imposed in
the course of making ω normal must hold for the corresponding components of Ω̂.

The following conditions on the curvature satisfy this requirement:

• Ωα
0 = 0;

• Ω0
1 is semi-basic;

• Ωi
1 is semi-basic;

• if we set Ωi
j = Ki

jkldy
k ∧ θl mod(dxa ∧ dxb) then Kk

kij = 0 and Kk
ijk = 0;

• if we set Ωi
1 = Lijdx

1 ∧ θj mod(θk ∧ θl) then Lkk = 0.

(Recall that the Ωα
β are 2-forms on PTM ; semi-basic here means semi-basic with respect

to the projection PTM → M .) These conditions uniquely determine the coefficients of
the connection in standard gauge to be

ω0
0 = 0, ω1

0 = dx1, ωi0 = θi

ω1
1 = −

2

m+ 1
γdx1 −

1

m+ 1
γiθ

i

ω1
j = −

1

m+ 1
γjdx

1 −
1

m+ 1
γjkθ

k

ωi1 = dyi − f idx1 +

(

γij −
1

m+ 1
δijγ

)

θj

ωij =

(

γij −
1

m+ 1
δijγ

)

dx1 +

(

γ i
jk −

1

m+ 1
(γjδ

i
k + γkδ

i
j)

)

θk

ω0
1 = %dx1 + %iθ

i, ω0
i = %idx

1 + %ijθ
j

where

% =
1

m− 1
Φ −

1

m+ 1

d

dx1
(γ) −

1

(m+ 1)2
γ2
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and

%j = 1
2

∂%

∂yj
, %jk =

∂%k
∂yj

= 1
2

∂2%

∂yj∂yk
,

with

Φ = Φi
i, Φi

j =
∂f i

∂xj
+

d

dx1
(γij) + γikγ

k
j .

The components K i
jkl and Lij of the curvature which are used to fix the connection are

determined by the stated conditions and are given by

Ki
jkl = γijkl −

1

m+ 1

(

δijγkl + δikγjl + δilγjk
)

, Lij = Φi
j −

1

(m− 1)
δijΦ

k
k;

they are the quantities given earlier.

Since in general Ωi
1 6= 0, the normal connection does not necessarily have zero torsion.

The calculations that lead to these results (including the demonstration that the condi-
tions on the curvature are gauge invariant) are given in an appendix.

The ωab can be expressed in terms of the fundamental invariants of the corresponding
projective equivalence class of sprays, using the formulæ found earlier. These can be
solved for the expressions occuring in the connection coefficients: one finds that

−
2

m+ 1
γ = Π 1

11 + 2ykΠ 1
1k + ykylΠ 1

kl

−
1

m+ 1
γi = Π 1

i1 + ykΠ 1
ik

γij −
1

m+ 1
δijγ = Π i

1j + ykΠ i
jk − yiΠ 1

j1 − yiykΠ 1
jk

γ i
jk −

1

m+ 1
(γjδ

i
k + γkδ

i
j) = Π i

jk + yiΠ 1
jk

−f i = Π i
11 + 2ykΠ i

1k + ykylΠ i
kl.

It follows that

ω1
1 = (Π 1

1a + ykΠ 1
ka)dx

a

ω1
j = Π 1

jadx
a

ωi1 = dyi + (Π i
1a − yiΠ 1

1a + ykΠ i
ka − yiykΠ 1

ka)dx
a

ωij = (Π i
ja − yiΠ 1

ja)dx
a.

We now consider ω0
1 and ω0

j . Using results obtained earlier we have

% =
1

m− 1
Φ −

1

m+ 1

d

dx1
(γ) −

1

(m+ 1)2
γ2

= −(u1)−2
(

1

m− 1
R+ S(Γ̃) + Γ̃2

)

= −(u1)−2 1

m− 1
R.
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As a function on T ◦M , R is homogeneous of degree 2, so % is homogeneous of degree 0;
moreover on u1 = 1, bearing in mind the symmetry of Rab, we have

% = −
1

m− 1
(R11 + 2R1iy

i + Rijy
iyj).

Now Rd
cab, while not a tensor, still satisfies the properties of the Riemann curvature in

the coordinate patch in which it is defined. In particular, by a result obtained earlier we
have

ub
∂Rbc

∂ua
= 0,

whence on u1 = 1
∂R1c

∂yi
+ yj

∂Rjc

∂yi
= 0.

It follows that

%i = 1
2

∂%

∂yi
= −

1

m− 1
(R1i + yjRji), %ij = 1

2

∂2%

∂yi∂yj
= −

1

m− 1
Rij ,

whence

ω0
1 = −

1

m− 1
(R1a + yiRia)dx

a, ω0
i = −

1

m− 1
Riadx

a.

So the connection form of the normal Cartan connection in standard gauge is



















0 −
1

m− 1
(R1a + yiRia)dx

a −
1

m− 1
Riadx

a

dx1 (Π 1
1a + ykΠ 1

ka)dx
a Π 1

jadx
a

dxi − yidx1 dyi + (Π i
1a − yiΠ 1

1a + ykΠ i
ka − yiykΠ 1

ka)dx
a (Π i

ja − yiΠ 1
ja)dx

a



















.

This expression may be simplified further, though at the expense of carrying out what in
the context of the Cartan theory is an illegitimate gauge transformation. Even so, what
we are about to do is perfectly acceptable if regarded as a purely computational device
at this stage; we will explain the geometrical significance of the step later.

We denote by Y the locally defined (m+ 1) × (m+ 1)-matrix-valued function

Y =

















1 0 0 · · · 0
0 1 0 · · · 0
0 −y2 1 · · · 0
...

...
...

...
0 −ym 0 · · · 1

















,
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and define a new matrix-valued 1-form ω̃ by ω̃ = Y −1ωY +Y −1dY , where ω is the normal
connection form given above. Now

Y −1 =

















1 0 0 · · · 0
0 1 0 · · · 0
0 y2 1 · · · 0
...

...
...

...
0 ym 0 · · · 1

















,

whence

Y −1dY =

















0 0 0 · · · 0
0 0 0 · · · 0
0 −dy2 0 · · · 0
...

...
...

...
0 −dym 0 · · · 0

















;

and we find that

ω̃ =









0 −
1

m− 1
Rbcdx

c

dxa Π a
bcdx

c









.

Thus ω̃ is formally identical to the normal Cartan connection form in the affine case,
though of course it is defined on PTM , not M . However, it is semi-basic over M , and
the coefficients Π a

bc and Rbc are functions on T ◦M , homogeneous of degree 0. We may
therefore think of ω̃ as the restriction to u1 = 1 of a (locally defined) form on T ◦M . The
‘curvature’ of ω̃ is the restriction to u1 = 1 of

Ω̃ =









0 −
1

m− 1

(

Rb[c|d]dx
c ∧ dxd +

∂Rbd

∂uc
ϕc ∧ dxd

)

0 1
2P

a
bcddx

c ∧ dxd +Da
bcdϕ

c ∧ dxd









.

We may therefore express the normal Cartan connection form in standard gauge as
Y ω̃Y −1 − Y −1dY , and its curvature as Y Ω̃Y −1, with ω̃ and Ω̃ given above.

As we noted above, the normal connection is not necessarily torsion-free. For it to be so
we must have Ωi

1 = 0. A necessary condition for this to hold is that Lij = 0. We show

that it is also sufficient. We know that if Lij = 0 then P abcd = 0. Now Ωi
1 depends only

on the components Ω̃a
b , and does so linearly; moreover Ωi

1 is semi-basic. It follows that
if P abcd = 0 then Ωi

1 = 0. Thus Ωi
1 = 0 if and only if Lij = 0, and the normal connection

is torsion-free if and only if the sprays of the corresponding projective equivalence class
are isotropic.

4.3 Coordinate transformations

Consider a coordinate transformation on M , from (xa) to (x̂a), with the induced trans-
formation of the yi. Let (Jab ) be the Jacobian matrix of the transformation, J its deter-

25



minant.

With each coordinate system we have a unique gauged normal connection form, which we
can express in standard form with respect to the appropriate coordinates. By hypothesis
these two local connection forms are gauged versions of the same global connection
form, and are therefore related by a gauge transformation. Let ω, ω̂ be the two gauged
normal connection forms, and set ωαβ = k̄αγ ω̂

γ
δ k

δ
β+ k̄αγ dk

γ
β . Then the gauge transformation

matrix (kαβ ) is the transition function for the principal bundle on which the global normal
connection form lives, with respect to the open sets on which the coordinates are defined.

We can determine the gauge transformation simply by using the same trick as in the
previous subsection. Let us write Ŷ for the matrix

















1 0 0 · · · 0
0 1 0 · · · 0
0 −ŷ2 1 · · · 0
...

...
...

...
0 −ŷm 0 · · · 1

















.

Then

Ŷ −1ω̂Ŷ + Ŷ −1dŶ =









0 −
1

m− 1
R̂bcdx̂

c

dx̂a Π̂ a
bcdx

c









= ˜̂ω.

But just as in the affine case
ω̃ = g−1 ˜̂ωg + g−1dg

where g is the projection into PGL(m+ 1) of the matrix-valued function

G =









1 −
1

m+ 1

∂ log |J |

∂xb

0 Jab









.

It follows that ω = k−1ω̂k+k−1dk where k = Ŷ gY −1. But Y and Ŷ are both unimodular,
so we can express k as the projection into PGL(m+1) of Ŷ GY −1. It is self-evident that
this defines an element of Hm+1; it is easy to check, though it is not self-evident, that in
fact it defines an element of Km+1.

It would be possible to determine k explicitly from this expression, using the fact that

ŷi =
J i1 + J ijy

j

J1
1 + J1

j y
j
,

but fortunately we do not need to do so. An alternative expression for k is given in the
appendix.
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4.4 What happens when the spray is projectively affine

If the second-order differential equation field is projectively equivalent to an affine spray,
the connection ω should reduce to a connection on M gauge equivalent to the normal
projective connection associated with the affine spray. But what could one mean by
‘reduce’? We can obtain a connection on M by pulling ω back by any local section of
PTM → M . Of course, different sections will give different reduced connections; the
requirement is that the different reduced connections should all be gauge equivalent,
with the gauge transformation being taken from the gauge group appropriate to the
affine case, namely Hm+1; we call such a gauge transformation a gauge transformation
of the first kind. This will be the case if, for every transformation ψ of PTM fibred
over the identity, ψ∗ω is a gauge transform of ω by a gauge transformation of the first
kind. An equivalent condition is that for any vector field V vertical with respect to the
projection PTM →M , LV ω should be infinitesimally gauge equivalent to ω by a gauge
transformation of the first kind. That is to say, there should be a function H taking its
values in hm+1, the Lie algebra of Hm+1, such that LV ω = [ω,H] + dH (the equation
obtained by differentiating the gauge transformation equation at the identity). Now

LV ω = V dω + d〈V, ω〉 = V Ω + [ω, 〈V, ω〉] + d〈V, ω〉,

and 〈V, ω〉 takes its values in hm+1. So if V Ω = 0 then ω satisfies the requisite condition
with H = 〈V, ω〉.

Now Y from the previous subsection does define a gauge transformation of the first kind,
and so the argument above applies equally as well to ω̃ as to ω. Thus the condition for
the connection to reduce to M can equivalently be expressed as V Ω̃ = 0. On the face
of it, this amounts to two conditions, namely Da

bcd = 0 and ∂Rbd/∂u
c = 0. The first of

these, the vanishing of the Douglas tensor, is just the necessary and sufficient condition
for the second-order differential equation field to be projectively equivalent to an affine
spray. But then Π a

bc is independent of ud, and therefore Rbd is independent of uc.

We have shown that a necessary and sufficient condition for the second-order differential
equation field associated with the normal Cartan connection to be projectively equiva-
lent to an affine spray is that the curvature satisfies V Ω = for all vector fields V on
PTM vertical over M ; and that this latter condition is necessary and sufficient for the
connection to be reducible to a projective connection of affine type. When the condi-
tion V Ω = 0 holds we may choose any local section of PTM over M to obtain the
reduced connection form. The obvious choice is yi = 0, and with this choice the reduced
connection is the normal Cartan connection associated with the affine spray in standard
form.
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5 The Cartan bundle

In our investigation of projective equivalence classes of symmetric affine connections [4]
we demonstrate how any such class of affine connections gives rise to a normal Cartan
projective connection on the Cartan bundle CM having the same geodesics. In the present
paper we have seen how to construct a Cartan connection corresponding to more general
families of paths — those generated by an arbitrary reversible spray on T ◦M rather than
by the geodesic spray of an affine connection — and so it is natural to look for a similar
geometric interpretation, involving suitable bundles, in this more general situation.

We have expressed the normal Cartan connection in gauged form, but with the implicit
understanding that there is a global Cartan connection on a principal Km+1-bundle
over PTM of which the gauged connection is a local representative; and in effect we
defined this bundle when we gave its transition functions corresponding to coordinate
transformations. In the affine case we carried out a similar procedure to obtain the gauged
normal projective connection before giving an explicit description of the principal bundle
which is the home of the global connection. This is the Cartan bundle CM , which is a
principal Hm+1-bundle over M . We wish now to describe explicitly the carrier of the
global connection in the general case. As a space it is in fact CM again — but of course
CM with a different bundle structure. As we now show, CM is a principal Km+1-bundle
over PTM ; and by computing the transition functions for it in this new guise we will
show that it is the bundle found implicitly through the normal connection calculations.

The Cartan bundle CM consists of the Cartan simplices of the Cartan algebroid WM ,
that is, the simplices with first element a multiple of the global vector section e0 of
τ : WM →M . Let [ζα] be a Cartan simplex of WM at some point x ∈M , so that ζ0 is
a multiple of (e0)x. Now ζ1 is an element of WxM independent of (e0)x, and therefore
determines a non-zero element of TxM under ρ : WM → TM , the anchor map of the
Cartan algebroid. By projectivizing we obtain a unique element of PTxM corresponding
to the simplex element [ζ1]. Let ς : CM → PTM be the map so defined. We show that
ς is the projection map of a principal Km+1-bundle structure on CM . We define a right
action of Km+1 on CM as follows. First we consider a transformation of frames (ζα) of
the form (ζα) 7→ (ζ̂α) where

ζ̂0 = k0
0ζ0, ζ̂1 = k1

1ζ1 + k0
1ζ0, ζ̂i = kαi ζα

where k0
0k

1
1 det(kij) 6= 0; we then projectivize. The corresponding transformation of

simplices defines an element of Km+1, and [ζ̂α] is a Cartan simplex if [ζα] is. We obtain
in this way an action of Km+1 which is clearly an effective right action. Now ρ(e0) is
the zero section of TM , so the orbit of a point of CM under the action of Km+1 is just a
fibre of the projection ς : CM → PTM .

We can define local sections of ς as follows. Given coordinates (xa) on M , and adapted
coordinates (xα) on VM , we obtain the global section e0 and local sections ea of WM →
M as the images of Υ and ∂a respectively. In a coordinate patch on TM where u1 6= 0,
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so that we can use coordinates (xa, yi) on PTM , we set

ζ0 = e0, ζ1 = e1 + yiei, ζi = ei;

then [ζα] is a local section of ς. Thus ς : CM → PTM is a principal Km+1-bundle. We
call CM with this bundle structure the projective Cartan bundle.

Notice that ζα = Ȳ β
α eβ. We showed in [4] that the transition function for the Cartan bun-

dle CM relative to local trivializations (over M) of the form [eα] is given by projectivizing
the GL(m+ 1)-valued function G where

G =









1 −
1

m+ 1

∂ log |J |

∂xb

0 Jab









.

Thus the transition function for CM relative to local trivializations (over PTM) of the
form [ζα] given above is the projection into PGL(m+1) of Ŷ GY −1, which is exactly the
transition function obtained earlier by consideration of the normal Cartan connection.
Thus the global normal Cartan connection of any projective equivalence class of sprays
is a connection on the projective Cartan bundle.

We will now give an interpretion of this construction in the light of Cartan’s approach.

As we have pointed out, Cartan’s study of projective connections [1] covers both the affine
and the general cases, although he describes the latter explicitly only when m = 2. In the
affine case, he envisages a projective space attached to each point of the manifold. Our
interpretation of this is that, for each point x ∈M , we should study the m-dimensional
projective space PWxM ; this space has a distinguished point [(e0)x], the point at which
the space is ‘attached’ to M . The geodesics of the connection are the curves in M whose
developments into these projective spaces are straight lines.

In the more general case, we can no longer describe the developments of curves into a
single projective space at each point. Instead, we have to use a family of projective spaces
at each point, with the family parametrized by the set of rays (1-dimensional subspaces
of the tangent space) at that point: the projective spaces will therefore need, not just a
distinguished point, but also a distinguished ray through that point. This is consistent
with Cartan’s view in [1], where he takes as a base manifold not M itself, but instead
the ‘manifold of elements’, where an ‘element’ is a ray at a point.

This suggests that we should consider the pull-back bundle τ ◦∗M (τ) : τ◦∗M (WM) → T ◦M .
The canonical global section e0 : M → WM gives rise to a global section of this pull-back
bundle which we will continue to denote by e0. There is now, however, a distinguished
1-dimensional affine sub-bundle TM ⊂ τ◦∗M (WM), defined by specifying that (v, ζ) ∈ TM
whenever ρ(ζ) = v: here we consider the pull-back as a fibre product τ ◦∗M (WM) =
T ◦M ×M WM . Any section of TM → T ◦M maps, under ρ, to the total derivative section
T of τ◦∗M (TM) → T ◦M , and any two such sections differ by a multiple of e0.
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We now projectivize this construction, both in the fibre and in the base, to give the pull-
back bundle π∗M (π) : π∗M (PWM) → PTM where πM : PTM → M and π : PWM → M
are the projective tangent bundle and projective Cartan algebroid respectively. This
new bundle also has a global section which we continue to denote by [e0]; thus each
projective fibre of π∗

M (PWM) has a distinguished point, the image of this global section.
But now each fibre also has a distinguished line containing that point: we define PTM ⊂
π∗M (PWM) by specifying that ([v], [ζ]) ∈ PTM if either [ρ(ζ)] = [v], or else ρ(ζ) = 0 (so
that, in the latter case, [ζ] = [e0]x, and then ([v], [ζ]) is the distinguished point in the fibre
at [v]). Another way of constructing PTM would be to take the 2-dimensional linear hull
of the affine sub-bundle TM , giving a projective line in each fibre of τ ◦∗M (PWM) → T ◦M ;
these lines then map consistently to lines in the fibres of π∗

M(PWM) → PTM .

We construct the pull-back bundle π∗
M (SWM) → PTM in the same way: this is, of course,

a principal PGL(m + 1)-bundle. Then the projective Cartan bundle ς : CM → PTM
is the sub-bundle of π∗

M (SWM) → PTM containing pairs ([v], [ζα]) where [ζ0] is the
distinguished point and [ζ1] is some other element of the distinguished line, so that
[ζ0] = [e0]x and [ρ(ζ1)] = [v] (here, of course, ζ0 and ζ1 must be linearly independent, so
the case ρ(ζ1) = 0 does not arise).

6 The projective connections

In this section we will show how to construct the normal Cartan connection form of a
projective equivalence class of sprays from the BTW-connection, at the global level.

Our plan is to use the same general approach as in the affine case [4]. There we start with
a TW-connection on the volume bundle VM giving rise to a gl(m+1)-valued Ehresmann
connection form on the frame bundle F(VM) → VM , and we show how to construct
from it a Cartan connection on the Cartan bundle CM →M , such that the geodesics of
the Cartan connection are precisely the geodesics of the projective equivalence class of
symmetric affine connections associated with the TW-connection. In particular, the nor-
mal TW-connection corresponds under this construction to the normal Cartan projective
connection.

In the more general case we will limit our ambitions to generalizing this last step of the
affine programme; that is, we will deal only with the normal connections. Now, therefore,
we will start with the BTW-connection on the volume bundle, and we will show how to
construct from it the normal Cartan connection as a global Cartan connection form on
the projective Cartan bundle ς : CM → PTM .

6.1 Passing to the quotient

The first step of the process can be described in quite general terms.
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Consider a manifold N with reversible spray S and corresponding Berwald connection
∇, such that there is defined on N a nowhere-vanishing complete vector field X such
that

• N is fibred over an m-dimensional manifold M where the fibres are the integral
curves of X;

• the complete lift XC of X to T ◦N satisfies LXCS = 0;

• the vertical lift XV of X to T ◦N satisfies LXVS = XC − 2∆.

The Lie derivative conditions are modelled on the first two conditions for a BTW-spray,
of course.

Let ξ : N → M be the projection. Note that the vector fields XC and XV define an
integrable distribution on TN whose leaves are the fibres of the projection ξ∗ : TN →
TM. The inverse image of the zero section of TM under ξ∗, ξ

−1
∗ (0), is the 1-dimensional

vector sub-bundle of TN spanned by X (considered as a section of τN : TN → N ).
Denote by TXN the complement of ξ−1

∗ (0) in TN ; it is an open submanifold of TN ,
fibred over N , contained in T ◦N . We denote by τXN : TXN → N the restriction of τN to
TXN .

We denote by φt the 1-parameter group on N whose infinitesimal generator is X.

Let FN be the frame bundle of N , τ ∗N (FN ) its pullback over TN . We define a group
structure on R2 × R◦ × R◦, where R◦ is the multiplicative group of non-zero reals, by
(q, r, s, t) · (q′, r′, s′, t′) = (q+ q′, rs′ + r′, ss′, tt′). This group acts on τ ∗N (FN ) to the right
by

ψ(q,r,s,t) : (x, u, {eα}) 7→ (φqx, φq∗(su+ rXx), {tφq∗eα}).

Note that this action is fibred over the action ψ̄ of R2 ×R◦ on TN given by

ψ̄(q,r,s) : (x, u) 7→ (φqx, φq∗(su+ rXx)).

This action leaves TXN invariant, and the quotient of TXN by it is PTM. Furthermore,
the ψ action commutes with the right action of GL(m + 1) on τ ∗N (FN ), and leaves
τX∗
N (FN ) invariant. Let Sψ(PTM) be the quotient of τX∗(FN ) under the ψ action; it

is a principal fibre bundle over PTM with group PGL(m+1), and for any a ∈ GL(m+1),
πX◦Ra = Ro(a)◦π

X where πX : τX∗
N (FN ) → Sψ(PTM) and o : GL(m+1) → PGL(m+1)

are the projections.

Introduce local coordinates (xα, uα, xαβ) on τ∗N (FN ), where for a frame {eα}, eα = xβα∂β .
The infinitesimal generator of the 1-parameter group ψ(q,0,1,1) on τ∗N (FN ) is the vector
field Ψ where

Ψ = Xα ∂

∂xα
+ uβ

∂Xα

∂xβ
∂

∂uα
+ xγβ

∂Xα

∂xγ
∂

∂xαβ
.
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The generator of ψ(0,r,1,1) is

Ξ = Xα ∂

∂uα
,

while that of ψ(0,0,es,1) is

∆̃ = uα
∂

∂uα
;

Ξ is formally identical to XV, and ∆̃ to ∆, but both are vector fields on τ ∗N (FN ).
The generator of ψ(0,0,1,et) is the vertical vector field on the GL(m+ 1)-bundle τ ∗N (FN )
corresponding to the identity matrix I ∈ gl(m+ 1), that is

I† = xαβ
∂

∂xαβ
.

The pairwise brackets of the vector fields Ψ, Ξ, ∆̃ and I† all vanish except that [Ξ, ∆̃] = Ξ.
These vector fields, when restricted to τX∗

N (FN ), are linearly independent, and span an
integrable distribution D there whose leaves are just the orbits of the ψ(q,r,es,et) action.
The distribution is invariant under ψ(0,0,±1,±1). The leaves of D, quotiented by the action

of ψ(0,0,±1,±1), are the fibres of the projection πX : τ∗XN (FN ) → Sψ(PTM).

With respect to the Berwald connection ∇, any curve σ in T ◦N has a horizontal lift σH

to τ◦∗N (FN ) starting at a given frame {eα} at σ(0), defined as follows: σH(t) is the frame
at σ(t) obtained by parallelly transporting {eα} to σ(t) along σ; a frame field {Eα} along
σ is parallel if ∇σ̇Eα = 0. Thus any vector field Z on T ◦N has a horizontal lift ZH to
τ◦∗N (FN ); in particular the horizontal lift (XC)H of XC is given by

(XC)H = Xα ∂

∂xα
+ uβ

∂Xa

∂xβ
∂

∂uα
− xγβΓ

α
γδX

δ ∂

∂xαβ
,

where of course

if S = uα
∂

∂xα
− 2Γα

∂

∂uα
then Γαβγ =

∂2Γα

∂uβ∂uγ
.

Thus

Ψ − (XC)H = xγβ

(

∂Xα

∂xγ
+ ΓαγδX

δ
)

∂

∂xαβ
.

Now for any vector field X on N and Berwald connection ∇, the condition that LXVS =
XC − 2∆, in coordinates, is

∂Xα

∂xβ
+ ΓαβγX

γ = δαβ ;

so this condition is equivalent to

Ψ − (XC)H = I†.

We denote by ω the connection form on τ ◦∗N (FN ) corresponding to ∇; in terms of local
coordinates the matrix components of ω are given by

ωαβ = x̄αγΓγδεx
δ
βdx

ε + x̄αγdx
γ
β
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where the matrix (x̄αβ) is the inverse of the matrix (xαb ). A straightforward calculation
shows that the condition LXCS = 0 entails that LΨω

α
β = 0 (it would be natural therefore

to say that XC is an infinitesimal affine transformation of the Berwald connection). It
is also the case that LΞω

α
b = 0: we have

LΞω
α
β = x̄αγ

(

Xλ∂Γγδε
∂uλ

)

xδεdx
ε,

and it follows from the coordinate form of the condition Ψ − (XC)H = I† above, on
differentiating with respect to uλ, that the coefficient vanishes. Furthermore, L∆̃ω = 0
by homogeneity, and LI†ω = [I, ω] = 0.

We now restrict to τX∗
N (FN ). We can write any vector field in D in the form Z =

fΨ + gΞ + h∆̃ + kI†, so that

LZω = (fLΨ + gLΞ + hL∆̃ + kLI†)ω + 〈Ψ, ω〉df + 〈Ξ, ω〉dg + 〈∆̃, ω〉dh + 〈I†, ω〉dk.

But 〈Ξ, ω〉 = 〈∆̃, ω〉 = 0, while 〈Ψ, ω〉 = 〈I†, ω〉 = I. It follows that LZω = I(df + dk),
that is, for any Z ∈ D, LZω is a multiple of the identity element of gl(m+1). Finally, ω
is invariant under ψ(0,0,±1,1) because S is reversible by assumption, and under ψ(0,0,1,±1)

by inspection.

We can therefore define an sl(m + 1)-valued 1-form ω̂ on Sψ(PTM) as follows: for
Q ∈ Sψ(PTM), w ∈ TQSψ(PTM),

〈w, ω̂Q〉 = 〈v, o∗ωP 〉

for any P ∈ τX∗
N (FN ) such that πX(P ) = Q, and any v ∈ TP (τX∗

N (FN )) such that
πX∗ v = w, where o∗ : gl(m+1) → sl(m+1) is the homomorphism of Lie algebras induced
by o : GL(m+ 1) → PGL(m + 1); ω̂ is well-defined because o∗ωP (v) is unchanged by a
change of choices of P and v satisfying the same conditions. We have πX∗ω̂ = o∗ω, and
so for any a ∈ GL(m+ 1),

πX∗(R∗
o(a)ω̂) = R∗

a(π
X∗ω̂) = R∗

a(o∗ω)

= o∗(R
∗
aω) = o∗(ad(a−1)ω) = ad(o(a)−1)o∗ω

= πX∗(ad(o(a)−1)ω̂),

and so since πX is surjective, R∗
o(a)ω̂ = ad(o(a)−1)ω̂. Moreover, for any A ∈ gl(m + 1)

we have πX∗ A
† = (o∗A)†, and therefore

ω̂((o∗(A)†) = (πX∗ ω̂)(A†) = o∗ω(A†) = o∗A.

Thus ω̂ is the connection form of an Ehresmann connection on the principal PGL(m+1)-
bundle Sψ(PTM).

We now turn to a further consequence of the condition LXVS = XC − 2∆. We can
regard X, which is a vector field on N , as a section of τ ◦∗N TN , and therefore calculate its
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Berwald covariant differential: using the coordinate form of this condition we find that

∇X = dxα ⊗
∂

∂xα
.

We also have for the total derivative T = uα∂/∂xα

∇T = ϕα ⊗
∂

∂xα

where as we explained in Section 2, ϕα is the 1-form duα + Γαβdx
β , so that {dxα, ϕα}

is the local basis of 1-forms on T ◦N dual to the local basis {Hα, Vα} of vector fields
associated with the Berwald connection. With an eye to the description of the structure
of CM → PTM given in the previous section, we seek those vector fields η on T ◦N with
the properties that ∇η(fX) = 0 for some non-vanishing function f , and ∇η(gT+hX) = 0
for some functions g and h with g non-vanishing; or equivalently, with the properties that
∇ηX is a multiple of X, and ∇ηT is a linear combination of X and T. Such η must
satisfy 〈η, dxα〉 = λXα and 〈η, ϕα〉 = µXα + νuα. It follows that η must be a linear
combination of XC, XV and ∆.

Note that X and T are linearly independent over TXN . Let us denote by FXN ⊂
τX∗
N (FN ) the sub-bundle consisting of those frames whose first member is a multiple of
X and whose second member is a linear combination of T and X. Then at any point
P ∈ FXN , we have HP ∩ TP (FXN ) = 〈(XC)HP , (X

V)HP ,∆
H
P 〉, that is, the horizontal

subspace at P (the kernel of ωP ) intersects the tangent space to FXN at P in the
3-dimensional subspace spanned by the horizontal lifts of XC, XV and ∆ to P . But
(XV)H = Ξ, ∆H = ∆̃, and (XC)H = Ψ− I†. Thus kerωP ∩TP (FXN ) ⊂ DP ; so when we
pass to the quotient, at any point Q ∈ πX(FXN ) we have ker ω̂Q∩TQ(πX(FXN )) = {0}.

6.2 The connection forms

We can apply the above results with N = VM , X = Υ, S the BTW-spray of a projective
equivalence class of sprays. The manifold M is just M , and Sψ(PTM) is π∗M(SWM), a
principal PGL(m+ 1)-bundle over PTM . Then ω̂ is an Ehresmann connection form on
π∗M (SWM) → PTM . Now the projective Cartan bundle CM → PTM is a sub-bundle
of π∗M (SWM) → PTM . This sub-bundle has codimension 2m − 1 = dim(PTM), and
so the restriction ω of ω̂ to CM will define a Cartan connection if the intersection (in
T (π∗M (SWM))) of ker ω̂ and TCM contains only zero vectors ([11], Proposition A.3.1;
[7]). But CM is the image in π∗

M (SWM) of the sub-bundle of τΥ∗
VMF(VM) consisting of

those frames with first element a multiple of Υ and second a linear combination of Υ
and T, so this follows from the results of the final paragraph of the previous subsection.

The Ehresmann connection form ω̃ of the BTW-connection in the coordinate gauge (∂α)
is given by

ω̃(∂α) =









0 −
1

m− 1
x0Rbcdx

c

(x0)−1dxa Π a
bcdx

c + δab (x
0)−1dx0









;

34



this is formally the same as in the affine case, but it must be borne in mind that ω̃(∂α) is
a local matrix-valued 1-form on T ◦M rather than on M ; it is semi-basic over T ◦M →M .
We first change the gauge to (Υ, ∂a); we obtain

ω̃(Υ,∂a) =









(x0)−1dx0 −
1

m− 1
x0Rbcdx

c

dxa Π a
bcdx

c + δab (x
0)−1dx0









= ((x0)−1dx0)I +









0 −
1

m− 1
x0Rbcdx

c

dxa Π a
bcdx

c









.

The Ehresmann connection ω̂ on the simplex bundle π∗
M (SWM), in the gauge [eα], is

therefore

ω̂[eα] =









0 −
1

m− 1
x0Rbcdx

c

dxa Π a
bcdx

c









.

To obtain the Cartan connection form we need to change the gauge to [ζα] where

ζ0 = e0, ζ1 = e1 + yiei, ζi = ei;

the result is


















0 −
1

m− 1
(R1a + yiRia)dx

a −
1

m− 1
Riadx

a

dx1 (Π 1
1a + ykΠ 1

ka)dx
a Π 1

jadx
a

dxi − yidx1 dyi + (Π i
1a − yiΠ 1

1a + ykΠ i
ka − yiykΠ 1

ka)dx
a (Π i

ja − yiΠ 1
ja)dx

a



















,

the connection form of the normal Cartan connection in standard gauge. Indeed, the
last step is just the inverse of the illegitimate gauge transformation of Subsection 4.3,
and we see that the simplified connection form introduced there is ω̂[eα].

Finally, we review the result of Subsection 4.4 — what happens when the spray is affine
— from the present point of view. We have in any case a global Cartan connection form
ω on the manifold CM , which satisfies the defining conditions

1. the map ωp : TpCM → sl(m+ 1) is an isomorphism for each p ∈ CM ;

2. R∗
kω = ad(k−1)ω for each k ∈ Km+1; and

3. ω(A†) = A for each A ∈ km+1, where km+1 is the Lie algebra of Km+1 and where
A† is the fundamental vector field corresponding to A.
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A Cartan projective connection form in the affine case is a form $ on the same manifold,
satisfying the same conditions but with Hm+1 replacing Km+1, and with condition (3)
being replaced, explicitly, by

3a. $(A‡) = A for each A ∈ hm+1, where hm+1 is the Lie algebra of Hm+1 and where
A‡ is the fundamental vector field corresponding to A.

Now ω is the restriction to CM of the Ehresmann connection form ω̂ on π∗
M (SWM); and

ω̂, being an sl(m+ 1)-valued connection form, satisfies ω̂(A†) = A for all A ∈ sl(m+ 1),
and in particular for all A ∈ Hm+1. The submanifold CM ⊂ π∗

M (SWM) is not invariant
under the action of Hm+1 on π∗M (SWM), and so the restriction of the fundamental vector
field A† to CM is not tangent to CM and, in particular, is not the same as A‡. It is,
however, easy to check that

ω̂(A†) = ω(A‡)

at all points of CM for any connection form ω arising in this way: thus, in order for ω to
be of affine type, it is enough for the condition that R∗

hω = ad(h−1)ω for each h ∈ Hm+1

to be satisfied. The differential version of this condition is that LA‡ω = [ω,A] for all
A ∈ Hm+1; if we express this in terms of the curvature Ω of ω it becomes A‡ Ω = 0, so
this is the necessary and sufficient condition for ω to be of affine type. Since hm+1/km+1

parametrizes the vertical subspaces of PTM → M at each point, and since necessarily
A‡ Ω = 0 for A ∈ Km+1, this condition can be seen to be essentially equivalent to the
local one found in Subsection 4.4.

Appendix: determination of the normal Cartan connection

In this appendix we give the detailed calculations leading to the normal Cartan con-
nection using the curvature conditions from Subsection 4.2, which we repeat here for
convenience:

• Ωα
0 = 0;

• Ω0
1 is semi-basic;

• Ωi
1 is semi-basic;

• if we set Ωi
j = Ki

jkldy
k ∧ θl mod(dxa ∧ dxb) then Kk

kij = 0 and Kk
ijk = 0;

• if we set Ωi
1 = Lijdx

1 ∧ θj mod(θk ∧ θl) then Lkk = 0.

The connection form in standard gauge is given by

ω =







ω0
0 ω0

1 ω0
j

ω1
0 ω1

1 ω1
j

ωi0 ωi1 ωij






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where ω1
0 = dx1, ωi0 = θi, ω0

0 = κidy
i, and ωi1 = Aij(dy

j − f jdx1) mod(θk) where (Aij) is
non singular.

We first consider Ωa
0, leaving Ω0

0 until later. It is clear from the gauge transformation
formulæ that if Ωa

0 = 0, then Ω̂a
0 = 0 also, so making this part of the torsion zero is a

valid first step in determining a normal connection.

We now proceed to make the Ωa
0 zero. First,

Ω1
0 = dx1 ∧ (ω0

0 − ω1
1) + ω1

j ∧ θ
j;

in order for this to be zero, it must be the case that

ω0
0 − ω1

1 = λdx1 + λjθ
j, ω1

j = −λjdx
1 + λjkθ

k

for some functions λ, λj and λjk, with λkj = λjk.

Next,

Ωi
0 = dθi + θi ∧ ω0

0 + ωi1 ∧ dx
1 + ωijθ

j

= −(dyi − ωi1) ∧ dx
1 + (ωij − δijω

0
0) ∧ θ

j.

For this to be zero we must first have that ωi1 = dyi−f idx1 mod θj (in other words, Aij =

δij), and that ωij−δ
i
jω

0
0 is semi-basic (take the inner product with ∂/∂yi). (The component

forms of the connection, and also of the curvature, are forms on PTM ; semi-basic will
always mean semi-basic from this point of view). Then if we set ω i1 = dyi− f idx1 +µijθ

j

we must have
ωij − δijω

0
0 = µijdx

1 + νijkθ
k with νikj = νijk.

Now ω takes its values in sl(m+ 1), so

0 = ω0
0 + ω1

1 + ωii = (m+ 1)ω0
0 − (λdx1 + λiθ

i) + µiidx
1 + νjjiθ

i,

and therefore
ω0

0 = 0, λ = µii, λi = νjji.

We must now consider gauge transformations between connections in standard form in
more detail. Take a coordinate transformation on M , from (xa) to (x̂a), with the induced
transformation of the yi. Let (Jab ) be the Jacobian matrix of the transformation,

Jab =
∂x̂a

∂xb
, J = det(Jab ).

Then

dx̂1 = (J1
1 + J1

ky
k)dx1 + J1

kθ
k

dx̂i = (J i1 + J iky
k)dx1 + J ikθ

k

ŷi =
J i1 + J iky

k

J1
1 + J1

ky
k

θ̂i =

(

J ij −

(

J i1 + J iky
k

J1
1 + J1

ky
k

)

J1
j

)

θj.
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Suppose that we have two (gauged) connection forms, one associated with each of the two
coordinate systems, each in standard form with respect to its coordinates, and both hav-
ing zero in the top left-hand corner. Suppose further that these are local representatives
of the same global connection form, so that they are related by a gauge transformation.
Then the gauge transformation relating them is uniquely determined in terms of the
coordinate transformation, and is given by

k1
1 = k0

0(J
1
1 + J1

ky
k), k1

j = k0
0J

1
j , kij = k0

0β
i
j , k0

adx
a = k̄0

0dk
0
0 ,

where

k0
0 =

{

J−1/(m+1) m odd

±|J |−1/(m+1) m even

with

βij = J ij −

(

J i1 + J iky
k

J1
1 + J1

ky
k

)

J1
j .

Note in particular that dx̂1 is a linear combination of dx1 and the θi, while dŷi depends
on all of dyj , dx1 and θk.

For a curvature form with Ωa
0 = 0, and with k as described above, we have

k−1Ωk =







k̄0
0 ∗ ∗
0 k̄1

1 ∗
0 0 k̄ij













Ω0
0 Ω0

1 ∗
0 Ω1

1 ∗
0 Ωi

1 Ωi
j













k0
0 ∗ ∗
0 k1

1 k1
j

0 0 kij







=







Ω0
0 Ω̂0

1 ∗
0 ∗ ∗
0 k1

1 k̄
i
kΩ

k
1 k̄ikk

1
jΩ

k
1 + k̄ikk

l
jΩ

k
l






,

where Ω̂0
1 is a linear combination of Ω0

0, Ω0
1, Ω1

1 and Ωi
1. It follows, first of all, that

requiring that Ωi
1 is semi-basic is a coordinate independent condition; our next move is

to impose it.

We have

Ωi
1 = dωi1 + θi ∧ ω0

1 + (ωik − δikω
1
1) ∧ ω

k
1

= −df i ∧ dx1 + dµij ∧ θ
j − µijdy

j ∧ dx1 + θi ∧ ω0
1 + (ωik − δikω

1
1) ∧ ω

k
1 ,

and
ωij − δijω

1
1 = (µij + δijλ)dx1 + (νijk + δijλk)θ

k.

Now we cannot make Ωi
1 vanish, but we can ensure that it is semi-basic. In fact

∂

∂yj
Ωi

1 = −

(

∂f i

∂yj
+ 2µij + δijλ

)

dx1 +

(

∂µik
∂yj

− νijk − δijλk − δikω1j

)

θk,

where

ω1j =

〈

∂

∂yj
, ω0

1

〉

.
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So we must take

2µij + δijλ = −
∂f i

∂yj
= 2γij , νijk + δijλk + δikω1j =

∂µik
∂yj

where

γij = −1
2

∂f i

∂yj
.

On taking the trace of the first equation, recalling that λ = µii, we find that

λ =
2

m+ 1
γ, γ = γii ,

and so

µij = γij −
1

m+ 1
δijγ.

Thus

νijk + δijλk + δikω1j = γ i
jk −

1

m+ 1
δikγj,

where

γ i
jk =

∂γik
∂yj

=
∂γij
∂yk

, γk = γ jjk .

Taking two traces in the equation for ν ijk, using its symmetry, and recalling that λi = νjji,
we obtain

mλk + ω1k =
m

m+ 1
Γk

2λk + (m− 1)ω1k =
2

m+ 1
Γk,

whence

λk =
1

m+ 1
γk, ω1k = 0

for m > 2, and therefore

νijk = γ i
jk −

1

m+ 1
(δijγk + δikγj).

We now turn to Ωi
j :

Ωi
j = dωij + ωik ∧ ω

k
j + θi ∧ ω0

j + ωi1 ∧ ω
1
j .

We wish to calculate the terms in Ωi
j involving dyk, which we do as follows. Taking into

account the terms we know to be semi-basic we have

∂

∂yk
Ωi
j =

∂

∂yk
dωij − τjkθ

i + δik(−λjdx
1 + λjlθ

l), τjk =

〈

∂

∂yk
, ω0

j

〉

.
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Now

∂

∂yk
dωij = LVk

ωij = LVk

((

γij −
1

m+ 1
δijγ

)

dx1 +

(

γ ijl −
1

m+ 1

(

δijγl + δilγj
)

θl
))

,

Vk = ∂/∂yk. But LVk
θl = −δlkdx

1, whence

LVk
ωij =

1

m+ 1
δikγjdx

1 +

(

γijkl −
1

m+ 1

(

δijγkl + δilγjk
)

)

θl, γijkl =
∂γ i

jk

∂yl
, γkl =

∂γk
∂yl

.

So finally

∂

∂yk
Ωi
j =

(

γijkl −
1

m+ 1

(

δijγkl + δilγjk
)

)

θl − τjkθ
i + δikλjlθ

l.

This means that
Ωi
j = Ki

jkldy
k ∧ θl (mod dxa ∧ dxb)

with

Ki
jkl = γijkl −

1

m+ 1

(

δijγkl + δilγjk
)

+ δikλjl − δilτjk.

We will now find the transformation rule for K i
jkl. To do so, we need to demonstrate

a relationship between ∂ŷk/∂yl and kij . We have θ̂k = k0
0 k̄

k
l θ

l, whence, on taking the
exterior derivative,

dŷk ∧ dx̂1 =
∂ŷk

∂yl
∂x̂1

∂x1
dyl ∧ dx1 (mod dxa ∧ dxb)

= k0
0 k̄

k
l dy

l ∧ dx1 (mod dxa ∧ dxb),

so that
∂ŷk

∂yl
= ck̄kl

for some non-vanishing function c. Now

K̂i
jkldŷ

k ∧ θ̂l = ck̄kmk̄
l
nK̂

i
jkldy

m ∧ θn (mod dxa ∧ dxb)

= k̄irk
s
jK

r
skldy

k ∧ θl (mod dxa ∧ dxb)

using the fact that Ωi
1 is semi-basic. Thus

K̂i
jkldŷ

k ∧ θ̂l = c−1k̄irk
s
jk
m
k k

n
l K

r
smn,

from which it follows that K̂i
ikl = 0 if and only if K i

ikl = 0, and also that K̂i
kil = 0 if

and only if K i
kil = 0. We may therefore validly impose the condition that both of these

traces of this component of Ωi
j vanish. These conditions give

1

m+ 1
γkl + λkl − τlk = 0,

m− 1

m+ 1
γkl + (m− 1)λkl − τkl = 0.
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It follows that

λkl = −
1

m+ 1
γkl, τkl = 0,

and

Ki
jkl = γijkl −

1

m+ 1

(

δijγkl + δikγjl + δilγjk
)

.

Note that with this choice K i
jkl is completely symmetric in its lower indices and com-

pletely trace-free.

In the course of the argument so far we have shown that ω0
1 and ω0

i are semi-basic. Since
Ω0

0 is unchanged by a gauge transformation we can require that it is zero: for this to
be the case we must have ω0

1 ∧ dx1 + ω0
i ∧ θ

i = 0. So if we set ω0
1 = %dx1 + %iθ

i then
ω0
i = %idx

1 + %ijθ
j where %ji = %ij.

Since Ω takes its values in sl(m + 1), and Ω0
0 = 0, Ω1

1 + Ωi
i = 0. Since K i

ijk = 0, Ωi
i is

semi-basic, and therefore Ω1
1 is semi-basic. Now Ω̂0

1 is a linear combination of Ω0
1, Ω0

0, Ω1
1

and Ωi
1, all of which except the first we now know to be semi-basic. It follows that Ω̂0

1

will be semi-basic if and only Ω0
1 is, and so we can validly impose the condition that Ω0

1

is semi-basic. But
Ω0

1 = dω0
1 + ω0

1 ∧ ω1
1 + ω0

j ∧ ω
j
1,

whence

∂

∂yi
Ω0

1 = LVi
ω0

1 − (%idx
1 + %ijθ

j) =

(

∂%

∂yi
− 2%i

)

dx1 +

(

∂%j
∂yi

− %ij

)

θj,

so that Ω0
1 is semi-basic if and only if

%i = 1
2

∂%

∂yi
, %ij =

∂%j
∂yi

= 1
2

∂2%

∂yi∂yj
.

We have now determined the whole of the connection except for %. To fix it we go
back to Ωi

1, which is known to be semi-basic. We can therefore write Ωi
1 = Lijdx

1 ∧ θj

mod θm ∧ θn. Then

Ω̂i
1 = L̂ijdx̂

1 ∧ θ̂j (mod θ̂m ∧ θ̂n)

= k0
0 k̄

j
l

∂x̂1

∂x1
L̂ijdx

1 ∧ θl (mod θm ∧ θn)

= k1
1 k̄

i
kL

k
jdx

1 ∧ θj (mod θm ∧ θn),

whence
L̂ij = ck̄ikk

l
jL

k
j

where c is a scalar factor. Thus L̂kk = 0 if and only if Lkk = 0, and we may validly impose
the condition that the trace of this component of Ωi

1 vanishes. Now

d

dx1
Ωi

1 = Lijθ
j
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=

(

∂f i

∂xj
+

d

dx1
(γij) + γikγ

k
j − δij

(

%+
1

m+ 1

d

dx1
(γ) +

1

(m+ 1)2
γ2
)

)

θj

= (Φi
j − δij %̃)θ

j

where Φi
j is the Jacobi endomorphism of the second-order differential equation field,

Φi
j =

∂f i

∂xj
+

d

dx1
(γij) + γikγ

k
j ,

and we have set

%̃ = %+
1

m+ 1

d

dx1
(γ) +

1

(m+ 1)2
γ2.

Thus Lkk = 0 if and only if (m− 1)%̃ = Φi
i, and then

Lij = Φi
j −

1

(m− 1)
δijΦ

k
k.

The connection is now completely determined; it is the normal connection corresponding
to the given system of second order differential equations.
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