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Abstract

We show that asserting the regularity (in the sense of Rund) of a first-order para-
metric multiple-integral variational problem is equivalent to asserting that the dif-
ferential of the projection of its Hilbert-Carathéodory form is multisymplectic, and
is also equivalent to asserting that Dedecker extremals of the latter (m+ 1)-form are
holonomic.
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1 Introduction

In this paper we continue our study of multiple-integral problems in the calculus of
variations which are parametric, to use the terminology of Giaquinta and Hildebrandt [7]:
these are problems in which the Lagrangian function is homogeneous in an appropriate
sense, so that the variational integrals are parameter-independent. Typical single-integral
parametric problems are those studied in Finsler geometry.

In previous papers we have shown how to generalize the Hilbert 1-form of Finsler geom-
etry to the first-order multiple-integral case, so as to obtain a decomposable form which
we called the Hilbert-Carathéodory form [3]; and we have obtained the conditions on the
Lagrangian which result in its Euler-Lagrange equations vanishing identically, that is,
the conditions for the Lagrangian to be null [5]. We have also discussed the higher-order
case [4]; but here as in [3] and [5] we deal only with first-order problems.



Our purpose in this paper is to investigate what it might be for a first-order parametric
multiple-integral problem to be regular. There are in fact (at least) two possible answers
to this question to be found in the literature. We wish to propose a third, and we shall
show that despite the fact that these three definitions of regularity are conceptually quite
different, in practical terms they are equivalent.

A single-integral variational problem which is not of parametric type is regular if the Hes-
sian of the Lagrangian with respect to the velocity variables, considered as a symmetric
bilinear form, is non-degenerate. (To be exact, this is the condition for local regularity:
there is also a concept of global regularity, in which the Legendre transformation is a
global diffeomorphism; local regularity is a necessary but not a sufficient condition for
global regularity. Here however we deal only with local issues.) In Finsler geometry this
condition can never hold for the Hessian of the Finsler function, because of its homo-
geneity. For regularity we require the Hessian of the energy, that is, half the square of
the Finsler function, to be non-degenerate (indeed, positive-definite).

The first of the definitions of regularity for parametric multiple-integral problems we
wish to discuss is based on these observations about Finsler geometry. It was proposed
by Rund in the 1960s [9, 10]. Rund’s idea was to find a power of the homogeneous
Lagrangian which mirrors relevant properties of the Finslerian energy, and to require
its Hessian to be non-degenerate for regularity. He was able in this way to develop an
extensive theory of first-order parametric multiple-integral problems which generalizes
aspects of Finsler geometry.

The second approach to defining regularity for parametric problems is to take advantage
of what is known for non-parametric problems, by destroying parameter independence
by using special, so-called affline, coordinates. In our discussion of this approach we shall
use a formulation of regularity for non-parametric problems given by Krupkovd [8], which
is based on the ideas of Dedecker [6].

The third concept of regularity under consideration is founded on the important role
that multisymplectic structures play in first-order field theories [1, 2]. A multisymplectic
structure on a manifold consists of a closed form of some order whose characteristic
distribution consists just of the zero vector field. The multisymplectic structure for
a field theory generalizes the symplectic structure which has such a key function in
dynamics. We propose as a third definition of regularity that the exterior derivative of
the Hilbert-Carathéodory form should determine a multisymplectic structure.

We shall show that each of these diverse notions of regularity leads to the same basic
condition — except, as it happens, for single-integral problems, so the remarks above
about analogies between symplectic and multisymplectic structures must be treated with
caution. Indeed, several of our results hold only for problems which are strictly of
multiple-integral type.

In the next section we shall give the essential background for the study of parametric
multiple-integral problems, and in Section 3 we discuss the three definitions of regularity



in some detail. In Section 4 we define an object which we call the structural tensor of
the Lagrangian, and in Section 5 we show how the structural tensor helps us answer
the question of when and where the exterior derivative of the Hilbert-Carathéodory
form determines a multisymplectic structure. In the following section we show that the
conditions we derive in Section 5 are equivalent to those required for the other concepts
of regularity.

2 Background

We work on a configuration manifold F of dimension N = m+n. An m-frame at a point
u € E is an ordered linearly-independent set & = (£1,&z,...,&,) of elements of T, F,
and the collection of all m-frames at all points of F is a fibre bundle over F which we
denote by F"™ E and call the m-frame bundle. Thus F"™E is an open submanifold of
the Whitney sum of m copies of TFE. We write (u?) for coordinates on E and (u?, uf')
for coordinates on F™E; we emphasize that, whereas the superscript A is a genuine
coordinate index, the subscript 7 simply identifies the ¢-th vector &; in the set. By linear
independence, the fibre coordinates are such that the matrix (u#) has rank m.

The i-th component of the identity map F(ME — FME is a map X; : FME — TE
fibred over the projection F™E — E. and is therefore a vector field along that projection
called the ¢-th total derivative. The coordinate expression of X; is thus

X; = uf‘a% .

The group GL(m)™ of m x m matrices of positive determinant acts on f(m)E, where the
action of a = (a]) € GL(m)* on FUME is given by (u?, u) = (u?, alu#). This action
makes F(™ E into a principal fibre bundle with group GGL(m)*; we denote the base by
S E and call it the m-sphere bundle, since it generalizes the sphere bundle to which
it reduces in the case m = 1. A point of S F is an oriented m-dimensional contact
element at a point of F, or an oriented m-dimensional subspace of a tangent space to F/,
of which any corresponding frame is a consistently oriented basis.

We sometimes relate our constructions to those on the jet bundle of a fibration. If
m : E — M is a fibration where dim M = m then the first jet bundle J'7 may be
identified with an open submanifold of SU™ E; the points of S(™) E which are excluded
from Jl7 are those where the oriented m-dimensional subspace is tangent to the fibration.
In these circumstances, we would work on the corresponding open submanifold of FmE,
When considering such fibrations, we shall assume that the base manifold M is orientable.

A function L on FUME is said to be a homogeneous Lagrangian function if, for every
a€GL(m)t, 4
L(u*, alutt) = (deta)L(u?, ut) .

k3



Lagrangian functions which are homogeneous in this sense give rise to parametric varia-
tional problems. By differentiating the condition above with respect to a! and evaluating
at the identity matrix we find that a homogeneous Lagrangian must satisfy

oL :
u =§r.
Z 8u K

The vector fields Af on FUME specified in coordinates by

; J
A
AZ_ Z 8 A

and vertical over F are defined globally, and are in fact the fundamental vector fields cor-
responding to the G L(m)*-action; it follows that the condition A?(L) = 6! L is sufficient,
as well as necessary, for L to be homogeneous.

If XA is an m-form on the sphere bundle semi-basic over F, we may use it to define
a homogeneous Lagrangian function L in the following way. The semi-basic property
allows us to take the contraction of A with vectors at points of F, and so we define the
value of L at a point (&1,&z,...,&,) of F™E to be given by the contraction of A with
the m component vectors &; of that point. In terms of the total derivatives X; we have

L=XX1,Xa, ..., X,0).

Any Lagrangian m-form on the jet bundle J'x of a fibration 7 : I — M is semi-basic over
M and so may be used in this way to define a Lagrangian function on the corresponding
open subset of F(m E

The Hilbert-Carathéodory form © of a nowhere-vanishing homogeneous Lagrangian L is
the m-form

1 dL

/\Lau

this definition was given, slightly differently, in [3]. The Hilbert-Carathéodory form is
clearly decomposable and semi-basic over /. Furthermore, O is easily seen to be invariant
under the G'L(m)*-action, and so defines a semi-basic m-form O on S E. Evidently,
from the differential homogeneity condition,

@(X17X27...7Xm)Ié(X17X27...7Xm)IL;

the similarity with the formula for constructing L from a semi-basic form on the sphere
bundle or a Lagrangian form on a jet bundle is, of course, no accident.

We can use the Hilbert-Carathéodory form to represent the Euler-Lagrange equations
for L in terms of a field of m-frames I' = (I'y, 'y, ..., I';;) defined on FmE (that is, as
a section of the m-frame bundle of F(™) E rather than of F), so that each component '
is a vector field on F(™ E. We require T to satisfy the second-order condition

0 0
Fk—u?@A"’ f’“aA with Fk]_F]k,



and a straightforward calculation gives

L L

which indeed will also be evident from the formula for d© given in Lemma 1 below. Thus
we say that I satisfies the Euler-Lagrange equations for L if I'1d© = 0.

Suppose further that [ is a second field of frames satisfying [y =0y + A;kAf for some
functions A;k symmetric in their lower indices; then [ also satisfies the second-order con-

dition, and another simple calculation shows that [ satisfies the Euler-Lagrange equations
exactly when I' does. In view of the significance of the A! explained above, it should
be clear that this degree of indeterminacy is just what is to be expected in a parametric
problem.

3 Concepts of regularity

In this section we review in more detail the three concepts of regularity whose equivalence
we demonstrate later.

The first of these concepts applies to a homogeneous Lagrangian L defined on F(™E,
and is described by Rund in [9, Chapter 4 Section 5]. The idea is to define, for each
such Lagrangian, a suitable metric tensor ¢ as a section of the bundle V*@ V* — F(m E,
where V ¢ TF™E is the bundle of tangent vectors vertical over . Thus g may be
thought of as specifying, at each point & of (™ E a symmetric bilinear form on Ve, the
subspace of Tg]:(m)E consisting of vectors annihilated by projection onto F. The metric
is specified by its formula in coordinates,

i m82(112/m)
JAB = 2 8uf‘8u§3 '

Here (gi{B) is to be regarded as an m(m + n) x m(m + n) matrix, symmetric for the
interchange of 7, A with j, B. It may be checked that the construction is tensorial.
In the single-integral case such a formula describes the Hessian of the Finslerian energy.
Rund demonstrates that taking the particular power 2/m gives the metric a homogeneity
property analogous to that enjoyed by the Finslerian energy, so that in the general case
we may consider m/2 L2/™ as the ‘energy’ of the Lagrangian. Given such a metric g, the
Lagrangian may be recovered as

1 o\
L= (Eufufng) :

again this generalizes the way that a Finsler function can be recovered from the Hessian
of its energy.



When the metric ¢ is everywhere non-degenerate (as a symmetric bilinear form) we shall
say that L is Rundregular, and then we see from the recovery formula that I must be
non-vanishing. In such a case, the fibre coordinates ut on F™ E may be replaced by
‘momentum’ coordinates pp = gi{BuZA; this replacement represents a local identifica-
tion of the frame bundle with its dual coframe bundle, and specifies a corresponding

Hamiltonian system. An explicit statement of the Rund regularity of L is that

02 (2—m) 1 0L 0L
det — :
¢ (au;‘auf + m L 8ulA auf) 7 0;

the expression inside the bracket is just LI_Q/WgZB.

The other two concepts of regularity are concerned with a certain m-form and its exterior
derivative, defined on the sphere bundle (or perhaps on a suitable open subset thereof).

The second concept of regularity appears in the work of Dedecker [6], who considered a
first-order variational problem on the bundle of contact elements, where extremals are
submanifolds of F. Given such a problem, Dedecker studied certain related ‘zeroth-
order variational problems’, where the extremals are submanifolds of the contact bundle
itself; he defined a problem of the latter kind to be ‘equivalent’ to the original problem
if its extremals are always prolongations of those of the original one. A weaker version
of this property arises when a certain well-defined subset of the extremals consists of
prolongations.

The sphere bundle is a double cover of the contact bundle, and similar considerations
apply in our case. We shall say that a semi-basic m-form 6 on S E is a Lepage form if
Z1d8 is a contact form whenever Z is a vector field on S(™) F vertical over E; if A is some
other semi-basic m-form on S F then we say that 6 is a Lepage equivalent of X if it is
a Lepage form and if # — X is a contact form. An oriented m-dimensional submanifold
U C F is an extremal of the first-order variational problem defined by A if, for any
vector field X on F, the restriction of X1ydA to the prolonged submanifold U ¢ S(™ E
vanishes, where X! denotes the prolongation of X to a vector field on S E. On the
other hand, an oriented m-dimensional submanifold W C S(™ E is an extremal of the
zeroth-order variational problem defined by 6 if, for any vector field Y on S E,| Y d#
vanishes when restricted to W. If 8 is a Lepage equivalent of A and U is an extremal of
A then the prolongation U is an extremal of .

Our concern now is with a weak version of the converse. We say that an oriented
m-dimensional submanifold W ¢ SU)FE is a Dedecker submanifold if every 2-contact
differential form on (™) E vanishes when restricted to W. Given a non-vanishing homo-
geneous Lagrangian function L on FME the projection © of its Hilbert-Carathéodory
form is always a Lepage form on SU™E, as we shall see shortly; we shall say that L
is Dedeckerregular if every extremal W of © (as a zeroth-order problem) which is a
Dedecker submanifold is then necessarily a prolongation U?.

To confirm that © is a Lepage form on S E, and to establish a coordinate formula
for Dedecker regularity, we use the observation made earlier that for a fibration 7 :



F — M, J'z may be identified with an open submanifold of S(™ E, to introduce local
coordinates on SU™E. We choose ‘split’ coordinates (aci, y*) on F where i =1,...,m
and o = m 4 1,...,m + n, thereby fibring F locally, with the 2* coordinates on the
(notional) base and the y® coordinates on the (notional) fibre. The fibre coordinates on
SU™ E corresponding to the (notional) fibre coordinates on J'm — E are denoted by
ys. So (xi,ya,yia) are local coordinates on S FE: it is coordinates of this type that
we meant when we referred to affine coordinates earlier. In effect, we are identifying a
suitable open subset of SU™ E with those m-frames on E for which

0 e 0
ot yl@ya'

& =

We set L(2%,y*,y?) = L(2%, y°, 53, y®). In these coordinates © may be expressed as

~ I ;, LoL
@:ﬁ/\(dw —I—Z@qu)
=1 2

where w® = dy~ — y]@“dxj (see [3], where we have again used slightly different notation;
also, these calculations are similar to those in [8]). This m-form is just the Carathéodory
form of the local Lagrangian £dxz! A ...A dz™ and is well known to be a Lepage form.
Expanding the formula for ©, and writing

oL L [oL oL 0L OL
@ ayla ’ afl — r ’

L= = L9, =— -
Dy ayf Gyiﬁ dys
we have
O=Ld™ e+ Lo ANd™ e + %ﬁgﬁwa AP A A mod w® AwP AW

where

0
1d™x, dm_zwij = — dm_lwi

d™z =da' Ao AN d2™, d7 T e =
x AN Ndzx™, x D0 o

and where the factor of a quarter in the final term arises because the implied sum is over
all 1 < 4,5 <mand m+ 1< «,8 < m+ n rather than over terms where ¢ < j and
o < 3. Thus we get

de = ( oc - XZ',CQ) wrAd" e + 8'6;“ - ,Ciykw dy] Nw™ A d™ 'z, mod w* AW
dy~ dy,

Taking the contraction with ¥ = 8/8%@ we obtain

B

Y1dO = 0L, - Egjﬁ AW Ad™ e
ayj



and so we see that the condition for Dedecker regularity of L is that

det *°L 1 [oL 9L 9L AL 40
ay;vayf £\ 9y ayf dy’ oy
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We should perhaps mention that Dedecker’s analysis of regularity is quite general, and
gives different explicit criteria for different Lepage equivalents; the property we have been
discussing should strictly speaking be called Dedecker regularity for the Carathéodory
form.

Our third and final concept of regularity also concerns O, and is appropriate only in the
case m > 1: it is that d© should be a multisymplectic form, and then we say that L is
multisymplectic reqular. We may also express this in terms of the Hilbert-Carathéodory
form ©: it is easy to see (and we shall shortly show) that the fundamental vector fields
Al are always characteristic vector fields of d©, and the condition for multisymplectic
regularity is that the characteristic distribution of d© should be spanned by the AZ

It is worth making a remark here about the exceptional case m = 1, and comparing this
with a similar situation for the De Donder-Weyl theory for Lagrangians defined on jet
bundles, where again m = 1 is an exceptional case. Let w : ' — M be a fibration, and
let A = L£Ld™z be a Lagrangian m-form (here, we take the split coordinates (z',y®) to
be genuine fibred coordinates on F). The De Donder-Weyl theory considers the Cartan
form

Oc =Ld"x + oL
oy®

K3

(dy~ — y;“dxj) Ad™ e, :

the appropriate notion of regularity for this form is that the Hessian 82,6/8%»“8%@ should
be non-degenerate. If the Cartan form is regular, it is equivalent to the Lagrangian in
the sense of Dedecker: the extremals of O are prolongations of the extremals of A. In
the regular case, dO¢ is multisymplectic provided that m > 1, as may be seen easily
in coordinates by taking the contraction with an arbitrary vector field on J'z. But if
m = 1 then dO¢ is certainly not symplectic, because it is a 2-form on an odd-dimensional
manifold.

A similar situation arises in the homogeneous case, where we consider d© on FUE. The
fundamental vector fields A’ are always annihilated by d©; and so is any second order
frame field I' satisfying the Euler-Lagrange equations. But in the case m = 1 a second-
order frame field is just a vector field, and so would be a section of the characteristic
distribution linearly independent of the (single) fundamental vector field.

4 The structural tensor

Our approach to proving the equivalence, for a non-vanishing homogeneous Lagrangian
L, of the three definitions of regularity given above will involve the use of a certain



section @) of the bundle V* & V* — FE. This section is in general distinct from the Rund
metric g, although the coordinate formula for ), which we shall give below, does appear
in slightly different form in Rund’s work [9, 10]. It may be checked that this coordinate
formula does indeed define a tensorial object, and we call it the structural tensor of the
Lagrangian. To determine properties of ) we shall use a particular class of coordinate

systems on F™) E, and we first define these in the context of certain local bases of vector
fields and 1-forms.

We start with the total derivatives X; which, as described above, are m linearly inde-
pendent globally-defined vector fields along the projection F(™ E — E: we also have m
linearly independent globally-defined semi-basic 1-forms

(this is slightly different from the definition given in [3]) where (X;,¥/) = 52] We now
extend {X;} to alocal basis {X;, X, }, where m+1 < o < m+n, such that (X,,9") = 0.
Let 9

X, =X4—
* Juh
say: the latter contraction condition is then

oL _ 4
— =0.
out
Finally, let ¥ be the semi-basic 1-forms which make {#%,9°} a basis of semi-basic 1-
forms dual to the basis {X;, X,}. Since (X;,9%) = 0, the 9* are necessarily contact
1-forms, and we have '
du? = w9’ + X219~ .

The special coordinate systems mentioned above, which we now define, will be of use in
setting up such local bases. At each point £ € FUME the matrix (uZA) has rank m, so
by re-ordering the superscripts A we may define coordinate functions (which we still call
uf) where the m x m matrix (u!) is non-singular at ¢ and hence in some neighbourhood
of £&. We shall therefore restrict attention to coordinate systems having this property.
(To call these ‘special’ coordinate systems is perhaps somewhat extravagant: given the
rank condition, in reality there is little more to them than notational convenience.) We

shall denote the components of the inverse of (uf) by ﬂf, and set wlu? = vy

In such a coordinate system, the homogeneity condition for the Lagrangian is

oL oL .
k a Y
TouF T gar = b
so that
oL i o OL
=u:lL — v ,
au] J J 8ua



and therefore

1 0L

J
- du T ou

(duCY — v;yduj) .

A natural choice for 9¢ is then
9% = du™ — U?duj .
and with this choice we find that the coefficients X are given by

: ;1 0L L oL
X! = XP =60
. fLaa’ o« T TN T ue

We now introduce the section ) of the bundle V* © V* — F, the structural tensor, by
its formula in a general coordinate system,

> L 1 (9L 9L 9L IL \
AB = auflauf L auf auf au]A au?

at each point of &€ of FI™FE may regard the QZB as the components of a symmetric
bilinear form on Ve, as before. Now by differentiating the homogeneity condition we
obtain

0L _ i oL B 52»8_L
dufoul " T gt T R
so that
oL . gL 8L 8L :
i — 5] _ 52 =Y L(S] L(SZ —
Thus

Q(~al) =0
so that () annihilates the fundamental vector fields. We shall denote by D the vertical
distribution on F™E spanned by the Al so that D is a vector subbundle of V C
TFME; then @ defines a symmetric bilinear form @ on the quotient bundle V/D, in
other words a section of the bundle D+ © D+ — F(ME where DL is the subbundle of
1% Consnstmg of the annihilators of D. Using our special coordinates we have QAluk +

QAﬁuk =0, or QAI = —QAﬁvl , so that
Q = Qaﬁvl ’ o :Q”ﬁvkvlﬁ'
Equivalently, -
Q = Quglduf — vfduf] © [du] — v du]
where the bracketed 1-forms are equivalence classes modulo semi-basic forms. We note
that [du? — vgdul] is just the equivalence class of the total derivative X;(du® — v du*)
and that these equlvalence classes span the annihilators of D. The expression above

shows that the @) ]ﬁ can be regarded as the coeflicients of Q. which we call the reduced
structural tensor.

10



5 A condition for multisymplectic regularity

We now use the structural tensor to obtain a condition for the multisymplectic regularity
of a non-vanishing homogeneous Lagrangian for the case m > 1. We start by obtaining
a formula for L d© in terms of a basis {9*, 9} of semi-basic 1-forms, as described above.

Lemma 1 We have the following formula for L dO:

oL g 0°L
oul ! auBau;‘

5 0L

S N A N)
s 8uA8uf3

LdO = Xg‘( )ﬁaA®+X§‘X

2
L
+X§‘88Aa Bdu AD* A O,

where ©; = (—1)* LI A2 A - )i A O™ = X;0©, and summation over i (from 1 to
m) is intended in the second and third terms.

Proof We have © = LIt A 9?2 A--- A D™, whence

1 :
d@deL/\G—I—dﬁZ/\@i.

i_l 7 oL A
v _Z(—de —|—d(8u?)/\du ) :

and du? = uf‘ﬁi + Xfﬁa, so that

(( SidL+ uid (;L )) ANV +d (;LA) Axfﬁa)
ul

oL oL
——d ¥4 d A XA
( du A AT (3“2) )

Ld@—a—du /\@—l—d(aaLA)/\Xfﬁa/\@i.

dy' =

SNl e

It follows that

ou

Now #* A © = 0, so we can write

0L 4 oL Ao
LdO = 8AX19A®+d(8Ui) A X297 A ©;

oL 0?1 021

= —XMA0 du®P duB ) A X% A O
Ju - (auBau;l Tt Guioup )

= 8LXAWA@
ou

L B 0?1
¥+ XF00) + ———duP | AX19 NG,

+(8u38 A ey )
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9%L
A

xa_ 9
+ a@uf‘@uf

duf N9 N O

In the expression above for L dO the first two terms are semi-basic. Note that

: E)
LA dO) = X4P——
( ZJ ) ozuz 8U?8U]B

9L oL
= XA[§ == =9 AO, =0
a(lauf Z@u]A) k '

94 A O

in view of the properties of X4, so the Al are characteristic, as we mentioned before.

The point at issue is whether the exterior derivative of the corresponding Lagrangian form
O defines a multisymplectic structure on the sphere bundle. The question is, therefore,
if v is a characteristic vector of d© (so that xy1dO® = 0), is it the case that y must be a
linear combination of the A;?

The answer hinges on the properties of the final term in the expression for Ld©, the one
involving duf. We shall therefore consider the 1-form

O?L
oAy
duftouy

Lemma 2 When expressed in special coordinates,

Xfajj%u?duf = Qzﬁ(duf — vfdu?) .
Proof We have i 1oL , , 100
Xa:_ujf@7 Xa:(sa_ujfau;“
from which it follows that
A L L 10L o L
* QufouP dufduP L oug k duf u?
_ L _l@L(ié?L_(sjé?L)
Gufauf L oug k 8u§3 k oub
= QgB :
The result then follows using the expression for Qzl in terms of Qzﬁ O

12



Theorem 1 For m > 1 the form d© defines a multisymplectic structure on SME if

and only if the reduced structural tensor () is non-degenerate, in other words if and only

if the mn X mn matriz (Qzﬁ) s non-singular.

Proof We need to consider the characteristic vectors of d©.

Suppose that d© is multisymplectic, so that the only characteristic vectors of d© are
linear combinations of the A%. Suppose that Qzﬁxf = 0: then if

s 0
auj

X is a characteristic vector of d©. But if x is non-zero it cannot be expressed as a linear
combination of the A7. Tt follows that (Q};) is non-singular.

Suppose conversely that (Qzﬁ) is non-singular, and that y1d© = 0 with

4 0

— ZXZ ozXa / .
X=X + X + X; 8UZA

In the expression for y1dO© there will be just one term in du§3 A ©;, which comes from
contracting y“ X, with the last term in Ld©. Thus ngXﬁ = 0. But then Qzﬁxﬁcj =0
for any (;, whence XﬁCj = 0 for any (;, and ? =0.

We may therefore assume that y® = 0: then there remains only one term in yJ1dO
involving duf7 which is obtained by contracting x*.X; with the last term in LdO, and is

){Qi%(duf - vlﬁdué) ANPYNA O
where ©;; = X;10; = —0;;. It follows that Y' must satisfy
X'QL =Y QY;.

Let Q?Jﬁ be the coefficients of the inverse matrix, so that Qi%@?,f = 535{. Multiply
through by the inverse: o o

X'0%6] = X78301 -
Sum over a and 7, and again over j and [, to obtain my' = \*, whence \* = 0 (for
m # 1).

We are left with

so that

L(XJ d@) = Qgﬁ(xf — U]fX?) AP ANO; =0.
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Thus y must satisfy Xf = v,fx?, so that

as required. O

6 The other concepts of regularity

We now relate the other two concepts of regularity to the structural tensor Q).

In order to consider Rund regularity it will be convenient to examine quite a general
class of sections P of V* & V* — FME, with coefficients P, namely those for which

g g 1 8L oL
Pilp=Qip+ K75 7555
A B
L 0ug! Ouy
for some coefficients K,Z, symmetric under the interchange of k,¢ with [, j. In terms of
our special coordinates, P involves terms of the form
oL

W[duf‘] = Luy[duf] +
k

oL
duy

[dug — v dul],

where as before the brackets indicate equivalence classes modulo semi-basic 1-forms. Set

1 J0L
o = [0 = b ) o = o]+

these 1-form classes are clearly linearly independent and have the same span as the [du?'].
In terms of this basis - -
P=QYwi 0w + LKjwf ®wh

so that with respect to the wi! the matrix of coefficients of P is in block-diagonal form.
Thus P is non-degenerate if and only if both diagonal components are non-degenerate.

We pointed out earlier that w{* = X;(9%) modulo semi-basic 1-forms. It is interesting to
note in passing that a similar result holds for the relationship between w¥ and ¥*.

In the case of interest, where P = Ll_z/mg7
Kl = 3525]’ — i1
kl m l k
In this case, if le satisfies KZVJ«I = (2/m)8itrV — Vi = 0 then V must be diagonal;

we find by taking the trace that trV = 0, and therefore le = 0. Thus ¢ will be non-

degenerate, and L will be Rund-regular, if and only if Q is non-degenerate.
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One virtue of dealing with P of general form is that it allows us to draw further con-

clusions. In particular, consider the case with Kkl = 525{ - 5%5;: now P is just the
Hessian
%L
Aq, B "
dui Ou;

If le satisfies KZVJ«I = 0 in this case, then 52 trV — V,j = 0; on taking the trace this
time we find that (m — 1) trV =0, and therefore le = 0 provided that m # 1. Thus for
m > 1, we may equally well say that L is Rund-regular if and only if the (full) Hessian
of L is non-degenerate. This provides yet another insight into Rund’s theory, of which
he was apparently unaware in general terms; it is interesting to note, however, that for
m = 2, g coincides with the Hessian.

We now consider Dedecker regularity. Given the form of the coordinate expression of
the criterion for Dedecker regularity derived earlier, it would be easy to conclude that
nothing much needs to be done here to establish equivalence. However, it must be borne
in mind that that criterion is expressed in terms of £ rather than L, and is supposed to
hold in an affine coordinate neighbourhood in S(™ E, rather than on FU™E. We now
address these differences.

It will be convenient to think of the affine coordinates in terms of a local imbedding ¢+
of Jix into FME, given in relation to coordinates (ui7 u®,ul, u?) on FME split ap-
propriately, by ¢(z*, y®, y®) = (2*,y%, 53, y:). The image of ¢ lies within the domain of
the special coordinates we have been using. Then if L is any homogeneous Lagrangian
on FUME, £ = Lo Conversely, given L, we can find at least locally a homoge-
neous Lagrangian L such that £ = L o, by using the homogeneity formula in the form
L(uf ul') = det(u ) (87, v%) (suppressmg the base coordinates).

2 2
Let us denote by Q the tensor occuring in the criterion for Dedecker regularity. We seek
to relate @ and Q.

Now in a neighbourhood in FU™ E in which (u 2) is non-singular, we can use v as a

coordinate instead of u{. Let us in fact Change fibre coordinates to v/ = u] v = u]u;“
I — Jud —
Then du; = dv] and du} = u; dvj + v]@dui7 so that
o ;0

K3

=ut )
v J au?

K3

Moreover, d/0v{ is tangent to the image of ¢, and equals ¢,(0/0y;") there. Now set
L(ve) = L(8!,v%) = det(u!) " L(ul,u?). Then
/ . . 27 . 2
O det(ud) Mok, CE detud) M ufuf
g dug 81}?81} dug Ouj

so that
i1 (obol ool
81}?81}]@ L\ v 81}? 87}? 81}2@

)—dt( ) ukul klﬁ
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We may conclude first that det(uf)_lu};u] l;lﬁ is a function just of v¢ (so far as depen-
dence on fibre coordinates goes); secondly, that Qzﬁ is non-degenerate everywhere if it is

non-degenerate at uf = 5{; and thirdly, that ngﬁ = ngﬁou In fact duf —v]qduf = ufdv;“,

as follows immediately from u{ = UZU]O‘ Thus
QU ldy?] ® [dy] = 11 (QY w0 © wl) .

So we see that L is Dedecker-regular exactly when (Qzﬁ) is non-singular. We have
therefore established our main result.

Theorem 2 If L is a non-vanishing homogeneous Lagrangian on F™E where m > 1
then the three conditions of Rund regularity, Dedecker regularity and multisymplectic
reqularity are equivalent. [

7 Conclusions

In this paper we have demonstrated a relationship between three apparently different
notions of regularity for a parametric variational problem: Rund regularity, on the one
hand, which is a condition on the homogeneous Lagrangian function defined on F(™ E,
and multisymplectic and Dedecker regularities, on the other, which are conditions on an
(m+1)-form defined on SUM E. We have also seen that, in some respects, this relationship
for genuine multiple-integral problems is simpler than that for single-integral problems.
It would, however, be too much to expect that a unified notion of regularity should be
appropriate for any parametric multiple-integral problem.

A comparison with the case of affine jet bundles, considered in [8], is instructive. In
that work, an arbitrary Lepage equivalent of a given Lagrangian m-form is considered,
and it is shown that Dedecker regularity of different forms may give strictly different
results. This is used to advantage by defining a Lagrangian to be regularizable if at
least one regular Lepage equivalent exists. It is, nevertheless, desirable for the regularity
condition to hold for one of the geometrically-constructed Lepage equivalents, such as
the Carathéodory form or the truncated Cartan form.

In the present context there are two important geometrically-constructed m-forms associ-
ated with a homogeneous Lagrangian: the Hilbert-Carathéodory form considered above,
and the fundamental form described in [5]. Both forms have the same extremals as the
original Lagrangian, but the latter has the advantage that it is closed precisely when the
Lagrangian is null. It would therefore be of interest to compare the regularity properties
of the fundamental form with those described above, and we hope to do this in some
forthcoming work.
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