
Preface

The title of this volume refers to a Colloquium on Applied Differential Ge-
ometry and Mechanics, which was held at the Department of Mathematical
Physics and Astronomy, Ghent University, on November 1 and 2, 2002. This
colloquium was organised in honour of Michael Crampin, on the occasion of
his 60th birthday.

Mike Crampin was born on 16 March 1942. He graduated from Oxford Univer-
sity in 1963 and obtained his PhD in Mathematics at King’s College, Univer-
sity of London in 1967. He obtained another BA at the age of fifty-five, this
time in Philosophy, at Birkbeck College, University of London. Mike spent
most of his professional career at the Open University, Milton Keynes, UK.
He took early retirement in 2002 and is currently holding honorary part-time
research positions at Ghent University and the University of London.

Most of the contributors to this volume have come to know Mike Crampin
through the annual Workshop on Differential Geometric Methods in Theoret-
ical Mechanics. Mike was one of the main instigators of this Workshop, which
was held for the first time in Ghent in 1986 and has now been running for
seventeen consecutive years, meeting in Australia, Belgium, Hungary, Italy,
Poland, Spain, UK and USA.

On many occasions, the annual Workshop has been organised around a limited
number of themes, selected a year ahead of the meeting, and with one or two
people being responsible for each subject. Mike has often volunteered to be
one of these session organisers. His own exposés in such sessions have always
excelled in clarity of presentation and depth of insight. These, indeed, are also
the trade marks of his research papers.

Many of the participants at the Colloquium have had the privilege to collabo-
rate with Mike Crampin in the broad field of applied differential geometry and
mechanics. The Editors feel confident that they can speak for all participants
in saying that we all have benefited from these collaborations, both scientifi-
cally and in the sense of human interactions. The variety of topics presented
on this occasion reflects only part of the range of subjects to which Mike has
contributed and, with a few exceptions, the articles contained in this volume
are faithful accounts of these presentations.

We are indebted to the Research Fund of the Faculty of Sciences, Ghent Uni-
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versity, for financial support to publish these Proceedings and are grateful to
Bavo Langerock for invaluable technical assistance in putting it all together.

Willy Sarlet and Frans Cantrijn
Ghent University, Belgium
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Alternative Lie Algebroid structures and

Bi-Differential Calculi

Jaime R. Camacaro and José F. Cariñena

Departamento de F́ısica Teórica
Universidad de Zaragoza, 50.009 Zaragoza, Spain.

Abstract

The existence of alternative Lie algebroid structures with the same underlying vector
bundle is shown to provide explicit examples of the bi-differential calculi introduced
by Dimakis and Müller–Hoissen and the the existence of bi-Hamiltonian structures
of Poisson–Nijenhuis type introduced by Crampin, Sarlet and Thompson are dis-
cussed from this new perspective of the deformation of a Lie algebroid structure.

1 Introduction

In a recent paper [11] Dimakis and Müller–Hoissen have shown how it is
possible to generate conservation laws (non-local charges) [16,2] in completely
integrable systems, by making use of a bi-differential calculus. More recently,
Crampin et al. proved that the approach of Dimakis and Müller–Hoissen was
related with the standard approach of bi-Hamiltonian structures of Poisson–
Nijenhuis type [9], and the results were extended in [10], where the Poisson–
Nijenhuis case was discussed in a detailed way. Some interesting remarks on
the so called gauged bi-differential calculus by Dimakis and Müller–Hoissen
were also given.

The objects behind the structure studied by Dimakis and Müller–Hoissen,
and also in our case, are the so called non-local charges. These objects had
been introduced in [16] and can be described as a natural generalization of
the standard charges in relativistic quantum field theory. The non-local con-
served currents have later received much attention because of its relation with
different and interesting field theories [1–3,13].

Email address: jcama@wigner.unizar.es.



2 Jaime Camacaro and José Cariñena

Our aim in this paper is to show how the recent structures of Lie algebroid
and bi-algebroid are the geometric ingredient for a better understanding of
this bi-differential calculus.

The organization of the paper is as follows: In Section 2 we summarize the fun-
damental results of the bi-differential algebra and the corresponding bicomplex
linear equation whose solutions provide us sequences of D-closed s-cochains.
Some simple ideas of cohomology of Lie algebras which show us how to ob-
tain an alternative Lie algebra structure in the underlying linear space of a
Lie algebra are reviewed in Section 3. The main properties of the structure
of Lie algebroid are recalled in Section 4, in which some examples illustrating
the importance of the concept of Lie algebroid, as the Lie algebroid struc-
ture defined in the tangent bundle by means of a Nijenhuis operator N , are
given. Section 5 is devoted to introduce the exterior differential operator in
a Lie algebroid, and, in particular, to study the relation of the differential
operator corresponding to the Nijenhuis tensor N with the de Rham differen-
tial d, particular examples of this structure being the vertical endomorphism
and a complex structure. The specific example of a bi-differential calculus in
Poisson–Nijenhuis manifolds is reviewed in Section 6, the generalization for
a general Lie algebroid being given in Section 7. Finally, Lie bialgebroids are
reexamined in Section 8.

2 Bicomplex linear equation

Let us begin by recalling some facts about a bi-differential structure, also
called bi-differential algebra or double complex [11].

Definition 2.1 A bicomplex is a triple (M, D,D), where

M =
⊕

r≥0

Mr

is a N0-graded linear space and D, D are two linear maps of degree 1, i.e.
D, D :Mr →Mr+1, such that

D2 = 0 , D2 = 0 , D ◦ D +D ◦D = 0 .

Note that the condition D ◦ D + D ◦ D = 0 means that, for any λ ∈ R, the
linear map Dλ = D + λD is also such that D2

λ = 0.

Given a bicomplex, we will call “generalized conserved densities” to the D-
closed elements of the bicomplex. The remarkable point is that there is an
iterative construction of such “generalized conserved densities”, as follows:
let assume that for an integer number s > 0 there exists a non-vanishing
χ(0) ∈ Ms−1 such that DJ (0) = 0, with J (0) = Dχ(0). Then, J (1) ∈ Ms

defined by J (1) = Dχ(0) is such that DJ (1) = −DDχ(0) = 0. If the D-closed
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element J (1) is D-exact, then there exists χ(1), not uniquely defined, such that
J (1) = Dχ(1).

As J (1) is D-closed we can iterate the process when each D-closed form is
exact, by defining a J (2) ∈ Ms by J (2) = DJ (1), and in this way we obtain a
sequence of D-closed elements of degree s, {J (k) | k = 0, 1, . . .}, satisfying

J (m+1) = Dχ(m) = Dχ(m+1) . (2.1)

The preceding construction can be expressed in terms of the following diagram:

0 J0Doo

D

��

χ(0)Doo

D

��
0 J (1)Doo

D

��

χ(1)Doo

D

��
0 J (2)Doo

D

��

χ(2)Doo

D

��
0 J (3)Doo

D

��

χ(3)Doo

D

��
0 J (4)Doo

Introducing the formal series in the parameter λ

χ =
∑

m≥0

λm χ(m) ,

this satisfies the so called bicomplex linear structure:

D(χ− χ(0)) = λ Dχ .

Very often we start with a D-closed χ(0) ∈Ms−1 for which J (0) = 0, and then
the bicomplex linear structure becomes:

Dχ = λ Dχ .

The remarkable fact is that in the case we are considering this equation is
equivalent to the set of the preceding equations, but the key point is, however,
that in the more general case in which the D-cohomology is not trivial, HD 6=
0, any solution of the bicomplex linear structure also provides us a sequence of
elements χ(m) ∈Ms−1, and therefore the corresponding sequence J (m) ∈Ms.
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It is also frequent to deal with a particular example, that of a graded algebra

Ω(A) =
⊕

r≥0

Ωr(A)

over an associative algebra with a unit A, which extends to a unit on Ω(A),
and for which D and D are assumed to be derivations of degree 1.

In particular, the case for whichA = C∞(B), Ω(A) =
∧

(B), andD is the usual
exterior differential, is a really interesting example which has recently been
studied by Crampin et al. [9], who pointed out that according to Frölicher-
Nijenhuis theory [12], D is a derivation of type d∗ and there must be a (1,1)-
tensor field R such that D is of the form D = dR and the Nijenhuis torsion of
R must be zero. It is determined by

dRf = R∗(df) = df ◦R .

3 The cohomology of Lie algebras

Let us recall some simple notions of the cohomology of Lie algebras. Let g be
a Lie algebra and a a g-module. That means that a is a module that is the
carrier space for a linear representation Ψ of g, i.e. the map Ψ: g → End a

satisfies
Ψ(a)Ψ(b)−Ψ(b)Ψ(a) = Ψ([a, b]) .

A n-cochain is a n-linear alternating mapping from g× · · · × g (n times) into
a. We will denote by Cn(g, a) the linear space of n-cochains.

For every n ∈ N, we can define a linear map [7] δn : Cn(g, a)→ Cn+1(g, a) by

(δnα)(a1, . . . , an+1) =
n+1∑

i=1

(−1)i+1Ψ(ai)α(a1, . . . , âi, . . . , an+1)+

+
∑

i<j

(−1)i+jα([ai, aj], a1, . . . , âi, . . . , âj , . . . , an+1) ,

where âi denotes, as usual, that the element ai is omitted.

Such linear maps δn satisfy δn+1 ◦ δn = 0. Then, the linear operator δ on
C(g, a) =

⊕∞
n=0 Cn(g, a) whose restriction to each Cn(g, a) is δn, satisfies the

nilpotency condition δ2 = 0, and, consequently, we can introduce the usual
cohomological notions. We will then denote

Bn(g, a) = {α ∈ Cn(g, a) | ∃β ∈ Cn−1(g, a) such that α = δβ} = Im δn−1 ,

Zn(g, a) = {α ∈ Cn(g, a) | δα = 0} = ker δn .

The n-th cohomology group Hn(g, a) is defined as

Hn(g, a) =
Zn(g, a)

Bn(g, a)
,
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and we will define B0(g, a) = 0, by convention.

For each a ∈ g we can define the map

ia : Ck(g, a)→ Ck−1(g, a) ,

given by

(iaα)(a1, . . . , ak−1) = α(a, a1, . . . , ak−1) .

Particular examples in which a is either the set of vector fields or forms of a
manifold on which a Lie group G with Lie algebra g acts, have been shown to
be of relevance in the theory of symmetry groups in classical mechanics [5].
The case we are concerned here is when g = a and we consider the Lie algebra
g as a g-module by means of the adjoint action, i.e. Ψ : g→ End g is given by
Ψ(a)b = [a, b].

Then, a 1-cochain is a linear map A : g→ g. The coboundary of such 1-cochain
is

δA(a1, a2) = [a1, A(a2)]− [a2, A(a1)]− A([a1, a2]) .

Note that the linear map A is a derivation of the Lie algebra g if and only if
δA = 0.

The coboundary of a 2-cochain ζ : g× g→ g is

δζ(a1, a2, a3) = [a1, ζ(a2, a3)]− ζ([a1, a2], a3) + [a2, ζ(a3, a1)]
− ζ([a2, a3], a1) + [a3, ζ(a1, a2)]− ζ([a3, a1], a2) .

Then, the Jacobi identity in the Lie algebra can be written δζ = 0 where
ζ is just the bilinear map defining the composition law in the Lie algebra,
ζ(a, b) = [a, b].

For any linear map A, δA defines a skew-symmetric bilinear map [a1, a2]A by

[a1, a2]A = δA(a1, a2) = [A(a1), a2] + [a1, A(a2)]− A([a1, a2]) .

We will analyze next under what conditions the skew-symmetric composition
law [·, ·]A defines another Lie algebra structure in g, i.e. under what conditions
the bracket [·, ·]A satisfies the Jacobi identity.

The Nijenhuis torsion of A, T (A), is defined by

T (A)(a1, a2) = A([a1, A(a2)]− [a2, A(a1)]− A([a1, a2]))− [A(a1), A(a2)] ,

or, using the definition of [·, ·]A,

T (A)(a1, a2) = A([a1, a2]A)− [A(a1), A(a2)] .

Then, A is said to be a Nijenhuis map if its torsion vanishes, T (A) = 0.



6 Jaime Camacaro and José Cariñena

As far as the Jacobi identity for [·, ·]A is concerned, note that for any three
elements, a1, a2, a3 ∈ g,

[a1, [a2, a3]A]
A

+ [a3, [a1, a2]A]A + [a2, [a3, a1]A]A = [A(a1), [A(a2), a3]]
+[A(a1), [a2, A(a3)]]− [A(a1), A ([a2, a3])] + [A(a3), [A(a1), a2]]
+[A(a3), [a1, A(a2)]]− [A(a3), A ([a1, a2])] + [A(a2), [A(a3), a1]]
+[A(a2), [a3, A(a1)]]− [A(a2), A ([a3, a1])] + [a1, A ([A(a2), a3])]
+A ([a2, A(a3)])−A2 ([a2, a3])] + [a3, A ([A(a1), a2])] + A ([a1, A(a2)])
−A2 ([a1, a2])] + [a2, A ([A(a3), a1])] + A ([a3, A(a1)])− A2 ([a3, a1])]

and using the Jacobi identity for [·, ·], we finally get

[a1, [a2, a3]A]
A

+ [a3, [a1, a2]A]A + [a2, [a3, a1]A]A = [a3, T (A)(a1, a2)]
+ [a2, T (A)(a3, a1)] + [a1, T (A)(a2, a3)] .

Therefore, we see that if A is a Nijenhuis map, T (A) = 0, then [·, ·]A satisfies
Jacobi identity and therefore it defines a new Lie algebra bracket. This is
a sufficient, but not necessary, condition for δA to define a new Lie algebra
bracket.

We also remark that the vanishing of the Nijenhuis torsion of A, T (A) = 0
also implies that A : (g, [·, ·]A) → (g, [·, ·]) is a Lie algebra homomorphism,
because

A ([a1, a2]A)− [A(a1), A(a2)] = T (A)(a1, a2) = 0 .

In summary, the knowledge of a Nijenhuis map A allows us to define a new
Lie algebra structure on g, such that the map A is a homomorphism of Lie
algebras A : (g, [·, ·]A)→ (g, [·, ·]).
A particularly important case is that of g = X(B). Then the linear maps are
given by (1, 1)-tensor fields in B . Given a (1, 1)-tensor field N , the Nijenhuis
torsion of N is defined by

T (N)(X, Y ) = N([N(X), Y ] + [X, N(Y )])−N2([X, Y ])− [N(X), N(Y )] ,

for any pair of vector fields X, Y ∈ X(B).

A Nijenhuis structure on B is a (1, 1)-tensor field N with vanishing Nijenhuis
torsion,

T (N)(X, Y ) = 0 .

Such a Nijenhuis structure allows us to define an alternative Lie algebra struc-
ture on X(B) with the new Lie algebra bracket

[X, Y ]N = [N(X), Y ] + [X, N(Y )]−N ([X, Y ]) .

Moreover, as a consequence of the vanishing of T (N), the linear map

N : (X(B), [·, ·]N)→ (X(B), [·, ·])
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is a Lie algebra homomorphism.

4 Lie algebroids

Lie groups and Lie algebras have been shown to be very efficient tools in the
development of physical theories during the last fifty years. But the gener-
alization of such concepts, Lie groupoids and Lie algebroids, have only been
incorporated in the physics literature during the very recent years. We will
see that the concept of Lie algebroid is useful for a better understanding of
bi-differential calculus. Moreover, as Lie algebroids are directly related with
the theory of Poisson structures, they should play a relevant rôle in Physics.
The main point to be remarked here is that they are endowed with a nilpotent
differential operator providing us a generalized exterior differential calculus.
Furthermore, as it has been shown recently, it is possible to develop a gen-
eralized Lagrangian mechanics in Lie algebroids in full similarity with the
usual geometrical approach [19,17,6]. Finally, the structure of Lie algebroid
is also related to that of super-manifolds endowed with a special homological
super-vector field.

Let us first recall the definition and some properties of Lie algebroids. The
concept of Lie algebroid, which was introduced by Pradines [18], not only
generalizes the concept of Lie algebra but also that of tangent bundle of a
manifold B. We recall that such tangent bundle, τ : TB → B is a vector bundle
in which the set of its sections, the vector fields, Γ(τ) = X(B), is endowed with
a Lie algebra structure. Moreover, the sections of the bundle act as derivations
on the associative and commutative algebra of functions in the base manifold
B. Both properties, together with a compatibility condition, are the essential
ingredients of a Lie algebroid structure: given a function ϕ ∈ C∞(B) and two
sections X, Y ∈ Γ(τ), the following relation holds:

[X, ϕ Y ] = ϕ [X, Y ] + (Xϕ) Y .

Two other properties which will be generalized also to the case of Lie alge-
broids are that there exists a (regular) Poisson structure on the dual bundle,
in our case the cotangent bundle T ∗B, and that there is a graded exterior
differential operator which is a derivation of degree one in the graded alge-
bra of forms, d : Ωr(B) → Ωr+1(B), such that d2 = 0. Here Ωr(B) denotes

Ωr(B) = Γ(T ∗B∧ r· · · ∧T ∗B).

Definition 4.1 A Lie algebroid with base B is a vector bundle τE : E → B,
together with a Lie algebra structure in the space of its sections given by a Lie
product [·, ·]E, and a vector bundle map over the identity in the base, called
anchor, ρ : E → TB, inducing a map between the corresponding spaces of
sections, to be denoted with the same name and symbol, such that:
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1. ρ : Γ(τE)→ X(B) is a Lie algebra homomorphism

[ρ(X), ρ(Y )] = ρ([X, Y ]E) .

2. For any pair of sections for τE, X, Y , and each differentiable function ϕ

defined in B,

[X, ϕ Y ]E = ϕ [X, Y ]E + (ρ(X)ϕ)Y .

Let {xi | i = 1, . . . , n} be local coordinates in a chart on an open set U ⊂ B,
and let {eα | α = 1, . . . , r} be a basis of local sections of the bundle UE =
τ−1
E (U)→ B. Each local section VU is written V = yα eα. The local coordinates

of p ∈ UE are p = (xi, yα).

The local expressions for the Lie product and the anchor map are (summation
on repeated indices is understood):

[eα, eβ]E = Cαβ
γ eγ , ρ(eα) = ρi

α

∂

∂xi
, (4.2)

where α, β, γ = 1, . . . , r, and i = 1, . . . , n. The functions Cαβ
γ ∈ C∞(U)

and ρi
α ∈ C∞(U) are called structure functions of the Lie algebroid. The

conditions for ρ to be a Lie algebra homomorphism are

∑

cycl(α,β,γ)

(
ρi

α

∂Cβ γ
µ

∂xi
+ Cα ν

µ Cβ γ
ν

)
= 0 ,

and the compatibility conditions between ρ and [·, ·] are

ρj
α

∂ρi
β

∂xj
− ρj

β

∂ρi
α

∂xj
= ρi

γ Cα β
γ .

These equations are called structure equations.

Examples of Lie algebroids are the tangent bundle of a manifold B, with the
identity as anchor map and the usual bracket of vector fields, or any integrable
subbundle of it, and also a finite-dimensional Lie algebra g, considered as a
vector bundle over a point, for which the anchor vanishes identically and the
bracket is that of g. In the first case, with the usual choice of coordinates (qi, vi)
in TB induced from coordinates (qi) in the base B, the structure functions
are

cij
k = 0 , ρi

j = δi
j ,

but in arbitrary coordinates the structure functions, in general, do not vanish.
For the case of the Lie algebra g as a vector bundle over a point, B reduces
to a single point, TB = {0}, and E = g. Then E = g can be seen as a Lie
algebroid for which ρ = 0, the sections are the elements of g and

[V, W ]E = [V, W ]g .
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The structure functions are the structure constants of the Lie algebra, Cαβ
γ .

As another example of interest, consider a Poisson manifold (B, P ). Let us
recall that the Poisson bi-vector P , i.e. such that [P, P ]sch = 0, where [·, ·]sch
denotes the Schouten bracket, allows us to define the Poisson bracket of two
functions in B by {f, g} = P (df, dg). We can also use the Poisson bi-vector
P to define a map P̂ : T ∗B → TB, which is a vector bundle morphism, by
contraction of P with the corresponding covectors, i.e.

〈β, P̂ (α)〉 = P (α, β) ,

for each pair of covectors α and β. This map induces another one between the
spaces of sections of both vector bundles, also denoted P̂ , P̂ : Ω1(B)→ X(B),
by the same expression, but where now α and β are 1-forms.

We call Hamiltonian vector field corresponding to the function f ∈ C∞(B) to
the vector field given by Xf = −P̂ (df), and it can be shown that [Xf , Xg] =
−X{f,g}.

Moreover (see e.g. [4] and references therein), Fuchsteiner and Koszul, inde-
pendently, showed that the set of 1-forms Ω1(B) can be endowed with a Lie
algebra structure by defining the following bracket:

[α, β]P = L
P̂ (α)

β − L
P̂ (β)

α− d(P (α, β)) , (4.3)

where LX denotes Lie derivative with respect to X. This Lie product is such
that

[df, dg]P = d{f, g} ,

and, therefore,

P̂ ([df, dg]P ) = P̂ (d{f, g}) = −X{f,g} = [Xf , Xg] = [P̂ (df), P̂ (dg)] ,

i.e. P̂ : (Ω1(B), [·, ·]P )→ (X(B), [·, ·]) is a Lie algebra homomorphism.

Using
LfXα = f LXα + (i(X)α) df ,

for any function f in B, we arrive at

[α, f β]P = (P̂ (α)f) β + f [α, β]P , (4.4)

and, therefore, we can endow the vector bundle π : T ∗B → B with a Lie
algebroid structure where the Lie bracket of 1-forms is given by (4.3) and the
anchor map by ρ = P̂ , because P̂ is a vector bundle morphism P̂ : T ∗B → TB

such that P̂ ([α, β]P ) = [P̂ (α), P̂ (β)], and (4.4) provides the compatibility
condition between the anchor and the Lie bracket.

Finally, the most relevant example of Lie algebroid for understanding bi-
differential calculus is the Lie algebroid structure defined by a Nijenhuis tensor
in a manifold B. In fact, as we showed before, a (1,1) Nijenhuis tensor in B
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allows us to introduce a different Lie algebra bracket in the set of sections for
τ : TB → B as follows:

[X, Y ]N = [N(X), Y ] + [X, N(Y )]−N ([X, Y ]) .

As N is a linear map N : (X(B), [·, ·]N) → (X(B), [·, ·]), this suggests us to
introduce a new Lie algebroid structure in the vector bundle τ : TB → B by
means of the Lie bracket [·, ·]N and the anchor map ρ = N : TB → TB.

In fact, we have pointed out before that N being a Nijenhuis tensor, the
bracket [·, ·]N satisfies Jacobi identity, then (X(B), [·, ·]N) is a Lie algebra, and
N : (X(B), [·, ·]N)→ (X(B), [·, ·]) is an homomorphism of Lie algebras.

Furthermore, for any function f ∈ C∞(B), and any pair of fields X, Y ∈ X(B),
we have that

[X, f Y ]N = [N(X), f Y ] + [X, f N(Y )]−N ([X, f Y ])
= (N(X)f) Y + f [N(X), Y ] + (Xf) N(Y )
+ f [X, N(Y )]− (Xf) N(Y )− f N ([X, Y ])
= (N(X)f) Y + f [X, Y ]N ,

and therefore,

[X, f Y ]N = f [X, Y ]N + (N(X)f) Y ,

which is the compatibility condition of the anchor N with the Lie bracket
[·, ·]N .

5 Exterior differential of a Lie algebroid.

Given a Lie algebroid, (E, ρ, [·, ·]E), the sections of τE will play the rôle of
vector fields, and will be called E-vector fields, and the sections of the dual
bundle πE : E∗ → B that of 1-forms, and will be called E-1-forms. Similarly,
we can consider the bundles E∗ ∧ · · · ∧ E∗, sections for the projections from
E∗ ∧ · · · ∧E∗ onto B, which allows us to construct the exterior algebra

∧• E∗

of the dual of E. The sections of
∧• E∗ are called E-forms. The set of them,

Γ(
∧• E∗) = Ω(E), is a C∞(B)-module. An E-k-form is a E-form such that

θ ∈ Γ(
∧k E∗). Here, by convention Γ(

∧0 E∗) = C∞(B).

The exterior differential giving rise to de Rham cohomology can also be gen-
eralized to this more general framework and we can define a differential op-
erator dE which maps, in a linear way, each E-k-form into a E-(k + 1)-form,
dE : Γ(

∧k E∗)→ Γ(
∧k+1 E∗), as follows:

dEθ(V1, . . . , Vk+1) =
∑

i

(−1)i+1ρ(Vi)θ(V1, . . . , V̂i, . . . , Vk+1) +

+
∑

i<j

(−1)i+j θ([Vi, Vj]E , V1, . . . , V̂i, . . . , V̂j, . . . Vk+1) ,
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for V1, . . . , Vk+1 ∈ Γ(τE), where V̂i denotes, as usual, that the element Vi is
omitted.

The Lie algebroid axioms imply the following properties:

(i) If f ∈ C∞(B), then 〈dEf, V 〉 = ρ(V )f .
(ii) d2

E = 0.
(iii) dE is a super-derivation of degree 1, i.e. when θ is homogeneous of degree

|θ|, then
dE(θ ∧ ζ) = dEθ ∧ ζ + (−1)|θ|θ ∧ dEζ .

Moreover, the exterior differential dE is fully characterized by these properties,
because if δ : Γ(

∧k E∗)→ Γ(
∧k+1 E∗) satisfies these properties, then δ = dE.

Observe that an exterior derivation dE satisfying d2
E = 0 on Γ(

∧• E∗) is equiv-
alent to the Lie algebroid structure on E, because both ρ and [·, ·] can be
recovered from the expressions

ρ(V )f := dEf(V ) , θ([V, W ]) := ρ(V )θ(W )− ρ(W )θ(V )− dEθ(V, W ) ,

for V, W ∈ Γ(τE), f ∈ C∞(B), θ ∈ ∧1(E).

This implies that, given two Lie algebroid structures on the same vector bundle
τE : E → B, with associated differential operators d

(1)
E and d

(2)
E , then the

condition d
(1)
E ◦d(2)

E = d
(2)
E ◦d(1)

E means that, for any real number λ, d
(λ)
E = d

(1)
E +

λ d
(2)
E is also a derivation of degree one such that d

(λ)
E ◦ d(λ)

E = 0 and, therefore,

d
(λ)
E defines a new Lie algebroid structure in τE : E → B. The new Lie bracket

in the linear space of sections for τE is given by [·, ·]λ = [·, ·]1 + λ [·, ·]2 and the
anchor map by ρλ = ρ1 + λ ρ2.

In local coordinates of E∗ as indicated above, dE is determined by

dExi = ρi
α eα , dEeγ = Cαβ

γ eα ∧ eβ ,

where {eα | α = 1, . . . , r} is the dual basis of {eα | α = 1, . . . , r}.
The conditions d2

Exi = 0 and d2
Eeα = 0 are equivalent to the structure equa-

tions:

ρj
α

∂ρi
β

∂xj
− ρj

β

∂ρi
α

∂xj
= ρi

γ Cαβ
γ ,

∑

cyclic(αβγ)

[
ρi

α

∂Cβγ
µ

∂xi
+ Cαν

µ Cβγ
ν

]
= 0 .

In the particular case of E = TB, the anchor is the identity and the commu-
tator of vector fields is the product [·, ·]E, then the exterior operator is

dEθ(V1, . . . , Vi, . . . , Vk+1) =
∑

i

(−1)i+1Viθ(V1, . . . , V̂i, . . . , Vk+1)

+
∑

i<j

(−1)i+jθ([Vi, Vj]E , V1, . . . , V̂i, . . . , V̂j, . . . Vk+1) ,
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which is the de Rham operator, and its associated cohomology is the usual de
Rham cohomology

In the other example in which E = g, ρ = 0 and [ei, ej ]E = cαβ
γ eγ, with

cαβ
γ ∈ R, then the differential operator is defined by:

dEθ(V1,. . ., Vk+1)=
∑

i<j

(−1)i+jθ([Vi, Vj ]E,V1,. . .,V̂i,. . .,V̂j,. . .,Vk+1) ,

i.e. in this case this operator is the Chevalley (Chevalley–Eilenberg), and gen-
erate the Lie algebra cohomology of g.

If N is a Nijenhuis structure in B and we consider the corresponding Lie
algebroid structure in TB, then the differential operator dN on Γ(

∧• T ∗B)
turns out to be such that

dN = [iN , d]s = iN ◦ d− d ◦ iN , (5.5)

where d is the de Rham differential and iN is a derivation of degree 0, defined
as

iN α (X1, . . . , Xn) =
n∑

i=1

α(X1, . . . , N(Xi), . . . , Xn) ,

for any differential n-form α, with n ≥ 1. For a function f ∈ C∞(B), iNf =
0, by convention. Here [D1, D2]s denotes the supercommutator (or graded
commutator) of graded derivations

[D1, D2]s := D1 ◦D2 − (−1)|D1| |D2|D2 ◦D1 ,

where |Di| denotes the degree of the derivation Di, for i = 1, 2. In fact, dN

is a derivation of degree one which is defined by its action on functions and
on 1-forms. Let us now consider the action of dN on functions and on 1-forms
and we will find that the relation (5.5) holds.

a) If f is a function,
dNf(V ) = N(V )f ,

while iN(df) = N∗(df), d(iNf) = 0, and, therefore,

dNf = iN (df)− d(iNf) .

b) If α ∈ Γ(
∧ 1(T ∗B)), then

(dNα)(V1, V2) = N(V1)α(V2)−N(V2)α(V1)− α([V1, V2]N ) ,

while

iN(dα)(V1, V2) = dα(N(V1), V2) + dα(V1, N(V2))
= N(V1)α(V2)− V2α(N(V1))− α([N(V1), V2])
+ V1α(N(V2))−N(V2)α(V1)− α([V1, N(V2)]) ,
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and

d(iNα)(V1, V2) = V1α(N(V2))− V2α(N(V1))− α(N([V1, V2])) ,

and, therefore,

(iN (dα) − d(iNα))(V1, V2) = N(V1)α(V2)−N(V2)α(V1)
+ α(N([V1, V2]))− α([N(V1), V2])− α([V1, N(V2)]) .

Having in mind that

[V1, V2]N = [N(V1), V2] + [V1, N(V2)]−N([V1, V2]) ,

it shows that
iN(dα)− d(iNα) = dNα .

The two exterior differential operators d and dN acting over Γ(
∧• T ∗B), are

derivations of degree 1, such that satisfy

d2 = 0 , d2
N = 0 , (5.6)

and, as d ◦ dN = d ◦ iN ◦ d, dN ◦ d = −d ◦ iN ◦ d,

[d, dN ]s = d ◦ dN + dN ◦ d = 0 . (5.7)

Consequently, the pair (d, dN) gives rise to the classical theory of the bi-
differential calculus of Frölicher–Nijenhuis.

As a first example, let S be the vertical endomorphism S of the tangent bundle
[8]. This is a (1,1) tensor such that Im S = ker S and is integrable in the sense
that its Nijenhuis torsion vanishes. It allows us to endow the tangent bundle
τTB : T (TB)→ TB with an alternative Lie algebroid structure, for which the
Lie bracket in Γ(τTB) is

[X, Y ]S = [S(X), Y ] + [X, S(Y )]− S([X, Y ]) .

and the anchor map is S itself.

The corresponding differential operator is given by:

dSθ(X1, . . . , Xk+1)=
k+1∑

i01

(−1)i+1S(Xi)θ(X1, . . . , X̂i, . . . , Xk+1)

+
∑

i<j

(−1)i+jθ([Xi, Xj ]S, X1, . . . , X̂i, . . . , X̂j, . . .Xk+1) ,

and it satisfies
dS = [iS, d]s .

As indicated above, d ◦ dS = −dS ◦ d = −d ◦ iS ◦ d.
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Remark that S2 = 0, and that dSα = 0 does not necessarily implies that
there exists a 1-form β such that α = dSβ. This differential operator is used
to define the Cartan 1-form, θL = dSL, and the Lagrangian 2-form defined
by a Lagrange function in TB is ΩL = −d(dSL) = dS(dL). Then Ω(TB) is
endowed with a bi-differential structure (Ω(TB), d, dS).

Another interesting example is that given by the tangent bundle of a complex
manifold. Let (B, J) be a manifold of real dimension dimR B = 2m, endowed
with an almost complex structure, given by a (1, 1)-tensor field J , i.e. such
that J2 = −I and the Nijenhuis torsion T (J) vanishes

T (J)(X, Y ) = 0 , ∀X, Y ∈ X(B) .

Then, TB can be endowed with a new Lie algebroid structure given by the
bracket

[X, Y ]J = [J(X), Y ] + [X, J(Y )]− J ([X, Y ]) ,

and with anchor ρ = J , and, therefore,

J ([X, Y ]J) = [J(X), J(Y )] .

The differential operator dJ acts on Γ(
∧• T ∗B) and is such that

dJ = [iJ , d]s .

So, the vector bundle τ : TB → B has an alternative Lie algebroid structure
given by a deformation of the usual Lie bracket by J and with an anchor map
ρ = J . Once again, d ◦ dJ = −dJ ◦ d = −d ◦ iJ ◦ d, and the pair (d, dJ) gives
rise to a bi-differential calculus.

6 Bi-differential calculi and Poisson–Nijenhuis structures

The use of a bi-differential calculus for generating conservation laws developed
by Dimakis and Müller–Hoissen has recently been related for s = 1 with the
standard approach using bi-Hamiltonian structures of the Poisson–Nijenhuis
type for systems with a finite number of degrees of freedom [9,10]. Crampin
et al. assumed that a differentiable manifold B is endowed with a symplectic
structure ω0 and a (1,1)-tensor field R such that

ω0(R(X), Y ) = ω0(X, R(Y )) , (6.8)

so that ω1 defined by ω1(X, Y ) = ω0(R(X), Y ) is a 2-form. If, moreover, ω1 so
defined is closed, then we can define

{f, g}1 = ω1(Xf , Xg) ,
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where Xf and Xg are the Hamiltonian vector fields (with respect to the sym-
plectic structure ω0) corresponding to f and g, respectively. The conditions
T (R) = 0 and dω1 = 0 imply that {·, ·}1 is a Poisson bracket compatible
with the first one, and R is the recursion operator of the structure, which is
R = ω̂−1

0 ◦ ω̂1, where ω̂i : X(B) → ∧1(B), i = 0, 1, is defined by contraction,
i.e. 〈ω̂i(X), Y 〉 = ωi(X, Y ), for all pairs X, Y ∈ X(B).

Now, since

{f, g}1 = ω0(Xf , R(Xg)) = −R(Xg)f = −dRf(Xg) ,

we see that

{χ(m), g}1 = −dRχ(m)(Xg) = dχ(m+1)(Xg) = {χ(m+1), g} .

The (1,1)-tensor field can also be seen as a C∞(B)-linear map from Ω1(B)
into Ω1(B) and it will be denoted RT . With this notation, the condition (6.8)
is written as ω̂0 ◦R = RT ◦ ω̂1, because 〈(ω̂0 ◦ R)(X), Y 〉 = ω0(R(X), Y ) and
〈(RT ◦ ω̂1)(X), Y 〉 = 〈ω̂1(X), R(Y )〉 = ω0(X, R(Y )).

When ω̂0 is invertible, (6.8) reduces to

R ◦ P̂ = P̂ ◦RT , (6.9)

with P being the Poisson bi-vector field corresponding to ω0. This is the
connection with the theory of Poisson–Nijenhuis manifolds.

We first remark that if P is a Poisson tensor and N a Nijenhuis in B satisfying
condition (6.9) for R = N , then we can define a new Poisson bi-vector P N by

P N(α, β) = 〈β, N(P̂ (α))〉 ,

which, obviously, is a bi-vector, because

P N(β, α) = 〈α, N(P̂ (β))〉 = 〈α, P̂ (NT β)〉 = −P (α, NT (β))

and

P N(α, β) = 〈β, N(P̂ (α))〉 = 〈NT (β), P̂ (α)〉 = P (α, NT (β)) ,

from which P N(α, β) = −P N(β, α). It can be shown that the fact that N is a
Nijenhuis tensor implies that P N is also a Poisson tensor, i.e. [P N , P N ]sch = 0.

The coexistence of two different structures always leads to the study of com-
patibility conditions between them. A Poisson–Nijenhuis (P–N) structure, as
introduced by Magri and Morosi and later studied by Kosmann–Schwarzbach
and Magri, is made up by a pair of a Poisson and a Nijenhuis structures in a
manifold B, (N, P ), satisfying

N ◦ P̂ = P̂ ◦NT ,
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i.e. P̂ intertwines N and its transpose NT , and with the following compatibility
condition:

[α, β]P
N −

(
[NT (α), β]P + [α, NT (β)]P −NT ([α, β]P )

)
= 0 .

In a recent paper, Crampin et al. [10] have shown for s = 1 that, if (Ω(B), d, dN)
is the bi-differential calculus defined by a Nijenhuis tensor N in a Poisson–
Nijenhuis manifolds (B, N, P ), and the function χ(0) satisfies ddNχ(0) = 0,
then the functions of the sequence {χ(m) | m = 0, 1, . . .} defined by dχ(m+1) =
dNχ(m) satisfy

{χ(m), χ(n)} = P
(
dχ(m), dχ(n)

)
= 0, for all m, n ≥ 0 .

These Poisson–Nijenhuis structures correspond in the framework of Lie al-
gebroids to a particular case of the so called Lie bialgebroids [15]. We once
again recall that when (B, P ) is a Poisson manifold, we have simultaneously
algebroid structures for both the tangent and the cotangent bundles, and cor-
respondingly, not only the de Rham differential operator d acting on the set
Ω(B) of forms, but also a differential operator dP acting on the set of multi-
vector fields, which, as indicated above, corresponds to consider the Schouten
bracket with the bi-vector field P . For instance, the integrability condition
[P, P ] = 0 is written dPP = 0. Then, if X and Y are vector fields in B,

dP ([X, Y ]sch) = [P, [X, Y ]sch]sch = [[P, X]sch, Y ]sch + [X, [P, Y ]sch]sch ,

where use has been made of the graded Jacobi identity satisfied by the Schouten
bracket. In other words, dP is a derivation

dP [X, Y ]sch = [dP (X), Y ]sch + [X, dP (Y )]sch .

What happens in the case of a Poisson–Nijenhuis manifold is something sim-
ilar, but for the new structure of Lie algebroid in TB which is obtained from
N , (TB, [·, ·]N , N), and the Poisson structure P N .

7 The case of a general Lie algebroid

In much the same way as we did before with the sections of τE in a Lie
algebroid (τE : E→B, ρ, [·, ·]E), which were a generalization of vector fields,
we can consider the exterior algebra, which is a graded algebra whose elements
will be called E-multi-vector fields. There is also a graded Lie bracket on the
linear space Γ(

∧• E) of sections of
∧• E, which constitutes with the associative

and graded commutative product ∧ the so called Gerstenhaber algebra of the
Lie algebroid. Then, we can define a E-Poisson structure by a E-bivector field
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ΠE such that [ΠE , ΠE](E) = 0, where [·, ·](E) is the Gerstenhaber bracket
defined on Γ(

∧• E).

A section of E ⊗ E∗ will be called a E-(1, 1)-tensor. Given a E-(1, 1)-tensor
field, i.e. N ∈ Γ(E ⊗ E∗), we can associate with it a map iN which is a
derivation in the tensor algebras of sections of τE and πE , such that

iNX = N(X) for X ∈ Γ(E) ,

iNµ = NT (µ) for µ ∈ Γ(E∗) .

We will say that N is a Nijenhuis structure for the Lie algebroid E if the
torsion TE(N)(X, Y ) vanishes for all E-vector fields X, Y , where TE(N)(X, Y )
is defined as

TE(N)(X, Y ) = N ([N(X), Y ]E + [X, N(Y )]E −N([X, Y ])E)−[N(X), N(Y )]E .

An E-Nijenhuis tensor N induces a new Lie algebroid structure on E defined
by the bracket

[X, Y ]EN = [N(X), Y ]E + [X, N(Y )]E −N([X, Y ]E) ,

and anchor map ρN = ρ ◦N where ρ is the original anchor map of E.

Note that the torsion being zero is equivalent to N : (E, [·, ·]EN)→ (E, [·, ·]E)
to be a homomorphism:

N([X, Y ]EN) = [N(X), N(Y )]E .

The exterior differential operator dEN in Γ(
∧• E∗) turns out to be such that

dEN = [iN , dE] = iN ◦ dE − dE ◦ iN .

Once again we find a bi-differential structure associated in this case with the
E-Nijenhuis tensor field N which is defined by the pair of differential operators
(dE, dEN), where both differential operators are of degree 1 and satisfy

d2
E = d2

EN = 0 , [dE , dEN ]s = dE ◦ dEN + dEN ◦ dE = 0 ,

because

dE ◦ dEN = dE ◦ iE ◦ dE , dEN ◦ dE = −dE ◦ iE ◦ dE .

Of course, when E = TM we recover the theory of bi-differential calculus of
Frölicher–Nijenhuis.

An interesting example of this E-Nijenhuis tensor field which may be useful
in the development of Lagrangian mechanics in Lie algebroid is the vertical



18 Jaime Camacaro and José Cariñena

endomorphism in the extended Lie algebroid introduced by Mart́ınez [17,6] as
an appropriate counterpart of the tangent bundle of the tangent bundle of a
manifold.

As indicated above, the concept of Poisson structure can also be generalized
to the framework of Lie algebroids, using the Gerstenhaber bracket of E-bi-
vector fields instead of the Schouten bracket of bi-vector fields. So, an E-
Poisson structure ΠE in a Lie algebroid has associated a vector bundle map
Π̂E : E∗ → E when it is evaluated on E-1-covectors, and allows us to define a
Lie algebroid structure on E∗ by means of a Lie bracket on E-1-forms given
by

[α, β]ΠE = d
Π̂E(α)

β − d
Π̂E(β)

α− d(ΠE(α, β)) . (7.10)

and with an anchor map given by ρ∗ = ρ ◦ Π̂E. Here, if X is an E-vector field,
dX denotes dX = iX ◦ dE + dE ◦ iX .

The corresponding E∗-exterior differential operator turns out to be dE∗ =
dΠE

= [ΠE, ·](E).

A concept of E-Poisson–Nijenhuis can also be introduced as a pair (N, ΠE) of
a E-Nijenhuis structure and a E-Poisson tensor such that N ◦ Π̂E = Π̂E ◦NT

satisfying an additional compatiblity condition, which we do not write here in
an explicit way.

8 Lie bialgebroids

Kosmann–Schwarzbach, using the notion of Lie bialgebroid structure of Macken-
zie and Xu, presented the compatibility condition for P–N structures in a sim-
pler way. First of all, we recall that a Lie bialgebroid is a pair ((E, ρ), (E∗, ρ∗))
of Lie algebroids, where E∗ is the dual bundle of E, such that the differential
dE of E is a derivation of the graded Lie algebra (Γ(

∧• E∗), [·, ·]E∗), and the dif-
ferential dE∗ of E∗ is a derivation of the graded Lie algebra (Γ(

∧• E), [·, ·]E∗).
We mentioned an example of Lie bialgebroid: when (B, P ) is a Poisson mani-

fold,
(
(TB, [·, ·], τ), (T ∗B, [·, ·]P , πB)

)
is a Lie bialgebroid. The result obtained

by Kosmann–Schwarzbach [15] is that (B, P, N) is a Poisson–Nijenhuis mani-

fold if and only if
(
(TB, [·, ·]N , N), (T ∗B, [·, ·]P , P̂ )

)
is a Lie bi-algebroid. More-

over, she also proved that given a Lie bialgebroid (E, E∗) there is an associated
Poisson structure on the base manifold B given by (see [14])

{f, g}(E,E∗) = 〈dEf, dE∗g〉 ,

where 〈·, ·〉 denotes the pairing of elements of E∗ with those of E. When
(B, P ) is a Poisson manifold, E = TB and E∗ = T ∗B, endowed with the
Lie algebroid structure (4.3), then the Lie bialgebroid structure (TB, T ∗B) is
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such that dE∗ = dP = [P, ·], so {f, g}(E,E∗) = P (df, dg), which is the original
Poisson structure of B.

The generalization for E-Poisson–Nijenhuis structures is also possible, giving
rise to Lie bialgebroids and different bi-differential calculi.
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Abstract

In this paper the notion of Tulczyjew’s triples in classical mechanics is extended to
classical field theories, using the so-called multisymplectic formalism, and a conve-
nient notion of lagrangian submanifold in multisymplectic geometry. Accordingly,
the dynamical equations are interpreted as the local equations defining these la-
grangian submanifolds.

1 Introduction

In middle seventies, W.M. Tulczyjew [23,24] introduced the notion of special
symplectic manifold, which is a symplectic manifold symplectomorphic to a
cotangent bundle. Using this notion, Tulczyjew gave a nice interpretation of la-
grangian and hamiltonian dynamics as lagrangian submanifolds of convenient
special symplectic manifolds.

The other ingredients in the theory were two canonical diffeomorphisms α :
TT ∗Q −→ T ∗TQ and β : TT ∗Q −→ T ∗T ∗Q. β is nothing but the mapping
obtained by contraction with the canonical symplectic form ωQ, but the defini-
tion of α is more complicated, and requires the use of the canonical involution
of the double tangent bundle TTQ.

The theory was extended to higher order mechanics by several authors (see for
instance [2,3,6,8,12]). But the extension to classical field theories has not been
achieved up to now. There is a good approach by Kijowski and Tulczyjew [11],
and in fact, the present approach is strongly inspired in that monograph.
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The key point is a better understanding of the geometry of lagrangian sub-
manifolds in the multisymplectic setting. A systematic study of the geometry
of multisymplectic manifolds was started by Cantrijn et al at the beginning of
the nineties [7], followed by a pair of papers which clarify that geometry [4,5]
(a more detailed study [18] is in preparation).

A multisymplectic manifold is a manifold equipped with a closed form which
is non-degenerate in some sense. The canonical examples are the bundles of
forms on an arbitrary manifold, providing thus a nice extension of the notion
of symplectic manifold. However, this definition is too general for practical
purposes. Indeed, in order to have a Darboux theorem which would permit
us to introduce canonical coordinates, we need additional properties. In other
words, if we want to deal with multisymplectic manifolds which locally behave
as the geometric models we need to consider multisymplectic manifolds (P,Ω)
with additional structure, given by a 1-isotropic foliation W satisfying some
dimensionality condition, or, even a “generalised foliation” E defined roughly
speaking on the space of leaves determined by W.

The tangent and cotangent functors are now substituted by the jet prolonga-
tion functor and the exterior power functor, respectively, so that we obtain

canonical diffeomorphisms α̃ : J̃1Z∗ −→ Λn+1
2 Z and β̃ : J̃1Z∗ −→ Λn+1

2 Z∗,
where Z is the 1-jet prolongation of the fibred manifold Y −→ X, X being
the space-time n-dimensional manifold, and Z∗ is the dual affine bundle of
Z. Here a tilde over a manifold of jets means that we are taking a quotient
manifold in order to have only those elements with the same divergence.

Using a convenient formulation of the field equations with Ehresmann connec-
tions, we construct the corresponding lagrangian submanifolds which encode
the dynamics. Indeed, we present a compact form for the De Donder and field
equations as follows. From the lagrangian density L = Lη (η is a volume
form on X), we construct the Poincaré-Cartan (n + 1)-form ΩL on Z; then
the extremals for L coincide with the horizontal sections of any Ehresmann
connection h in the fibred manifold Z −→ X satisfying the equation

ih ΩL = (n− 1)ΩL.

Since a connection in Z −→ X can be interpreted as a section of the 1-
jet prolongation J1Z −→ Z, we have all the ingredients we need. In fact,
the Euler-Lagrange equations are just the local equations defined by a k-

lagrangian submanifold of J̃1Z∗, the latter being a multisymplectic manifold
equipped with the multisymplectic form Ωα dragged via α̃ from the canonical
one on Λn+1

2 Z.

A similar procedure can be developed in the hamiltonian setting, but in this
case we would need to choose a convenient hamiltonian form. This hamiltonian
form is obtained through the corresponding Legendre transformation LegL :
Z −→ Z∗. Finally, both sides are related.



Tulczyjew’s triples and lagrangian submanifolds in field theories 23

2 Lagrangian submanifolds and classical mechanics

2.1 Some prelimaries

Let (V, ω) a finite dimensional symplectic vector space with symplectic form
ω. This means that ω is a 2-form on a vector space V which is non-degenerate
in the sense that the linear mapping

v ∈ V 7→ iv ω ∈ V ∗

is injective (and hence it is a linear isomorphism).

Therefore, V has even dimension, say 2n, and the non-degeneracy is equivalent
to the condition ωn 6= 0.

A linear isomorphism φ : (V1, ω1) −→ (V2, ω2) is called a symplectomorphism
if φ preserves the symplectic forms, say φ∗ω2 = ω1.

Take a subspace E ⊂ V, and define the ω-complement of E as follows:

E⊥ = {v ∈ V | iv∧e ω = 0, for all e ∈ E}.

The subspace E is said to be isotropic (resp. coisotropic, lagrangian, symplec-
tic) if E ⊂ E⊥ (resp. E⊥ ⊂ E, E = E⊥, E ∩ E⊥ = {0}).
An useful characterization of a lagrangian subspace E, is that it is a maximally
isotropic subspace or, equivalently, on a finite dimensional symplectic vector

space, it is isotropic and dimE =
1

2
dimV.

The algebraic model for a symplectic vector space is the following. Given
an arbitrary vector space V we construct VV = V ⊕ V ∗ equipped with the
symplectic form ωV defined by

ωV ((v1, γ1), (v2, γ2)) = γ1(v2)− γ2(v1),

for all (v1, γ1), (v2, γ2) ∈ VV .

We know that V and V ∗ are lagrangian subspaces of (VV , ωV ). Moreover,
every symplectic vector space (V, ω) is symplectomorphic to (VL, ωL) for any
lagrangian subspace L of (V, ω).

In addition we can prove that a linear isomorphism φ : (V1, ω1) −→ (V2, ω2)
is a symplectomorphism if and only if its graph {(v, φ(v)) | v ∈ V1} ⊂ V1 ×V2

is a lagrangian subspace of the symplectic manifold (V1 ×V2, ω1 	 ω2), where
ω1	ω2 = π∗

1ω1− π∗
2ω2, π1 : V1,×V2 −→ V1 and π2 : V1,×V2 −→ V2 being the

canonical projections.

A symplectic manifold is a pair (P, ω), where ω is a closed 2-form such that
the pair (TxP, ωx) is a symplectic vector space for any x ∈ P. Thus, P has
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even dimension, say 2n.

Therefore, given a function f : P −→ R there exists a unique vector field (the
hamiltonian vector field Xf with hamiltonian energy f) such that

iXf
ω = df.

Let now πQ : T ∗Q −→ Q be the cotangent bundle of an arbitrary manifold Q.
There exists a canonical 1-form θQ on T ∗Q defined by

θQ(γ)(X) = 〈γ, TπQ(X)〉

for all X ∈ Tγ(T
∗Q) and for all γ ∈ T ∗Q. θQ is the Liouville 1-form, and in

bundle coordinates (q, p) we have

θQ = pdq.

So, ωQ = −dθQ is a canonical symplectic form on T ∗Q such that ωQ = dq∧dp.
As is well known, Darboux theorem states that any symplectic manifold is
locally symplectomorphic to a cotangent bundle. More precisely, one can find
local coordinates around each point of a symplectic manifold (P, ω) such that

ω = dq ∧ dp.

The following results are the main examples of lagrangian submanifolds.

Theorem 2.1

(i) The image of a hamiltonian vector field Xf on a symplectic manifold
(P, ω) is a lagrangian submanifold of the tangent lift symplectic manifold
(TP, ωT ).

(ii) The fibres of T ∗Q are lagrangian submanifolds of (T ∗Q,ωQ).
(iii) The image of a 1-form γ on a manifold Q is a lagrangian submanifold of

(T ∗Q,ωQ) if and only if γ is closed.
(iv) Given a diffeomorphism φ : (P1, ω1) −→ (P2, ω2) between two symplectic

manifolds then φ is a symplectomorphism if and only if its graph is a
lagrangian submanifold in the symplectic manifold (P1 × P2, ω1 	 ω2).

There is an important theorem due to A. Weinstein which gives the normal
form for a lagrangian submanifold L in a symplectic manifold (P, ω).

Theorem 2.2 Let (P, ω) be a symplectic manifold, and let L be a lagrangian
submanifold. Then there exists a tubular neighbourhod U of L in P, and a
diffeomorphism φ : U −→ V = φ(U) ⊂ T ∗L into an open neighbourhood V of
the zero cross-section in T ∗L such that φ∗ωL = ω|U , where ωL is the canonical
symplectic form on T ∗L.
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2.2 Lagrangian and hamiltonian dynamics

We shall recall the main results, more details can be found in [19].

Let L : TQ −→ R be a lagrangian function. We construct a 2-form ωL by
putting

ωL = −dθL

where θL = S∗(dL). Here S∗ is the adjoint operator of the canonical vertical

endomorphism S = dq ⊗ ∂

∂q̇
. We have omitted the indices of the coordinates,

and used the notation (q, q̇) for the bundle coordinates on the tangent bundle
τQ : TQ −→ Q.

The energy function is defined by

EL = ∆(L)− L

where ∆ = q̇
∂

∂q̇
is the Liouville or dilation vector field.

In local coordinates we have

ωL = dq ∧ dp̂, EL = q̇p̂− L,

where p̂ =
∂L

∂q̇
. The lagrangian is regular if and only if the hessian matrix

(
∂2L

∂q̇i∂q̇j

)

is non-singular, where i, j = 1, . . . , n = dim Q.

We have that L is regular if and only if ωL is symplectic. In such case, there
is a unique vector field ξL satisfying the equation

iξL
ωL = dEL. (2.1)

ξL is a second order differential equation on TQ such that its solutions (the
curves in Q whose lifts to TQ are integral curves of ξL) are just the solutions
of the Euler-Lagrange equations for L:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (2.2)

Let now H : T ∗Q −→ R be a hamiltonian function. We denote by XH the cor-
responding hamiltonian vector field with respect to ωQ. In bundle coordinates
we have

XH =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
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Therefore, the integral curves (q(t), p(t)) of XH satisfy the Hamilton equations

dq

dt
=
∂H

∂p
dp

dt
= −∂H

∂q

The lagrangian and hamiltonian formalisms are connected through the Legen-
dre transformation. More precisely, given a lagrangian function L : TQ −→ R

we define a fibred mapping LegL : TQ −→ T ∗Q over Q by

LegL(q, q̇) = (q,
∂L

∂q̇
).

We know that L is regular if and only if LegL is a local diffeomorphism. For
simplicity, we will assume that L is hyperregular, which means that LegL is a
diffeomorphism. In such case, LegL is in fact a symplectomorphism and, there-
fore, ξL and XH are LegL-related, when H = EL ◦ LegL

−1. As a consequence,
the Euler-Lagrange equations are translated into the Hamilton equations via
LegL.

2.3 Dynamics as lagrangian submanifolds

In [23,24] W.M. Tulczyjew defined two canonical diffeomorphisms

α : TT ∗Q −→ T ∗TQ

β : TT ∗Q −→ T ∗T ∗Q

locally given by

α(q, p, q̇, ṗ) = (q, q̇, ṗ, p)

β(q, p, q̇, ṗ) = (q, p,−ṗ, q̇)

with the obvious notations, where we have omitted the indices for the sake of
simplicity.

The second diffeomorphism is nothing but the contraction with the canonical
symplectic form ωQ on T ∗Q. The intrinsic definition of α is more involved,
and we remit to [23] for details. We have the following commutative diagram
which justifies the name of Tulczyjew’ s triple for the above construction:

T ∗TQ TT ∗Q T ∗T ∗Q

T ∗QTQ

-� βα

@
@

@
@R

�
�

�
�	

@
@

@
@R

�
�

�
�	

τT ∗Q πT ∗Q
TπQπTQ
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The manifold TT ∗Q is endowed with two symplectic structures, in principle
different. Indeed, they are ωα = α∗ωTQ and ωβ = β∗ωT ∗Q. A direct compu-
tation shows that both coincide up to the sign (say ωα + ωβ = 0), and, in
addition, that the symplectic form ωα is nothing but the complete or tangent
lift ωT

Q of ωQ to TT ∗Q.

We denote by θα = α∗θTQ and θβ = β∗θT ∗Q, such that ωα = −dθα and
ωβ = −dθβ . In local coordinates we have

θα = ṗdq + pdq̇

θβ = −ṗdq + q̇dp

In fact, TT ∗Q, equipped with the symplectic form ωα = −ωβ = ωT
Q is an

example of special symplectic manifold according to the definition introduced
by Tulczyjew in [23].

Definition 2.3 A special symplectic manifold is a symplectic manifold (P, ω)
which is symplectomorphic to a cotangent bundle. More precisely, there exists
a fibration π : P −→ M , and a 1-form θ on P, such that ω = −dθ, and
α : P −→ T ∗M is a diffeomorphism such that πM ◦ α = π and α∗θM = θ.

The following is an important result for our discussion.

Theorem 2.4 Let (P, ω = −dθ) an special symplectic manifold, let f : M −→
R be a function, and denote by Nf the submanifold of P where df and θ co-
incide. Then Nf is a lagrangian submanifold of (P, ω) and f is a generating
function.

Theorem 2.4 applies to the particular case of Mechanics. Indeed, if we consider
a lagrangian function L : TQ −→ R we obtain a lagrangian submanifold NL

of the symplectic manifold (TT ∗Q,ωα) with generating function L.

Now, assume that H : T ∗Q −→ R is a hamiltonian function, with hamiltonian
vector field XH .

We have the following results.

Theorem 2.5

(i) The image of XH is a lagrangian submanifold of (TT ∗Q,ωα).
(ii) The image of dH is a lagrangian submanifold of (T ∗T ∗Q,ωT ∗Q).
(iii) β(Im XH) = Im dH.

Finally, we relate both lagrangian submanifolds NL and Im XH .

Theorem 2.6 Let H be the hamiltonian function corresponding to the hy-
perregular lagrangian function L, say H = EL ◦ Leg−1

L . Then we have NL =
Im XH .
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3 Multisymplectic manifolds and their lagrangian submanifolds

3.1 Multisymplectic vector spaces

Definition 3.1 Let Ω be a (k + 1)-form on a vector pace V. The pair (V,Ω)
is called a multisymplectic vector space if the form Ω is non-degenerate, that
is, the linear mapping

v ∈ V 7→ ivΩ ∈ ΛkV∗

is injective. The form Ω is called multisymplectic.

Let (V1,Ω1) and (V2,Ω2) be two multisymplectic vector spaces (of the same
order (k + 1)) and let φ : (V1,Ω1) −→ (V2,Ω2) be a linear isomorphism.

Definition 3.2 φ is called a multisymplectomorphism if it preserves the mul-
tisymplectic forms, i.e. φ∗Ω2 = Ω1.

Example 3.3 Let V be an arbitrary vector space and consider the direct
product VV = V × ΛkV ∗. Define a k-form ΩV on VV as follows:

ΩV ((v1, γ1), . . . , (vk+1, γk+1)) =
k∑

i=1

(−1)iγi(v1, . . . , v̌i, . . . , vk+1),

for all (vi, γi) ∈ VV , i = 1, . . . , k+ 1, where a check accent over a letter means
that it is omitted. A direct computation shows that ΩV is indeed multisym-
plectic.

If E is a vector subspace of V , we consider the subspace Vr
V = V × Λk

rV
∗,

where Λk
rV

∗ denotes the space of k-forms on V vanishing when applied to at
least r of their arguments from E. Of course, Vr

V equipped with the restriction
Ωr

V of ΩV to Vr
V is a multisymplectic vector space. If E = {0} we recover VV .

Let (V,Ω) be a multisymplectic vector space of order k + 1, and W ⊂ V a
vector subspace. We define

W⊥,l = {v ∈ V | iv∧w1∧···∧wl
Ω = 0, for all w1, . . . , wl ∈ W}.

Definition 3.4 W is said to be

(i) l-isotropic if W ⊂W⊥,l;
(ii) l-coisotropic if W⊥,l ⊂ W;
(iii) l-lagrangian if W =W⊥,l;
(iv) multisymplectic if W ∩W⊥,k = {0};
Proposition 3.5 A subspace W is l-lagrangian if and if it is l-isotropic and
maximal.

Proposition 3.6 Let V an arbitrary vector space. Then:

(i) V is a k-lagrangian subspace of VV and Vr
V , for all r;

(ii) ΛkV ∗ (resp. Λk
rV

∗) is a 1-isotropic subspace of VV (resp. Vr
V ).
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Proof (i) A direct computation shows that

V ⊥,k = {(x, γ) | ΩV ((x, γ), (x1, 0), . . . , (xk, 0)) = 0, for all x1, . . . , xk}

which is equivalent to the condition γ(x1, . . . , xk) = 0 for all x1, . . . , xk ∈ V ,
and therefore γ = 0. Hence V ⊥,k = V .

The same proof holds for Vr
V .

(ii) We have to prove that

ΛkV ∗ ⊂ (ΛkV ∗)⊥,1

which is obvious because

i(0,γ1)∧(0,γ2) ΩV = 0.

The same argument works for Vr
V . 2

Remark 3.7 In addition, notice that

(ΛkV ∗)⊥,1 = ΛkV ∗

which implies that ΛkV ∗ is in fact 1-lagrangian.

Theorem 3.8 [20,21] Let (V,Ω) be a multisymplectic vector space and W ⊂
V a 1-isotropic subspace such that dimW = dim Λk(V/W)∗ and dimV/W >
k. Then there exists a k-lagrangian subspace V of V which is transversal to W
(i.e. V ∩ W = {0}) such that (V,Ω) is multisymplectomorphic to the model
(VV ,ΩV ).

Proof First step: Define the mapping

ι :W −→ Λk(V/W)∗

v 7→ ι(v) = ĩvΩ

where ĩvΩ is the induced linear form from ivΩ ∈ ΛkV∗. Notice that ĩvΩ is
well-defined because the isotropic character of W. In addition, ι is a linear
isomorphism because of the regularity of Ω.

Second step: Such a subspace W is unique. First of all, we shall prove that
if u, v ∈ V are linearly independent vectors satisfying iu∧v Ω = 0, it fol-
lows that span (u, v) ∩ W 6= {0}. Otherwise, we could choose v1, . . . , vk−2 ∈
V with vi /∈ W such that {u, v, v1, . . . , vk−2} are linearly independent and
span (u, v, v1, . . . , vk−2) ∩W = {0}, because the codimension of W is at least
k. But for any w ∈ W we would have iw∧u∧v∧v1∧···∧vk−2

Ω = 0 which contradicts
the fact that ι :W −→ Λk(V/W)∗ is an isomorphism.
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Next, let W and W ′ be two subspaces of V satisfying the hypothesis of the
theorem. Assume that W 6= W ′; then, there exists v ∈ W ′ such that v /∈ W.
Using the argument above, we deduce that W ∩W ′ has dimension at least 1.
Consider the subspace Z = π(v)∧Λk−1(V/W) of Λk(V/W), where ΛrV is the
space of r-vectors on V, and π : V −→ V/W is the canonical projection. Of
course, dimZ > 1, and we have ι(w)(z) = 0 for any w ∈ W ∩W ′ and for any
z ∈ Z. Hence we would have w ∈ ker ι.

Third step: There exists a k-lagrangian subspace V such that V = W ⊕ V .
Obviously, there are k-isotropic subspaces U such that U ∩W = {0}. To show
this last assertion, one could take a vector v ∈ V such that u /∈ W. It is
obvious that span (u) is k-isotropic.

Assume that U ⊕W = V. Then W ∩U⊥,k ⊂ ker ι and hence W ∩U⊥,k = {0}.
Therefore U = U⊥,k, and U is k-lagrangian.

Suppose now that U ⊕ W 6= V, then U 6= U⊥,k; indeed, if U = U⊥,k (that
is, if U were k-lagrangian) then there would be a vector x ∈ V such that
x /∈ U ⊕ W, and then U ⊕ span (x) would be k-isotropic in contradiction
with the maximality of U . Therefore, there is a vector v ∈ U⊥,k such that
v /∈ U ∪W, and we would have a k-isotropic subspace U ′ = U ⊕ span (u) such
that U ′ ∩ W = {0}. If U ′ ⊕ W 6= V, we can repeat the argument and will
eventually arrive at a k-isotropic subspace V which is complementary to W.
And using the argument above, we conclude that V is in fact k-lagrangian.

Fourth step: Define a linear mapping

φ : W −→ ΛkV ∗

φ(w) = − 1

k + 1
(iwΩ)|V

A direct computation shows that φ is an isomorphism. Next, we define

ψ : V −→ V × ΛkV ∗

ψ(v, w) = (v, φ(w))

which is also an isomorphism such that ψ∗ΩV = Ω. 2

Remark 3.9 A direct application of Theorem 3.8 shows that there exists a
basis (a Darboux basis) {e1, . . . , en, fα1...αk

} such that {ei} is a basis of V and
{fα1...αk

} is a basis of W satisfying the relations

ifα1...αk
Ω = e∗α1

∧ · · · ∧ e∗αk

where {e∗1, . . . , e∗n} denotes the dual basis of {e1, . . . en}. Therefore we have

Ω =
∑

α

f ∗
α1...αk

∧ e∗α1
∧ · · · ∧ e∗αk

(3.3)

where {f ∗
α1...αk

} is the dual basis of {fα1...αk
}.
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Definition 3.10 A triple (V,Ω,W) satisfying the hypothesis in Theorem 3.8
will be called a multisymplectic vector space of type (k + 1, 0).

Theorem 3.11 Let (V,Ω) be a multisymplectic vector space and W ⊂ V a 1-
isotropic subspace. Assume that E ⊂ V/W is a vector subspace of the quotient
vector space V/W. Let us denote by π : V −→ V/W the canonical projection.
Assume that

(i) iv1∧···∧vr Ω = 0 if π(vi) ∈ E , for all i = 1, . . . , r;
(ii) dimW = dim Λk

r(V/W)∗, where the horizontal forms are considered with
respect to the subspace E ;

(iii) dim(V/W) > k.

Then there exists a k-lagrangian subspace V of V which is transversal to W
(i.e., V ∩W = {0}) such that (V,Ω) is multisymplectomorphic to the model
(Vr

V ,Ω
r
V ).

Proof First, we define the linear isomorphism

ι : W −→ Λk
r(V/W)∗

w 7→ ι(w) = ĩwΩ

where ĩwΩ is the induced k-form using thatW is isotropic and that Ω satisfies
the first condition above.

Next, one follows the arguments given in the proof of Theorem 3.8. 2

Remark 3.12 A direct application of Theorem 3.11 shows that the multi-
symplectic form Ω can be written as the canonical multisymplectic form Ωr

V

on Vr
V by choosing a convenient Darboux basis.

Definition 3.13 A triple (V,Ω,W, E) satisfying the hypothesis in Theorem
3.11 will be called a multisymplectic vector space of type (k + 1, r).

Let (V1,Ω1) and (V2,Ω2) be two multisymplectic vector spaces of order k+ 1.
Take the direct product V1 × V2 endowed with the (k + 1)-form Ω1 	 Ω2 =
π∗

1Ω1 − π∗
2Ω2, where π1 : V1 × V2 −→ V1 and π2 : V1 × V2 −→ V2 are the

canonical projections. Then (V1 × V2,Ω1 	 Ω2) is a multisymplectic vector
space.

Proposition 3.14 Let (V1,Ω1) and (V2,Ω2) be two multisymplectic vector
spaces of order (k + 1) and φ : V1 −→ V2 a linear isomorphism. Then φ is a
multisymplectomorphism if and only if its graph is a k-lagrangian subspace of
the multisymplectic vector space (V1 × V2,Ω1 	 Ω2).

Proof We recall that

(graphφ)⊥,k = {(x, y) ∈ V1 × V2 |
(Ω1 	 Ω2)((x, y), (x1, φ(x1)), . . . , (xk, φ(xk)) = 0, ∀x1, . . . , xk ∈ V1}



32 M. de León et al

Assume that φ∗Ω2 = Ω1, then if (x, φ(x)) ∈ graphφ, we have

(Ω1 	 Ω2)((x, φ(x)), (x1, φ(x1)), . . . , (xk, φ(xk))

= Ω1(x, x1, . . . , xk)− Ω2(φ(x), φ(x1), . . . , φ(xk))

= Ω1(x, x1, . . . , xk)− φ∗Ω2(x, x1, . . . , xk)

= 0

which implies that graphφ ⊂ (graphφ)⊥,k.

Conversely, if graphφ is k-isotropic, we have (x, φ(x)) ∈ (graphφ)⊥,k for all
x ∈ V1, and therefore φ∗Ω2 = Ω1.

In addition, if graphφ is k-isotropic, it is also k-lagrangian. In fact, if (x, y) ∈
(graphφ)⊥,k then we have

Ω2(φ(x)− y, φ(x1), . . . , φ(xk)) = 0

for all x1, . . . , xk ∈ V1 and therefore y = φ(x) because of the regularity of the
multisymplectic form Ω2 and the fact that φ is an isomorphism. 2

3.2 Multisymplectic manifolds

Definition 3.15 A multisymplectic manifold (P,Ω) is a pair consisting of a
manifold P equipped with a closed (k+1)-form Ω such that the pair (TxP,Ωx)
is a multisymplectic vector space for all x ∈ P. The form Ω is called multi-
symplectic.

Example 3.16 Let ΛkM be the space of k-forms on an arbitrary manifold
M , and denote by ρ : ΛkM −→ M the canonical projection. We define a
canonical k-form Θk

M on ΛkM as follows:

Θk
M(γ)(X1, . . . , Xk) = γ(TρX1, . . . , TρXk),

for all X1, . . . , Xk ∈ Tγ(Λ
kM) and for all γ ∈ ΛkM .

A direct computation shows that (ΛkM,Ωk
M = −dΘk

M) is a multisymplectic
manifold (of order k + 1).

Assume now thatM is a fibred manifold over a manifoldN , say π : M −→ N is
a fibration. Consider the bundle Λk

rM of k-forms on M which are r-horizontal
with respect to the fibration π : M −→ N , that is, those k-forms γ on M
such that iX1∧···∧Xr γ = 0 when X1, . . . , Xr are π-vertical. The space Λk

rM is
a submanifold of ΛkM , and hence we have the restriction (ΘM)k

r of Θk
M to

Λk
rM . A simple computation shows that the pair (Λk

rM, (ΩM)k
r = −d(ΘM)k

r)
is also a multisymplectic manifold. Of course, we have (Ωk

M)|Λk
rM = (ΩM)k

r .
The canonical projection will be denoted by ρr : Λk

rM −→M .

Following the notion of special symplectic manifold introduced by Tulczyjew
we can give the following definition.
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Definition 3.17 A special multisymplectic manifold (P,Ω) is a multisym-
plectic manifold which is multisymplectomorphic to a bundle of forms. More
precisely, Ω = −dΘ, and there exists a diffeomorphism α : P −→ ΛkM (or
α : P −→ Λk

rM), and a fibration π : P −→ M such that ρ ◦ α = π (resp.
ρr ◦ α = π) and Θ = α∗Θk

M (resp. Θ = α∗(ΘM)k
r).

Definition 3.18 Let N be a submanifold of a multisymplectic manifold (P,Ω)
of order k + 1. N is said to be l-isotropic (resp. l-coisotropic, l-lagrangian,
multisymplectic) if TxN is a l-isotropic (resp. l-coisotropic, l-lagrangian, mul-
tisymplectic) vector subspace of the multisymplectic vector space (TxP,Ωx) for
all x ∈ N .

Proposition 3.19

(i) The fibres of ρ : ΛkM −→M (and of ρr : Λk
rM −→M) are 1-isotropic.

(ii) The image of a k-form γ on M (resp. a r-horizontal k-form) is k-lagran-
gian if and only if γ is closed.

Proof It follows from Proposition 3.6. 2

If γ is a (r-horizontal) closed k-form on M , then (−d(ΘM)k
r)|Imγ

= 0 which

implies that ((ΘM)k
r)|Imγ

is locally closed, say

((ΘM)k
r)|Imγ

= dθ,

and θ is called a generating k-form.

Definition 3.20 A triple (P,Ω,W), where W is a 1-isotropic involutive dis-
tribution on (P,Ω) such that the triple (TxP,Ωx,W(x)) is a multisymplectic
vector space of type (k + 1, 0), for all x ∈ P, will be called a multisymplectic
manifold of type (k + 1, 0).

Remark 3.21 Along the paper, the distribution W and the corresponding
vector bundle π0 :W −→ P over P will be denoted by the same letter.

Theorem 3.22 [21] Let (P,Ω,W) be a multisymplectic manifold of type (k+
1, 0). Let L be a k-lagrangian submanifold such that TL ∩W|L = {0}. Then
there exists a tubular neighbourhood U of L in P, a manifold N and a dif-
feomorphism Φ : U −→ V = Φ(U) ⊂ ΛkN into an open neighbourhood V of
the zero cross-section in ΛkN such that Φ : L −→ N is an immersion and
Φ∗((Ωk

N )|V ) = Ω|U , where Ωk
N is the canonical multisymplectic (k+1)-form on

ΛkN .

Proof The proof is a direct consequence of Lemmas 3.24 and 3.25. 2

First of all, we recall the relative Poincaré lemma, which will be very useful
in what follows.
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Lemma 3.23 (Relative Poincaré lemma) Let N be a submanifold of a
differentiable submanifold M , and let U be a tubular neigbourhood of N with
bundle map π0 : U −→ N . Notice that π0 : U −→ N is a vector bundle.
Denote by ∆ the dilation vector field of this vector bundle, and let ϕt be the
multiplication by t. If we define an integral operator on forms on U as follows

I(Ω)p =
∫ 1

0
i∆t ϕ

∗
t Ωpdt

where ∆t = 1
t
∆, and p ∈ U , then we have

I(dΩ) + d(IΩ) = Ω− π∗
0(Ω|N)

where Ω|N is the form on N obtained by restricting Ω pointwise to TN (observe
that U can be taken as a normal bundle of TN in M).

Next, we shall prove the following result.

Lemma 3.24 Let (P,Ω,W) be a multisymplectic manifold of type (k + 1, 0).
Let L be a k-lagrangian submanifold of P which is complementary to W (that
is, TL ⊕W|L = TP|L). Then there is a tubular neighbourhood U of L and a
diffeomorphism Φ : U −→ V ⊂ ΛkL where V is an neighbourhood of the zero
section, such that Φ|L is the standard identification of L with the zero section
of ΛkL, and

Φ∗((Ωk
L)|V ) = Ω|U .

Proof Firstly, we define a vector bundle morphism over the identity of L by

φ(w) = − 1

k + 1
iw Ω.

W ΛkL

L

-φ

@
@

@
@@R

�
�

�
��	

π0 ρ

Obviously φ is injective, and since the dimensionality assumptions, we deduce
that φ is in fact a vector bundle isomorphism (see the diagram).

Since TP|L = TL⊕W|L, then φ induces a diffeomorphism on a tubular neigh-
bourhood defined by W onto a neighbourhood of L in ΛkL (as usual, the
latter embedding is understood as the identification of L with the zero sec-
tion). We shall denote the restriction of φ to this tubular neigbourhood by f .
Notice that the restriction of f to L is just the identity, so that Tf is also
the identity on TL; on the other hand, Tf restricted to W coincides with φ
because it is fiberwise linear. Using the identifications TP|L = TL⊕W|L and
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TΛkL|L = TL ⊕ ΛkL, we have

f ∗Ωk
L((v1, w1), . . . , (vk+1, wk+1)) = Ωk

L((v1, φ(w1), . . . , (vk+1, φ(wk+1))

=
k+1∑

i=1

(−1)i φ(wi)(v1, . . . , v̌i, . . . , vk+1)

=
k+1∑

i=1

1

k + 1
Ω(v1, . . . , wi, . . . , vk+1)

= Ω((v1, w1), . . . , (vk+1, wk+1))

which implies f ∗Ωk
L = Ω on L.

Next, we use f to pushforward Ω to obtain a k+1-form Ω1 in a neighbourhood
of L in ΛkL. Using Lemma 3.23 we deduce that Ω1 = dΘ1, where Θ1 = I(Ω1).
Recall that Ωk

L = −dΘk
L, and

(Θk
L)|L = (Θ1)|L = 0 (3.4)

because of the definition of I. Define

Ωt = Ωk
L + t(Ω1 − Ωk

L), t ∈ [0, 1].

Since
(Ωt)|L = (Ωk

L)|L = (Ω1)|L

is non-singular, and this is an “open condition”, we can find a neighbourhood
of L in ΛkL on which all Ωt are non-singular for all t ∈ [0, 1]. In addition,
WL = ker{Tρ : TΛkL −→ TL} is 1-isotropic for all Ωt, in such a way that
(ΛkL,Ωt,WL) is a multisymplectic manifold of type (k+1, 0), for all t. Notice
that Ω1 − Ωk

L = d(Θ1 + Θk
L).

From (3.4) we deduce that there is a unique time-dependent vector field Xt

taking values in WL (in other words, ρ-vertical) such that

iXt Ωt = −Θk
L + Θ1.

Since the vector field Xt vanishes on L, we can find a neighbourhood of L in
ΛkL such that the flow ϕt of Xt is defined at least for all t ≤ 1. Therefore we
have

d

dt
(ϕ∗

tΩt) = ϕ∗
t (LXt Ωt) + ϕ∗

t (
dΩt

dt
)

= ϕ∗
t (diXtΩt) + ϕ∗

t (Ω1 − Ωk
L)

= ϕ∗
t (−d(Θ1 −Θk

L) + Ω1 − Ωk
L) = 0.

Then we have
ϕ∗

1Ω1 = ϕ∗
0Ω

k
L = Ωk

L.

But (Xt)|L = 0 implies (ϕt)|L = id|L, and then we deduce that ϕ1 ◦ f gives the
desired local diffeomorphism. 2
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Lemma 3.25 Let (P,Ω,W) be a multisymplectic manifold of type (k + 1, 0).
Let L′ be a k-isotropic submanifold of P which is transversal to W (that is,
TL′ ∩W|L′ = {0}). Then there is a k-lagrangian submanifold L of P which is
complementary to W and contains L′.

Proof Since L′ is transversal to W we can choose a submanifold L′′ of U ′

such that L′ is a deformation retract of L′′, and L′′ is complementary to W.
As in the theorem above, since TP|L′′ = TL′′⊕W|L′′ , thenW induces a tubular
neighbourhood of L′′ in the usual way: π1 : U ′ −→ L′′.

Next, we apply the relative Poincaré lemma to the restricted form Ω to this
tubular neigborhood. Therefore, there is a k-form µ on U ′ such that

dµ = Ω− π∗
1(Ω|L′′)

(indeed, µ = I(Ω)).

Now, we can repeat the construction developed in the proof of Lemma 3.24
for the k + 1-form dµ. In fact, the mapping ψ : W −→ ΛkL′′ defined by

ψ(u) = − 1

k + 1
(iu dµ) is a vector isomorphism, and it induces a local diffeo-

morphism g : U ′′ ⊂ U ′ −→ g(U ′′) ⊂ ΛkL′′; g restricted to L′′ is the identity,
and ψ on the fibers. Again we can prove

g∗Ωk
L′′ = dµ

since (dµ)|L′′ = 0. Proceeding as in the proof of Lemma 3.24 we can find a local
diffeomorphism Ψ from a tubular neigbourhood V of L′′ onto a neighbourhood
of the zero section of ΛkL′′ which maps L′′ onto the zero section, and such
that

Ψ∗Ωk
L′′ = Ω

on V .

Now, if j : L′ −→ L′′ is the natural inclusion, we know that j induces an iso-
morphism in cohomology. Therefore j∗(Ω|L′′) = Ω|L′ = 0 implies [Ω|L′′]DR = 0,
and we deduce that Ω|L′′ = dν, for some k-form ν on L′′. A direct computation
shows now that

L = Ψ−1 ◦ (−ν)(L′′)

is a k-lagrangian submanifold in (P,Ω), and in addition TP|L = TL ⊕W|L.
2

Corollary 3.26 A multisymplectic manifold (P,Ω,W) of type (k + 1, 0) is
locally multisymplectomorphic to a canonical multisymplectic manifold ΛkM
for some manifold M . Therefore, there are Darboux coordinates around each
point of P.
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Proof We only need to choose a point in Lemma 3.25, and then apply The-
orem 3.22. 2

Definition 3.27 Let (P,Ω) be a multisymplectic manifold of order k + 1.
Assume that W is a 1-isotropic foliation of (P,Ω), and E is a “generalised
distribution” on P in the sense that E(x) ⊂ TxP/W(x) is a vector subspace
for all x ∈ P. Assume that the quadruple (TxP,Ωx,W(x), E(x)) is a multisym-
plectic vector space of type (k + 1, r), for all x ∈ P. A quadruple (P,Ω,W, E)
satisfying these conditions will be called a multisymplectic manifold of type
(k + 1, r).

Theorem 3.28 Let (P,Ω,W, E) be a multisymplectic manifold of type (k +
1, r). Let L be a k-lagrangian submanifold such that TL ∩ WL = {0}. Then
there exists a tubular neighbourhood U of L in P, a manifold N , and a dif-
feomorphism Φ : U −→ V = Φ(U) ⊂ Λk

rN into an open neighbourhood V of
the zero cross-section in ΛkN such that Φ : L −→ N is an immersion, and
Φ∗(((ΩN )k

r)|V ) = Ω|U , where (ΩN )k
r is the canonical multisymplectic (k + 1)-

form on Λk
rN .

Proof The proof is a consequence of the following two lemmas, which are
proved in a similar way to Lemma 3.24 and Lemma 3.25. 2

Lemma 3.29 Let (P,Ω,W, E) be a multisymplectic manifold of type (k+1, r).
Let L be a k-lagrangian submanifold of P which is complementary toW. Then
there is a tubular neighbourhood U of L and a diffeomorphism Ψ : U −→ V ⊂
Λk

rL, where V is an neighbourhood of the zero section, such that Ψ|L is the
standard identification of L with the zero section of Λk

rL, and

Ψ∗((ΩL)k
r)|V ) = Ω|U .

Lemma 3.30 Let (P,Ω,W, E) be a multisymplectic manifold of type (k+1, r).
Let L′ be a k-isotropic submanifold of P which is transversal to W. Then
there is a k-lagrangian submanifold L of P which is complementary to W and
contains L′.

Corollary 3.31 A multisymplectic manifold (P,Ω,W, E) of type (k+1, r) is
locally multisymplectomorphic to a canonical multisymplectic manifold Λk

rM
for some fibration M −→ N . Therefore, there are Darboux coordinates around
each point of P.

Proof We only need to choose a point in Lemma 3.30, and then apply The-
orem 3.28. 2
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4 Lagrangian and hamiltonian settings for classical field theories

We remit to [1,9,10,13–17,22] for more details.

4.1 Lagrangian formalism

Let πXY : Y −→ X be a fibred manifold, where X is an oriented n-dimensional
manifold with volume form η. We choose fibred coordinates (xµ, yi) on Y such
that

η = dnx = dx1 ∧ · · · ∧ dxn, πXY (xµ, yi) = (xµ),

where µ = 1, . . . , n, i = 1, . . . , m, and dimY = n+m. The notation

dn−1xµ = i ∂
∂xµ

dnx

will be very useful, since dxµ ∧ dn−1xµ = dnx.

Let L : Z −→ ΛnX be a lagrangian density, that is, L is an n-form on Z
along the canonical projection πXZ : Z −→ X. Therefore, L = Lη, where
L : Z −→ R is a function on Z, and η equally denotes the volume form on X
and its lifts to the different bundles over X.

One constructs an n-form ΘL on Z locally given by

ΘL = (L− zi
µ

∂L

∂zi
µ

)dnx+
∂L

∂zi
µ

dyi ∧ dn−1xµ.

The (n+ 1)-form ΩL = −dΘL is called the Poincaré-Cartan form.

The de Donder equation is

ih ΩL = (n− 1)ΩL (4.5)

where h is a connection in the fibred manifold πXZ : Z −→ X.

Indeed, if σ is a horizontal section of a solution h of (4.5) then σ is a critical
section of the variational problem determined by L.

If L is regular (that is, the hessian matrix


 ∂2L

∂zi
µ∂z

j
ν




is regular) then such a section σ is necessarily a 1-jet prolongation, say σ = j1τ ,
where τ is a section of the fibred manifold πXY : Y −→ X.

If h is a solution of equation (4.5) and

h(
∂

∂xµ
) =

∂

∂xµ
+ yi

µ

∂

∂yi
+ zi

νµ

∂

∂zi
ν
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then we have

ih ΩL = (n− 1)ΩL (4.6)

if and only if

(yj
ν − zj

ν)
∂2L

∂zi
µ∂z

j
ν

= 0 (4.7)

∂L

∂yi
− ∂2L

∂xµ∂zi
µ

− yj
µ

∂2L

∂yj∂zi
µ

− zj
µν

∂2L

∂zj
µ∂zi

ν

+ (yj
ν − zj

ν)
∂2L

∂yi∂zj
ν

= 0 (4.8)

If L is regular, then Eq. (4.7) implies yj
ν = zj

ν and Eq. (4.8) becomes

∂L

∂yi
− ∂2L

∂xµ∂zi
µ

− zj
µ

∂2L

∂yj∂zi
µ

− zj
µν

∂L

∂zj
µ∂zi

ν

= 0 (4.9)

If h is flat (that is, the horizontal distribution is integrable) and σ : X −→ Z
is an integral section, then σ = j1(πY Z ◦ σ), and (4.9) are nothing but the
Euler-Lagrange equations for L:

∂L

∂yi
−

n∑

µ=1

d

dxµ

(
∂L

∂zi
µ

)
= 0. (4.10)

4.2 Hamiltonian formalism

Denote by ΛnY the vector bundle over Y of n-forms on Y , and by Λn
rY its

vector subbundle consisting of those n-forms on Y which vanish contracted
with at least r vertical arguments.

We have the short exact sequence of vector bundles over Y

0 −→ Λn
1Y −→ Λn

2Y −→ Z∗ = Λn
2Y/Λ

n
1Y −→ 0

We choose coordinates as follows:

Λn
1Y : (xµ, yi, p)

Λn
2Y : (xµ, yi, p, pµ

i )

Z∗ : (xµ, yi, pµ
i )

since the generic elements in Λn
1Y (resp. Λn

2Y ) have the form p dnx (resp.
p dnx+ pµ

i dy
i ∧ dn−1xµ).

In order to have a dynamical evolution in the hamiltonian setting one need to
choose a hamiltonian form h on Z∗, that is, a section h : Z∗ −→ Λn

2Y of the
canonical fibration pr : Λn

2Y −→ Z∗.
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The canonical multisymplectic form (ΩY )n
2 on Λn

2Y induces a multisymplectic
form (of the same type)

Ωh = h∗(ΩY )n
2 .

If Θh = h∗(ΘY )n
2 then Ωh = −dΘh.

Since

(ΩY )n
2 = −dp ∧ dnx− dpµ

i ∧ dyi ∧ dn−1xµ

and

h(xµ, yi, pµ
i ) = (xµ, yi, p = −H(xµ, yi, pµ

i ), pµ
i )

(in other words, h = −Hdnx+ pµ
i dy

i ∧ dn−1xµ) we obtain

Ωh = dH ∧ dnx− dpµ
i ∧ dyi ∧ dn−1xµ (4.11)

Consider a connection h∗ in the fibred manifold πXZ∗ : Z∗ −→ X, and assume
that

h∗(
∂

∂xµ
) =

∂

∂xµ
+ yi

µ

∂

∂yi
+ pν

jµ

∂

∂pν
j

.

Then

ih∗ Ωh = (n− 1)Ωh (4.12)

if and only if

yi
µ =

∂H

∂pµ
i

(4.13)

∑

µ

pµ
iµ = −∂H

∂yi
(4.14)

If τ : X −→ Z∗ is an integral section of h∗, and τ(xµ) = (xµ, yi(x), pµ
i ), then

it satisfies the Hamilton equations

∂yi

∂xµ
=
∂H

∂pµ
i

(4.15)

∑

µ

∂pµ
i

∂xµ
= −∂H

∂yi
(4.16)

4.3 The Legendre transformation

Let L be a lagrangian. We define the extended Legendre transformation

legL : Z −→ Λn
2Y

by

legL(xµ, yi, zi
µ) = (xµ, yi, L− zi

µ

∂L

∂zi
µ

,
∂L

∂zi
µ

),
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and the Legendre transformation

LegL : Z −→ Z∗

by LegL = pr ◦ legL. A direct computation shows that L is regular if and only
if LegL is a local diffeomorphism. L is said to be hyperregular if LegL is a
global diffeomorphism. In such case, h = legL ◦ Leg−1

L is a hamiltonian form
on Z∗.

Since the next diagram

Z Z∗

Y

-LegL

@
@

@
@@R

�
�

�
��	

πY Z πY Z∗

is commutative and Leg∗L(Θh) = ΘL, we deduce that Equations (4.6) and
(4.12) are equivalent. This means that the solutions of both equations are
related by the Legendre transformation.

5 The multisymplectomorphism α̃

Consider the vector bundle Λn+1
2 Z with generic elements of the form

aidy
i ∧ dnx+ bµi dz

i
µ ∧ dnx

This allows us to introduce local coordinates (xµ, yi, zi
µ, ai, b

µ
i ) in the manifold

Λn+1
2 Z.

On the other hand, we shall denote by J1Z∗ the manifold of 1-jets of local
sections of the fibred manifold πXZ∗ : Z∗ −→ X. We have a canonical projec-
tion

j1πY Z∗ : J1Z∗ −→ Z

Denote by (xµ, yi, pµ
i , y

i
ν , p

µ
iν) the induced coordinates on J1Z∗ respect to πXZ∗ :

Z∗ −→ X, such that

j1πY Z∗(x
µ, yi, pµ

i , y
i
ν , p

µ
iν) = (xµ, yi, yi

µ).

Define a mapping
α : J1Z∗ −→ Λn+1

2 Z

by
α(xµ, yi, pµ

i , y
i
ν , p

µ
iν) = (xµ, yi, yi

µ,
∑

µ

pµ
iµ, p

µ
i ).

The mapping α is a surjective submersion, or in other words, α : J1Z∗ −→
Λn+1

2 Z is a fibred manifold. In order to obtain a diffeomorphism, we need to
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“reduce” the manifold J1Z∗. To do that, we introduce the following equiva-
lence relation:

j1
xσ1 ≡ j1

xσ2 if and only if they have the same divergence,

which in local coordinates (xµ, yi, pµ
i , y

i
ν, p

µ
iν) and (xµ, ȳi, p̄µ

i , ȳ
i
ν , p̄

µ
iν) means

ȳi = yi, p̄µ
i = pµ

i , ȳi
ν = yi

ν ,
∑

µ

p̄µ
iµ =

∑

µ

pµ
iµ.

The corresponding quotient manifold will be denoted by J̃1Z∗, and we have a

fibration p̃r : J1Z∗ −→ J̃1Z∗. The induced mapping

α̃ : J̃1Z∗ −→ Λn+1
2 Z

is a diffeomorphism, and we have an induced projection

j̃1πY Z∗ : J̃1Z∗ −→ Z

Therefore, we can transport the canonical multisymplectic (n+ 2)-form

(ΩZ)n+1
2 = −d(ΘZ)n+1

2 on Λn+1
2 Z to J̃1Z∗ such that (J̃1Z∗,Ωα) is a multisym-

plectic manifold, where Ωα = α̃∗((ΩZ)n+1
2 ).

Remark 5.1 Following the terminology introduced by W.M. Tulczyjew in
the symplectic context, and accordingly to Definition 3.17, we could call

(J̃1Z∗,Ωα) a special multisymplectic manifold, since it is multisymplectomor-
phic to a bundle of forms, and the multisymplectic (n+2)-form is Ωα = −dΘα

(where Θα = α̃∗((ΘZ)n+1
2 ). In addition, the following diagram is commutative:

J̃1Z∗ Λn+1
2 Z

Z

-α̃

@
@

@
@@R

�
�

�
��	

j̃1πY Z∗
πZΛn+1

2 Z

Let L : Z −→ ΛnX be a lagrangian density, that is, L is an n-form on Z along
the projection πXZ : Z −→ X.

We put

NL = {u ∈ J̃1Z∗|
(
j̃1πXZ∗

)∗

(dL)u = (Θα)u}

Theorem 5.2 NL is a (n+1)-lagrangian submanifold of the multisymplectic

manifold (J̃1Z∗,Ωα). In addition, the local equations defining NL are just the
Euler-Lagrange equations for L, where L = Lη.
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Proof From the definition it follows that

α̃(NL) = im dL,

In addition, we have

(ΘZ)n+1
2 = aidy

i ∧ dnx+ bµi dz
i
µ ∧ dnx

α∗((ΘZ)n+1
2 ) = pµ

iµdy
i ∧ dnx+ pµ

i dy
i
µ ∧ dnx

dL =
∂L

∂yi
dyi ∧ dnx+

∂L

∂zi
µ

dyi
µ ∧ dnx.

Since

(j̃1πXZ∗)
∗(dL) = Θα

if and only if

p̃r∗(j̃1πXZ∗

∗

(dL)−Θα) = 0

which is in turn equivalent to

(j1πXZ∗)
∗(dL) = α∗(ΘZ)n

2 ,

we deduce that NL is locally defined by

∑

µ

pµ
iµ =

∂L

∂yi
(5.17)

pµ
i =

∂L

∂zi
µ

(5.18)

Equations (5.17) imply that α̃(NL) = Im dL, and hence NL is a (n + 1)-

lagrangian submanifold of (J̃1Z∗,Ωα).

Furthermore, we have

∑

µ

pµ
iµ =

∑

µ

∂

∂xµ
(
∂L

∂zi
µ

) =
∂L

∂yi

which are just the Euler-Lagrange equations for L. 2

6 The multisymplectomorphism β̃

Recall that there exists a one-to-one correspondence between connections in
the fibred manifold πXZ∗ : Z∗ −→ X and sections of the 1-jet prolongation
πZ∗J1Z∗ : J1Z∗ −→ Z∗. (At a pointwise level we have a one-to-one correspon-
dence between horizontal subspaces in the fibred manifold πXZ∗ : Z∗ −→ X
and 1-jets in J1Z∗.)
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Define a mapping
β : J1Z∗ −→ Λn+1

2 Z∗

as follows: given a connection h∗ in the fibred manifold πXZ∗ : Z∗ −→ X, we
take the (n + 1)-form

β(h∗) = ih∗ Ωh − (n− 1)Ωh.

An arbitrary (n + 1)-form in Λn+1
2 Z∗ is written as

Aidy
i ∧ dnx+Bi

µdp
µ
i ∧ dnx

so that we can introduce local coordinates (xµ, yi, pµ
i , Ai, B

i
µ) on Λn+1

2 Z∗.

If we put

h∗(
∂

∂xµ
) =

∂

∂xµ
+ yi

µ

∂

∂yi
+ pν

jµ

∂

∂pν
j

or, equivalently,
h∗(xµ, yi, pµ

i ) = (xµ, yi, pµ
i , y

i
µ, p

ν
jµ)

(when h∗ is considered as a section of J1Z∗ −→ Z∗), then a straightforward
computation shows that

β(xµ, yi, pµ
i , y

i
µ, p

ν
iµ) = (xµ, yi, pµ

i ,
∑

µ

pµ
iµ +

∂H

∂yi
,−yi

µ +
∂H

∂pµ
i

).

The mapping β is a surjective submersion. Thus, in order to have a diffeomor-

phism we consider the induced mapping β̃ : J̃1Z∗ −→ Λn+1
2 Z∗. Therefore we

obtain a commutative diagram

J̃1Z∗ Λn+1
2 Z∗

Z∗

-β̃

@
@

@
@@R

�
�

�
��	

ρ̃ πZ∗Λn+1
2 Z∗

where ρ̃ : J̃1Z∗ −→ Z∗ is the induced projection from the canonical one
ρ : J1Z∗ −→ Z∗.

Define a (n+ 1)-form Θβ on J̃1Z∗ as Θβ = β̃∗((ΘZ∗)
n+1
2 ). Therefore, the pair

(J̃1Z∗,Ωβ), Ωβ = −dΘβ, is a multisymplectic manifold of type (n + 2, 2).

Remark 6.1 It should be noticed that pair (J̃1Z∗,Ωβ) is a special multisym-
plectic manifold.

Theorem 6.2 Let h∗ be a solution of the de Donder equation. Then the pro-
jection Nh of the image of h∗ by p̃r is a (n+ 1)-lagrangian submanifold of the

multisymplectic manifold (J̃1Z∗,Ωβ). In addition, the local equations defining
Nh are just the Hamilton equations for h.
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Proof Since
(ΘZ∗)

n+1
2 = Aidy

i ∧ dnx+Bi
µdp

µ
i ∧ dnx

we have

β∗((ΘZ∗)
n+1
2 ) = (pµ

iµ +
∂H

∂yi
)dyi ∧ dnx+ (−yi

µ +
∂H

∂pµ
i

)dpµ
i ∧ dnx.

Therefore, the projection Nh of the image of h∗ by p̃r is just the inverse
image of the zero-cross section of Λn+1

2 Z∗, and hence it is a (n+1)-lagrangian

submanifold of (J̃1Z∗,Ωβ).

The second part of the theorem follows directly from the preceding discussion.
2

7 Relating α̃ and β̃

The above constructions are collected in the following diagram:

Λn+1
2 Z J̃1Z∗ Λn+1

2 Z∗

Z∗Z

-� β̃α̃

@
@

@
@@R

�
�

�
��	

@
@

@
@@R

�
�

�
��	

ρ̃ πZ∗Λn+1
2 Z∗j̃1πY Z∗

πZΛn+1
2 Z

Since

p̃r∗(Θα) = pµ
iµdy

i ∧ dnx+ pµ
i dy

i
µ ∧ dnx

p̃r∗(Θβ) = (pµ
iµ +

∂H

∂yi
)dyi ∧ dnx+ (−yi

µ +
∂H

∂pµ
i

)dpµ
i ∧ dnx

we deduce that

p̃r∗(Θα −Θβ) = dh−
(
yi

µdp
µ
i + pµ

i dy
i
µ

)
∧ dnx

= dh− d(pµ
i y

i
µ) ∧ dnx

= d
(
h− (pµ

i y
i
µ) ∧ dnx

)

which implies that Ωα = Ωβ.

Theorem 7.1 Let L be a regular lagrangian, and assume that h = legL ◦
(LegL)−1. Then NL = Nh.
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Degenerate metrics and singular geodesics

Alberto Ibort

Depto. de Matemáticas, Univ. Carlos III de Madrid,
Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain.

Abstract

In this paper we will approach the study of degenerate metrics from the point of
view of their geodesics. Thus the geodesic equation for a degenerate metric is derived
by means of an optimal control formulation of the problem of determining the
shortest path joining two points. The equation of geodesics will in general be implicit
and the study of their solutions will require the application of the presymplectic
constraints algorithm to the presymplectic problem equivalent to Pontriaguine’s
principle. Along the application of the algorithm we will observe that the stability
of the secondary constraints is equivalent to the integrability of the characteristic
distribution of the degenerate metric, a condition that was derived in [7] by different
means. The existence of geodesics passing through a given point is related to the
completeness of the space. In particular it is shown that the integrable points for
the equation of geodesics must necessarily be contained in the b-completion of the
space of regular points. Finally, a simple example is discussed exhibiting some of
the main features of the previous constructions.

1 Introduction: Degeneracy versus singularities

The celebration of Mike Crampin 60th birthday gives us the extraordinary
occasion to look back to some of the ideas that so masterly he taught us. One
the very first problems studied by Mike was the geometrical properties of a
differentiable manifold M with a degenerate metric g [7].

He proved then that there exists a symmetric torsionless metric connection
for a constant rank degenerate metric provided that the first structure func-
tion of the orthonormal frame bundle defined by the degenerate metric will
vanish, the condition being also necessary. Such condition was also shown to
be equivalent to the fact that the null vector fields of the metric were Killing,
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which implied in addition that the null distribution N of the metric were inte-
grable, defining a foliation N . Thus, if we are in the neighborhood of a regular
leaf of the foliation defined by N , then the leaf space M/N inherits a smooth
structure around such point and the degenerate metric descends to a nonde-
generate one g̃ defined on such neighborhood. The geodesics for the metric g̃
constructed locally in the quotient space M/N , can be lifted up to the original
manifold constituting the geodesics of the degenerate metric, more properly
called degenerate or singular geodesics. These ideas were recast in the setting
of reduction of singular lagrangians in [5] and it was shown that the existence
of such connection was equivalent to the fact that the singular kinetic energy
Lagrangian defined by the metric was of type II.

It would be our purpose here to continue the study of such geodesics for de-
generate metrics not necessarily of constant rank, and connect this problem
to other problems of interest in the geometry and topology of pseudorieman-
nian manifolds. For that we will look at it from the point of view of studying
the existence and uniqueness of solutions of the equation of geodesics for a
degenerate metric.

The equation of geodesics for a metric degenerate or not, that will be derived
in Section 2 as an easy application of a problem in optimal control theory,
becomes an implicit equation when the metric is degenerate . To solve it we
will apply the recursive constraint algorithm invented to extract the integrable
part of an implicit differential equation [17], [15], i.e., the set of points through
which pass at least a solution of the equation. The obstruction in the first step
of the algorithm to the existence of such points will be shown to be equivalent
under the appropriate conditions to Crampin’s theorem on the vanishing of
the first structure function of the orthonormal bundle defined by the metric.

At the time that Mike was writing his paper on degenerate metrics, the study
of singularities of space-time was reaching a climax with the publication of
various articles by S. Hawking and R. Penrose [12], [13] showing the existence
of singularities under appropriate conditions (see [14] for a masterly exposition
of the subject). Even though by that time there was not a completely clear
understanding of what a singularity of a space-time geometry was (see [4] for
a detailed history of the subject) it was clear that some sort of degeneracy
of the metric could be responsible for such phenomena. In fact a singularity
in a broad sense can be thought as points where Einstein’s equations doesn’t
make sense because some components of the curvature tensor are not defined.
In this sense the study of degenerate metrics was a natural problem in order
to understand how such singularities emerged 1 .

This point of view was not pursued further. However more recently there have

1 Even though this was not the true reason why Mike was interested in the problem
as I was told by him but rather trying to understand some conformal properties of
asymptotically flat spaces.
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been emerging alternative foundations of General Relativity where degenerate
metrics where not excluded. For instance Ashtekar’s formulation of General
Relativiy allows degenerate metrics as solutions of the equations of the theory
[2], [3]. Even more recently, other ideas like signature change and topology
change in General Relativity have appeared where degenerate metrics play an
important role.

We will review in Section 3 the geometrical theory of singularities of connec-
tions as established by Schmidt [18] and developed further by Friederich [10],
Dodson [9], and a number of researchers (see [4] and references therein) un-
til more recently [1]. Then we will apply it to the regular manifold obtained
by removing the points where the metric degenerates, obtaining in this way
the b-completion of a degenerate metric with respect to the Levi-Civita con-
nection it defines in the regular open submanifold. It will be clear from the
previous results that the integrable points of the geodesic equation according
to the theory described previously, will be in the b-boundary of the regular
manifold. We will conjecture that both sets agree. The difficulty of the actual
computation of the b-completion of a metric has been a serious drawback of
the theory, that apart from other difficulties like the, in general non Hausdorff
character of the b-completion, has caused its abandon by the researchers in
the field. These notes will offer an alternative way to approach the problem
that apart from providing a new source of examples, it will also give explicit
computations of b-completions and will bring more light on the subject.

2 Singular geodesics for degenerate metrics

2.1 Geodesics equation for degenerate metrics: an optimal control theory
point of view

We shall consider a differentiable manifold Q with local coordinates xi and
a symmetric bilinear form g defined on it (possibly degenerate) that will be
called a metric or a degenerate metric if we want to emphasize the fact that
is not necessarily nondegenerate. For that metric g it makes sense to consider
the problem of determining the “shortest” path joining two given points, i.e.,
determining the minima of the functional

S(γ) =
∫ 1

0
gγ(t)(γ̇(t), γ̇(t))dt,

on the space of piecewise C1 curves γ : [0, 1]→ Q. This problem can be equiv-
alently formulated as a problem in optimal control theory as follows:

Determine the piecewise C1 curves σ : [0, 1] → TQ, σ(t) = (γ(t), v(t)), such
that the dynamical equation
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γ̇(t) = v(t),

is satisfied and that minimizes the objective functional

S(σ) =
∫ 1

0
gγ(t)(v(t), v(t))dt,

together with the endpoint conditions:

γ(0) = x0, γ(1) = x1.

Natural local coordinates on the tangent bundle TQ of the manifold Q will
be denoted by (xi, vi) and by (xi, pi) on the cotangent bundle T ∗Q.

It is well-known that the solution to this problem is given by Pontriaguine’s
maximum principle [16], that states that a solution (σ(t) = (γ(t), v(t)) to the
previous problem exists if there exists a lifting ξ(t) = (γ(t), p(t)) of the curve
γ(t) to the cotangent bundle T ∗Q, such that the curve (γ(t), p(t), v(t)) verifies
the equations,

ẋi(t) =
∂H0

∂pi
(γ(t), p(t), v(t)), ṗi(t) = −∂H0

∂xi
(γ(t), p(t), v(t)),

where H0 denotes Pontriaguine’s Hamiltonian function:

H0(x, p, v) = piv
i − L(x, v),

where L denotes the Lagrangian density defining the objective functional S,
the endpoint conditions and the maximum condition:

H0(γ(t), v(t), p(t)) = max
ṽ

H0(γ(t), p(t), ṽ).

Hence the solutions of the optimal control problem piecewise C1 will be found
among the paths satisfying the extremal equations:

ẋi =
∂H0

∂pi
, ṗi = −∂H0

∂xi
,

∂H0

∂vi
= 0. (1)

The previous equations are readily seen to be given in local coordinates by

ẋi = vi, ṗk = −1

2

∂gij
∂xk

vivj , pi = gijv
j,

thus they are equivalent to the set of implicit second order differential equa-
tions on Q given by

gijẍ
i + Γijkẋ

j ẋk = 0, (2)
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where Γijk denote the Christoffel symbols of first class. Equations (2) will be
called the geodesic equation of the metric g. A solution of such equation will
be called a geodesic of g.

A point x ∈ Q will be called regular if det gij(x) 6= 0 and singular (or degen-
erate) otherwise. The open dense set of regular points of Q will be called the
regular submanifold of Q and denoted by Qreg. The set of all degenerate points
of g will be called the degenerate locus of g and denoted by Σ(Q). Notice that
if x is a regular point, then the geodesic equation can be written in normal
form in an open neighborhood of x, hence there will be a local solution of
eq. (2) passing through x, that will be an ordinary geodesic of the metric g
restricted to an open neighborhood of x where it is nondegenerate. However if
x ∈ Σ(Q), then in general there is no reason for the existence nor uniqueness
of solutions passing through it.

A solution of the geodesic equation passing through a degenerate point will be
called a degenerate or singular geodesic. Our purpose is to characterize the set
of points in Q such that there exists a geodesic or a singular geodesic passing
through them. Such points will be called integrable and denoted by Qint. It is
clear from the previous observations that Qreg ⊂ Qint.

2.2 A geometrical description

Before entering the delicate problem of studying the solutions of the equation
of geodesics, we will rephrase the previous discussion in a more palatable
geometrical setting.

We shall denote by M0 = T ∗Q ×Q TQ the fibrered product over Q of the
cotangent and tangent bundles over Q. We shall also denote by p0 : M0 → T ∗Q
and by q0 : M0 → TQ the corresponding canonical projections. We shall denote
by Ω0 = p∗0ω0 the pull-back to M0 of the canonical symplectic form on T ∗Q.

Clearly Ω0 is degenerate with a rank n characteristic distribution K = ker Ω0,
spanned by the “vertical” vectors ∂/∂vi, i.e., K = ker Tp0. Pontriaguine’s
Hamiltonian H0 is well defined on M0 an given by,

H0(x, p, v) = θ0(x, p)(v)− L(x, v),

where θ0 denotes the canonical Liouville 1-form on T ∗Q. We will define in
this way the presymplectic Hamiltonian system (M0, Ω0, H0) with dynamical
vector field Γ defined by the equation:

iΓΩ0 = dH0. (3)

Clearly there will exists a vector field Γ satisfying the previous equations if
and only if iZdH0 = 0 for all Z ∈ K, i.e., if and only if the following equations
are satisfied
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ϕ
(1)
i :=

∂H0

∂vi
= pi − gijv

j = 0, i = 1, . . . , n. (4)

For generic metrics g the subset defined by the previous conditions (4), that
can be called primary constraints of the presymplectic system above, is a
smooth submanifold of M0 that will be denoted by M1. Hence restricted to
M1 the dynamical vector field Γ defined by the presymplectic system takes
the form:

ΓC = vi
∂

∂xi
− 1

2

∂gij
∂xk

vivj
∂

∂vi
+ Ci ∂

∂vi
, (5)

with Ci undetermined functions. Equation (5) provides the geometrical de-
scription of Pontriaguine’s equations (1).

2.3 Solving the degenerate geodesics equation

It is clear from the previous argument that the geodesic equation (2) will have
a solution lying on M1 or, equivalently, there will exists a vector field ΓC whose
integral curves will be contained in M1 if and only if there exists Ci’s such
that the corresponding vector field ΓC is tangent to M1, this is, if:

ΓC(ϕ
(1)
i ) = 0, on M1.

In other words if the equation,

gijC
i = −Γijkv

jvk, (6)

has solution on M1. If g is nondegenerate (6) has a unique solution and ΓC
is uniquely determined on M1. There is an alternative way of looking at this
fact that will be useful later on.

Denoting by p1 the restriction of p0 to M1 we will see immediately that Ω1 =
p∗1ω0. Thus Ω1 is symplectic if and only if p1 is a local diffeomorphism. Moreover
notice that ker(p1)∗ = K∩TM1 = TNv where Nv denotes the vertical lifting of
the null distribution of g. Thus Ω1 will be nondegenerate iff g is nondegenerate
and hence there will exists a unique solution for Γ given by the equation:

iΓΩ1 = dH1.

Notice that the regular submanifold of M1, i.e., those points where Ω1 is
nondegenerate, is precisely the set p−1

1 (T ∗
Qreg

Q) and the singular points of M1,
that is the points where Ω1 fails to be nondegenerate, are the critical points
of p0, i.e., the points in M1 where Tp0 is not submersive. Let us denote such
points by Σ1.
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We must study then the points in Σ1. A necessary and sufficient condition for
the equation (6) to have solution at a singular point is that

ηiΓijk = 0, ∀Z = ηi
∂

∂xi
∈ N, (7)

in other words, denoting by α1 the 1-form on TQ along the projection τQ
given by Γijkv

jvkdxi, the previous condition is equivalent to

iZα1 = 0, ∀Z ∈ N.

Let us recall that a metric g is of type II if 2 dim V (ker ωg) = dim ker ωg where
ωg is the Cartan 2–form defined by the kinetic energy Lagrangian given by
g, i.e., ωg = −dS∗(dKg), with Kg = 1/2(gijv

ivj). If g is of type II, then N
is integrable [5]. Moreover if the vector fields Z ∈ N are Killing vector fields,
then g is of type II and it has a global dynamics.

In general however (7) will not be satisfied and we will have secondary con-
straints:

ϕ(2)
a := iZaα1, a = 1, . . . , dim N,

where Za form a basis of N .

We are clearly in the setting of Dirac’s constraints algorithm [8] (see [15],
[17] and references therein for a modern perspective). Then, stability of the
secondary constraints

ΓC(ϕ(2)
a ) = 0,

on M1 will define tertiary constraints and so on. Eventually we will obtain a
final constraint submanifold M∞ where the dynamical equation

iΓ∞Ω∞ = dH∞,

could always be solved. The projection of the integral curves of the vector field
Γ∞ to Q will be solutions of the equation of geodesics for g. Thus the projection
of the final constraint submanifold M∞ to Q will define a subset Qint ⊂ Q
where the equation of geodesics could be solved. Unfortunately so far we do
not have a geometrical interpretation of the higher order constraints eventually
arising in the theory so we cannot say in advance when the presymplectic
constraint algorithm will stop.
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3 Singularities of connections and b-completion

3.1 What is a singularity?

We will follow here the discussion in [14] about the nature of singularities in
space-time manifolds. However the arguments with a physical origin are much
weaker here as we plan to apply them to manifolds which are not necessarily
Lorentzian. In any case if we are considering a manifold with a metric defined
on it, it would be reasonable to think that the given space has a singularity
if it could not be extended to another space without considering points where
the metric tensor or some of the other tensors derived from it were undefined.

We could in principle, simply remove these points, but we will be left with the
question if in the remaining manifold we could determine if some singularities
have been cut off along this process. This is if the manifold without the singular
points still “detects” its shadow presence. One way to detect them would be
by means of studying if the manifold we are considering is incomplete in some
sense.

There are various forms of incompleteness. The simplest and more fundamen-
tal one is the notion of m-completeness, or Cauchy completeness, that can be
defined whenever we can equip our manifold with the structure of a metric
space. Of course, if g is positive definite, there is a natural distance defined on
the manifold M as d(x, y) = infγ∈Ω(x,y) l(γ) with Ω(x, y) the space of piecewise
C1 curves on M joining x and y, and

l(γ) =
∫ 1

0
‖ γ̇(t) ‖ dt.

The manifold (M, d) will be said to be m-complete if every Cauchy sequence is
convergent. An alternative characterization of m-complete spaces is that any
curve of finite length has an endpoint, where a point p is called an endpoint for
the curve γ if for every neighborhood U of p there exists T such that γ(t) ∈ U
for all t > T .

When the metric we are considering is not definite it is not possible to intro-
duce a metric as above, however we can still speak of g-completeness. We will
say that (M, g) is g-complete if every geodesic can be extended to arbitrary
values of its natural parameter. For a definite metric g, both notions agree.

In Lorentzian manifolds, the notion of m-completeness makes no sense, but it
is clear that timelike geodesic incompleteness is a clear exponent of the exis-
tence of a singularity. However Geroch [11] constructed a geodesically complete
space-time which contains an inextensible time-like curve of bounded acceler-
ation and finite length. For making sense of the latest statements we need to
define a natural parameter for all curves and then define a notion of complete-
ness by requiring that any piecewise C1 curve of finite length as measured by
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such parameter has an endpoint. This can be done as follows.

Let γ(t) an arbitrary curve and γ(t0) = p a point on it. Let us consider now
a frame r = (p, e1, . . . , en) at it. We shall parallel propagate the frame r along
the curve by solving the linear equation ∇γ̇(t)ek(t) = 0 with initial condition
ek(t0) = ek. With respect to the parallel frame thus constructed we can write

γ̇(t) = vk(t)ek(t). Then define the natural parameter as s =
∫ t
t0

√
vk(t)vk(t)dt.

We will say that M is b-complete with respect to the connection ∇ if any
curve of finite length with respect to a natural parameter has an endpoint.

It is clear that b-completeness implies g-completeness, but we can already
pointed out that the converse is not true. We will say that a space with
connection is singularity-free if it is b-complete and singular otherwise.

3.2 The b-completion of a singular space

If we have a singular space (M, g), i.e., M is not b-complete with respect to
the Levi-Civita connection defined by g, we would like to know whether it is
possible to complete it and to understand where the finite length curves end.
The role played by the added points should be a matter of further analysis
in the context of the problem studied. There is a natural and elegant way to
b-complete M due to Schmidt [18] and described carefully in [1] and [6]. We
shall sketch the construction.

Let π : F (M) → M the frame bundle of M and φ the canonical Rn-valued
1-form on it. If r = (m; ek) ∈ F (M) is a frame, we denote by r̂ : Rn → TmM
the natural isomorphism r̂(x) = xkek ∈ TmM . Then φr(X) = r̂−1(π∗(r)(X))
for every X ∈ TrF (M). We shall consider now a principal connection 1-form
A on F (M) and the metric gA defined on F (M) associated to A given by

gA = 〈A⊗A〉+ 〈φ⊗ φ〉,
or acting on vectors, gA(X, Y ) = 〈A(X), A(Y )〉+ 〈φ(X), φ(Y )〉, for any scalar
product 〈·, ·〉 defined on Rn and the corresponding one defined on the Lie
algebra of GL(n, R). It can be proved that (F (M), gA) is m-complete if and
only if (M, g) is b-complete. Thus, the non-completeness of F (M) indicates the
non b-completeness of M . Thus it makes sense to consider the m-completion of
F (M) and then passing to the quotient under the induced action of GL(n, R).
More precisely, consider the m-completion F (M)

m
of F (M). The right action

of GL(n, R) on F (M) can be extended uniquely to a continuous action of
GL(n, R) in F (M)

m
. We consider now the quotient space F (M)

m
/GL(n, R)

with the induced topology. Such space contains M and will be called the b-

completion of M and denoted by M
b
. The b-boundary of M will be denoted

by ∂bM and is by definition
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∂bM = M
b −M.

The points in ∂bM are the endpoints of b-incomplete curves in M . Among
the various difficulties arising with this notion we must mention that the b-
completion of M needs not to be Hausdorff and the points in ∂bM need not
to be separated from the points in M . In fact, in general M is not an open

subset of M
b
.

These negative results, apart from the difficulty of its actual computation,
have prevented the notion of b-completion, even if completely general and
mathematically sound, to be fully accepted as a correct completeness notion
for physical General Relativity.

4 A conjecture

The previous discussion clearly brings together two different aspects of the
theory of spaces with metrics (degenerate or not): its b-completeness and the
existence of geodesics (degenerate or not). Thus, denoting again by (Q, g)
a differentiable manifold with a smooth metric g, possibly degenerate, and
denoting by Qreg as before the set of regular points of such space, then it is
clear that

Qint ⊂ Q
b

reg
,

because, if x ∈ Qint there is a geodesic passing through it, then it is the end-
point of a curve. Alternatively, we can think that the geodesic γ, together with
a parallel frame along it, defines a lifting to a horizontal curve on the frame
bundle F (Qreg). Such lifting can be completed and projects on the endpoint
of the curve γ.

Conversely, as points in ∂bQreg correspond to projections of endpoints of finite
length curves in F (Qreg), we can approximate, finite length curves by polygonal
geodesics and thus construct approximations of horizontal curves in the frame
bundle F (Qreg). Thus if a point r is a limit point of a finite length curve,
it is a limit point of limit points of horizontal curves defined by geodesics,
hence it is reasonable to think that there is a limit geodesic passing through
the projection of the limit point, hence the point of the b-boundary is in the
integrable set of the degenerate geodesic equation. Hence we establish our
conjecture:

Qint = Q
b

reg
.

If the previous conjecture would be true, this would imply, among other things,
that the b-completion of a space with singularities such that the metric can be
extended to a degenerate metric is Hausdorff and can be explicitly computed
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by using the recursive algorithm for implicit differential equations described
in section 2.3.

5 An example: the fold

Let Q be the subset of R2 defined by the equation ϕ(x, y) = x − y2 = 0
and by p : Q → R the projection onto the first factor, i.e., p(x, y) = x. Let
g be the metric on Q defined by pulling back the euclidean metric on R

along p, i.e., g = p∗g0, with g0 = dx2. Notice that a global chart of Q is
provided by the projection along the y-axis. In these coordinates we have
g = 4y2dy2. The metric g degenerates at (0, 0) ∈ Q and N0 = R = T0Q.
Moreover Qreg = R−{ 0 }. The degenerate geodesic equation is given by (in y
coordinates):

y2ÿ + ẏ2 = 0.

Introducing the optimal control approach of section 2, we see that the total
space M is the space T ∗Q ×Q TQ ∼= R3 with (global) coordinates (y, p, v).
The lagrangian density is L(y, v) = 2y2v2. The Hamiltonian is H(y, p, v) =
pv − 2y2v2 and the presymplectic structure Ω0 = dy ∧ dp. Pontriaguine’s
equations are given by

ẏ = v, ṗ = 4yv2, p− 4y2v = 0.

The manifold M1 is defined by ϕ1(y, p, v) = p−4y2v = 0 and the presymplectic
form in coordinates (y, v) is given by Ω0 = 4y2dy ∧ dv. Notice that K = 0 at
any point different from (0, 0, v) and, K(0,0,v) = R2 = TM1.

We shall consider now the compatibility of the dynamical equation (3) on the
submanifold M1. For that we compute ϕ̇1 to obtain (on M1),

0 = ṗ− 8yẏv − 4y2v̇ = −4yv2 − 4y2C,

where C = v̇, hence either y = 0 or if y 6= 0, then C = −v2/y. Thus the
dynamics is completely determined in the regular set of Q, the set of points
with y 6= 0, and the points of the form (0, 0, v) are singular on M1. Notice
that the stability of the singular set determined by the secondary constraint
ϕ(2) = y, implies that ẏ = 0, thus the consistency of implicit equation demands
that v = 0. Hence there is a solution passing through the point (0, 0, 0), the
constant solution. All other points in the vertical axis are nonintegrable for
the presymplectic system (M, Ω0, H0).
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1 Introduction

The inverse problem in the calculus of variations goes back to Helmholtz
[11]. In the physics community this problem was raised by Wigner [17] in the
framework of quantum mechanics, hoping that different commutation relations
might introduce a cut-off at high frequencies and thus eliminate some of the
divergencies in field theories [14].

The paper by Wigner was the starting point for Green to introduce paras-
tatistics [10].

Here we shall not take up these problems but we will share the point of view
of Dirac [5]:

“Classical mechanics must be a limiting case of quantum mechanics. We

should thus expect to find that important concepts in classical mechan-

ics correspond to important concepts in quantum mechanics and, from an

understanding of the general nature of the analogy between classical and

quantum mechanics, we may hope to get laws and theorems in quantum me-

chanics appearing as simple generalizations of well known results in classical

mechanics”.

We will try to find out which are the quantum counterpart of bi-Hamiltonian
descriptions for classical systems. To examine these aspects we shall consider
Weyl systems and ∗-products in this setting.

The further scheme of the paper is the following.

Section 2. Reviewing the Feynman’s problem
Section 3. Weyl systems and ?-products
Section 4. Weyl systems associated with alternative Lagrangian descriptions

Email address: marmo@na.infn.it.
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Section 5. The inverse problem for quantum systems
Section 6. The classical limit of some alternative quantum descriptions
Section 7. Comments and conclusions

2 Reviewing the Feynman problem

Dyson has reported on an unpublished result of Feynman showing that the
only interaction for a quantum particle compatible with localizability and the
canonical relation [qj, pk] = i~δj

k, is the Lorentz force law of electrodynamics
[6].

After the presentation of this result, modifications of Feynman’s procedure
have been used to “prove” several other interactions. They include the de-
scriptions of relativistic particles, spinning particles in an electromagnetic
field, particles with isospin moving in a Yang–Mills field, and particles in
a gravitational field [13].

According to Dyson, Feynman’s real interest was not simply recovering the
standard minimal coupling for electrodynamics, but rather in finding new
kinds of descriptions, possibly not equivalent to the Lagrangian ones. In this
respect, Feynman’s result was a no-go theorem, showing that unless some well
founded physical conditions are removed, the new descriptions are reducible
to the Lagrangian ones.

Here, in order to avoid unnecessary complications due to operator ordering we
shall discuss only the classical analogue of the Feynman procedure.

Taking the point of view that classical mechanics should be considered as
a limit of quantum mechanics, the appropriate setting for the description
of classical systems would be in terms of Poisson brackets and Hamiltonian
function. The former is regarded as the classical limit of the commutator
brackets of quantum observables, and the latter is the classical limit of the
quantum Hamiltonian operator.

Upon taking the classical limit of the quantum system, the carrier space could
inherit a non trivial topology. (For example, for the case of a spinning particle
belonging to an irreducible representation of SU(2), the classical phase space
is a 2-dimensional sphere). The classical limit of a quantum system is then
said to be a Hamiltonian system defined on a Poisson manifold, i.e. a carrier
space M equipped with a Poisson bracket.

More precisely, let F = F(M) be the algebra of classical observables on the
manifoldM , F(M) may be obtained as a certain commutative limit (~→ 0) of
the non-commutative algebra of quantum observables O~ of a quantum system.

The Poisson bracket {· , ·} on M is defined by {F , G} = lim
~→0

1

ih
[F,G], where

F = lim
~→0

F~, and {· , ·} is a skew-symmetric bilinear map on F which satisfies
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the Jacobi identity and the Leibnitz rule:

{F, {G, H}} = {{F,G}, H}+ {G, {F, H}}
{F, GH} = {F,G}, H + G, {F, H} .

This constitutes the formal definition of a Poisson structure on the classical
carrier space M . We notice that both properties express the Leibnitz rule with
respect to the two bilinear products on F , the Poisson bracket and the point-
wise product. These derivation properties are very important and, thanks to
them, we may associate with any Poisson bracket a bivector field, the so called
Poisson tensor. As usual, this tensorial character of the brackets allows us to
perform computations in any coordinate system while preserving their general
significance.

In a set of local coordinates, ξa, for M we may write a dynamical vector field

in the form Γ = Γa ∂

∂ξa
and a Poisson bracket in the form {ξa, ξb} = Λab with

associated Poisson tensor Λ = Λab ∂

∂ξa
∧ ∂

∂ξb
. The derivation property allows

to write

{F,G} =
∂F

∂ξa
{ξa, ξb}∂G

∂ξb
= Λ(dF, dG) .

Any function H ∈ F defines a dynamical system on M by the formula
dF

dt
= {H, F} or, in local coordinates,

dξa

dt
= Λab ∂H

∂ξb
. The corresponding Ha-

miltonian vector field XH is written as XH = −Λ(dH).

3 The inverse problem for Poisson dynamics

Starting with a second order dynamics on the configuration space Q, say
ẍj = fj(x, x̄), we must look for a bundle over Q, a Poisson bracket { , } and a
function H , such that

ẋj = {H, xj} , ẍj = {H, {H, xj}} = fj(x, ẋ) .

It is clear that we may use as a bundle over Q just the tangent bundle TQ.
Other choices would be possible, in any case our system would be related to
one on TQ. Thus, we may always consider the Hamiltonian inverse problem
for a second order dynamics in terms of a first order dynamics on TQ.

The way we have formulated our problem, i.e. to solve the problem in terms
of the pair ({ , }, H), makes it highly non trivial.

Feynman introduced a simplification by requiring, on physical grounds, that
{xj , xk} = 0. This innocent looking simplification allows us to transform the
problem into a linear one. More specifically to an inverse problem in terms of
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a Lagrangian function, the unknown pair ({ , }, H) is replaced by an unknown
function L.

Let us formulate first the inverse problem in the Lagrangian setting.

We consider the usual formulation of Euler-Lagrange equations on Q:

d

dt

∂L
∂ẋj

− ∂L
∂xj

= 0

and expand it into

∂2L
∂ẋj∂ẋk

dẋk

dt
+

∂2L
∂ẋj∂xk

dxk

dt
− ∂L
∂xj

= 0 .

Now we replace
dẋk

dt
with fk(x, ẋ) and we transform the equation for the

trajectories into an equation for the Lagrangian

∂2L
∂ẋk

fk +
∂2L

∂ẋj∂xk

ẋk −
∂L
∂xj

= 0 .

This is a linear equation for a function L, if we are able to transform the
nonlinear equation for the pair ({ , }, H) into one for L, we have been able to
linearize our problem.

We refer to [3] for a general analysis of this problem. Here we give a very simple
proof at the expenses of adding a further condition, namely that translations

in the velocity space are canonical transformations, i.e.
∂

∂ẋj

{ , } = 0. Starting

with ẋk = {H, xj} we take the derivative with respect to
∂

∂ẋj

to find

δjk =
∂H

∂ẋj ∂ẋm

{ẋm, xj} .

Therefore, the bracket is invertible and the Hessian of H is not degenerate. We
may use a Legendre-type transformation to go from H to L and thus linearize
the problem.

4 Solving the inverse problem for linear systems

When the first order dynamics is linear, i.e. Γ = ξlAj
l∂/∂ξ

j , Aj
l ∈ R, the prob-

lem is tractable and reduces to a problem in linear algebra [8]. The unknown
Poisson tensor Λ is given by Λjk = {ξj, ξk}, the unknown Hamiltonian func-

tionH =
1

2
ξkHksξ

s and the inverse problem becomes ξkAj
k

∂

∂ξj
= Λnk ∂H

∂ξn

∂

∂ξk
,

or, in more compact notation, A = Λ ·H .
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Thus, all decompositions of A into a skew-symmetric matrix Λ times a sym-
metric matrix H will provide us with alternative Hamiltonian descriptions for
our dynamics.

Taking into account the properties of Λ and H (skew-symmetric and symmet-
ric, respectively) we find several interesting consequences:

(1) Dynamical systems associated with odd powers of A represent different
linear Hamiltonian systems with respect to the same Poisson bracket and
Hamiltonian functions

H(3) =
1

2
ξr(HΛHΛH)rsξ

s .

These Hamiltonian functions are in involution, i.e.

{H2k+1 , H2j+1} = 0

for any pair of exponents.
(2) If T represents any linear invertible transformation, we have

T−1AT = T−1ΛHT = T−1Λ(T t)−1T tHT .

Therefore, when T−1AT = A, we get that any symmetry transformation
for A provides us with a new Hamiltonian description for Γ, provided that
TΛT t 6= Λ, i.e., if T is not a canonical transformation. It is not difficult to
see that all even powers of A represent noncanonical transformations (if
they are invertible, otherwise we may consider expA2). Thus it is possible
to find always alternative Hamiltonian descriptions for linear Hamiltonian
systems.

It should be noticed that even if the vector field is linear we may find alterna-
tive Hamiltonian descriptions with nonconstant symplectic (Poisson) descrip-
tions and nonquadratic Hamiltonians. An interesting example is provided by
the harmonic oscillator.

On M = R2n, we consider

Γ =
n
∑

k=1

λk

(

pk

∂

∂qk
− qk

∂

∂pk

)

with λk ∈ R.

For any constant of the motion F (p, q) we construct

ωF =
∑

k

µkd

(

∂F

∂pk

)

∧ d
(

∂F

∂qk

)

,



68 G. Marmo

with µk ∈ R We find easily, because of

[

Γ,
∂

∂pk

]

= −λk

∂

∂qk
,

[

Γ,
∂

∂qk

]

= λk

∂

∂pk

,

that LΓωF = 0.

A different way to generate alternative invariant two-forms is provided by the

(1− 1)-tensor field J =
∑

k

µk

(

dpk ⊗
∂

∂qk
− dqk ⊗

∂

∂pk

)

.

It is immediate that LΓJ = 0, thus ddJf = ωf determines invariant two-
forms for any constant of the motion f . When ωf is not degenerate, we find
alternative descriptions.

A particular example, for a two-dimensional isotropic oscillator (λ1 = λ2 = 1),
is provided by

F1 = (p2
1 + q2

1)± (p2
2 + q2

2) , F2 = p1q2 − p2q1 , F3 = p1p2 + q1q2

all of them will give constant symplectic structures. The function F = (p2 +
q2)(1 + f(p2 + q2))2 provides the most general invariant two-form for the one-

dimensional harmonic oscillator. Specifying F = exp(p2 + q2)
λ

2
we get ωF =

dP ∧ dQ, with

P = λp exp

(

λ

2
(p2 + q2)

)

Q = λq exp

(

λ

2
(p2 + q2)

)

with

{P,Q} = λ2 exp(λ(p2 + q2))[1 + λ(p2 + q2)] {p, q}
providing the Poisson bracket for the new variables in terms of the old ones.

Equations of motion will be again linear in the new variables

d

dt
P = −Q , d

dt
Q = P .

It may be useful to notice few facts:

(1) In each canonical coordinate system, say (p, q) and (P,Q), we have the
following tensor fields:

a) ∆ = p
∂

∂p
+ q

∂

∂q
, ω = dp ∧ dq , s = dp⊗ dp+ dq ⊗ dq

b) ∆′ = P
∂

∂P
+Q

∂

∂Q
, ω′ = dP ∧ dQ , s′ = dP ⊗ dP + dQ⊗ dQ
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all these tensor fields are preserved by dynamical evolution. In each set
of coordinates we have a realization of the symplectic group (preserving
ω) and the rotation group (preserving s), our dynamics preserves both
structures, therefore it is an element of the unitary group.

(2) The two different realizations of these groups are linear, but they are not
linearly related. This is explained by the following example:

the vector







p

0





 and the vector







0

q





 add to the vector







p

q





, their im-

ages are







λp exp
λ

2
p2

0





,







0

λq exp
λ

2
q2





 and









λp exp
λ

2
(p2 + q2)

λq exp
λ

2
(p2 + q2)









re-

spectively, it is thus clear that the sum of two vectors (in the (p, q) co-
ordinates) is not mapped into the sum of the images of the two vectors
taken separately.

5 Weyl systems

Given a symplectic vector space (E, ω), a Weyl map is a strongly continuous
map from E to unitary operators on some Hilbert space H:

W : E → U(H)

satisfying the condition

W (e1)W (e2)W
†(e1 + e2) = 1e

i
2
ω(e1,e2) .

It is a projective unitary representation of the Abelian vector group associated
with E [16].

A theorem due to von Neumann says that there exists such a map for any
finite dimensional symplectic vector space [15]. Indeed, the Hilbert space H
can be realized as the space of square integrable functions on any Lagrangian
subspace of E. By using a Lagrangian subspace L it is possible to decompose
E into E = L⊕ L∗ = T ∗L = L∗ ⊕ (L∗)∗ = T ∗(L∗).

The Lebesgue measure is a translational invariant measure on L and we have
a specific realization of W . We define U = W |L∗ , V = W |L and their action
on L2(L, dnx) is given by

(V (y)ψ)(x) = ψ(x+ y) , (U(α)ψ)(x) = eiα(x)ψ(x) ,

for x, y ∈ L, α ∈ L∗, ψ ∈ L2(L, dnx).

The strong continuity requirement in the definition of W allows to use Stone
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theorem to get

W (v) = eiR(v) , ∀ v ∈ E ,
with R(v) the infinitesimal generator of the one parameter unitary group
W (tv), t ∈ R, depending linearly on v.

When we select a complex structure J , J : E → E, J2 = −1 it is possible to
define “creation” and “annihilation” operators

a(v) =
1√
2
(R(v) + iR(Jv))

a†(v) =
1√
2
(R(v)− iR(Jv)) .

With this complex structure we also associate an inner product on E by setting
〈v1, v2〉 = ω(Jv1, v2)− iω(v1, v2).

The Weyl map allows to associate automorphisms on the space of operators
with elements of the symplectic linear group on E, by setting νs(W (v)) =
W (Sv) = U †SW (v)US, at the level of the infinitesimal generators of the unitary
group, we have

U †SR(v)US = R(Sv) .

The Wigner map can be defined for functions on T ∗L = E in the following
way, where, for simplicity, we introduce (q, p) coordinates in E.

We define the Fourier transform of f ∈ F(E)

f(q, p) =
∫

ei(αq+xp)f̃(α, x)dαdx

and we associate with it

Âf =
∫

f̃(α, x)ei(αQ̂+xP̂ )dαdx .

Of course some qualifications are necessary for these formulae to make sense,
we shall not worry about these points. We assume throughout that various
formulae have meaning when the operators and symbols appearing in them
are chosen from appropriate spaces (very often operators are assumed to be
Hilbert-Schmidt and functions square integrable, but this can be generalized).

We simply notice that other correspondences are also used, for instance

Âf =
∫

dαdxf̂(α, x)eiαQ̂eixP̂

or

Âf =
∫

dαdxf̂(α, x)e(α+ix)a†e(α−ix)a .

Various maps are associated with different orderings (symmetric, normal, anti-
normal and mixed) [1].
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The map associating the function f , with the operator Âf in integral form, is
often called the Weyl map. With any operator A acting on H we associate a
function fA on the symplectic space E by setting

fA(v) = Tr (AW (v)) ,

this map is called the Wigner map.

This way of writing allows us to easily derive several properties we are inter-
ested in, even though at a formal level.

We introduce a deformed product ∗, defined as

(fÂ ∗ fB̂)(v) = TrABW (v) ,

thus we find an associative product on F(E), which is not commutative. The
dynamics on F(E) can now be written as

i~
d

dt
fÂ = fĤ ∗ fÂ − fÂ ∗ fĤ .

We have obtained a way to write both classical and quantum mechanics on
the same vector space of functions F(E), the difference being in the product
we use to multiply functions.

In this approach, we should expect that

d

dt
fÂ = − i

~
(fĤ ∗ fÂ − fÂ ∗ fĤ) ,

in the limit ~ → 0, should reproduce the classical Poisson bracket, this is
indeed the case.

To consider this limit, it is convenient to use either an explicit form in terms of
bidifferential operators or an integral form. We have, by denoting coordinates
for E with (x, y),

(f ∗ g)(x, y) = f(x, y)e
i ~

2

(

←
∂

∂x

→
∂

∂y
−
←
∂

∂y

→
∂

∂x

)

g(x, y) ,

where a standard notation for physicists has been used, i.e.

←

∂

∂x
and

→

∂

∂y
mean

that the operators act on the left or on the right, respectively.
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As
∂

∂x
and

∂

∂y
commute, we can rewrite the ∗-product in the following form

(f ∗ g)(x, y) = f

(

x′ +
i

2
~
∂

∂y
, y′ + i

~

2

∂

∂x

)

g(x, y)

∣

∣

∣

∣

∣

x′=x, y′=y

= f(x, y)g



x′ + i
~

2

←

∂

∂y
, y′ + i

~

2

←

∂

∂x





∣

∣

∣

∣

∣

∣

x′=x, y′=y

.

The expression in terms of bidifferential operators is very convenient, when
either one of f or g is a polynomial.

An integral formula gives the product by the following expression

(f ∗ g)(x, y) =
∫

dx′dy′dx
′′

dy
′′

~2π2 f(x′, y′)g(x
′′

, y
′′

) exp
[

−2i
~
(y(x′ − x′′

) + y′(x
′′ − x) + y

′′

(x− x′))
]

.

The cyclic expression in the exponential represents twice the area of the phase
space triangle with vertices (x, y), (x′, y′), (x

′′

, y
′′

).

Summarizing what we have seen up to now, we have:

(1) alternative quantum descriptions at the level of Hilbert spaces (Schrödinger
picture) are provided by different Hermitean products on the same set of
states, preserved by the dynamical evolution;

(2) alternative quantum descriptions within the Heisenberg picture are pro-
vided by different associative products on the space of observables. These
products are such that the linear map, associated with the dynamics, be-
comes an inner derivation.

6 Weyl systems associated with alternative Lagrangian descrip-
tions

In this section we would like to show how to construct Weyl systems out of
Lagrangian descriptions.

We consider the tangent bundle TE of an affine space E. A Lagrangian func-

tion L will define a two-form ωL = d

(

∂L
∂vj

)

∧ dqj. We assume that ωL is not

degenerate.

We now define a vector space structure on TE adapted to ωL.

We consider vector fields X, Y given by

iXj
ωL = −d

(

∂L
∂vj

)

, iYj
ωL = dqj .
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It is easy to see that [Xj , Yk] = 0, [Xj, Xk] = 0, [Yj, Yk] = 0, i.e. we have
defined on TE the infinitesimal action of an Abelian Lie group.

We now make the assumption that this actually integrates to an action of R2n

(dim E = n) which is free and transitive. By selecting any fiducial point as the
origin, we induce a vector space structure on TE adapted to the Lagrangian
function L.

We are now able to use our previous construction to associate with ωL a Weyl
system and a ∗-product.

By defining EL = vj

∂L
∂vj

−L, we may write the “quantum equations of mo-

tion” in the form i~
d

dt
f = EL ∗L f − f ∗L EL.

We notice that alternative Lagrangians will define alternative ∗-products and
alternative realizations of the equations of motion, i.e.

EL1 ∗L1 −f ∗L1 EL1 ≡ EL2 ∗L2 f − f ∗L2 EL2 .

Clearly, the use of von Neumann theorem will require the realization of the
Hilbert space H on different spaces which are Lagrangians with respect to ωL1

or ωL2. The two Lagrangian subspaces need not to be linearly related.

The spectrum of the vector field will not depend on the specific realization we
use.

We shall now formulate the inverse problem for quantum systems indepen-
dently of the descriptions via the Weyl map.

7 The inverse problem for Quantum Systems

a) The Schrödinger Picture

The carrier space is the space of states. Because of the superposition principle
for states, arising from interference phenomena, the space of states is usually
required to be a vector space H. The realization of states in terms of wave
functions and the interpretation of them as probability amplitudes, justifies
the requirement that the carrier space must be identified with an Hilbert space
[5]. The equations of motion on this carrier space are given by a linear vector
field

Γ = − i
~
H

with associated differential equations

dψ

dt
= − i

~
Hψ .
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The requirement that the evolution should be compatible with the probabilis-
tic interpretation is satisfied by assuming that the associated one-parameter
group is a group of unitary transformations. By Stone–von Neumann theorem
one gets that H should be an essentially self-adjoint operator in the Hilbert
space H.

Remark: The vector field Γ : H → TH ≡ H ⊕ H is more appropriately

described by Γ(ψ) = (ψ,
i

~
Hψ), but with abuse of notation we identify it with

the second component.

The self-adjoint character of H implies the preservation by Γ of the inner
product in the Hilbert space. We may write

LΓ〈ψ |ϕ〉 = 〈LΓψ |ϕ〉+ 〈ψ |LΓϕ〉 .

If we decompose the Hermitean structure associated with the inner product
into its real and imaginary part, we obtain 〈· | ·〉 = s(· , ·) + iω(· , ·), where
the real scalar product s(· , ·) is the real part of 〈· , ·〉 and the imaginary part
ω(· , ·) defines the symplectic structure on H.

The invariance of the Hermitean structure under the flow of Γ imposes the sep-

arate invariance of s and ω. In particular, if we introduce fH(ψ) =
1

2
〈ψ |Hψ〉,

we have iΓω = dfH , therefore quantum evolution requires the vector field to
be Hamiltonian.

Thus, the inverse problem for quantum systems, in the Schrödinger picture,
is formulated by the equation LΓ〈ψ |ϕ〉 = 〈LΓψ |ϕ〉 + 〈ψ |LΓϕ〉, where the
unknown is the scalar product 〈 | 〉.
To avoid domain problems and topology problems arising from operators act-
ing on infinite dimensional vector spaces, we shall make few considerations by
restricting our analysis to finite level quantum systems, i.e. Hilbert spaces are
represented by Cn.

Let us start with a one-level quantum system.
The Schrödinger equation

d

dt
ψ = − i

~
Hψ

can be written in real form by using a two-component vector

d

dt







ψ1

ψ2





 =
1

~

∣

∣

∣

∣

∣

∣

∣

0 −H
H 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1

ψ2

∣

∣

∣

∣

∣

∣

∣

.

By introducing ω = H/~ our equations become

ψ̈1 + ωψ1 = 0 ψ̈2 + ωψ2 = 0 .
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This situation extends to many dimensions.

As a matter of fact, because the flow is unitary, for any finite level quantum
system the vector field is always equivalent (connected by similarity transfor-
mations) with the vector field of a “classical harmonic oscillator”, with finite
number of degrees of freedom. Assuming our equation of motion is given on the
carrier space Cn (or R2n with a complex structure J : R2n → R2n, J2 = −1),
say

d

dt
ψ = − i

~
Hψ

or

d

dt

∣

∣

∣

∣

∣

∣

∣

ψ1

ψ2

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

0 −H/~
H/~ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1

ψ2

∣

∣

∣

∣

∣

∣

∣

we find

ψ̈1 +
(

H

~

)2

ψ1 = 0 , ψ̈2 +
(

H

~

)2

ψ2 = 0 ,

where ψ1, ψ2 ∈ Rn.

If we keep fixed the complex structure on R2n, the quest for alternative
quantum descriptions is now reduced to searching for Euclidean products
on Rn, whose representative matrix, say S = ‖Sij‖, satisfies the relation
SH +H tS = 0 with H . We denote it by s1 and we find on R2n

〈ψ |ψ〉 = s1(ψ1 , ψ1) + s1(ψ2 , ψ2) ,

while the symplectic structure is given by

ω1((ψ1 , ψ2), (ϕ1 , ϕ2)) = s1(ψ1 , ϕ2)− s1(ϕ1 , ψ2) .

The associated Hermitean structure will be

〈ψ |ϕ〉1 = s1(ψ1 , ϕ1) + s1(ψ2 , ϕ2) + i(s1(ψ1 , ϕ2)− s1(ϕ1 , ψ2)) .

It is known that, in finite dimensions, any two Hermitean structures can si-
multaneously be brought to diagonal form. In particular, this means that we
may express one in terms of the other, namely the product

(ψ |ϕ)A = 〈ψ | Âϕ〉

defines (· | ·)A out of the initial metric and a positive matrix Â. For the invari-
ance of this new product with the dynamics we have

d

dt
(ψ |ϕ)A =

(

dψ

dt
|ϕ
)

A

+

(

ψ | dϕ
dt

)

A

= 〈Ĥ
~
ψ | Âϕ〉+ 〈ψ | Â

(

−Ĥ
~
ϕ

)

〉

= 〈ψ | [Ĥ , Â]ϕ〉 = 0
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if and only if [Ĥ, Â] = 0. This observation allows us to find a large family
of alternative Hermitean products on the space of states by using appropri-
ate elements in the commutant of Ĥ . With appropriate care, due to domain
problems, we may define in this way alternative Hermitean structures also on
infinite-dimensional Hilbert spaces.

b) The Heisenberg Picture

In this picture the dynamics takes place on the algebra of observables and is
usually written in the form

i~
d

dt
B = B ·H −H · B = [B, H ] .

As we have already seen in the section dealing with Weyl systems and ∗-
products, the space of observables has a linear structure and a product, in
formulating the inverse problem in this picture, we start with a linear map
D acting on the space of observables and write an equation of motion in the
form

i~
d

dt
A = D(A) .

The inverse problem now consists of searching for all associative products
which turn the linear space into an algebra and make the linear map D into
an inner derivation.

If we denote by β : A × A → A, the associative product in the algebra A,
we are imposing that β satisfies the relation β(H, A) − β(A, H) = D(A).
Therefore, given D, the unknowns are β and H , very much like in the inverse
problem for the Poisson dynamics.

Remark: Very much like in the Poisson case, we could have searched just
for alternative Lie algebras structures on the space of observables with the
requirement [A, B · C] = [A,B] · C +B · [A,C]. However a theorem by Dirac
[5], [9] shows that the Lie algebra structure, compatible with the associative
products in the sense of previous formula, is necessarily of the form [A,B] =
λ(A · B − B · C), therefore in the inverse problem we have to search for
alternative associative products on the space of observables.

A general approach to the search for alternative associative products requires
the use of the Hochschild cohomology, we refer to [2] for general considerations.
Here we only consider a simple instance of alternative associative products.

Given a generic operator k, we define a product out of the starting one by
setting

Ak̇B = AeλkB .

With this new product we have a new Lie bracket

[A,B]k = Ak̇B −Bk̇A ,
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and this is compatible with the dynamics D(A) = [H,A], if, and only if,
[H, K] = 0.

It is interesting to consider the classical limit of this new associative product,
this can be done with the help of the Wigner map.

8 The classical limit of some alternative quantum decriptions

By using the correspondence

Tr ÂB̂W (v) = (fA ∗ fB)(v)

we find that for ~→ 0 we obtain

fA ∗ fB → fA · fB

and
fA ∗ fB − fB ∗ fA

~
→ {fA, fB} .

We may therefore consider the deformed product

TrAkBW (v) = fA ∗k fB(v) = (fA ∗ fk ∗ fB)(v)

and look for the limit when ~→ 0.
We find

fA ∗k fB → fA · fk · fB

and

fA ∗k fB − fB ∗k fA

~
→ fA{fk, fB}+ fB{fA, fk}+ {fA, fB}fk .

Denoting by Xk the Hamiltonian vector field associated with fk, we get

{fA, fB}k = fALXk
fB − fBLXk

fA + fk{fA, fB}

i.e. the limit is a Jacobi Bracket rather than a Poisson Bracket.

What is more relevant, however, is that all these brackets are compatible
among them, therefore these deformations of the associative product on the
space of operators do not provide us with the alternative Poisson Structures as
those arising in the study of complete integrability for bi-Hamiltonian systems.

It is this result which obliges us to look for more general deformations of the
associative product of operators [2].

We shall now consider an example, by applying our general considerations to
the Harmonic Oscillator. The Schrödinger equation for the one-dimensional
oscillator

i~
d

dt
ψ = Ĥψ =

(

p̂2

2m
+ kq2

)

ψ
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defines a vector field which is self-adjoint with respect to the Hilbert space of
square integrable functions on R.

To deform the Hermitean structure on the Hilbert space we may set

〈ψ |ϕ〉λ =
∫

(ψ∗e−λĤϕ)dx .

This new product defines a new symplectic structure and therefore a new Pois-
son Bracket on the Hilbert space, compatible with the dynamical evolution.
By using the eigenstates of Ĥ, we set 1 =

∑

n

|n〉〈n| and get

〈ψ |ϕ〉 =
∑

n

〈ψ | e−λĤ |n〉〈n |ϕ〉 =
∑

n

e−λ(n+ 1
2)〈ψ |n〉〈n |ϕ〉 .

Let us consider the Heisenberg picture. We introduce the usual creation and
annihilation operators a, a† obeying the bosonic commutation relations

[a, a†] = 1 .

The number operator

n̂ = a†a

satisfies the commutation relations

[a, n̂] = a ; [a†, n] = −a† .

The realization of these elements as operators on some Hilbert space allows
to construct the vacuum state |0〉, which obeys the equation

a | 0〉 = 0 .

Excited states are built by setting

|n〉 =
(a†)n

√
n!
|0〉

and they are eigenstates of the number operator n̂

n̂ |n〉 = n |n〉 , n ∈ Z† .

Equations of motion, for H =
a†a+ aa†

2
, are

ȧ = i[H, a] = −ia

ȧ† = −i[H, a†] = ia† .
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The vector field on the space of operators is given by

d

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a

a†

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−i 0

0 +i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now we notice that A = af(n̂), A† = f(n̂)a† satisfy the same equations of
motion

d

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣
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∣
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−i 0

0 +i
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A
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∣

∣

.

It is obvious that

A | 0〉 = 0 ,

therefore we may construct excited states by setting

|N〉 =
(A†)n

√
n!
| 0〉 .

We may define two different Hermitean structures on H by using either

〈n |m〉 = δnm or (N |M) = δN,M .

With the new excited states we have constructed a new scalar product. Let
us denote the two scalar product by

〈n |m〉 = δn,m and (N |M) = δn,m .

The operators will have the form

a =
∑

n

|n− 1〉√n〈n|

A =
∑

n

|n− 1〉f(n)
√
n〈n| .

Having two different metrics it is now clear that the notion of adjoint will
change, while A and A† are adjoint of each other in the old metric, the adjoint
of A† in the new constructed scalar product (described by the round bracket)

will be the operator B = a
1

f(n̂)
.

The commutation relations give

[B,A†] = a
1

f(n̂)
f(n̂)a† − f(n̂)a†a

1

f(n)
= 1
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i.e. B and A† provide a new realization of the Heisenberg algebra and in terms
of these variables we have again

d

dt
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.

The introduced deformation gives an alternative description in terms of A, A†

with alternative commutation relations AA†−A†A = (n+1)f 2(n+1)−nf 2(n)
compatible with the dynamical evolution. We may also think of it as taking
place on a new realization of the Heisenberg–Weyl algebra acting on the space
of states with a new Hilbert space structure.

9 Comments and conclusions

All our analysis on the classical equations of motion seems to imply that all
physical aspects of the dynamics are completely captured by the equations of
motion, the Lagrangian and the Hamiltonian descriptions seem to be purely
instrumental to connect symmetries and conservation laws, or to write in some
economical and covariant way interacting terms when considering composite
systems. As a matter of fact, this is consistent with the way equations were
written out of the experimental evidence, for instance Newton’s equations,
Maxwell’s equations for electrodynamics, Einstein’s equations for general rel-
ativity, Schrödinger’s and Dirac’s equations for quantum particles all were
written without a Lagrangian or Hamiltonian descriptions, these came only
later. A particular instance where the Hamiltonian seems to play a relevant
role is in the computation of the free energy via the partition function in sta-
tistical mechanics. However, recently it has been shown that in many cases
the free energy also turns out to be independent of the particular Hamiltonian
and symplectic structure one uses to define the partition function for a given
dynamical system [7].

In this paper we have shown that these conclusions seem to apply also to the
quantum equations of motion.

A further comment is in order, if there are many commutation relations com-
patible with a given dynamical evolution, it seems reasonable that, in agree-
ment with the general Einsteinian point of view, the commutation relations
should be dynamically determined [4], i.e. we should have some field equations
for them very much as we have field equations for the metric tensor on the
space time.

Most of the material presented here has been obtained by the author in several
collaborations, it may be useful to list some of them [12].
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Parallel transport and decoupling
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Abstract

The problem of decoupling second-order differential equations by coordinate trans-
formations is studied in terms of parallel distributions with respect to the linear
connection associated to that differential equation.

1 Introduction

One of the most fruitful tools in the analysis of qualitative properties of system
of second-order differential equations (sode) during the last decades has been
the nonlinear connection [2] associated to such sode and the corresponding
linear connection [5], also known as Berwald connection. For instance, it is very
useful in the analysis of the Inverse Problem of Lagrangian Mechanics [11],
it is fundamental to characterize those sodes which can be transformed to
linear sodes by a coordinate transformation [9,5] and also to characterize
those systems of second-order differential equations which decouples under
a coordinate transformation in two subsystems of independent second-order
differential equations [8,1], to mention a few problems in which it has been
successfully applied.

In [6] Crampin provides a geometrical interpretation of the parallel transport
map associated to the linear connection D along horizontal and vertical curves,
which moreover characterizes such connection. The interpretation of the par-
allel transport along integral curves of a projectable horizontal vectorfield is
given in terms of Lie transport under the flow of this vectorfield. This fact
strongly suggests that a parallel distribution must satisfy some property of
invariance under some flows, and therefore there should be a connection with
the integrability of such distribution.

Email address: emf@posta.unizar.es.
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The aim of this paper is to explore this relation and to apply this results to
the problem of decoupling of second-order differential equations, providing a
simplified alternative derivation of the results in [1]. In this sense many of the
results in this paper are already in the literature, and its merit is mainly to
provide simpler and more readable proofs of such results.

The paper is organized as follows. In section 2 the notation and preliminary
results that will be needed in the rest of the paper are introduced. In section 3
we recall the construction of the linear connection associated to the nonlinear
connection defined by a sode. In section 4 we recall Crampin’s interpretation
of parallel transport for such connection, and in section 5 we show that a
parallel subbundle is necessarily integrable. In section 6 we characterize those
sodes which can be decoupled by a coordinate change and finally in section 7
the case of a complete decoupling into scalar second-order differential equa-
tions is analyzed.

2 Preliminaries

Let π : E → R be a fibre bundle with fibre dimension n, and let π1 : J1π → R

be its first jet bundle. The vertical bundle with respect to the bundle projec-
tion π is denoted by Ver(π), whereas the vertical bundle with respect to the
projection π10 : J1π → E will be denoted by Ver(π10), i.e. Ver(π) = Ker(Tπ)
and Ver(π10) = Ker(Tπ10).

We consider the canonical coordinate t on R and natural bundle coordinates
(t, xi) on E and (t, xi, vi) on J1π. Any time-preserving coordinate transforma-
tion (t, xi) → (t, x̄i), where x̄i = x̄i(t, x) leads to the following formulas for
the coordinate transformation on J1π,

t = t, x̄i = x̄i(t, x), v̄i =
∂x̄i

∂t
+

∂x̄i

∂xj
vj ,

from where we can clearly see the affine character of the bundle J1π, whose
associated vector bundle is Ver(π). The fibre over an element m ∈ E can be
considered as an affine hyperplane of the tangent space at m, and therefore we
have the following sequence of vector spaces 0→ Ver(π)m → TmE → R→ 0,
where the map in the right consists in taking the t-component v 7→ 〈dt, v〉.
Elements of J1π can be identified with tangent vectors to E which projects
onto ∂/∂t. This identification may be regarded as defining a map T : J1π →
TE, given by T (j1

t γ) = γ̇(t). We therefore have the following commutative
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diagram of vector bundles over E, where the row is an exact sequence,

0 // Ver(π) i // TE
j // E × R // 0.

J1π

T

OO

(π10,1)

::
v

v
v

v
v

v
v

v
v

A section of π∗10(TE) is said to be a vectorfield along π10. Alternatively, it
can be considered as a map X : J1π → TE such that τE ◦ X = π10, that is
X(p) ∈ TmE for every p ∈ (J1π)m. The section associated to this map is just
p 7→ (p, X(p)). For instance, the map T above can be considered in a natural
way as a vector field along π10, called the total time derivative, and which in
coordinates reads

T =
∂

∂t
+ vi

∂

∂xi
.

Any vectorfield Y on E gives rise to a vectorfield along π10 by composition with
the projection π10. Explicitly the associated section of the pullback bundle is
p 7→ (p, Y (m)) where m = π10(p). The vectorfields along π10 which arise in
this way are called basic.

A sode on E is a vectorfield Γ ∈ X(J1π) which projects onto T . In coordinates
it is of the form

Γ =
∂

∂t
+ vi

∂

∂xi
+ f i

∂

∂vi

where f i = f i(t, xj , vj). Therefore the system of differential equations for the
integral curves of Γ is the non-autonomous second-order system of differential
equations, written as a first order system,

ẋi = vi v̇i = f i(t, x, v).

or in second-order form ẍi = f i(t, x, ẋ).

After a time-dependent coordinate transformation the coordinate expression
for Γ becomes

Γ =
∂

∂t
+ v̄i

∂

∂ȳi
+ f̄ i

∂

∂v̄i

where

f̄ i =
∂x̄i

∂xj
f j +

∂2x̄i

∂xj∂xk
vjvk + 2

∂2x̄i

∂xj∂t
vj +

∂2x̄i

∂t2
.

a formula which remind us how the fiber coordinates vi enter into the trans-
formation law.

The problem we are faced to is to find a coordinate transformation such that
the system of second-order differential equations is transformed to the so-called
submersive form

{

ẍi = f i(t, xj , ẋj) i, j = 1, . . . , d

ẍA = fA(t, xj, xB, ẋj , ẋB) A, B = d + 1, . . . , n
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or to a separated or decoupled form

{

ẍi = f i(t, xj , ẋj) i, j = 1, . . . , d

ẍA = fA(t, xB, ẋB) A, B = d + 1, . . . , n.

3 The linear connection associated to a sode

The fibration π10 : J1π → E determines an exact sequence of vector bundles
over J1π

0 // π∗10Ver(π)
ξV

// T (J1π)
j // π∗10(TE) // 0 ,

where ξV is the vertical lifting map (given by ξV (p, v) = d
dt
|t=0(p + tv)) and j

is the projection j(Vp) = (p, Tπ10(Vp)).

A (nonlinear) connection on J1π is a splitting of such sequence, that is, a linear
bundle map h : π∗10(TE) → T (J1π) such that j ◦ h = id. In other words, it is
equivalent to a vector subbundle Hor(π10) of T (J1π) which is complementary
to the vertical subbundle Ver(π10), and is therefore called horizontal.

A sode Γ on J1π determines a connection on J1π. The projector onto the
horizontal bundle is given in terms of the vertical endomorphism S = (dxi −
vidt) ⊗ (∂/∂vi) by the formula

PH =
1

2
(I + Γ ⊗ dt − LΓS) .

The coordinate expressions for a basis {H0, H1, . . . , Hn} of horizontal vector
fields are

H0 =
∂

∂t
− Γj0

∂

∂vj
and Hi =

∂

∂xi
− Γji

∂

∂vj

where

Γj0 = −f i +
1

2
vj

∂f i

∂vj
and Γji = −

1

2

∂f j

∂vi
.

Note that, in particular, the sode Γ is itself horizontal; it is the horizontal lift
of the canonical vectorfield T .

By a kind of linearization of the given nonlinear connection, we can define a
linear connection on the pullback bundle pr1 : π∗10TE → J1π. The associated
covariant derivative is given by

DZX = κ([PHZ, Y V ]) + j([PV Z, Y H ]) + PH(Z)〈Y, dt〉T ,

where Z is a vectorfield on J1π, Y is a vectorfield along π10 (i.e. a section of
π∗10TE), PH and PV are the horizontal and vertical projectors of the nonlinear
connection, Y H and Y V are the horizontal and vertical lifting of Y , and κ is the
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connection map κ : T (J1π) → π∗10(Ver(π)), defined by the relation ξV ◦κ = PV .
See [5,4] for the details.

The curvature of this connection was also studied in [5]. In particular, most
of the components of the curvature tensor are determined in terms of the so
called Jacobi endomorphism, Φ defined by

Φ(X) = R(T , X),

where R is the curvature of the nonlinear connection. Its coordinate expression
is Φ = Φi

j (dxj − vjdt) ⊗ ∂
∂qi with

Φi
j = −

∂f i

∂xj
− ΓikΓ

k
j − Γ(Γij).

We remark that in general, for any connection on J1π, the horizontal lift of
T is a sode on J1π, but it is to be noticed that the connection defined by
this sode is not the original one. This is the case only when the connection
is a sode-connection as above. Notice also that not every connection is the
sode-connection for some sode.

Proposition 1 A linear connection on π∗10(TE) is the linear connection de-
fined by sode if and only if it is torsionless, i.e.

DXHY − DY HX = [X, Y ]

for every pair of basic vectorfields X, Y ∈ X(E).

The torsionless condition can be equivalently written in the form [XH , Y V ]−
[Y H , XV ] = [X, Y ]V for every pair of basic vectorfields X, Y .

In the local base {Γ, Hi, Vi} of vectorfields in J1π, where Vi = ∂/∂vi, and
the local base {T , ∂/∂xi} of vectofields along π10 the linear connection is
determined by

DVi

(

∂

∂xj

)

= 0, DVi
T =

∂

∂xi
,

DHi

(

∂

∂xj

)

=
∂Γki
∂vj

∂

∂xk
, DHi

T = 0,

DΓ

(

∂

∂xj

)

= Γkj
∂

∂xk
, DΓT = 0.

In particular, from this expressions it is clear that D restricts to a connection
on π∗10(Ver(π)): if Y is vertical over R, then the expression of the covariant
derivative simplifies to

DZX = κ([PHZ, Y V ]) + j([PV Z, Y H ]).
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In what follows, to simplify as much as possible, we will consider the restriction
of the connection to π∗10(Ver(π)). Therefore, we will consider only vertical
vectorfields along π10.

4 Parallel transport

The parallel transport map associated to the linear connection defined above
was interpreted in the case of the autonomous formalism by Crampin in [6],
and extended to the non-autonomous case in [10]. In this section this inter-
pretation is presented (in a slightly different way).

Let X be a vector field on E and XH ∈ X(J1π) its horizontal lift with respect
to the given connection. Denote by ϕt the flow of X and by φt the flow of XH .
When the connection is linear, then φt is a linear map in the tangent bundle
TE, which is but the parallel transport map along the integral curves of X.
When the connection is nonlinear, we can linearize the flow obtaining a linear
bundle map Ψt : π∗10(Ver(π)) → π∗10(Ver(π)) over φt as follows. We take p ∈ J1π
and v ∈ Ver(π), over the same point m ∈ E, so that (p, v) ∈ π∗10(Ver(π)). Then

we consider the linearization z = d
ds

φt(p+sv)
∣

∣

∣

s=0
. This is a vector at the point

φt(p) which is vertical, since XH is projectable and thus π10 ◦ φt = ϕt ◦ π10.
Therefore, there exists a vector Pt(p, v) ∈ Ver(π)ϕs(m) whose vertical lifting
to the point φt(p) is the above vector z, i.e. z = ξV (φt(p), Pt(p, v)). Then we
have the map Ψt(p, v) = (φt(p), Pt(p, v)), which is the parallel transport map
along the flow of XH (and hence along horizontal curves).

In other words, if we consider the inverse κ : Ver(π10) → π∗10(Ver(π)) of the
vertical isomorphism ξV : π∗10(Ver(π)) → Ver(π10) ⊂ T (J1π), then the map Ψt

is defined by

Ψt = κ ◦ Tφt ◦ ξV .

Therefore, it follows that for every vectorfield Y ∈ X(E) vertical over R, we
have

DXHY =
d

dt
(Ψt ◦ Y ◦ φt)

∣

∣

∣

t=0
,

which is equivalent to the relation DXHY = κ([XH , Y V ]).

For parallel transport along vertical curves we can prescribe a complete par-
allelism rule as follows. Let γ : [a, b] → J1π be a curve in the fibre π−1

10 (m), i.e.
π10(γ(t)) = m, and let pi = γ(a) and pf = γ(b) the endpoints of the curve. We
take an element of our bundle z ∈ π∗10(Ver(π)) at the initial point pi, that is
z = (pi, v) for some v ∈ Ver(π)m. Then the parallel transport of z from pi to pf
along the curve γ is P γ

pi,pf
(pi, v) = (pf , v). It is clear that parallel transport is

independent of the curve γ that joins the point pi and pf as long as this curve
is vertical, and it is in this sense that we speak about complete parallelism.
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5 Parallel distributions are integrable

The relation between parallel transport and Lie transport that we have seen
in the last section, suggests that there must be some relation between the
properties for a distribution of being parallel and being invariant under Lie
transport by the flows in the distribution, which is known to be equivalent to
the integrability of the distribution. In the case we are considering (the case
of the sode-connection) with the help of the torsion-free condition we can
see that parallel distributions along π10 are integrable. The precise meaning
of this terminology is as follows.

By a distribution along π10 we mean a subbundle D of π∗10(TE). A distribution
along π10 is said to be basic if there exists a distribution E on E such that
D = E ◦ π10, that is, Dv = Eπ10(v) for every v ∈ J1π. A distribution D along
π10 is said to be integrable if it is basic D = E ◦ π10 and the distribution E is
integrable.

On the other hand we will say that a distribution D along π10 is parallel if
it is invariant under parallel transport P γD ⊂ D for every curve γ in J1π.
It is easy to see that D is parallel if and only if it is invariant by covariant
differentiation, i.e. DWD ⊂ D for all W ∈ X(J1π).

As we mentioned before, we only consider the subbundle π∗10(Ver(π)) ⊂ π∗10(TE),
and therefore in the rest of the paper we consider only R-vertical distributions.

Theorem 2 If a distribution along π10 is parallel then it is integrable.

Proof If D is invariant by parallel transport over vertical curves then it is a
basic distribution. Indeed, parallel transport along vertical curves is (pi, z) 7→
(pf , z), and therefore, a distribution D is parallel along vertical curves iff Dp

depends only on the point m = π10(p). Defining Em = D0m then we have that
Dp = Em.

Moreover, since the connection is torsionless we have that DXHY −DY HX =
[X, Y ] for all X, Y ∈ X(E). Therefore if X, Y are vectorfields in the distribu-
tion E we have that DXHY and DXHY are in E , and hence [X, Y ] is also in
E . Thus E is involutive and therefore integrable. 2

It is to be noticed that from the properties of the linear connection D, one
can see that it is enough to impose the invariance condition DZD ⊂ D for
π10-vertical vector fields Z and for Z = Γ, being the invariance under DZ for
Z a horizontal vectorfield a consequence of those.

It would be nice to understand in more detail the implications of the torsionfree
condition in what respect to parallel transport along horizontal curves.
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6 Submersive sodes

In this section we will use the results in the last section in order to characterize
those systems of second-order differential equations that can be decoupled.
The following is an adaptation to the non-autonomous case of the definition
of submersive sode given in [7] for the time independent case.

Definition 3 A sode Γ ∈ X(J1π) is submersive if there exists a bundle
π̄ : Ē → R, a submersion ϕ : E → Ē over the identity in R, and a sode

Γ̄ on J1π̄ such that Γ and Γ̄ are J1ϕ-related, i.e. T (J1ϕ) ◦ Γ = Γ̄ ◦ J1ϕ.

We say that a sode Γ is locally submersive at a point m ∈ E if there is an
open neighbourhood U ⊂ E of m fibred over the real line πU : U → R, such
that the restriction of Γ to J1πU is submersive.

We will only consider the local problem, i.e. the word ‘submersive’ must be
understood as ‘locally submersive’.

We can take coordinates adapted to the submersion ϕ, i.e. (t, xi) on Ē and
(t, xi, xA) on E, with i = 1, . . . , k, A = k + 1, . . . , n, such that the coordi-
nate expression of ϕ is ϕ(t, xi, xA) = (t, xi). Then the sode Γ with forces
f i(t, xj , xB, vj, vB) and fA(t, xj , xB, vj, vB) is submersive iff the coefficients f i

depends only of the coordinates (t, xi, vi) and does not depend on (xB, vB). It
follows that the differential equations for the integral curves can be written as

ẍi = f i(t, xj , vj) ẍA = fA(t, xj, xA, vj, vA),

i.e. the evolution of the xi coordinates is independent of the evolution of the
coordinates xA, vA.

Theorem 4 A sode Γ is submersive if and only if there exists a distribution
D along π10 which is parallel and Φ-invariant, that is

• DWD ⊂ D for all W ∈ X(J1π), and
• Φ(D) ⊂ D.

Proof (⇒) Since D is parallel we have that it is involutive. Let (t, xi, xA),
i = 1, . . . , d, A = d + 1, . . . , n a system of local coordinates, such that D =
span{∂/∂xA|A = d + 1, . . . , n}. Moreover, since DΓD ⊂ D we have that
DΓ

∂
∂xA = ΓiA

∂
∂xi + ΓBA

∂
∂xB ∈ D, from where it follows that ΓiA = 0. Thus

f i does not depend on the coordinates vA, i.e. f i = f i(t, xj , xA, vj).

Moreover, D is also Φ-invariant, so that Φ( ∂
∂xA ) = Φi

A
∂
∂xi + ΦB

A
∂
∂xB ∈ D, form

where we have Φi
A = 0. From the local expression of Φ and taking into account

that ΓiA = 0 we get

Φi
A = −

∂f i

∂xA
− ΓijΓ

j
A − ΓiBΓBA − Γ(ΓiA) = −

∂f i

∂xA
= 0.
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Thus f i does not depend on xA, vA, i.e. f i = f i(t, xj , vj). We conclude that
the first d equations decouple from the others.

(⇐) If in some coordinate system (t, xi, xA) the sode is submersive, then

f i = f i(t, xj , vj) from where we have that ∂f i

∂vA = 0 and ∂f i

∂xA = 0. It follows
that in this coordinates ΓiA = 0 and Φi

A = 0, from where it is clear that the
distribution D = 〈 ∂

∂xA 〉 is parallel and Φ-invariant. 2

Definition 5 We say that a sode Γ ∈ X(J1π) decouples if there exist two
bundles πi : Ei → R, i = 1, 2, a diffeomorphism ϕ : E → E1 ×R E2 over the
identity in R and two sodes Γi on J1πi, i = 1, 2 such that Γ and (Γ1, Γ2) are
J1ϕ-related.

We say that the sode Γ locally decouples at a point m ∈ E if there is an open
neighbourhood U ⊂ E of m fibred over the real line πU : U → R, such that the
restriction of Γ to J1πU decouples.

It is clear that Γ decouples if and only if it is submersive with respect to two
complementary subbundles E1 and E2, where by complementary we mean that
E1×R E2 is (diffeomorphic to) E. Therefore, in adapted coordinates (t, xi, xA),
we have that the differential equations for the integral curves of Γ are the union
of two separate subsystem of second-order differential equations:

ẍi = f i(t, xj , vj) ẍA = fA(t, xA, vA),

¿From the above observation and the results in this section we immediately get
the following result, where as above the word ‘decouples’ must be understood
as ‘locally decouples’.

Theorem 6 Let D1,D2 be two complementary distributions, in the sense that,
π∗10(Ver(π)) = D1 ⊕D2, with dimension d1 and d2, respectively (and d1 + d2 =
n). If both distributions are parallel and Φ-invariant, then the second-order
differential equation decouples in two subsystems of dimension d1 and d2.

And iterating the above process

Theorem 7 Let D1, . . . ,Dr be complementary distributions π∗10(Ver(π)) =
D1 ⊕ · · · ⊕ Dr, of dimension d1, . . . , dr, respectively, which are parallel and
Φ-invariant. Then Γ decouples in r subsystems of dimension d1, . . . , dr.

Note that since every distribution D1 ⊕ · · · ⊕ Di is parallel (being a sum of
parallel distributions) then it is integrable, and therefore it is possible to find
coordinates simultaneously adapted to all the distributions.

7 Complete decoupling

Taking into account the results in the above section, it is easy to characterize
those systems which completely decouples in n scalar second-order equations,
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as we did in [1]. In the case of a sode such that Φ is diagonalizable with n
different eigenvalues we have the following simple result, where the bracket of
(1,1) tensor fields is just the commutator bracket [A, B] = A ◦ B − B ◦ A.

Theorem 8 Let Γ be a sode such that Φ is diagonalizable with n different
eigenvalues. Then Γ completely decouples if and only if [DWΦ, Φ] = 0.

Proof If we denote by Di the i-th eigendistribution of Φ, we obviously have
that they are Φ-invariant, and since Φ is diagonalizable we have that they are
complementary. Moreover, the condition given above implies that if Z is an
eigenvector with eigenvalue λ, then

[DWΦ, Φ](Z) = (λ − Φ)2DWZ = 0.

Therefore DWZ is in the same eigendistribution, and it follows that the
eigendistributions are parallel.

Conversely, if the system completely decouples, then Φ is a diagonal sum of
the Φ of each individual sode, and the off-diagonal connection coefficients Γij
vanish. Therefore, [DWΦ, Φ] is a diagonal sum of 1-dimensional commutators,
and hence vanishes. 2

It is to be noticed that in the above theorem we have really proved that if
Φ is diagonalizable then the system decouples into subsystems accordingly to
the eigendistributions, whether these are one dimensional or not. In the case
of degenerated eigenvalues one has to impose additional conditions, as it was
done in [1].
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Abstract

A gauge-invariant formulation of the Legendre transformation in mechanics, extend-
ing to arbitrary non-autonomous systems the symplectic approach of W.M. Tulczy-
jew is presented.

1 Introduction

In recent papers [8,11,10] a new geometrical framework for analytical me-
chanics automatically embodying the gauge invariance of the theory under
arbitrary transformations L → L + df

dt
of the Lagrangian has been pro-

posed. The construction relies on the introduction of a principal fiber bundle
π : P → Vn+1 over the configuration space–time Vn+1, with structural group
(R,+), referred to as the bundle of affine scalars.

A formulation of the Legendre transformation, extending to the newer context
the symplectic approach originally developed by Tulczyjew in time-indepen-
dent mechanics [14–18] was subsequently worked out in [9].

In this paper, the results obtained so far are briefly reviewed, mainly in con-
nection with the gauge–theoretical aspects underlying the construction of the
Legendre transformation.

The foundations of the method are dealt with in § 2. These include a revisita-
tion of the Lagrangian and Hamiltonian bundles, as well as a motivation for
their introduction.

In the subsequent analysis, in § 3, a diffeomorphism between three higher
jet extensions of the Lagrangian and Hamiltonian bundles is established.
The argument, extending to the newer context the so called Tulczyjew triple
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T ∗(T ∗(M)) ' T (T ∗(M)) ' T ∗(T (M)), provides a convenient geometrical
setup for the study of the Legendre transformation. The dynamical implica-
tions of the scheme are discussed.

2 Geometrical preliminaries

2.1 The Lagrangian bundles

For later use, we present here a brief review of the gauge–invariant formulation
of Lagrangian mechanics developed in [8], with special emphasis on the basic
definitions and concepts.

To every a mechanical system subject to (smooth) positional constrains we

associate a double fibration P
π−→ Vn+1

t−→ R, where:

i) Vn+1
t−→ R is the configuration space-time of the system;

ii) P
π−→ Vn+1 is a principal fiber bundle, with structural group (R,+), called

the bundle of affine scalars over Vn+1.

The action of (R,+) on P results into a 1-parameter group of diffeomorphisms
ψξ : P → P , conventionally expressed through the additive notation

ψξ(ν) := ν + ξ ∀ ξ ∈ R , ν ∈ P (1)

The bundle P is diffeomorphic — in a non canonical way — to the cartesian
product Vn+1 × R. Every function u : P → R satisfying

u(ν + ξ) = u(ν) + ξ

is called a (global) trivialization of P . If u, u′ is any pair of trivializations, the
difference u− u′ is (the pull-back of) a function over Vn+1.

The assignment of a trivialization u allows to lift every local coordinate sys-
tem t, q1, . . . , qn over Vn+1 to a corresponding “fibered” coordinate system
t, q1, . . . , qn, u over P . The group of fibered coordinate transformations has the
form

t̄ = t+ c , q̄ i = q̄ i(t, q1, . . . , qn) , ū = u+ f(t, q1, . . . , qn)

In particular, in any fibered coordinate system, the generator of the group
action (1), usually referred to as the fundamental vector field of P , coincides
with the field ∂

∂u
.

The (pull-back of the) absolute time function determines a fibration P
t−→ R.

The associated first-jet space will be indicated by j1(P,R)
π−→ P . As usual, we
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shall refer j1(P,R) to local jet-coordinates t, qi, u, q̇i, u̇, with transformation
laws

t̄ = t+ c , q̄ i = q̄ i(t, q) , ū = u+ f(t, q) (2a)

¯̇q i =
∂q̄ i

∂qk
q̇k +

∂q̄ i

∂t
, ¯̇u = u̇+

∂f

∂qk
q̇k +

∂f

∂t
:= u̇+ ḟ (2b)

The manifold j1(P,R) is naturally embedded into the tangent space T (P ). In
local coordinates, this results into the identification

z ∈ j1(P,R) ⇔ z =

[
∂

∂t
+ q̇i(z)

∂

∂qi
+ u̇(z)

∂

∂u

]

π(z)

(3)

The geometrical properties of j1(P,R) include, in the first place, all attributes
coming from the jet-bundle structure (contact bundle, fundamental tensor,
fiber differential, etc.). These will be regarded as known [3,12,6,7,4,13] . For
the notation, terminology, etc. the reader is referred to [11] and references
therein.
A local basis for the contact bundle C(j1(P,R)) is provided by the 1-forms

ω0 := du− u̇ dt , ωk := dqk − q̇k dt , k = 1, . . . , n (4)

In terms of these, the fundamental tensor J of j1(P,R) and the fiber differ-
ential of an arbitrary function g over j1(P,R) are respectively expressed in
components as

J =
∂

∂u̇
⊗ ω0 +

∂

∂q̇k
⊗ ωk , dv g =

∂g

∂u̇
ω0 +

∂g

∂q̇k
ωk (5)

In addition to the jet attributes, the space j1(P,R) carries two distinguished
actions of the group (R,+), both arising from the principal bundle structure
of P , and related in a straightforward way to the identification (3).
The first one is simply the push-forward of the action (1), restricted to the
submanifold j1(P,R) ⊂ T (P ). In jet coordinates, a comparison with eq. (3)
provides the local representation

ψξ∗(z) =

[
∂

∂t
+ q̇i(z)

∂

∂qi
+ u̇(z)

∂

∂u

]

π(z)+ξ

(6a)

expressed symbolically as

ψξ∗ : (t, qi, u, q̇i, u̇) −→ (t, qi, u+ ξ, q̇i, u̇) (6b)

The quotient of j1(P,R) by this action is a (2n + 2)–dimensional manifold,
henceforth denoted by L(Vn+1). As shown in [8], the quotient map makes
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j1(P,R) into a principal fiber bundle over L(Vn+1), with structural group
(R,+). By eq. (6b) it is also clear that L(Vn+1) is an affine bundle over Vn+1,
with coordinates t, qi, q̇i, u̇.

The second action of (R,+) on j1(P,R) comes from the invariant character of
the field ∂

∂u
, and is given by the addition

φξ(z) := z + ξ

(
∂

∂u

)

π(z)

=

[
∂

∂t
+ q̇i(z)

∂

∂qi
+ (u̇(z) + ξ)

∂

∂u

]

π(z)

(7a)

or, more synthetically

φξ : (t, qi, u, q̇i, u̇) −→ (t, qi, u, q̇i, u̇+ ξ) (7b)

The quotient of j1(P,R) by this action is again a (2n + 2)–dimensional man-
ifold, henceforth denoted by Lc(Vn+1). More specifically, in view of eq. (7b),
Lc(Vn+1) is a fiber bundle over P (and therefore also on Vn+1), with coordi-
nates t, qi, u, q̇i. The quotient map makes j1(P,R)→ Lc(Vn+1) into a principal
fiber bundle, with structural group (R,+) and group action (7a).

The final step in the definition of the Lagrangian bundles relies on the obser-
vation that the group actions (6a), (7a) commute. Each of them may therefore
be used to induce a group action on the quotient space generated by the other.
As illustrated in [8], this makes both L(Vn+1) and Lc(Vn+1) into principal fiber
bundles over a common “double quotient” space, canonically diffeomorphic to
the velocity space j1(Vn+1).

The situation is summarized into the commutative diagram

j1(P,R) −−−→ Lc(Vn+1)y

y

L(Vn+1) −−−→ j1(Vn+1)

(8)

in which all arrows denote principal fibrations, with structural group isomor-
phic to (R,+), and group actions obtained in a straightforward way from
eqs. (6b), (7b).
The principal fiber bundles L(Vn+1)→ j1(Vn+1) and Lc(Vn+1)→ j1(Vn+1) are
respectively called the Lagrangian and the co-Lagrangian bundle over j1(Vn+1).

The geometrical setup arising from diagram (8) provides the natural environ-
ment for a gauge-invariant formulation of Lagrangian mechanics. As pointed
out in [8], this is achieved by giving up the traditional approach, based on the
interpretation of the Lagrangian L(t, qi, q̇i) as the representation of a (gauge-
dependent) scalar field over j1(Vn+1), and introducing instead the concept of
Lagrangian section, meant as a section l : j1(Vn+1) → L(Vn+1) of the La-
grangian bundle. For each choice of the trivialization u of P , the description
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of l takes the local form

u̇ = L(t, qi, q̇i) (9)

i.e. it does indeed rely on the assignment of a function L(t, qi, q̇i) on j1(Vn+1).
However, according to eq. (2b), as soon as the trivialization is changed into
ū = u+ f , the representation (9) undergoes the transformation law

¯̇u = u̇+ ḟ = L(t, qi, q̇i) + ḟ := L′(t, qi, q̇i)

involving a different, gauge equivalent “Lagrangian”.

Referring to [8] for further comments, we conclude this Subsection with a
review of the algorithm assigning to each Lagrangian section l a corresponding
Poincaré–Cartan 1-form on j1(Vn+1). To this end, starting with l, we consider
in turn:

• the trivialization ψl of the bundle L(Vn+1) → j1(Vn+1) induced by l, de-
scribed locally by the function u̇− L(t, qi, q̇i)@;

• the pull-back of ψl on j1(P,R), denoted by ψ̂l, and described locally by the
function ψ̂l(t, q

i, u, q̇i, u̇) = u̇− L(t, qi, q̇i).

It is then an easy matter to verify the validity of the following assertions:

i) ψ̂l is a trivialization of the bundle j1(P,R) → Lc(Vn+1); as such, it
determines a section l̂ : Lc(Vn+1) → j1(P,R), expressed locally as u̇ =
L(t, qi, q̇i). The sections l and l̂, together, give rise to a principal bundle
homomorphism, summarized into the commutative diagram

Lc(Vn+1)
l̂−−−→ j1(P,R)

y

y

j1(Vn+1)
l−−−→ L(Vn+1)

(10)

ii) the fiber differential of ψ̂l , expressed locally as

dv ψ̂l = dv
[
u̇− L(t, qi, q̇i)

]
= ω0 − ∂L

∂q̇k
ωk (11)

determines a connection on the principal bundle j1(P,R)→ L(Vn+1).

In view of i) and ii), the pull–back of dv ψ̂l through the diagram (10) defines
a connection on Lc(Vn+1)→ j1(Vn+1), described locally by the 1-form

l̂∗(dv ψ̂l) = du− Ldt− ∂L

∂q̇k
ωk (12)

The difference du−l̂∗(dv ψ̂l) is then (the pull-back of) a 1-form ϑl over j1(Vn+1),
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called the Poincaré–Cartan 1-form of l, expressed in coordinates as

ϑl = Ldt+
∂L

∂q̇k
ωk (13)

The behaviour of ϑl under an arbitrary change of trivialization is obtained by
comparing the representations

l∗(dv ψ̂l) = du− π∗(ϑl) = dū− π∗(ϑ̄l)

π denoting the projection Lc(Vn+1)→ j1(Vn+1) . From this, setting ū = u+ f ,
we get the transformation law

π∗(ϑ̄l − ϑl) = d(ū− u) = π∗ (df) ⇒ ϑ̄l = ϑl + df (14)

The exterior differential Ωl := dϑl , known as the Poincaré–Cartan 2-form of
l, is therefore a gauge-invariant object over j1(Vn+1), identical, up to a sign,
to the curvature of the connection (12).

By means of the correspondence l → Ωl one recovers the whole content
of classical Lagrangian mechanics. The argument is standard, and will be
regarded as known. For further information, see e.g. [8] and references therein.

2.2 The Hamiltonian bundles

Paralleling the discussion in § 2.1, let us now consider the fibration P → Vn+1,
as well as the associated first jet space j1(P,Vn+1)

π−→ P . Every fibered coordi-
nate system t, qi, u on P induces local coordinates t, qi, u, p0, pi on j1(P,Vn+1),
with transformation laws

t̄ = t+ c , q̄ i = q̄ i(t, q) , ū = u+ f(t, q) (15a)

p̄0 = p0 +
∂f

∂t
+

(

pk +
∂f

∂qk

)
∂qk

∂t
, p̄i =

(

pk +
∂f

∂qk

)
∂qk

∂q̄ i
(15b)

Eqs. (15a, b) ensure the invariance of the contact 1-form

Θ = du− p0 dt− pi dqi (16)

henceforth referred to as the Liouville 1-form of j1(P,Vn+1).

The manifold j1(P,Vn+1) is naturally embedded into the cotangent space
T ∗(P ). In local coordinates, this results into the identification

η =
[
du− p0(η) dt− pi(η) dqi

]

π(η)
∀ η ∈ j1(P,Vn+1) (17)

On the basis of eq. (17), one can easily establish two distinguished actions of
the group (R,+) on j1(P,Vn+1), respectively denoted by ψξ∗ : j1(P,Vn+1) →
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j1(P,Vn+1) and φξ : j1(P,Vn+1)→ j1(P,Vn+1), and expressed locally as

ψξ∗(η) := (ψ−ξ)
∗
∗ (η) =

[
du− p0(η) dt− pi(η) dqi

]

π(η)+ξ
(18a)

φξ(η) := η − ξ (dt)π(η) =
[
du− (p0(η) + ξ) dt− pi(η) dqi

]

π(η)
(18b)

∀ ξ ∈ R , η ∈ j1(P,Vn+1).

The first one, written symbolically as

ψξ∗ : (t, qi, u, p0, pi) −→ (t, qi, u+ ξ, p0, pi)

is essentially the pull-back of the (inverse of) the action (1). Let H(Vn+1)
denote the quotient of j1(P,Vn+1) by this action. The following properties are
entirely straightforward [8]:

• H(Vn+1) is an affine bundle over Vn+1, with coordinates t, qi, p0, pi , modelled
on the cotangent bundle T ∗(Vn+1);

• the quotient map makes j1(P,Vn+1)→ H(Vn+1) into a principal fiber bun-
dle, with structural group (R,+) and fundamental vector field ∂

∂u
;

• the contact 1-form (16) determines a connection on j1(P,Vn+1)→H(Vn+1),
henceforth called the Liouville connection. The curvature of the latter, de-
scribed, up to a sign, by the exterior 2-form

Ω := −dΘ = dp0 ∧ dt+ dpi ∧ dqi (19)

endows the base manifold H(Vn+1) with a canonical symplectic structure.

The second action of (R,+) on j1(P,Vn+1), described by eq. (18b), and sum-
marized into the symbolic relation

φξ : (t, qi, u, p0, pi) −→ (t, qi, u, p0 + ξ, pi)

comes from the invariant character of the 1-form dt. The quotient of j1(P,Vn+1)
by this action will be denoted byHc(Vn+1). Once again, one has the properties:

• Hc(Vn+1) is a fiber bundle over Vn+1, with coordinates t, qi, u, pi ;

• the action (18b) makes j1(P,Vn+1)→Hc(Vn+1) into a principal fiber bundle,
with structural group (R,+) and fundamental vector field ∂

∂p0
.

Exactly as in the Lagrangian case, an important aspect of the previous con-
struction is the fact that the group actions (18a, b) commute. Each of them
may therefore be used to induce an action on the space of orbits associated
with the other. As illustrated in [8], this makes both H(Vn+1) and Hc(Vn+1)
into principal fiber bundles over a common “double quotient” Π(Vn+1), iden-
tified with the phase space of the system. The situation is summarized into
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the commutative diagram

j1(P,Vn+1) −−−→ Hc(Vn+1)y

y

H(Vn+1) −−−→ Π(Vn+1)

(20)

in which all arrows denote principal fibrations, with structural group iso-
morphic to (R,+), and group actions arising in a straightforward way from
eqs. (18a, b).

The principal bundles H(Vn+1)→ Π(Vn+1) , Hc(Vn+1)→ Π(Vn+1) are respec-
tively called the Hamiltonian and the co-Hamiltonian bundle over Π(Vn+1) .
Every section h : Π(Vn+1)→H(Vn+1) is called a Hamiltonian section.
Consistently with the traditional notation, for each choice of the trivialization
u of P , we shall express h locally as

p0 = −H(t, q1, . . . , qn, p1, . . . , pn) (21)

The function at the right-hand-side of eq. (21) will be called the Hamiltonian.

The previous arguments provide a convenient geometrical setting for the
Hamiltonian formulation of classical mechanics.
Referring to [10] for the necessary details, we focus once again on the al-
gorithm assigning to every Hamiltonian section h : Π(Vn+1) → H(Vn+1) a
corresponding Poincaré–Cartan 1-form ϑh over Π(Vn+1). To this end we lift
h to a section ĥ : Hc(Vn+1) → j1(P,Vn+1), described locally by the same
equation (21).
The sections h and ĥ, together, give rise to a principal bundle homomorphism

Hc(Vn+1)
ĥ−−−→ j1(P,Vn+1)y

y

Π(Vn+1)
h−−−→ H(Vn+1)

(22)

By means of the latter, the Liouville connection of j1(P,Vn+1)→H(Vn+1) may
be pulled back to a connection over Hc(Vn+1) → Π(Vn+1), with connection
1-form

ĥ∗(Θ) = du+H(t, qi, pi) dt− pi dqi (23)

The difference du− ĥ∗(Θ) is then (the pull-back of) a 1-form ϑh over Π(Vn+1),
expressed in coordinates as

ϑh = −Hdt+ pi dq
i (24)

and called the Poincaré–Cartan 1-form induced by the section h.
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Exactly as in § 2.1, the behaviour of ϑh under an arbitrary change of trivial-
ization u→ u+ f is easily recognized to be

ϑ̄h = ϑh + df (25)

The exterior differential Ωh = dϑh, known as the Poincaré–Cartan 2-form of
h, is therefore a gauge-invariant object over Π(Vn+1), identical, up to a sign,
to the curvature of the connection (23).

In terms of Ωh, the dynamical flow of the system is completely characterized
as the unique vector field Z over Π(Vn+1) satisfying the conditions

〈Z, dt〉 = 1 , Z Ωh = 0 (26)

In local coordinates, a straightforward comparison with eq. (24) provides the
representation

Z =
∂

∂t
+
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
(27)

The integral curves of Z are therefore solutions of the Hamilton equations

dqi

dt
=
∂H

∂pi
;

dpi

dt
= −∂H

∂qi
(28)

3 The Legendre transformation

3.1 Higher jet spaces

The identifications (3), (17) provide a natural pairing between the fibers of the
first jet spaces j1(P,R)

π−→ P and j1(P,Vn+1)
π−→ P , expressed in coordinates

as

〈z, η〉 =
〈[

∂

∂t
+q̇i(z)

∂

∂qi
+u̇(z)

∂

∂u

]

π(z)

,
[
du−p0(η)dt−pi(η)dqi

]

π(η)

〉
(29)

(z ∈ j1(P,R), η ∈ j1(P,Vn+1) , π(z) = π(η) ). In view of eqs. (6a), (18a), the
correspondence (29) satisfies the invariance property

〈
ψξ∗(z) , ψξ∗(η)

〉
=
〈
ψξ∗(z) , (ψ−ξ)

∗
∗ (η)

〉
=
〈
z, η

〉
∀ ξ ∈ R (30)

thereby giving rise to an analogous pairing between the fibers of the bundles
L(Vn+1)→ Vn+1 and H(Vn+1)→ Vn+1 , or, what is the same, to bi–affine map
of the fibered product L(Vn+1)×Vn+1H(Vn+1) onto R, expressed in coordinates
as

ζ, σ −→ F (ζ, σ) := u̇(ζ)− p0(σ)− p i(σ) q̇i(ζ) (31)
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Let S denote the submanifold of L(Vn+1) ×Vn+1 H(Vn+1) described by the
equation

S =
{
(ζ, σ) ∈ L(Vn+1)×Vn+1 H(Vn+1) , F (ζ, σ) = 0

}
(32)

A straightforward argument, based on eq. (31), shows that S is fibered on
both L(Vn+1) and H(Vn+1) . The former circumstance is made explicit by
referring S to local coordinates t, qi, q̇i, u̇, pi , with the pi’s regarded as fiber
coordinates. The second circumstance is similarly accounted for by referring S
to coordinates t, qi, p0, pi, q̇

i, related to the previous ones by the transformation

u̇ = p0 + pi q̇
i (33)

and with the q̇i ’s playing the role of fiber coordinates.

A useful characterization of the manifold S comes from the fact that all spaces
under consideration have the nature of affine bundles over the configuration
space–time Vn+1 . From this, using a suffix (··) |x to denote the fiber of the
manifold (··) at the point x ∈ Vn+1 , one can easily draw the following con-
clusions:

i) both maps L(Vn+1)|x → j1(Vn+1)|x , H(Vn+1)|x → Π(Vn+1)|x are affine
surjections as well as principal fibrations, with structural group (R,+) ;

ii) for each σ ∈ H(Vn+1)|x , the annihilator [ σ ]0, defined as the totality of
points ζ ∈ L(Vn+1)|x satisfying F (ζ, σ) = 0 , is an affine section of the
bundle L(Vn+1)|x → j1(Vn+1)|x , described in coordinates as

u̇ = p0(σ) + p i(σ) q̇i (34a)

Conversely, every affine section ϕ : j1(Vn+1)|x → L(Vn+1)|x may be ex-
pressed in the form (34a) for precisely one choice of the element σ ∈
H(Vn+1)|x . We have therefore a canonical identification of H(Vn+1)|x
with the space of affine sections of the bundle L(Vn+1)|x → j1(Vn+1)|x ;

iii) in a perfectly symmetric way, for each ζ ∈ L(Vn+1)|x , the annihilator [ ζ ]0

is an affine section of H(Vn+1)|x → Π(Vn+1) , described in coordinates as

p0 = u̇(ζ)− q̇i(ζ) p i (34b)

Once again, the correspondence ζ → [ ζ ]0 allows to identify L(Vn+1)|x
with the space of affine sections of the bundle H(Vn+1)|x → Π(Vn+1)|x .

Denoting by j1(L(Vn+1)|x , j1(Vn+1)|x) and j1(H(Vn+1)|x , Π(Vn+1)|x) the first
jet spaces associated with the principal fibrations described in i), the previous
results are summarized into the following

Theorem 3.1 Both spaces j1(L(Vn+1)|x, j1(Vn+1)|x), j1(H(Vn+1)|x,Π(Vn+1)|x)
are canonically diffeomorphic to the fiber S |x of the manifold S at x.
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Proof Given any pair (ζ, σ) ∈ L(Vn+1)|x ×H(Vn+1)|x , the condition for the
point ζ to belong to the section [ σ ]0, or, reciprocally, for the point σ to belong
to the section [ ζ ]0 are both expressed by the same equation F (ζ, σ) = 0 .
From this, given any (ζ, σ) ∈ S |x , by the very definition of first jet space
we conclude that the pair (ζ, [ σ ]0) is an element of j1(L(Vn+1)|x , j1(Vn+1)|x) ,
namely a point ζ in L(Vn+1)|x and a hyperplane through ζ , while the pair
(σ, [ ζ ]0) is similarly an element of j1(H(Vn+1)|x , Π(Vn+1)|x), namely a point
σ ∈ H(Vn+1)|x and a hyperplane through σ .
A straightforward argument, left to the reader, shows that both correspon-
dences S |x → j1(L(Vn+1)|x , j1(Vn+1)|x) and S |x → j1(H(Vn+1)|x , Π(Vn+1)|x)
obtained in this way are affine diffeomorphisms. 2

By varying x, Theorem 3.1 provides the identification [9]

S =
⋃

x∈Vn+1

j1(L(Vn+1)|x , j1(Vn+1)|x) =
⋃

x∈Vn+1

j1(H(Vn+1)|x , Π(Vn+1)|x) (35)

A significant enhancement of eq. (35) is obtained by considering the first
jet spaces j1(L(Vn+1), j1(Vn+1)) and j1(H(Vn+1),Π(Vn+1)) respectively asso-
ciated with the bundles L(Vn+1)→ j1(Vn+1) and H → Π(Vn+1) .
These are naturally fibered over the spaces

⋃
x j1(L(Vn+1)|x , j1(Vn+1)|x) and⋃

x j1(H(Vn+1)|x , Π(Vn+1)|x) , the fiber projections having the nature of quo-
tient maps associated with suitable equivalence relations. More specifically:

• every section l : j1(Vn+1) → L(Vn+1) , restricted to a fiber j1(Vn+1)|x , de-

termines a section l̂ : j1(Vn+1)|x → L(Vn+1)|x . When two sections l, l′ have

a first order contact at a point z ∈ j1(Vn+1)|x, their restrictions l̂, l̂′ also do.

Conversely, a necessary and sufficient condition for two restrictions l̂, l̂′ to
have a first order contact at z is that the original sections satisfy

l(z) = l′(z) ,
[
dv
(
l − l′

)]

|z
= 0

As an affine bundle over j1(Vn+1), the manifold
⋃
x j1(L(Vn+1)|x , j1(Vn+1)|x)

is therefore the quotient of j1(L(Vn+1), j1(Vn+1)) by the vector bundle
formed by the totality of semibasic 1–forms on j1(Vn+1);

• a similar argument characterizes j1(H(Vn+1)|x , Π(Vn+1)|x) as the quotient
of j1(H(Vn+1),Π(Vn+1)) by the bundle of semibasic 1–forms on Π(Vn+1).

Collecting all stated results we conclude that both spaces j1(L(Vn+1), j1(Vn+1))
and j1(H(Vn+1),Π(Vn+1)) are fibered over S . This fact will be explicitly ac-
counted for by adopting common base coordinates (indifferently t, qi, q̇i, u̇, pi
or t, qi, q̇i, p0, pi ) on both manifolds, and completing them with fiber coordi-
nates w0, wi on j1(L(Vn+1), j1(Vn+1)) and v0, vi on j1(H(Vn+1),Π(Vn+1)).

With this choice, the Liouville 1-forms of the bundles j1(L(Vn+1), j1(Vn+1))
and j1(H(Vn+1),Π(Vn+1)), respectively denoted by ΘL and ΘH , are expressed
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in coordinates as

ΘL = du̇− w0 dt− wi dqi − pi dq̇i (36a)

ΘH = du̇− v0 dt− vi dqi − pi dq̇i = dp0 − v0 dt− vi dqi + q̇i dpi (36b)

the last equality depending on the transformation law (33).

On this basis, we can state

Proposition 3.1 There exists a unique affine isomorphism

j1(L(Vn+1), j1(Vn+1))
ψ−−−→ j1(H(Vn+1),Π(Vn+1))y

y

S S
fibered over S and satisfying ψ∗(ΘH ) = ΘL.

Proof In coordinates, the assignment of ψ relies on the choice of n+ 1 affine
functions ψ∗(v0) , ψ

∗(vi) . Together with eq. (36b), these provide the evalua-
tion

ψ∗(ΘH ) = du̇− ψ∗(v0) dt− ψ∗(vi) dqi − pi dq̇i

The condition ψ∗(ΘH ) = ΘL is therefore equivalent to the requirement

ψ∗(v0) = w0 , ψ∗(vi) = wi

This establishes at one time the existence and the uniqueness of ψ. 2

Proposition 3.1 provides a canonical identification between the first-jet spaces
j1(L(Vn+1), j1(Vn+1)) and j1(H(Vn+1),Π(Vn+1)) [9]. This result is further en-
hanced making use of the fibration H(Vn+1)→ R determined by the compo-
sition H(Vn+1)→ Vn+1 → R. Denoting by j1(H(Vn+1),R) the associated first
jet space, and recalling that the manifold H(Vn+1) is canonically endowed
with the symplectic structure (19), we have in fact the following

Theorem 3.2 The manifolds j1(H(Vn+1),R) and j1(H(Vn+1),Π(Vn+1)) are
canonically diffeomorphic.

Proof By definition, both manifolds may be viewed as affine subbundles,
respectively of the tangent space T (H(Vn+1)) and of the cotangent space
T ∗(H(Vn+1)), according to the identifications

j1(H(Vn+1),R) =
{
X
∣∣∣ X ∈ T (H(Vn+1)) , 〈X , dt〉 = 1

}
(37a)

j1(H(Vn+1),Π(Vn+1)) =

{

ω
∣∣∣ ω ∈ T ∗(H(Vn+1)) ,

〈 ∂

∂p0

, ω
〉

= 1

}

(37b)
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The conclusion then follows from the identity

〈 ∂

∂p0
, −X Ω

〉
=
〈
−X ∧ ∂

∂p0

∣∣∣∣ dp0 ∧ dt+ dpi ∧ dqi
〉

=
〈
X , dt

〉

showing that the correspondence X → −X Ω maps the subbundle (37a)
injectively onto the subbundle (37b). 2

In view of the previous results, all spaces j1(H(Vn+1),R), j1(L(Vn+1), j1(Vn+1))
and j1(H(Vn+1),Π(Vn+1)) are mutually diffeomorphic, and may be identi-
fied [9]. For definiteness, and without any loss in generality, we choose to
regard all of them as different copies of the manifold j1(H(Vn+1),R). De-
pending on the context, we shall refer the latter to ordinary jet coordinates
t, qi, p0, pi, q̇

i, ṗ0, ṗi, or to coordinates t, qi, u̇, pi, q̇
i, ṗ0, ṗi, related to the previ-

ous ones by the transformation (see eq. (33))

u̇− p0 − pi q̇i = 0 (38)

With the stated choice, the Liouville 1-forms (36a, b) collapse into a single
geometrical object, henceforth denoted by Θ, expressed in coordinates as

Θ := du̇− ṗ0 dt− ṗi dqi − pi dq̇i = dp0 − ṗ0 dt− ṗi dqi + q̇i dpi (39)

The previous expression helps determining the coordinate representation of
the first jet extension of an arbitrary section l : j1(Vn+1) → L(Vn+1) to a
section j1(l) : j1(Vn+1) → j1(L(Vn+1), j1(Vn+1)) , (respectively, the first jet
extension of a section h : Π(Vn+1)→H(Vn+1) to a section j1(h) : Π(Vn+1)→
j1(H(Vn+1),Π(Vn+1)) ), the significant requirement being in any case the van-
ishing of the pull-back of the Liouville 1-form (39) under the extended map.

As a final remark we observe that, by an argument similar to the one dis-
cussed in § 2, the manifold j1(H(Vn+1),R) is naturally endowed with two dis-
tinguished actions of the group (R,+) , both arising from the principal bundle
structure of H(Vn+1) → Π(Vn+1). Analogous conclusions hold for the spaces
j1(L(Vn+1), j1(Vn+1)), j1(H(Vn+1),Π(Vn+1)) , the group actions being respec-
tively inherited from the principal bundle structures of L(Vn+1) → j1(Vn+1)
and of H(Vn+1)→ Π(Vn+1) .
A straightforward argument, left to the reader, shows that, under the identi-
fication j1(H(Vn+1),R) ' j1(L(Vn+1), j1(Vn+1)) ' j1(H(Vn+1),Π(Vn+1)) , all
these actions collapse into a single pair of actions, respectively generated by

the vector field ∂
∂p0

= ∂
∂u̇

and ∂
∂ṗ0

.

The quotient of j1(H(Vn+1),R) under the action of ∂
∂p0

will be denoted by

B , and will be referred to coordinates t, qi, q̇i, pi , ṗ0 , ṗi . Exactly as in § 2 we
have the properties:

• the quotient map makes j1(H(Vn+1),R)→ B into a principal fiber bundle;
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• the 1-form (39) endows j1(H(Vn+1),R)→ B with a canonical connection;

• the curvature 2-form of Θ , defined up to a sign by

Υ := −dΘ = dṗ0 ∧ dt+ dṗi ∧ dqi + dpi ∧ dq̇i (40)

endows B with a canonical symplectic structure.

3.2 Legendre maps

The arguments of § 3.1, summarized into the commutative diagram

? ? ?

? ?

��������)

PPPPPPPPq

j1(L(Vn+1), j1(Vn+1)) j1(H(Vn+1),R) j1(H(Vn+1),Π(Vn+1))

L(Vn+1) B H(Vn+1)

j1(Vn+1) Π(Vn+1)

(41)

provide the necessary tools for a revisitation of the Legendre transformation
in time dependent analytical mechanics [9].

The line of approach, extending the one originally exploited by Tulczyjew
[14,17], may be traced as follows: given any section l : j1(Vn+1) → L(Vn+1),
consider the jet extension j1(l) : j1(Vn+1) → j1(L(Vn+1), j1(Vn+1)). Compos-
ing the latter with the (significant) vertical arrows of diagram (41) gives rise
to correspondences Λ l : j1(Vn+1) → H(Vn+1), λ l : j1(Vn+1) → Π(Vn+1) and
κ l : j1(Vn+1)→ B.

In coordinates, expressing l as u̇ = L(t, qi, q̇i), and recalling eqs. (38), as well
as the characterization of j1(l) in terms of the Liouville 1-form (39), we get
the representations

Λ l : pi =
∂L

∂q̇i
; p0 = L− q̇i ∂L

∂q̇i
(42a)

λ l : pi =
∂L

∂q̇i
(42b)

κ l : pi =
∂L

∂q̇i
; ṗ0 =

∂L

∂t
; ṗi =

∂L

∂qi
(42c)

In view of eqs. (40), (42c), the map κ l satisfies the identity

κ ∗l (Υ) = κ ∗l

(
dṗ0 ∧ dt+ dṗi ∧ dqi + dpi ∧ dq̇i

)
=

= d

(
∂L

∂t
dt+

∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i
)

≡ 0 (43)
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showing that the image space κ l (j1(Vn+1)) is a Lagrangian submanifold of B.

A perfectly symmetric construction holds starting with a Hamiltonian section
h : Π(Vn+1)→H(Vn+1) .
Once again the jet extension j1(h) : Π(Vn+1) → j1(H(Vn+1),Π(Vn+1)) , com-
posed with the significant vertical arrows of diagram (41), generates maps
Λh : Π(Vn+1) → L(Vn+1), λh : Π(Vn+1) → j1(Vn+1) and κh : Π(Vn+1) → B,
expressed in coordinates as

Λh : q̇i =
∂H

∂pi
; u̇ = −H +

∂H

∂pi
pi (44a)

λh : q̇i =
∂H

∂pi
(44b)

κh : q̇i =
∂H

∂pi
; ṗ0 = −∂H

∂t
; ṗi = −∂H

∂qi
(44c)

H(t, qi, pi) denoting the Hamiltonian function involved in the local represen-
tation of h. Exactly as above, eqs. (40), (44c) provide the identity

κ ∗h (Υ) = κ ∗h

(
dṗ0 ∧ dt+ dṗi ∧ dqi + dpi ∧ dq̇i

)
=

= d

(

−∂H
∂t

dt− ∂H

∂qi
dqi − ∂H

∂pi
dpi

)

≡ 0 (45)

showing that the image space κh(H(Vn+1)) is a Lagrangian submanifold of B.

A special instance of the previous construction occurs when the map λ l asso-
ciated with the Lagrangian section l is a diffeomorphism, i.e. when the image
space Λ l (j1(Vn+1)) projects injectively onto Π(Vn+1) . Under the stated as-
sumption, the correspondence h := Λ l ·λ −1

l : Π(Vn+1)→H(Vn+1) is a section
of the bundle H(Vn+1)→ Π(Vn+1), described in coordinates as

p0 = L
(
t, qi, q̇i

)
− pi q̇i := −H

(
t, qi, pi

)
(46)

with the variables q̇i defined implicitly in terms of the pi’s through eqs. (42b).
From eqs. (42b), (46), by elementary computations, we get the identities

∂H

∂pi
=

∂L

∂q̇j
∂q̇j

∂pi
+ q̇i − pj

∂q̇j

∂pi
= q̇i ; L = −H + pi

∂H

∂pi
(47)

Comparison with eqs. (44a, b) provides the identifications

λh = λ −1
l ; l = Λh · λ l

pointing out the perfectly symmetric role played by the sections l and h.

Every diffeomorphism j1(Vn+1) ←→ Π(Vn+1) determined by a Lagrangian
section l : j1(Vn+1) → L(Vn+1), or by a Hamiltonian one h : Π(Vn+1) →
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H(Vn+1) through the algorithm described above is called a Legendre transfor-
mation.

3.3 Dynamics

As a final topic, we discuss the Lagrangian and Hamiltonian formulation of
dynamics within the geometrical framework developed so far [9]. The analysis
will provide a gauge–invariant extension to non-autonomous systems of the
classical results of Tulczyjew [14–18].

Let l : j1(Vn+1)→ L(Vn+1) denote a Lagrangian section, expressed in coordi-
nates as u̇ = L(t, qi, q̇i). On account of the discussion following eq. (39), the
first jet extension j1(l) : j1(Vn+1) → j1(L(Vn+1), j1(Vn+1)) is then described
by the equations

u̇ = L(t, qi, q̇i) , ṗ0 =
∂L

∂t
, ṗi =

∂L

∂qi
, pi =

∂L

∂q̇i
(48)

The map j1(l) carries a complete information on dynamics. Indeed, according
to diagram (41), the image space E := j1(l)(j1(Vn+1)) may be viewed as a
submanifold of j1(H(Vn+1),R). Switching to coordinates t, qi, p0, pi, q̇

i, ṗ0, ṗi
through eq. (38), let us accordingly rephrase eqs. (48) in the equivalent form

p0 = L(t, qi, q̇i)− ∂L

∂q̇i
q̇i , ṗ0 =

∂L

∂t
, pi =

∂L

∂q̇i
, ṗi =

∂L

∂qi
(49)

By the very definition of j1(H(Vn+1),R), eqs. (49) provide a system of ordinary
differential equations, not in normal form, for the determination of the family
of sections γ : < → H(Vn+1) (⇔ γ(t) ≡ (t, qi(t), p0(t), pi(t)) ) whose jet
extension γ̇ := j1(γ) satisfies γ̇(t) ∈ E ∀ t ∈ R. In the resulting context, the
last pair of relations (49) reproduce the content of Lagrange’s equations

d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
= 0 i = 1, . . . , n

while the first pair describes the evolution of the HamiltonianH := −L+ ∂L
∂q̇i q̇

i.

Precisely the same state of affairs occurs if one considers a Hamiltonian section
h : Π(Vn+1) → H(Vn+1) , expressed in coordinates as p0 = −H(t, qi, pi) . In
view of eq. (39), the first jet extension j1(h) : Π(Vn+1)→ j1(H(Vn+1),Π(Vn+1))
is now described by the system

p0 = −H(t, qi, pi) , ṗ0 = −∂H
∂t

, ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
(50)

Once again, according to diagram (41), the image E := j1(h)(Π(Vn+1)) may
be viewed as a (2n+1)–dimensional submanifold of j1(H(Vn+1),R) . Eqs. (50)
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play then the role of a system of ordinary differential equations (now in normal
form) characterizing the totality of sections γ : R → H(Vn+1) whose jet
extension satisfies γ̇(t) ∈ E ∀ t. More specifically, the last pair of eqs. (50)
reproduces the content of Hamilton’s equations, while the first pair determines
the evolution of the Hamiltonian.

A significant implication of the previous discussion is the fact that, in the
environment j1(H(Vn+1),R) , the Lagrangian and Hamiltonian approaches to
mechanics are nothing but different representations of the same (2n + 1)–
dimensional submanifold, described indifferently as E = j1(l)(j1(Vn+1)) or
E = j1(h)(Π(Vn+1)) . This aspect is further enhanced by observing that, by

construction, the embedding E i−→ j1(H(Vn+1),R) satisfies the identity

i∗(Θ) = 0 (51)

The hypersurface E is therefore horizontal with respect to the canonical con-
nection of j1(H(Vn+1),R)

π−→ B.
On the other hand, a straightforward argument shows that every horizontal
submanifold i : S→ j1(H(Vn+1),R) has dimension ≤ 2n+ 1 1 .
Regular dynamical systems may therefore be viewed as horizontal submani-
folds of maximal dimension in j1(H(Vn+1),R), projecting injectively onto both
j1(Vn+1) and Π(Vn+1).

The previous arguments extend to the newer context the results originally
established by Tulczyjew in the autonomous case [14–18] (in this connection
see also [1,2,5,19]). The analogies are easily understood by observing that
the projection j1(H(Vn+1),R)

π−→ B sets up a 1-1 correspondence between
horizontal slicings of maximal dimension in j1(H(Vn+1),R) and Lagrangian
submanifolds in B. The details are straightforward, and are left to the reader.
In coordinates, the previous assertions have their analytical counterpart in
eqs. (48), (50).
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A note on integrability and closure conditions

in the inverse problem in the calculus of

variations.
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Abstract

The inverse problem in the calculus of variations for a given set of second order
ordinary differential equations consists of deciding whether their solutions are those
of Euler–Lagrange equations and exhibiting the non-uniqueness of the resulting
Lagrangians when they occur.

The necessary and sufficient conditions for the existence of equivalent Euler–Lagrange
equations are called the Helmholtz conditions and this paper discusses the inte-
grability of these conditions in an elementary way which nonetheless gives a new
overview of their structure.

Mike Crampin

This paper is dedicated to Mike Crampin on the occasion of his 60th birthday.
It has been a pleasure to know and work with Mike over 20 years and to
acknowledge his influence and assistance over that period. I wish him many
more happy years of influential mathematics.

1 The inverse problem in the calculus of variations

The inverse problem in the calculus of variations involves deciding whether
the solutions of a given system of second-order ordinary differential equations

ẍa = F a(t, xbẋb), a, b = 1, . . . , n

Email address: G.Prince@latrobe.edu.au.
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are the solutions of a set of Euler-Lagrange equations

∂2L

∂ẋa∂ẋb
ẍb +

∂2L

∂xb∂ẋa
ẋb +

∂2L

∂t∂ẋa
=

∂L

∂xa

for some Lagrangian function L(t, xb, ẋb). The problem dates to the end of the
19th century and it still has deep importance for mathematics and mathemat-
ical physics.

Because the Euler-Lagrange equations are not generally in normal form, the
problem is to find a so-called multiplier matrix gab(t, x

c, ẋc) such that

gab(ẍ
b − F b) ≡ d

dt

(
∂L

∂ẋa

)

− ∂L

∂ẋa
.

The most commonly used set of necessary and sufficient conditions for the
existence of the gab are the so–called Helmholtz conditions due to Douglas [11]
and put in the following form by Sarlet [22]:

gab = gba, Γ(gab) = gacΓ
c
b + gbcΓ

c
a, gacΦ

c
b = gbcΦ

c
a,

∂gab

∂ẋc
=
∂gac

∂ẋb
,

where

Γab := −1

2

∂F a

∂ẋb
, Φa

b := −∂F
a

∂xb
− ΓcbΓ

a
c − Γ(Γab),

and where

Γ :=
∂

∂t
+ ua

∂

∂xa
+ F a ∂

∂ua
.

This inverse problem has spawned significant advances in the theory of sec-
ond order ordinary differential equations [6,15,16,20,19] and tangent bun-
dle geometry [1,17,18,26] and the most recent work on the inverse prob-
lem [1,2,9,10,13,14,23–25] uses some very sophisticated and often purpose-
built differential geometry. The purpose here is to step back a pace or two
and to explore the integrability conditions on the Helmholtz conditions us-
ing simple exterior calculus. While it is true that the detailed analysis of the
inverse problem for arbitrary n and even for n = 2 and 3 requires compli-
cated mathematical machinery, an overview is often obscured and I hope to
show that some useful observations about specific integrability conditions can
be obtained by looking at them in their entirety as closure conditions on a
particular class of two forms.

The next section contains that part (dating from the 1970’s and 80’s) of the
geometric formulation of second order ordinary differential equations that we
will need. There then follows a standard presentation of the inverse problem
which integrates the Cartan form approach to Lagrangian dynamics and the
foregoing theory of second order O.D.E.’s. This part contains an examina-
tion of the sources of the algebraic and differential parts of the Helmholtz
conditions.
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The last section is a statement and exploration of the entire set of closure con-
ditions on the two–form of the Helmholtz conditions. These closure conditions
are at most second order differential conditions on the multiplier gab and I show
that in fact only one subset of them are at most second order. I also give some
results on lower order consequences of these conditions. These results account
for some features of the inverse problem which have arisen in more complex
analyses. I have attempted to make the presentation self-contained but the
paper is by its nature brief and the reader might find the book chapter [21]
a helpful starting place for a more detailed study. Mike Crampin and Felix
Pirani’s book, Applicable Differential Geometry [7] is still a good reference for
the underlying differential geometry of differential equations.

2 Geometric formulation

Mike Crampin was one of the pioneers of the geometric formulation of both
second order O.D.E.’s and Lagrangian dynamics [3–5,8] and most of the mate-
rial presented in this section bears his stamp although I have been influenced
by Jon Aldridge’s presentation of the Helmholtz conditions as closure condi-
tions on a certain set of two forms [1].

2.1 2nd order o.d.e’s

Suppose that M is some differentiable manifold with generic local co-ordinates
(xa). The evolution space is defined as E := R×TM , with projection onto the
first factor being denoted by t : E → R and bundle projection π : E → R×M .
E has adapted co-ordinates (t, xa, ua) associated with t and (xa).

A system of second order differential equations with local expression

ẍa = F a(t, xb, ẋb), a, b,= 1, . . . , n

is associated with a smooth vector field Γ on E given in the same co-ordinates
by

Γ :=
∂

∂t
+ ua

∂

∂xa
+ F a ∂

∂ua
.

Γ is called a second order differential equation field or SODE. It can be thought
of as the total derivative operator associated with the differential equations.
The integral curves of Γ are just the parametrised and lifted solution curves
of the differential equations.

The evolution space E is equipped with the vertical endomorphism S, defined
locally by S := Va ⊗ θa (see [8] for an intrinsic characterisation). S combines
the contact structure and vertical sub–bundle, V (E), of E, θa being the local
contact forms θa := dxa − uadt and Va := ∂

∂ua forming a basis for vector fields
tangent to the fibres of π : E → R×M (the vertical sub–bundle).
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It is natural to study the deformation of S produced by the flow of Γ, LΓS.
The eigenspaces of this (1, 1) tensor field produce a direct sum decomposition
of each tangent space of E. It is shown in [8] that LΓS (acting on vectors) has
eigenvalues 0,+1 and −1. The eigenspace at a point of E corresponding to the
eigenvalue 0 is spanned by Γ, while the eigenspace corresponding to +1 is the
vertical subspace of the tangent space. The remaining eigenspace (of dimen-
sion n) is called the horizontal subspace. Unlike the vertical subspaces these
eigenspaces are not integrable; their failure to be so is due to the curvature of
this nonlinear connection (induced by Γ) which has components

Γab := −1

2

∂F b

∂ua
.

The most useful basis for the horizontal eigenspaces has elements with local
expression

Ha =
∂

∂xa
− Γba

∂

∂ub

so that a local basis of vector fields for the direct sum decomposition of the
tangent spaces of E is {Γ, Ha, Va} with corresponding dual basis {dt, θa, ψa}
where

ψa = dua − F adt+ Γabθ
b.

The components of the curvature manifest themselves in the expression for
the commutators of the horizontal fields:

[Ha, Hb] = Rd
abVd

where the curvature of the connection is defined by

Rd
ab :=

1

2

(
∂2F d

∂xa∂ub
− ∂2F d

∂xb∂ua
+

1

2

(
∂F c

∂ua
∂2F d

∂uc∂ub
− ∂F c

∂ub
∂2F d

∂uc∂ua

))

.

It will be useful to have some other commutators:

[Ha, Vb] = −1

2
(
∂2F c

∂ua∂ub
)Vc = Vb(Γ

c
a)Vc = Va(Γ

c
b)Vc = [Hb, Va],

[Γ, Ha] = ΓbaHb + Φb
aVb, [Γ, Va] = −Ha + ΓbaVb,

and, of course, [Va, Vb] = 0.

2.2 The Helmholtz conditions

Now we turn to the geometric formulation of the ordinary problem in the
calculus of variations. The extremals of the variational problem with regular
Lagrangian L ∈ C∞(E) are the base integral curves (on M) of the Euler-
Lagrange equation, now represented by a SODE Γ, called the Euler-Lagrange
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field. The primary object of the Cartan-Hamilton formulation is the Cartan
one-form, θL, of the Lagrangian L:

θL := Ldt+ dL ◦ S.

In co-ordinates,

θL = Ldt+
∂L

∂ua
θa.

The key result is (see Goldschmidt and Sternberg [12] and Sternberg [27]):

Proposition 1 If L is a regular Lagrangian (so that the matrix whose entries

are
∂2L

∂ua∂ub
is everywhere nonsingular), then there is a unique vector field Γ

on E such that

Γ dθL = 0 and dt(Γ) = 1.

This vector field is a SODE, and the equations satisfied by its integral curves
are the Euler-Lagrange equations for L.

The coefficients F a in the expression for the Euler-Lagrange field Γ are deter-
mined by the equation

∂2L

∂ua∂ub
F b =

∂L

∂xa
− ∂2L

∂ua∂xb
ub − ∂2L

∂ua∂t
.

If we use the basis {dt, θa, ψa} we obtain a particularly simple expression for
the Cartan 2-form dθL:

dθL =
∂2L

∂ua∂ub
ψa ∧ θb

and this points the way to obtaining the Helmholtz conditions in a geometric
form.

Notice first of all that
∂2L

∂ua∂ub
must satisfy all the conditions on the multiplier

matrix gab, and secondly that, in the basis {dt, θa, ψa}, dθL is completely

determined by
∂2L

∂ua∂ub
. These two facts indicate that we should look for a

closed 2–form of maximal rank amongst 2-forms in Sp{θa ∧ ψb}. The follow-
ing theorem from [8] gives a transparent geometric version of the Helmholtz
conditions.

Theorem 2 Given a SODE Γ, the necessary and sufficient conditions for
there to be Lagrangian for which Γ is the Euler–Lagrange field is that there
should exist a 2–form Ω such that

Ω(V1, V2) = 0, ∀ V1, V2 ∈ V (E)

Γ Ω = 0

dΩ = 0

Ω is of maximal rank.
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(The second and third conditions imply that LΓΩ = 0 and the fourth condition
means that Ω has a one-dimensional kernel which the second condition shows
is spanned by Γ.)

Necessity is obvious and the proof of sufficiency is a simple matter of starting
with an arbitrary two-form Ω ∈ Sp{θa ∧ θb, ψa ∧ θb} and showing that

Ω = gabψ
a ∧ θb

where gab satisfies Douglas’s Helmholtz conditions.

The simplest way to see how the Helmholtz conditions arise from Theorem 2
is to put Ω := gabψ

a ∧ θb and compute dΩ:

dΩ = (Γ(gab)− gcbΓca − gacΓcb)dt ∧ ψa ∧ θb
+ (Hd(gab)− gcbVa(Γcd))ψa ∧ θb ∧ θd
+ Vc(gab)ψ

c ∧ ψa ∧ θb
+ gabψ

a ∧ ψb ∧ dt
+ gcaΦ

c
bθ
a ∧ θb ∧ dt

+ gcaHb(Γ
c
d)θ

a ∧ θb ∧ θd.

The four Helmholtz conditions are

dΩ(Γ, Va, Vb) = 0, dΩ(Γ, Va, Hb) = 0,

dΩ(Γ, Ha, Hb) = 0, dΩ(Ha, Vb, Vc) = 0.

The remaining conditions arising from dΩ = 0, namely

dΩ(Ha, Hb, Vc) = 0 and dΩ(Ha, Hb, Hc) = 0,

can be shown to be derivable from the first four (notice that this last condition
is void in dimension 2).

At this point it is worthwhile identifying the separate sources of the algebraic
and differential conditions. Recall the identity

dΩ(X, Y, Z) =X(Ω(Y, Z)) + Y (Ω(Z,X)) + Z(Ω(X, Y ))

− Ω([X, Y ], Z)− Ω([Y, Z], X)− Ω([Z,X], Y ) (1)

for an arbitrary 2-form Ω and vector fields X, Y , Z. The first 3 terms involve
the derivatives of Ω and the last 3 do not. In our case using

{X, Y, Z} := {Γ, Ha, Hb}, {Γ, Va, Vb}, {Ha, Hb, Hc},

in turn makes the corresponding conditions, dΩ(X, Y, Z) = 0 purely algebraic
(in gab). Any other choices produce (first order) differential conditions (except
dΩ(Va, Vb, Vc) = 0 which is identically satisfied).
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3 Closure conditions

We see from the foregoing we can treat the inverse problem as the one of
finding closed two forms, Ω, in the submodule Sp{ψa ∧ θb}. This problem has
been treated using exterior differential systems theory [2,1], but our task here
is to obtain an overview at a simpler level, so we write this closure problem
on an appropriate subset U of E as

dΩ(X, Y, Z) = 0, ∀ X, Y, Z ∈ X(U), (2)

the necessary and sufficient conditions for (2) are

d(dΩ(X, Y, Z)) = 0 on U

⇔W (dΩ(X, Y, Z)) = 0 ∀ X, Y, Z,W ∈ X(U) (3)

Notice firstly that we do not have to know that dΩ(X, Y, Z) = 0 at a point in
U for (3) to be necessary and sufficient for (2) because if (as a result of (3)),
for fixed X, Y, Z, dΩ(X, Y, Z) = k ∈ R on U and dΩ(fX, Y, Z) = m ∈ R for
some non-constant f ∈ ∧0(U) then k = m = 0.

However, we would like to deal with the closure conditions in terms of our
{Γ, Ha, Vb} basis by considering

W (dΩ(X, Y, Z)) = 0 for all basis elements X, Y, Z,W.

Because

dΩ(X, Y, Z) = 0, ∀ X, Y, Z ∈ X(U)

⇐⇒ dΩ(X, Y, Z) = 0, ∀ X, Y, Z in a basis for X(U),

and becauseW (f) = 0 ∀W ∈ X(U) ⇐⇒ W (f) = 0 ∀W in a basis for X(U),
in place of (3) we only need to consider

W (dΩ(X, Y, Z)) = 0 for basis elements W,X, Y, Z, (4)

if we know that dΩ(X, Y, Z) = 0 at some point in U.

Conditions (3) and (4) are, on the face of it, second order in g and it is of
interest to identify lower order consequences of the conditions (4) in particular.

Proposition 3 Suppose that Ω ∈ ∧2(E). Then W (dΩ(X, Y, Z)) = 0 for all
W,X, Y, Z ∈ X(U) if and only if

X(dΩ(W,Y, Z)) + Y (dΩ(W,Z,X)) + Z(dΩ(W,X, Y )) = 0

for all W,X, Y, Z ∈ X(U).
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Proof The forward direction is straightforward since W (dΩ(X, Y, Z)) = 0
is assumed true for all W,X, Y, Z ∈ X(U). To see the reverse direction, as-
sume for all W,X, Y, Z ∈ X(U) that X(dΩ(W,Y, Z)) + Y (dΩ(W,Z,X)) +
Z(dΩ(W,X, Y )) = 0 and generate three similar equalities by interchange W
with X, Y, Z respectively. This gives

W (dΩ(X, Y, Z)) + Y (dΩ(X,Z,W )) + Z(dΩ(X,W, Y )) = 0,

X(dΩ(Y,W,Z)) +W (dΩ(Y, Z,X)) + Z(dΩ(Y,X,W )) = 0,

X(dΩ(Z, Y,W )) + Y (dΩ(Z,W,X)) +W (dΩ(Z,X, Y )) = 0.

Adding twice the original equality to the sum of the three above gives the
result. 2

Remark: The statement of proposition 3 continues to hold if W,X, Y, Z are
taken to be basis elements.

The next lemma gives a neat first order consequence of the closure conditions
(3).

Lemma 4 If W (dΩ(X, Y, Z)) = 0 for all W,X, Y, Z ∈ X(U) then

− dΩ(W, [X, Y ], Z) − dΩ(W, [Y, Z], X) − dΩ(W, [Z,X], Y )

+ dΩ([W,X], Y, Z) + dΩ(X, [W,Y ], Z) + dΩ(X, Y, [W,Z]) = 0 (5)

Proof Using the three form identity (1) twice and the Leibniz rule we get
the identity:

W (dΩ(X, Y, Z)) = X(dΩ(W,Y, Z)) + Y (dΩ(W,Z,X)) + Z(dΩ(W,X, Y ))

− dΩ(W, [X, Y ], Z)− dΩ(W, [Y, Z], X)− dΩ(W, [Z,X], Y )
(6)

+ dΩ([W,X], Y, Z) + dΩ(X, [W,Y ], Z) + dΩ(X, Y, [W,Z])

and the result follows immediately from the assumption of the lemma. 2

Remark: This lemma also holds if W,X,Y,Z are taken to be basis elements.

The next theorem will allow us to identify the redundant second order condi-
tions amongst (4).

Theorem 5 For all basis elements W,X, Y, Z ∈ X(U),

X(dΩ(W,Y, Z)) = W (dΩ(X,Z, Y )) (7)

and

−dΩ(W, [X, Y ], Z)− dΩ(W, [Y, Z], X)− dΩ(W, [Z,X], Y )

+dΩ([W,X], Y, Z) + dΩ(X, [W,Y ], Z) + dΩ(X, Y, [W,Z]) = 0 (8)
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if and only if W (dΩ(X, Y, Z)) = 0 for all basis elements W,X, Y, Z ∈ X(U).

Proof Forward direction: using the identity (6) we see that

−dΩ(W, [X, Y ], Z)− dΩ(W, [Y, Z], X)− dΩ(W, [Z,X], Y )

+dΩ([W,X], Y, Z) + dΩ(X, [W,Y ], Z) + dΩ(X, Y, [W,Z]) = 0

⇐⇒ W (dΩ(X, Y, Z)) = X(dΩ(W,Y, Z)) + Y (dΩ(W,Z,X)) + Z(dΩ(W,X, Y )).

UsingX(dΩ(W,Y, Z)) = W (dΩ(X,Z, Y )), Y (dΩ(W,Z,X)) = W (dΩ(Y,X, Z))
and Z(dΩ(W,X, Y )) = W (dΩ(Z, Y,X) on the right hand side of this expres-
sion gives the result.
Backward direction: this follows directly from lemma 4 and the trivial state-
ment that

(∀ W,X, Y, Z) W (dΩ(X, Y, Z)) = 0 =⇒ X(dΩ(W,Y, Z)) = W (dΩ(X,Z, Y ))

2

Remark: Conditions (8) appear because W,X, Y, Z are basis elements: if (7)
holds for all W,X, Y, Z ∈ X(U) then (3) holds immediately (for example,
replace X by fX in (7) ).

Now we will deduce some properties of the basis expressions W (dΩ(X, Y, Z))
and the conditions (4) as a result of the equivalence demonstrated in theorem
5 of the joint conditions (8), (7) to (4).

We order the conditions (4) as

W (dΩ(Γ, Ha, Hb)) = 0, W (dΩ(Γ, Va, Vb)) = 0, W (dΩ(Ha, Hb, Hc)) = 0, (9)

W (dΩ(Va, Vb, Vc)) = 0, W (dΩ(W,Y, Z)) = 0, (10)

Ha(dΩ(Vc, Vc, Hb)) = 0, Vc(dΩ(Ha, Hb, Vd)) = 0, (11)

Γ(dΩ(Vc, Ha, Hb)) = 0, Γ(dΩ(Hc, Va, Vb)) = 0, (12)

Ha(dΩ(Vc,Γ, Hb)) = 0, Va(dΩ(Hc,Γ, Vb)) = 0, (13)

Hc(dΩ(Vd, Ha, Hb)) = 0, Va(dΩ(Hd, Vb, Vc)) = 0. (14)

Because dΩ(Γ, Ha, Hb), dΩ(Γ, Va, Vb), dΩ(Ha, Hb, Hc) are algebraic in gab, con-
ditions (9) are first order and the first of conditions (10) is identically true
because dΩ(Va, Vb, Vc)) = 0. The remaining conditions are potentially second
order.

Suppose now that (7) holds for all basis elements W,X, Y, Z ((8) does not nec-
essarily hold so that we are not assuming (4) ). The second of conditions (10)
are now identically zero because conditions (7) impose symmetry in Y, Z on
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W (dΩ(W,Y, Z)). Further, if (7) holds then conditions (9) and (10) imply con-
ditions (12), (13) and (14). The contrapositive of this statement is useful: if
(9) and (10) do not imply conditions (12), (13) and (14) then (7) does not
hold and there is no solution of the Helmholtz conditions. In this way the
second order conditions (11) are distinguished amongst the second order clo-
sure conditions (4) as not necessarily being a consequence of the lower order
conditions (9) and (10) in order for solutions to exist.

We now examine condition

Ha(dΩ(Vc, Hb, Vd) = Vc(dΩ(Ha, Vd, Hb)

of theorem 5, the “A conditions” of [24,25], along with the corresponding joint
condition (8).

The expanded internal structure of the generic condition (5) is informative:
using the three form identity (1) and the Jacobi identity on (5) gives

− W (Ω([X, Y ], Z)) − W (Ω([Y, Z], X)) − W (Ω([Z,X], Y ))

+ Z(Ω([X, Y ],W )) + Z(Ω([W,X], Y )) + Z(Ω([Y,W ], X))

+ X(Ω([Y, Z],W )) + X(Ω([W,Y ], Z)) + X(Ω([Z,W ], Y )) (15)

+ Y (Ω([Z,X],W )) + Y (Ω([X,W ], Z)) + Y (Ω([W,Z], X))

− [X, Y ](Ω(Z,W )) − [Y, Z](Ω(X,W )) − [Z,X](Ω(Y,W ))

+ [W,X](Ω(Y, Z)) + [W,Y ](Ω(Z,X)) + [W,Z](Ω(X, Y )) = 0.

Putting W := Ha, X := Vc, Y := Vd and Z := Hb in (15) gives a case of (8)

Vc(Ω([Vd, Hb], Ha)) + Vc(Ω([Ha, Vd], Hb))

+ Vd(Ω([Hb, Vc], Ha)) + Vd(Ω([Vc, Ha], Hb))

− [Vd, Hb](Ω(Vc, Ha)) − [Hb, Vc](Ω(Vd, Ha))

+ [Ha, Vc](Ω(Vd, Hb)) + [Ha, Vd](Ω(Hb, Vc)) = 0,

which simplifies to

Vd(Γ
e
b) (Ve(gca)− Vc(gea)) + Vd(Γ

e
a) (Vc(geb)− Ve(gcb))

+ Vc(Γ
e
b) (Vd(gea)− Ve(gda)) + Va(Γ

e
c) (Ve(gdb)− Vd(geb)) = 0.

The identity (6) shows that the above expression is equivalent to the necessary
condition

Ha(dΩ(Vc, Vd, Hb)) = Vc(dΩ(Ha, Vd, Hb)) + Vd(dΩ(Ha, Hb, Vc))

+Hb(dΩ(Ha, Vc, Vd)).

In a similar manner to the proof of theorem 5, this condition taken with the
“A conditions” Ha(dΩ(Vc, Hb, Vd) = Vc(dΩ(Ha, Vd, Hb) is sufficient to establish
Ha(dΩ(Vc, Vd, Hb) = 0 and Vc(dΩ(Ha, Hb, Vd) = 0.
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In this note we have shown that the A conditions appear naturally as members
of the class (7) which, along with the first order conditions (8), are equivalent
to the standard closure conditions (4). Moreover, the corresponding conditions
(11) are distinguished amongst the other potentially second order conditions in
(4) by not being necessary consequences of the lower order closure conditions
(9) and (10) in order for solutions to exist.
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[17] E. Mart́ınez, J.F. Cariñena and W. Sarlet, Derivations of differential forms
along the tangent bundle projection, Diff. Geometry and its Applications 2

(1992) 17–43.
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1 Introduction

Lagrangian equations on Lie algebroids are the leitmotiv for this text, but large
parts of it are excursions into general features such as the concept of an affine
Lie algebroid and, even more generally, generalised connections on an affine
bundle and affineness of such connections. As such, it is a review of recent
work which was carried out jointly with Eduardo Mart́ınez and Tom Mestdag
[7,10,11] and which constitutes also part of the PhD work to be submitted by
Tom Mestdag in 2003. I am grateful to these co-authors for letting me use the
results of our joint efforts for this occasion.

My contribution to the Colloquium in Ghent (November 2002) was the pre-
sentation of an overview of the activities at the Workshop on differential geo-
metric methods in theoretical mechanics, since its creation in 1986. The reason
for that is the fact that Mike Crampin was to a large extent the initiator of
this workshop and that it proved to be a very successful organisation over the
years. I therefore chose to let my presentation at the 17th edition of this work-
shop in Levico Terme, Italy (September 2002), be the core of my contribution
to this special volume.

2 Lagrangian equations on a Lie algebroid

Let us first have a look at the analytical format of Lagrangian equations on
a Lie algebroid. The by now familiar analytical expression of such equations
read:

ẋi=ρiα(x) yα

d

dt

(
∂L

∂yα

)

=ρiα
∂L

∂xi
− C

γ
αβy

β ∂L

∂yγ
, L ∈ C∞(V ).

(1)
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The underlying geometrical structure is that the coordinates yα are the fibre
coordinates of a vector bundle π : V → M , xi being the coordinates on the
base M ; the functions ρiα represent the so-called anchor map, which is a vector
bundle map from V into TM ; the C

γ
αβ are the structure functions coming from

a bracket defined on sections of π, and there are some compatibility conditions
to be satisfied, roughly coming from a compatibility between the bracket on
Sec(π) and the Lie bracket of vector fields on M . Among these, we mention

ρiα
∂ρ

j
β

∂xi
− ρiβ

∂ρjα
∂xi

= ρjγC
γ
αβ . (2)

For more details, see for example [6,13].

What I would like to indicate here already is that, if the main interest would
be to model equations of type (1)(2), there is room for generalisation. For
example, if one tries to derive such kind of equations from a (formal) calculus
of variations approach, there is no need to assume that the bracket on Sec(π)
satisfies a Jacobi identity.

My own involvement in the subject (always in collaboration with Eduardo and
Tom) started from the question: “What would be a time-dependent generali-
sation of such systems?” The claim is that such a generalisation will give rise
to equations of the following type:

ẋi=ρiα(t, x)yα + ρi0(t, x)

d

dt

(
∂L

∂yα

)

=ρiα
∂L

∂xi
+ (Cγ

βαy
β + C

γ
0α)

∂L

∂yγ
,

(3)

where this time the ρiα, ρ
i
0, C

γ
αβ, C

γ
0α are functions of t and x satisfying,

ρiα
∂ρ

j
β

∂xi
− ρiβ

∂ρjα
∂xi

= ρjγC
γ
αβ (4)

∂ρ
j
β

∂t
+ ρi0

∂ρ
j
β

∂xi
− ρiβ

∂ρ
j
0

∂xi
= ρjαC

α
0β . (5)

Notice that one sees a certain affineness entering the equations here and of
course, the extra time coordinate makes that there is a zero component of the
structure functions and a corresponding extra compatibility condition. The
usual framework for time-dependent mechanics in general and time-dependent
Lagrangian mechanics in particular, is the first jet bundle J1M of a manifold
M fibred over IR (cf. [2]). Therefore, a natural extension of the Lie algebroid
generalisation is to consider an anchor map with values in J1M rather than
in TM and whose domain may then just as well be an affine bundle E → M

rather than a vector bundle. If one does that, the result is a theory which we
described in [11] and is centred around the following diagram.



Lagrangian equations and affine Lie algebroids 129

-

@
@

@
@R�

�
���

J1
ρE E

J1E

-

@
@

@@R�
�

���

E M

J1M

?

?

?

π

ρ

π1

ρ1

π2 π

�
�
��
τ

IR

@
@

@R

Without going into any detail now, let me briefly point out the main ingredi-
ents and features of this diagram. The bottom part is the scheme of an affine
Lie algebroid. The bundle E → M appears on the right again, with its own
first jet bundle J1E. J1

ρE is in fact the pullback bundle of J1E under ρ. An
important point is, however, as discussed first by Mackenzie [5] and fully ex-
ploited for standard Lie algebroids in [6], that one should look at the total
space of this pullback bundle as being fibred over E via τE ◦ ρ1 (with less
emphasis on the usual projections of a pullback bundle, here called π2 and
ρ1). If one does so, one discovers that there is a kind of complete lift from the
Lie algebroid structure at the bottom to one at the top, and the Lagrange
equations shown above should be regarded as coming from special sections of
the prolonged bundle J1

ρE → E.

However, it is possible to work in a more general framework. This will in
particular be fruitful for exploring the affine nature of a Lie algebroid in all
generality, and for some of the aspects of the digression I want to make now,
one does not even need the full structure of an algebroid.

3 Playing with diagrams to understand generalised connections

Consider the following general scheme as depicted on the diagram below: τ :
V → M is a vector bundle; ρ : V → TM is an “anchor map”, to be understood
here as a vector bundle morphism about which no further structure is assumed
at the moment; µ : P → M is an arbitrary fibre bundle.

Definition: A ρ-connection on the bundle µ is a linear bundle map h : µ∗V →
TP , such that the following diagram commutes: ρ ◦ pV = Tµ ◦ h.

The best source for a general study of ρ-connections is [1].
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The form of the preceding picture no doubt is reminiscent of the first one.
For comparison, therefore, let us discuss the prolongation idea in some more
detail in this more general context. In the next picture, the right part is the
same as in the preceding one, but rather than pulling V back along µ, we pull
TP back along ρ. The total space

T ρP = {(v, Xp) ∈ V × TP | ρ(v) = Tµ(Xp)}

is not called ρ∗TP , however, because the fibration we are primarily interested
in is not ρ1 : ρ∗TP → TP or µ2 : ρ∗TP → V , but µ1 = τP ◦ ρ1. The bundle
µ1 : T ρP → P is called the ρ-prolongation of µ : P →M .

-

@
@

@
@R�

�
���

T ρP P
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@
@

@
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��
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?
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?
τ

ρ τM
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ρ1
τP

µ2 µ

The ρ-prolongation in many respects has the features of a tangent bundle. For
example, there is a vertical subbundle VρP := ker µ2 = {(0, Q)} ⊂ T ρP , and
there are also deeper similarities, upon which we will not dwell here, however.

The sort of overall structure of this diagram is the same as in the previous
one, in the sense that, by the very construction of a pullback bundle, there is
a commuting diagram around the anchor map here as well. In fact, this is the
reason why I prefer to keep representing points of T ρP as a couple of elements,
one from V and the other one a tangent vector to P at some point p, whereby
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this base point in the fibration over P thus is not given a separate entry in
the notation.

In view of the similarity in structure, it is tempting to put the last diagram
on top of the previous one, which would require pushing the two competing
spaces apart. This, in fact, can easily be done because T ρP is naturally fibred
over µ∗V . The result is the following overall diagram.

��������1

PPPPPPPPq

@
@

@
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P

TP
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HHHHj����*

V M

TM

?

?

?

?

τ

ρ τM

p

ρ1

τP

µ1

pV

µ

j Tµh

Having brought the fibration j into the picture and thinking of the injection
of the vertical subbundle VρP into T ρP , we are facing a short exact sequence

0→ VρP → T ρP
j→ µ∗V → 0.

This suggests a way of defining a possibly different kind of ρ-connection on µ,
namely as a splitting of this sequence or, in other words, as a horizontal lift
operation H from µ∗V (or sections of it) to T ρP . We then have a direct sum
decomposition

T ρP = HρP ⊕ VρP,

with corresponding horizontal and vertical projectors PH and PV , as in the
usual theory of non-linear connections on a tangent bundle. The point is that
these two different looking notions of generalised connection are completely
equivalent [10], and we have ρ1 ◦ H = h.

It is of some interest, however, to point out that the second view on ρ-
connections has some advantages over the first. To begin with, there is no
ambiguity in the decomposition of sections of µ1 into horizontal and vertical
ones, as opposed to attempts to use the map h for defining horizontality in
TP , which then creates a number of complications [1]. Also the concept of
connection map (see e.g. [12]) may be somewhat more transparent in the sec-
ond point of view. In the first approach, we immediately spot from our overall
diagram, more particularly from the two commuting diagrams over ρ, that
ρ1 − h ◦ j yields a vertical vector on P . In the particular case that P is a
vector bundle, this can be identified with an element of P itself, yielding a
map K : T ρP → P . In the second approach, K is essentially PV . Note: the
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connection map is a very useful instrument to define an associated covariant
derivative operator when the ρ-connection is linear.

4 Affineness of a ρ-connection

Let us make a further digression now and replace for a start the arbitrary
bundle µ : P → M by an affine bundle π : E → M , modelled on the vector
bundle π : E → M , say. Put E†m := Aff(Em, IR), the set of affine functions
on Em, let E† =

⋃
m∈M E†m denote the ‘extended dual’ of E, which is a vector

bundle over M , and consider the bidual π̃ : Ẽ := (E†)∗ → M , which is a
vector bundle containing E and E via canonical injections: ι(E) and ι(E).

Now I take two of the overall diagrams, one with the affine E → M in the
position of the general bundle P → M , and the other with P replaced by
Ẽ →M .
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-

HHHHj����*
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ρ τM
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ρ1
Ẽ

τẼ

π̃1

p̃V

π̃

j̃ h̃

Again, a good definition of affineness of a ρ-connection h becomes quite ap-
parent by inspection of these diagrams: it is essentially the commutation of
the diagram which links h to h̃ via canonical injections.

Definition: A ρ-connection h on π : E →M is affine, if there exists a linear
ρ-connection h̃ : π̃∗V → TẼ on π̃ : Ẽ → M such that h̃ ◦ ι = T ι ◦ h, as maps
from π∗V into TẼ.

It is about time to illustrate these notions by looking at coordinate expressions
now.

With xi, yα coordinates on π : E → M and (e0; {eα}) a local frame for
Sec(π), denote the induced basis for Sec(π†) by (e0, eα), meaning that ∀ a ∈
Sec(π), a(x) = e0(x) + aα(x)eα(x) say, we have

e0(a)(x) = 1, ∀x, eα(a)(x) = aα(x).

Observe hereby that e0 is actually globally defined! Let then (e0, eα) denote
the dual basis for Sec(π̃), so that ι(e0) = e0 and ι(eα) = eα. Finally we write
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(xi, yA) = (xi, y0, yα) for the induced coordinates on Ẽ, and (xi, va) for the
coordinate representation of a point v ∈ V .

The anchor map ρ : V → TM is of the form (xi, va) 7→ ρia(x)va ∂
∂xi ; the map

h : π∗V → TE in general will look as follows:

h(xi, yα, va) = (xi, yα, ρia(x)va,−Γαa (x, y)va), (6)

the minus sign before the connection coefficients being a matter of convention.
Now, affineness of the ρ-connection on π means that the connection coefficients
are of the form:

Γαa (x, y) = Γαa0(x) + Γαaβ(x)yβ. (7)

In the equivalent representation H : π∗V → T ρE of the ρ-connection, this
becomes:

(xi, yα, va)
H

7→

(

(xi, va), va
(

ρia
∂

∂xi
− Γαa

∂

∂yα

))

. (8)

Now that we are bringing the prolonged bundle into the picture, if va denotes
a local basis of sections of τ : V → M , then a standard local basis of sections
of π1 : T ρE → E is given by

Xa(e) =

(

va(x), ρia(x)
∂

∂xi

∣∣∣∣∣
e

)

, Vα(e) =

(

0,
∂

∂yα

∣∣∣∣∣
e

)

. (9)

Notice that there is a canonical vertical lift V : π∗E → T ρE, which is such
that the Vα are roughly the vertical lifts of the basis vectors for E, more

precisely: Vα(e) =
(
e, eα(π(e))

)V

. Whenever there is a given a ρ-connection,
it will be more suitable to do coordinate calculations on the prolonged bundle
with respect to an adapted local basis, which consists of horizontal and vertical
sections. A basis for the horizontal sections is given by:

Ha = PH(Xa) = Xa − Γαa (x, y)Vα. (10)

Just a few words now, to finish this section, about covariant derivatives in
this context. If the ρ-connection is affine, there is an associated covariant
derivative operator ∇ : Sec(τ) × Sec(π) → Sec(π), which in coordinates will
look as follows. For ζ = ζa(x)va ∈ Sec(τ) and σ = e0 + σα(x)eα ∈ Sec(π):

∇ζσ =

(
∂σα

∂xi
ρia(x) + Γαa0(x) + Γαaβ(x)σβ(x)

)

ζa(x) eα. (11)

In fact, the affine ρ-connection can be completely characterised by such a ∇,
having the intrinsic properties: for all f ∈ C∞(M),

∇fζσ = f ∇ζσ (12)

∇ζ(σ + fη) = ∇ζσ + f ∇ζη + ρ(ζ)(f) η, (13)
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where ∇ is the covariant derivative associated to the linear ρ-connection h on
π, obtained for example by restricting h̃ to π∗V .

5 Back to algebroids

Now that we know what affineness of a ρ-connection means, I want to put more
structure in the anchor map again and define affineness of a Lie algebroid in all
generality (see [7,3]). With π : E → M still being an affine bundle, and putting
the concept of connections aside for the moment, the picture of interest now
arises from taking as vector bundle V → M the dual of the extended dual of
E, i.e. π̃ : Ẽ → M .

-

@
@

@
@R�

�
���

T ρ̃E E

TE

-

@
@

@
@R�

�
�
��

Ẽ M

TM

?

?

?

π̃

ρ̃ τM

π1

ρ̃1
τE

π2 π

The plan is to define a Lie algebroid structure on π and explain its relation to
an algebroid structure on π̃. In fact, since Ẽ contains E, I want to start from
an anchor map ρ on E and explain how this extends to an anchor ρ̃ on Ẽ.

Definition: A Lie algebroid on an affine bundle π : E → M (modelled on
π : E → M), consists of:

(i) a Lie algebra structure on Sec(π) (over IR), with associated bracket [ , ];
(ii) an action by derivations of Sec(π) on Sec(π) (over IR)

Dζ(λ1σ1 + λ2σ2) = λ1Dζσ1 + λ2Dζσ2 ∈ Sec(π), λi ∈ IR

Dζ [σ1, σ2] = [Dζσ1, σ2] + [σ1, Dζσ2],

compatible with the bracket on Sec(π), in the sense that

Dζ+ση = Dζη + [σ, η];

[(i) and (ii) define an affine Lie algebra structure]
(iii) an affine anchor map ρ : E → TM , such that

Dζ(fσ) = f Dζσ + ρ(ζ)(f) σ, f ∈ C∞(M).
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It is often convenient to write Dζσ as a bracket [ζ, σ] also, and in fact this
makes even more sense since it is easy to extend the affine Lie algebroid to a
vector Lie algebroid on π̃ : Ẽ → M as follows. For ζ = f ι(ζ0)+ι(η) ∈ Sec(π̃),
where ζ0 ∈ Sec(π) is an arbitrary reference section, define the anchor map ρ̃

as
ρ̃(ζ) = f ρ(ζ0) + ρ(η), ρ : linear part of ρ, (14)

and the bracket of two such ζi by

[ζ1, ζ2] =
(
ρ̃(ζ1)(f2)− ρ̃(ζ2)(f1)

)
ι(ζ0)+ι

(
[η1, η2]+f1Dζ0η2−f2Dζ0η1

)
. (15)

It can be shown that these definitions do not depend on the choice of ζ0.

The following result was proved in [7]: there is a one to one correspondence be-
tween Lie algebroids on the affine bundle π : E → M and Lie algebroids on the
bidual π̃ : Ẽ → M which have the property that the bracket of two elements
belonging to E, belongs to the vector bundle E on which E is modelled:

[ι(σ1), ι(σ2)] ⊂ Im ι.

In coordinates, if (e0; {eα}) is a local basis for Sec(π) and we consider the
induced basis (eA) = (e0, eα) for Sec(π̃) as before, the brackets of an affine Lie
algebroid structure are of the form

[e0, e0] = 0, [eo, eα] = C
γ
0αeγ , [eα, eβ] = C

γ
αβeγ , (16)

and for the anchor and its extension, we have

ρ(e0 + yαeα) = (ρi0 + ρiαy
α)

∂

∂xi
(17)

ρ̃(y0e0 + yαeα) = (ρi0y
0 + ρiαy

α)
∂

∂xi
= ρiAyA

∂

∂xi
. (18)

For completeness, this is the way the compatibility property [ρ̃(eA), ρ̃(eα)] =
ρ̃([eA, eα]) looks like in coordinates:

ρiA
∂ρjα
∂xi

− ρiα
∂ρ

j
A

∂xi
= C

γ
Aαρ

j
γ , (19)

and the Jacobi identity reads

∑

A,B,γ

(

ρiA
∂C

µ
Bγ

∂xi
+ C

µ
AνC

ν
Bγ

)

= 0. (20)

The extension of the affine Lie algebroid to its vector counterpart on Ẽ often
simplifies matters when it comes to defining further concepts and operations.
Let us look at the concept of differential forms on an affine algebroid to il-
lustrate this point. The problem is of course that one roughly wants to think
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of a skew-symmetric multilinear map, but sections of π cannot be multiplied
by functions. A definition of a k-form without recourse to Ẽ overcomes this
difficulty as follows.

Definition: A k-form on Sec(π), ω ∈
∧k(π†), is a map ω : Sec π × · · · ×

Sec π → C∞(M) for which there exist maps ω0, ω, where

ω0 : Sec π × Sec π × · · · × Sec π → C∞(M)

is skew-symmetric and linear in its k − 1 vector arguments, and ω is a (stan-
dard) k-form on Sec π, such that

ω0(ζ + σ, ζ1, . . . , ζk−1) = ω0(ζ, ζ1, . . . , ζk−1) + ω(σ, ζ1, . . . , ζk−1), (21)

and for any reference section ζ0:

ω(ζ1, . . . , ζk) =
k∑

i=1

(−1)i−1ω0(ζ0, ζ1, . . . , ζ̂i, . . . , ζk) + ω(ζ1, . . . , ζk) . (22)

This construction is of some interest in its own right, but life becomes easier if
one observes that a k-form on Sec(π) is just the pullback of a form on Sec(π̃)
under the canonical injection: ω = ι∗(ω̃) say. Once this is clear, one can for
example immediately define the exterior derivative of forms on Sec(π) by:
dω = ι∗(dω̃).

In coordinates, a k-form on Sec(π) is of the form

ω =
1

(k − 1)!
ω0µ1···µk−1

e0 ∧ eµ1 ∧ · · · ∧ eµk−1 +
1

k!
ωµ1···µk

eµ1 ∧ · · · ∧ eµk , (23)

with coefficients in C∞(M), skew-symmetric in all indices. The exterior deriva-
tive of forms is determined by: df = ρiA

∂f
∂xi eA, for f ∈ C∞(M), and

de0 = 0, deα = −Cα
0βe

0 ∧ eβ − 1
2
Cα
βγe

β ∧ eγ . (24)

The following observations are more important now. Going back to our pro-
longation picture of the beginning of this section, let us move upwards in the
diagram. As we know [6], there is an inherited (vector) Lie algebroid structure
on the prolonged bundle π1 : T ρ̃E → E. The point is that this is again one of
the type which gives rise to (or comes from) an affine Lie algebroid. Indeed,
the space

J ρE = { (e, Xe) ∈ E × TE | ρ(e) = Tπ(Xe) } ,

is the affine bundle of which the bidual is T ρ̃E. With respect to the local
frame of sections (XA,Vα) of Sec(π1), which was discussed in the more general
context of the preceding section, the Lie algebroid brackets of the prolonged
bundle are given by

[XA,XB] = Cα
ABXα, [XA,Vα] = 0, [Vα,Vβ] = 0. (25)
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The corresponding exterior derivative is determined by

dxi = ρiAX
A, dyα = Vα (26)

dX α = −1
2
Cα
ABX

A ∧ XB, dX 0 = 0, dVα = 0. (27)

6 And now Lagrangian equations again

I need two more concepts now before I can return to my starting point, La-
grangian equations, but now on general affine bundles, without the underlying
motivation of time-dependent mechanics, i.e. without the assumption of a fur-
ther fibration M → IR. The first one is a vertical endomorphism, the second is
a notion of “second-order differential equation field” on the prolonged bundle.

There is a canonical map ϑ : π∗Ẽ → π∗E ⊂ π∗Ẽ, which is defined as follows.
For a given a ∈ E, any z ∈ Ẽ is of the form z = λ(z)ι(a)+ι(v), with λ(z) ∈ IR.
As a result, we can define

ϑ(a, z) = (a, z − λ(z)ι(a)), (28)

leading to an operator which extends to sections of the corresponding bundles
and has coordinate representation: ϑ = (eα − yαe0) ⊗ eα.

It was already mentioned that there is a vertical lift from π∗E to T ρ̃E (with
V = Ẽ here). With the aid of ϑ, it can now be extended to

V : π∗Ẽ → T ρ̃E, V : (a, z) 7→
(
0π(a), ϑ(a, z)V

)
.

Applied to sections, we have: if ζ = ζ0e0 + ζαeα ∈ Sec(π̃), then ζV = (ζα −
yαζ0)Vα ∈ Sec(π1). In turn this leads, just as in the standard theory of first-
jet bundles, to the vertical endomorphism S : Sec(π1) → Sec(π1), given in
coordinates by

S = (Xα − yαX0) ⊗ Vα. (29)

As for the second ingredient, we actually talk about pseudo-Sodes here, be-
cause the resulting differential equations will not strictly be second-order or-
dinary differential equations. Now that we have S at our disposal, and remem-
bering that the section X 0 of the extended dual is actually globally defined, a
simple way of defining pseudo-Sodes goes as follows.

Definition: A pseudo-Sode on the affine π : E → M is a section Γ of
π1 : T ρ̃E → E such that

S(Γ) = 0, 〈Γ,X 0〉 = 1.

Locally, Γ is of the form

Γ = X0 + yαXα + fαVα, (30)
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and the vector field ρ̃1(Γ) determines the differential equations

ẋi = ρi0(x) + ρiα(x)yα, ẏα = fα(x, y). (31)

There are a number of equivalent ways for defining pseudo-Sodes, one of
which is that its integral curves, by which we mean of course the integral
curves of the corresponding vector field on E, all are admissible curves in the
following sense: for γ : IR → E, with projection γM = π ◦γ : IR → M , we have
ρ ◦ γ = γ̇M . Note further that an admissible curve γ can be lifted to a curve

t
γc

7→ (γ, γ̇), which belongs to J ρE for all t and by construction is such that
ρ̃1 ◦ γc = γ̇, hence is admissible for the prolonged algebroid.

Contact forms on Sec(π1) are 1-forms vanishing on all pseudo-Sodes. Locally,
they are spanned by

θα = X α − yαX 0. (32)

There also is a complete lift from Sec(π̃) to Sec(π1), determined by requiring
that contact forms be preserved.

So now, to close the circle for this review of recent work, let me describe in
two words how Lagrangian systems on an affine Lie algebroid can be defined,
and how ρ̃-connections, both non-linear and linear ones, naturally make their
appearance in dealing with pseudo-Sodes.

For L ∈ C∞(E), define the Poincaré-Cartan type 1-form θL = S∗(dL) + LX 0

and the 2-form ΩL = dθL. A pseudo-Sode Γ is of Lagrangian type if

iΓΩL = 0.

The corresponding differential equations are of the form

ẋi = ρiαy
α + ρi0, (33)

d

dt

(
∂L

∂yα

)

= ρiα
∂L

∂xi
+ Cγ

α

∂L

∂yγ
, (34)

where Cγ
α = C

γ
0α + C

γ
βαy

β.

Now for any given pseudo-Sode Γ, the operator

PH = 1
2
(I − dΓS + X 0 ⊗ Γ) (35)

defines a (non-linear) ρ̃-connection on π, with connection coefficients (see [8])

Γαβ = −1
2

(
∂fα

∂yβ
+ Cα

β

)

, Γα0 = −fα − yβΓαβ . (36)

There further is an associated “linearisation”, a Berwald-type connection,
which is a linear ρ̃1-connection on π∗Ẽ → E, corresponding to an affine ρ̃1-
connection on π∗E → E. The latter statement actually refers to work which
is still under construction [9].
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Finally, here are a couple of closing observations which are worth mentioning.
Recall that, starting from (e0; {eα}), a local basis of sections of the affine
bundle E → M , and constructing an induced basis (e0, eα) for Sec(π†), one
encounters, somewhat surprisingly, the globally defined section e0: e0

m(am) =
1, ∀am ∈ Em. Interestingly, additional properties of e0 characterise the aspects
of affineness we have been discussing.

First of all, a Lie algebroid on the vector bundle Ẽ → M restricts to an affine
Lie algebroid on E → M if and only if de0 = 0. Furthermore, in the special
case that M is fibred over IR and ρ(E) ⊂ J1M , we have e0 = dt. Note in
passing that, in the theory of Lie bi-algebroids developed in [4], a central role
is played by a 1-cocycle; the link with affine algebroids is explained in [3].

Secondly, a linear ρ-connection on π̃ is associated to an affine ρ-connection on
π if and only if e0 is parallel.
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1 Introduction

Mike Crampin was my Ph.D. supervisor, and during the course of my stud-
ies he gave me a paper [2] describing some of the properties of the vertical
endomorphism S on a tangent bundle. Now Mike was not the first person to
use this operator; but he was, perhaps, the person who suggested calling it S
rather than J (or, occasionally, v) as had been used previously in the litera-
ture. Over the years S, or variants or generalizations of it, have appeared in
various papers that Mike and his colleagues have written, and it does indeed
seem to be a very useful tool.

This present paper, based on a talk given at a colloquium to celebrate Mike’s
sixtieth birthday, describes some of the different manifestations of S and their
uses. It does not attempt to be comprehensive, and contains rather few ref-
erences: it tries, instead, to tell a story showing the importance of these con-
structions and how they are linked together.

Throughout this paper, differentiable manifolds are assumed to be of class C∞,
finite-dimensional, paracompact, Hausdorff and connected (even when not all
of these properties are strictly necessary for the definitions to make sense or
for the conclusions to be valid).

2 The original vertical endomorphism S

The original vertical endomorphism, as a 1-covariant, 1-contravariant tensor
field on a tangent bundle TM , traces its origin to a fundamental property of
real vector spaces and their tangent vectors. This property, applied pointwise
to each fibre of a vector bundle, gives an operator which (when the vector

Email address: david@symplectic.demon.co.uk.
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bundle is the tangent bundle of some manifold) may be represented as a tensor
field.

2.1 The vector space property

Let V be a finite-dimensional real vector space. At any point v ∈ V , there is
a natural isomorphism between V and the tangent space TvV . We construct
the isomorphism by regarding elements of TvV as equivalence classes of curves
γ : R→ V satisfying γ(0) = v, where γ1 ∼ γ2 if, for every function f : V → R,

d

dt
(f ◦ γ1)

∣∣∣∣∣
0

=
d

dt
(f ◦ γ2)

∣∣∣∣∣
0

;

then each equivalence class contains a unique curve of the form γw(t) = v+ tw
for some w ∈ V . The isomorphism V → TvV is given by w 7→ [γw], and is
called the vertical lift.

By duality, there is a natural isomorphism between the cotangent space T ∗v V
and V ∗. But we can also describe the dual isomorphism directly, and this
dual description is perhaps more natural than the direct one. We start with
the algebra C∞(V ) of functions on V : this has an ideal nv containing the
functions vanishing at v, and the cotangent space T ∗v V may be defined as the
quotient nv/n

2
v. This construction gives a natural vector space structure to

T ∗v V (indeed it gives an algebra structure, but the multiplication is trivial),
whereas obtaining the linear structure on the tangent space TvV requires more
work. Now each element of nv/n

2
v contains a unique representative that is an

affine function η, and hence is of the form

η(w) = λ(w) − λ(v)

for some linear function λ ∈ V ∗; the dual isomorphism T ∗v V → V ∗ is given by
[η] 7→ λ. We might call this the vertical collapse.

2.2 From vector spaces to vector bundles

We now apply this idea to the fibres of a vector bundle π : E → M . At each
point v ∈ E the vertical tangent space Vvπ is a subspace of TvE; then

Vvπ ∼= TvEπ(v)
∼= Eπ(v),

where TvEπ(v) is the tangent space to the fibre Eπ(v). Similarly, at each point
v ∈ E the cotangent space T ∗vE projects to the “vertical cotangent space”
V ∗v π (containing equivalence classes of cotangent vectors). Then

V ∗v π ∼= T ∗vEπ(v)
∼= E∗π(v),
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where T ∗vEπ(v) is the cotangent space to the fibre Eπ(v), and E∗π(v) is the fibre
of the dual bundle. The maps

Eπ(v) → TvE, T ∗vE → E∗π(v)

are, respectively, a linear inclusion and a linear projection, and these give rise
to morphisms

π∗(E) → TE, T ∗E → π∗(E∗)

of vector bundles over E.

2.3 The tangent bundle

If we specialize the construction defined above to the case where the vector
bundle π : E → M is the tangent bundle τM : TM → M , we can compose the
push-forward map

TTM → τ ∗M (TM), ξ 7→ (τTM(ξ), T τM(ξ))

with our vertical lift morphism to give a vector bundle morphism TTM →
TTM ; similarly we can compose the vertical collapse morphism with the pull-
back map

τ ∗M(T ∗M) → T ∗TM, (v, η) 7→ T ∗v τM(η)

to give a vector bundle morphism T ∗TM → T ∗TM . These two vector bundle
morphisms are dual to each other, and they give rise to a section S of the
tensor bundle

T ∗TM ⊗ TTM → TM

called the almost tangent structure or the vertical endomorphism of the tangent
manifold TM .

To see a representation of this tensor field in coordinates, choose a local chart
on M with coordinate functions (qi); then in the induced fibred chart on TM
with coordinate functions (qi, q̇i) we have

S = dqi ⊗
∂

∂q̇i
.

3 Some properties of S

The tensor field S has some characteristic properties. First, as a map TTM →
TTM its image equals its kernel (so that, in particular, S2 = 0). Secondly, S
is integrable in the sense that its Nijenhuis tensor vanishes: for any two vector
fields X, Y on TM

[X S, Y S] − [X S, Y ] S − [X, Y S] S = 0.
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These properties are characteristic of S in that the existence on a manifold of
a tensor with these properties may be used (with some other conditions) to
show that the manifold is the total space of a tangent bundle.

One of the most important uses of S arises in the context of dynamical sys-
tems and second-order differential equations, in particular those arising from
variational principles.

3.1 Lagrangian mechanics

Let L : TM → R be a Lagrangian function. We may use S to construct a semi-
basic 1-form ϑL = S dL, known as the Cartan form of L; as a section of the
cotangent bundle, ϑL is a map TM → T ∗TM . Extremals of the Lagrangian
are also extremals of the Cartan form.

We may also construct the Legendre transformation FL : TM → T ∗M by
taking the “fibre derivative” of L, and if this map has maximal rank then
extremals of the Cartan form are also extremals of the Lagrangian. In these
circumstances we say that the Lagrangian is regular.

The Cartan form and the Legendre transformation are related by the pull-back
map

ϑL(x) = τ ∗M (FL(x)),

given in coordinates by

ϑ =
∂L

∂q̇i
dqi, pi ◦ FL =

∂L

∂q̇i

Of course, taking the fibre derivative involves taking the unique affine function
in an equivalence class of functions, and so is the “vertical collapse” operator
used in the dual definition of S.

If L is positively homogeneous (a Finsler function) then the Cartan form is
called the Hilbert form and is used extensively in the study of Finsler geometry.

3.2 The Euler-Lagrange equations

The Cartan form, constructed using S, may be used to give the Euler-Lagrange
equations of a variational problem. We let ∆ be the dilation field of the vector
bundle TM → M , and let E = ∆(L) − L be the energy of the Lagrangian L.
If L is regular then dϑL is a symplectic form; when this is the case the unique
vector field ΓL satisfying

ΓL dϑL = −dE
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is second-order (that is, ΓL S = ∆) and the curves in its flow are the solutions
of the Euler-Lagrange equations. Even if L is not regular, the 1-form

εL = (τ 2,1
M )∗(dL) − dTϑL

defined on the second-order tangent bundle T 2M vanishes on a submanifold
E ⊂ T 2M representing the Euler-Lagrange equations in invariant form. (Here,
the map τ 2,1

M : T 2M → TM is the canonical projection.)

If L is regular, the submanifold E is 2m-dimensional, and is the image of the
section γL of T 2M → TM corresponding to the second-order vector field ΓL.

3.3 S and α

Another approach to Lagrangian mechanics, used in particular by W.M. Tul-
czyjew, involves a diffeomorphism

α : TT ∗M → T ∗TM (qi, q̇i; pi, ṗi) ◦ α = (qi, ṗi; q̇
i, pi).

Given a Lagrangian L, we may use the following procedure. First, the image
of dL (regarded as a map TM → T ∗TM) is a submanifold D ⊂ T ∗TM , and
so we may consider α−1(D) ⊂ TT ∗M . Taking the tangent to this submanifold
gives Tα−1(D) ⊂ TTT ∗M the prolongation of α−1(D), and the intersection
of this tangent submanifold with T 2T ∗M ⊂ TTT ∗M gives the holonomic
prolongation. The image of the holonomic prolongation α−1(D)∩T 2T ∗M under
the projection T 2τ ∗M : T 2T ∗M → T 2M is then the Euler-Lagrange manifold E .

The diffeomorphism α is related to the vertical collapse operator ξ 7→ ξv,
because if ξ ∈ T ∗TM then

τT ∗M(α−1(ξ)) = ξv.

The submanifold α−1(D) ⊂ TT ∗M contains information about the Lagrangian
similar to that encoded in the Cartan form ϑL, and the holonomic prolonga-
tion processes that information in the same way as the total time derivative
operator dT operating on ϑL.

3.4 The SODE connection

Let Γ be a general second-order vector field on TM : that is, one not necessarily
arising from a variational problem. Any such SODE gives rise to a connection
on the bundle TTM → TM in the following way. First, the tensor field LΓS
satisfies (LΓS)2 = I; using this, we may check that the tensor fields P =
1
2
(I −LΓS) and Q = 1

2
(I + LΓS) are the horizontal and vertical projectors of
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such a connection. In coordinates, if

Γ = q̇i
∂

∂qi
+ f i

∂

∂q̇i

then

P = dqi ⊗

(
∂

∂qi
+ 1

2

∂f j

∂q̇i
∂

∂q̇j

)

Q =

(

dq̇j − 1
2

∂f j

∂q̇i
dqi
)

⊗
∂

∂q̇j
.

Properties of this connection are important in trying to determine whether Γ
arises from a Lagrangian.

In a later section, we shall see how to obtain this connection by using a
“second-order” version of S.

4 Generalizations of the vertical endomorphism

We can generalize S in a number of different ways, to give operators defined on
manifolds different from on ordinary tangent bundle. Four direct extensions
give operators that:

(1) act on higher-order tangent bundles;
(2) act on Lie algebroids;
(3) act on jet bundles, involving time explicitly;
(4) act on frame bundles, with more independent variables.

And we can combine some of these generalizations, to:

• (1 + 2) higher-order algebroids;
• (1 + 3) higher-order jet bundles (over R);
• (3 + 4) jet bundles with more independent variables;
• (1 + 4) higher-order frame bundles;
• (1 + 3 + 4) higher-order jet bundles with more independent variables, in a

limited way.

The following subsections describe each of these generalizations in turn.

4.1 A generalization to higher-order tangent bundles

In order to generalize S to higher-order tangent bundles, we first construct a
vertical lift operator from TT kM to TT k+1M . Given a point p ∈ T k+1M and
a vector w ∈ TT kM such that

τk+1,k
M (p) = τT kM(w),
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choose a map χ : R2 → M such that

∂k+1

∂sk+1
χ(s, t)

∣∣∣∣∣
(0,0)

= p,
∂k+1

∂sk∂t
χ(s, t)

∣∣∣∣∣
(0,0)

= w.

Now define the vector u ∈ TpT
k+1M by

u =
∂k+2

∂sk+1∂t
χ(s, st)

∣∣∣∣∣
(0,0)

;

then u is the vertical lift of w to p (and is independent of the choice of map χ
satisfying the required condition). If k = 0 then the vertical lift defined in this
way is the same as the one defined earlier. Indeed, the idea of representing a
vector on a tangent bundle by a function of two real variables will turn out to
be useful for generalizations of the verical lift to several other contexts. [3]

Given this, compose the push-forward map

TT k+1M → (τk+1,k
M )∗(TT kM), v 7→ (τT k+1M(v), T τk+1,k

M (v))

with the vertical lift to get an endomorphism of T k+1
p TM , and let S be the

representation of this endomorphism as section of the tensor bundle

T ∗T k+1M ⊗ TT k+1M → T k+1M.

In coordinates (qi(0), . . . , q
i
(k+1)) on T k+1M ,

S =
k∑

r=0

(r + 1)dqi(r) ⊗
∂

∂qi(r+1)

.

The infinite tangent bundle T∞M may be defined as the inverse limit of the
sequence of finite-order tangent bundles. It may be shown that any cotangent
vector on T∞M is of finite order, in that it is the pull-back of a cotangent
vector on some finite-order tangent bundle T kM . We can use this to define S
on T∞M as the linear map T ∗T∞M → T ∗T∞M given by

S((τ∞,kM )∗η) = (τ∞,kM )∗(S(η)).

4.1.1 An alternative description

The canonical involution J1 : TTM → TTM has a fixed point set ι1,1(T
2M)

(where ι1,1 is the canonical inclusion), and this generalizes to a diffeomorphism

Jk : T kTM → TT kM

which maps ιk,1(T
k+1M) onto ι1,k(T

k+1M). We can use this to give an alter-
native method of describing the higher-order vertical endomrphisms.
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Given a 1-form η on TT kM , consider the sum

ι∗1,k(STTkM η) + ι∗k,1(ST kTM J∗kη);

we may check, using the coordinate formula for S, that this equals

ST k+1M ι∗1,kη.

So if we have a form on T k+1M we can spread it out arbitrarily to a tubular
neighbourhood, and then use the S tensors on T kTM and on TT kM to give
a well-defined result corresponding to the S tensor on T k+1M .

4.1.2 S and dT; the higher-order Cartan form

We may check, again using the coordinate formula, that the S tensors are
related to the total time derivative operators dT in their action on forms by
the rule

S ◦ dT − dT ◦ S = (τk+1,k
M )∗.

(On the infinite tangent bundle T∞M this simplifies to

S ◦ dT − dT ◦ S = id

so that S is a homotopy operator for dT. As we shall see later, a generalization
of this property is useful when considering the local exactness of the variational
bicomplex.)

If L : T kM → R is a Lagrangian then its Cartan form is defined on T 2k−1M
and is given by

ϑL =
k−1∑

r=0

(−1)r

r!
dr
T
Sr+1dL;

this form is semi-basic over T k−1M . The 1-form

εL = (τ 2k,k
M )∗(dL) − dTϑL

vanishes on a submanfold of T 2kM that is an invariant representation of the
Euler-Lagrange equations for L. If dϑL is symplectic then this submanifold is
2km-dimensional, and is the image of a 2k-th order vector field on T 2k−1M .

4.1.3 The alternative SODE connection

If Γ is a second-order vector field on TM , its SODE conection may be con-
structed in an alternative way. Let γ be the section of T 2M → TM corre-
sponding to Γ, and let C be the image of γ as a submanifold of T 2M . At
each point p ∈ C, take the annihilator (TpC)◦ of TpC in TpT

2M , and then act
on this annihilator with the second-order S tensor to give S((TpC)◦). Pulling
this back by γ to TM then gives γ∗S((TpC)◦). The resulting subspaces of
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cotangent vectors on TM are just the vertical cotangent spaces of the SODE

connection. [11]

This construction generalizes immediately to the SODE of a (k + 1)-th order
vector field on T kM . The method of using LΓS for the construction also
generalizes, but involves a slightly more complicated formula.

4.2 A generalization to Lie algebroids

If τ : A → M is a Lie algebroid with anchor map ρ : A → TM then a pro-
longed algebroid may be constructed on the fibre product A ×TM TA (where
Tτ : TA → TM) with projection

τ1 : A ×TM TA → A, τ1(a, v) = τA(v)

and with anchor

ρ1 : A ×TM TA → TA, ρ1(a, v) = v.

We say that an element of A ×TM TA is vertical if a = 0 (so that Tτ(v) = 0
and hence v ∈ V τ). The vertical lift is then the map

A ×M A → A ×TM TA, (a, b) 7→ (0, bv
a)

and the vector bundle endomorphism S on A×TM TA may be defined to be the
projection (a, v) 7→ (τE(v), a) followed by the vertical lift. For the canonical
Lie algebroid τM : TM → M , this construction just gives the usual vertical
endomorphism. [8]

4.3 A generalization to jet bundles, involving time explicitly

Take a fibration π : E → R; we may define a version of S on the jet bundle J1π.
An instructive way of doing this is to use the existing vertical endomorphism
on the tangent bundle TE.

To do this, we use the fact that J1π is a closed codimension 1 submanifold
of TE, given by ṫ = 1. Now S (on TE) does not restrict to J1π, but we
can modify it so that it does. To do this, we use the total time derivative
operator dT, regarded as a vector field along the projection π1,0 : J1π → E.
Then for each vector field X on J1π there is a unique multiple f of dT such
that π1,0 ◦X + fdT gives a vertical lift to TE tangent to J1π. This operation
then defines the tensor field S on J1π.

In coordinates (t, qi, q̇i) on J1π

S = θi ⊗
∂

∂q̇i
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where θi = dqi − q̇i dt are the contact forms.

4.3.1 Time-dependent Lagrangian mechanics

As well as being a closed submanifold of TE, we may also consider the jet
bundle J1π as being an open submanifold of the projective tangent bundle

PTE = (TE − {0})/(α 6= 0), ρ : (TE − {0}) → PTE.

We may use this to define the Cartan form for a time-dependent Lagrangian
system.

A Lagrangian 1-form λ = L dt (where L : J1π → R) defines a homogeneous
Lagrangian function L̂ on an open submanifold of TE by L̂ = 〈dT, ρ∗λ〉. In
coordinates,

L̂(t, qi, ṫ, q̇i) = ṫL(t, qi, q̇i/ṫ).

The Cartan form ϑ
L̂

is projectable to J1π ⊂ PTE, and in coordinates is

ϑλ = ϑ
L̂

= L dt +
∂L

∂q̇i
θi.

We may also write the Cartan form directly using the version of S defined on
J1π, with the formula

ϑλ = L dt + S dL.

4.3.2 Non-holonomic mechanics

Given a submanifold C of J1π fibred over E (a constraint submanifold), a non-
holonomic mechanical system may be described by a SODE given at points
of C and tangent to C. The “force” constraining the system to remain on C
is given by a 1-form that is a section of a bundle constructed in the following
way. [9]

At each point p ∈ C, take the annihilator (TpC)◦ of TpC in TpJ
1π; then

act on this annihilator with S to give S((TpC)◦). This bundle is called the
Chetaev bundle. If C is an affine sub-bundle of J1π then the Chetaev bundle is
projectable from C to E. If, in addition, the constraint submanifold is defined
by some auxiliary fibration E → E0 → R then the projected Chetaev bundle
defines a connection on the fibration E → E0.

This construction of a connection in the context of non-holonomic mechan-
ics is remarkably similar to that of the SODE connection (in its alternative
formulation).
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4.4 A generalization to frame bundles, with more independent variables

Now let dim E = N , and let F(m)E be the bundle of m-frames on E; we
may regard this is a sub-bundle of the vector bundle

⊕m TE. So if we take
two frames ξ, ζ ∈ F(m)E projecting to the same point of E, we may consider
ξ, ζ ∈

⊕m TE and take the vertical lift of ζ to a vertical vector ζv ∈ Tξ
⊕m TE.

As F(m)E ⊂ FE. In coordinates (uA, uAi ) on F(m)E,

(

ζA1
∂

∂uA
, . . . , ζAm

∂

∂uA

)

7→ ζAi
∂

∂uAi
.

The i-th component of this map, preceded by the projection F(m)E → E, may
be regarded as a globally-defined tensor field

Si = duA ⊗
∂

∂uAi

and the family (S1, . . . , Sm) may be regarded as a generalization of the vertical
endomorphism to F(m)E. [4]

4.4.1 Lagrangian field theories

In the context of frame bundles, a Lagrangian is a map L : F(m)E → R, and
it is homogeneous if L(Aξ) = (det A)L(ξ) for any A ∈ GL(m); furthermore,
it is positively homogeneous if this condition holds for A ∈ GL+(m).

Let ϑiL = Si dL: we call these the Hilbert forms for L. The 1-form

εL = dL − diϑ
i
L

(where di = uAi ∂/∂uA is the i-th total derivative) is defined on the second-
order frame bundle, and vanishes on a submanifold described by the Euler-
Lagrange equations for L, generalizing the similar equation for single-integral
problems.

As well as the family (ϑ1
L, . . . , ϑmL ) of Hilbert 1-forms, there are also two m-

forms closely associated with the variational problem defined by L. If L is
non-vanishing then the m-form

ΘC =
1

Lm−1

m∧

i=1

ϑi

has the same extremals as L. On the other hand, the m-form

ΘF = S1 d(S2 d . . . (Sm dL) . . .)
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is closed precisely when L is null. [6] In coordinates

ΘC =
1

Lm−1

m∧

i=1

∂L

∂uAi
duA

and

ΘF =
∂mL

∂uA1
1 · · ·∂uAm

m

duA1 ∧ . . . ∧ duAm.

4.5 A generalization to higher-order algebroids

If the Lie algebroid A is integrable (so that it is the algebroid A(G) of a Lie
groupoid G) then the prolonged algebroid A×TM TA is the algebroid A(PG)
of a prolonged groupoid

PG = V α ×G V β

where α, β are the source and target maps of G. This construction can be
generalized to give a k-th order prolonged groupoid

P kG = V kα ×G V kβ,

and also a k-th order “generalized algebroid”

AkG = V kα
∣∣∣
M

,

so that AkG is the identity submanifold of P kG (and hence the base manifold
of the Lie algebroid A(P kG) → AkG).

There is then a vertical lift operation

A(P kG) ×AkG Ak+1G → A(P k+1)G

defined by using a generalization of the χ(s, st) formula for higher-order tan-
gent bundles, and correspondingly an operator S on sections of A(P k+1G) →
Ak+1G. [12]

4.6 A generalization to higher-order jet bundles (over R)

This works in the same way as the first-order generalization, from TE to J1π
(where π : E → R). We consider Jkπ as a submanifold of T kE, defined by the
equations t(1) = 1, t(r) = 0 for 2 ≤ r ≤ k.

If X is a vector field on T kE then X S is not tangent to Jkπ, but there is a
unique multiple f of the total time derivative dT such that πk,k−1 ◦ X + fdT

gives a vertical lift to T kE tangent to Jkπ. This operation defines the tensor
field S on Jkπ.
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In coordinates (t, qi(r)) on J1π

S =
k−1∑

r=0

(r + 1)θi(r) ⊗
∂

∂qi(r+1)

where θi(r) are the contact forms dqi(r) − qi(r+1)dt.

4.7 A generalization to jet bundles with more independent variables

In the context of jet bundles, the move from one independent variable to sev-
eral turns out to be more complicated than in the case of tangent (and frame)
bundles. The reason for this is connected with the need for invariance under
reparametrization: if π : E → M is a fibration with dim M = m and dim E = n
giving the jet bundle J1π then there are no canonical basis directions at points
of M .

We can, however, construct a directional vertical lift with an extended set of
ingredients, involving a choice of direction in M . So take a point j1

pφ ∈ J1π,
a vector w ∈ Tφ(p)E and a cotangent vector η ∈ T ∗pM . Given these items, let
f ∈ C∞M satisfy dfp = η, and let χ : M × R → E be such that for each t,
q 7→ χ(q, t) is a section of π, and such that

j1
p(q 7→ χ(q, 0)) = j1

pφ,
∂χ

∂t

∣∣∣∣∣
(p,0)

= w.

If we define v ∈ Tj1pφJ
1π by

v =
∂

∂t
j1(q 7→ χ(q, f(q)t))

∣∣∣∣∣
(p,0)

then u is vertical over E. In coordinates (xi, uα, uαi ) on J1π, if

w = wi ∂

∂xi
+ wα ∂

∂uα
, η = ηjdxj

then

v = ηj(w
α − uαi w

i)
∂

∂uαj
.

Once again, this construction is a generalization of the one described above
for higher-order tangent bundles. [10]

4.7.1 The S operators on J1π

The directional vertical lift may be used to define several different types of
S operator on J1π. Most straightforwardly, choosing a 1-form η on M gives
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a (1, 1) tensor field Sη by taking the appropriate pointwise vertical lifts; in
coordinates

Sη = ηi θ
α ⊗

∂

∂uαi

where θα are the contact forms duα − uαj dxj. We can also construct a type
(2,1) tensor field S “along π1” giving the tensors Sη by tensor contraction; in
coordinates

S = θα ⊗
∂

∂uαi
⊗

∂

∂xi
.

And finally, if M is oriented with volume form ω then contraction of S with
ω gives a vector-valued m-form Sω; in coordinates

Sω = (θα ∧ ωi) ⊗
∂

∂uαi

where ωi = ∂/∂xi ω.

The third of these S operators may be used to construct a truncated Cartan
form for a Lagrangian λ = Lω defined on J1π. This m-form is Θ = Lω +
Sω dL; in coordinates where ω = dmx

Θ = Lω +
∂L

∂uαi
θα ωi

(using the notation ωi = ∂/∂xi ω).

4.7.2 Other Cartan forms for multiple integral problems on jet bundles

As for single integral problems, the lagrangian form λ = Lω on J1π defines a
homogeneous Lagrangian function L̂ on (an open subset of) the frame bundle
F(m)E by

L̂ = 〈dT, ρ∗λ〉

where dT is the tautological m-frame along F(m)E → E given by the identity
map F(m)E → F(m)E; the components of dT are the total derivative operators
di. But now, unlike in the single-integral case, there are two candidates for an
m-form that could project to a “Cartan form”, and they are both different from
the truncated form described above. We find that the m-forms ΘC and ΘF de-
fined by L̂ both project to the Grassmannian bundle G(m)E = F(m)E/GL(m),
and we consider J1π as an open submanifold of G(m)E.

The projection of ΘC is the Carathéodory form [1] of L, in coordinates

1

Lm−1

m∧

i=1

(

L dxi +
∂L

∂uαi
θα
)

.

The projection of ΘF is the fundamental Lepage equivalent [7] of L, in coordi-
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nates
min{m,n}∑

r=0

1

(r!)2

∂rL

∂uα1
i1

· · ·∂uαr
ir

θα1 ∧ . . . ∧ θαr ∧ ωi1···ir

where ωi1···is = ∂/∂xis ωi1···is−1 .

4.8 A generalization to higher-order frame bundles

The vertical lift operator may be generalized from first-order frame bundles
to higher-order frame bundles in a fairly straightforward way: this uses the
representation of a frame on a frame bundle by a function of two m-vector
variables. So let Fk

(m)E be the bundle of k-th order m-frames in E: it is the open

sub-bundle of the bundle T k
(m)E containing the non-singular m-dimensional k-

velocities, with coordinates (uAI ) where I is a multi-index.

We can construct a vertical lift from F(m)F
k−1
(m) E to TFk

(m)E in the following

way. Given ξ ∈ Fk
(m)E and ζ ∈ F(m)F

k−1
(m) E such that

τk,k−1
(m)E (ξ) = τFk−1

(m)
E(ζ),

choose a map χ : Rm × Rm → E such that

jk0 (x 7→ χ(x, 0)) = ξ, j1
0(y 7→ (x 7→ jk−1

0 (χ(x, y)))) = ζ.

Define u ∈ TvF
k
(m)E by

u =
d

dt
(jk0 (x 7→ χ(x, tx)))

∣∣∣∣∣
0

;

then u is a vertical vector on Fk
(m)E and is the vertical lift of ζ to ξ. If k = 1

then this is the same as the vertical lift defined previously. The i-th component
of this map, preceded by a projection to Fk−1

(m) E, is a globally-defined tensor
field [5]

Si =
k−1∑

|I|=0

(Ii + 1)duAI ⊗
∂

∂uAI+1i

.

4.9 A (limited) generalization to higher-order jet bundles with more indepen-
dent variables

Although the generalization of the vertical lift from first-order to higher-order
frame bundles was straightforward, a similar generalization from first-order to
higher-order jet bundles (over an m-dimensional base) turns out to be more
difficult.
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We may start in the same way, by letting π : E → M be a fibration, and
taking a point jkpφ ∈ Jkπ and a vector w ∈ Tjk−1

p φJ
k−1π. However it is no

longer adequate to define a direction on M by taking a cotangent vector;
instead we need to take a closed 1-form η on M . With these ingredients, let
f ∈ C∞M satisfy df = η in a neighbourhood of p, and let χ : M ×R → E be
such that for each t, q 7→ χ(q, t) is a section of π, and such that

jkp (q 7→ χ(q, 0)) = jkpφ,
∂

∂t
(jk−1(q 7→ χ(q, t)))

∣∣∣∣∣
(p,0)

= w.

If we define v ∈ Tjk
pφ

Jkπ by

v =
∂

∂t
jk(q 7→ χ(q, f(q)t))

∣∣∣∣∣
(p,0)

;

then u is vertical over Jk−1π. In coordinates (xi, uαI ) on Jkπ, if

w = wi ∂

∂xi
+

k−1∑

|I|=0

wα
I

∂

∂uαI
, η = ηjdxj

then

v =
k−1∑

|I+J |=0

(I + J + 1j)!

I!(J + 1j)!
(wα

K − uαK+1i
wi)

∂Jηj
∂xJ

∂

∂uαI+J+1j

.

So for each closed 1-form η on M we get a tensor field

Sη =
k−1∑

|I+J |=0

(I + J + 1j)!

I!(J + 1j)!

∂Jηj
∂xJ

θαK ⊗
∂

∂uαI+J+1j

depending on the derivatives of the components of η.

4.9.1 Exactness of dh in the variational bicomplex

Versions of the S operator have appeared earlier in formlæ for Cartan forms,
and where the Lagrangian had order greater than one these operators were
combined with total derivative operators. Indeed, the relationship between
S and total differentiation is very close, as the homotopy formula on T∞M
demonstrates.

A similar relationship holds for the case of several independent variables,
though here there is much greater complexity. An important construction in
this context is that of the variational bicomplex. Here, we consider a fibration
π : E → M and let Φr

s denote the module of (r + s)-forms on J∞π containing
r horizontal components (semi-basic overM) and s contact components. The
modules Ξs are quotient modules. The horizontal differential dh : Φr

s → Φr+1
s
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has coordinate form

dhf =
df

dxi
dxi

and is an invariant object incorporating the total derivative operators on jet
bundles. In the context of finite-order jet bundles it would map forms on Jkπ
to forms on Jk+1π, but when considering J∞π it is a mapping between forms
on the same manifold. On the other hand, the vertical differential dv = d− dh
has many of the properties of the ordinary exterior derivative on the fibres of
π, and in particular the map dv : Φm

0 → Φm
1 passes to the quotient to give a

map δ : Ξ0 → Ξ1 which is the Euler-Lagrange operator. (See the Appendix for
a diagram of the variational bicomplex on J∞π.)

The local exactness of dh may be shown using the tensors Sη where the closed
1-forms η are the coordinate differentials dxi; we write Si for Sdxi

and SI =
(S1)I1 . . . (Sm)Im . [13] In this particular coordinate system, Si is represented
as

Si =
∑

J

(Ji + 1) θαJ ⊗
∂

∂uαJ+1i

.

The homotopy operator for dh acting on Φr
s (s > 0) is then

Hr
s (θ) =

1

s




∑

i1<...<im−r

ωi1···im−ri ∧ Fi(θ
i1···im−r)



 ,

where
θ =

∑

i1<...<im−r

ωi1···im−r
∧ θi1···im−r ,

Fi(θ) = −
∑

I∈Mi

(−1)|I|
d|I|−1

dxI−1i
(SI θ)

and
Mi = {I ∈ Nm : I(i) > 0 but I(j) = 0 for j > i}.

5 Summary

The various applications of S described above demonstrate its importance in
the study of problems in the calculus of variations, and in the application
of those studies to nechanics and field theories. Although the definition of S
commonly involves its action on vectors fields, or on frames, its use tends to
arise through the transpose, as an operator on forms, or on coframes. And in
this sense, as the homotopy formulæ suggest, its role is really that of a jet
integration operator.

And this, perhaps, is why S is quite a good name for this operator. For we
use

∫
as a symbol for integration, and that is supposed to be an elongated

letter “S”, representing summation. It is surely, therefore, appropriate to use
the letter S itself for the standard jet integration operator.
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Appendix: The variational bicomplex
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0 Φm−1

1 Φm−1
s Φm−1

s+1
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0 Φm

1 Φm
s Φm

s+1
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π∗∞
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dv

dv

dv

dv

dv

dv
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δ δ
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A retrospective on the inverse problem of

Lagrangian mechanics

Gerard Thompson

Department of Mathematics, The University of Toledo
2801 W Bancroft St, Toledo OH 43606-3390, USA

Abstract

I begin with some personal reminiscences of the last twenty five years. Then in the
main body of the article I review some of the recent developments in the inverse
problem of Lagrangian mechanics and discuss the inverse problem for the canonical
Lie group connection. I outline an algorithm for solving the Lie group problem.
Finally I give some some specific Lie group examples and associated Lagrangians,
solutions to the inverse problem.

1 Reminiscences and Introduction

It seems to me to be appropriate in an article such as this one to offer a
perspective that is more personal and perhaps more polemical than one is
accustomed to see in mathematical research papers. However, in such a plat-
form, which is a celebration of Mike’s career there is much to record both
about Mike’s work and the workshop that has drawn so many people together
during the last eighteen years. I first met Mike Crampin in the Spring of 1978
and began work on my doctorate in October of that year. At that first meet-
ing he warned me that I might be putting myself on the path to becoming
“unemployable” but I was determined to press on. The first topic that Mike
suggested for me to work on was the role played by Killing tensors in classical
mechanics. It proved to be a fruitful area and there have been a number of
exciting discoveries, principally due to Mike in the last few years, concerning
Killing tensors as they relate to Hamilton-Jacobi theory. In fact that circle of
ideas is still very much“work in progress” but I will not be touching upon it
in this article. After less than two years of working under Mike and suffering
somewhat from the loneliness of the long distance doctoral student, I was in

Email address: gthomps@uoft02.utoledo.edu.
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1980 on the lookout for opportunities to explore other vistas. Such an oppor-
tunity was occasioned to a large extent by the circumstance of Mike becoming
Dean of the Faculty of Mathematics at the Open University and the realiza-
tion that his time for meeting with me, with which hitherto he had been most
generous, would be severely curtailed. In the event I went off to North Amer-
ica to search for my fortune and am still searching, without realizing that I
was making a momentous decision after which life would never be the same
again. After spending a felicitous year in North Carolina, I was still nowhere
near being able to present a doctoral dissertation so the logical step was to
remain enrolled as a graduate student there. I was in no hurry to return to the
UK because the prospects of permanent employment in a university seemed
remote in the extreme; on the other hand life in North Carolina was proving
to be most agreeable. It was after all only 15 years after the reforms of the
1960’s and the south of the United States was already being transformed. At
least there was no longer the problem of isolation: before I went to the US I
had not the least idea of “Graduate School”, a concept which really did not
exist in the UK. On the other hand now, horror of horrors, I was going to
have to take courses and examinations. At this point I must also acknowledge
my debt to my other mentor Robert Gardner, who most unfortunately is no
longer with us. He passed away in 1998. I owe my passage through Graduate
School in large measure to him. In the body of this article his influence is
evident, through his dissemination of the work of Elie Cartan.

Even though I was now a graduate student in Chapel Hill I was able to main-
tain strong ties to Mike and finally in 1984, after having had two papers
accepted for publication, I suggested that I had enough material for a doc-
toral dissertation. Mike was enthusiastic about the idea and I spent most of
that summer writing it up. Mike having been released previously from his
administrative duties was able to devote much of that summer to me and I
particularly value the painstaking line by line criticsm he made of my dis-
sertation. I think that such devotion to detail should be the model for any
doctoral supervisor and of course it is characteristic of all Mike’s work. Con-
cerning attention to detail, one of the members of my doctoral committee was
a certain Willy Sarlet, whom I had the pleasure of meeting for the first time at
my viva. In the following year I finished my doctorate in Chapel Hill. Let me
say that my reason for so doing was not because I was suffering from a case of
meglomania. To my surprise I had been awarded, as it was in those days, an
SRC fellowship to support my studies at the Open University. I was cognisant
of the fact that it would reflect very poorly on Mike and of course myself if
the fellowship never came to fruition. On the other hand since employment
prospects in the UK were still as dismal as ever and of course I was equally
indebted to the faculty in Chapel Hill, the only sensible course seemed to be
to write up both dissertations.

Part of my OU dissertation involved some theory about jet bundles in me-
chanics and again I am indebted to Robbie Gardner for introducing me to
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that subject. In fact Gardner was one of the leading proponents of the theory
of jet bundles and now, many years later its utility is self-evident. At issue was
how to generalize from autonomous to time-dependent systems in mechanics.
In 1981 Mike had written a very elegant paper in which he showed how to
recast Douglas’ fundamental differential system [8] in the inverse problem of
Lagrangian mechanics in invariant terminology, using the machinery of tan-
gent bundle geometry [3]. Then again in 1983 he wrote a lengthy article in
which he went into the subject of tangent bundle geometry much more ex-
tensively and again looked at the same inverse problem [4]. He also credited
the afore-mentioned Willy Sarlet [22] with a “...somewhat unexpected and
ingenious achievement”, referring to the additional algebraic conditions that
Willy had been able to generate in the inverse problem and that have been
the focus of so much attention since then. As a result of conversations with
one Geoffrey Eamon Prince and some rather naive calculations of myself Mike
crafted a paper [7] which extended his 1981 analysis to the non-autonomous
case. However, perhaps [7] lacks some of the elegance because it uses local
coordinates; on the other hand as Jesse Douglas said in the context of another
aspect of the inverse problem “ ...it is in the nature of things”. As happens
perhaps more nowadays than at that time, because of the spectacular advance
of the internet and the use of email, I was not to meet my coauthor Geoffrey
Prince for another two years until the all important year of 1986.

After moving on from Chapel Hill I spent the academic year of 1985-6 in the
northern climes of The University of Waterloo, Ontario, Canada and then by
some strange hazard obtained an advanced SERC fellowship to be held at the
University of Edinburgh in Scotland for the years 1986-8. Mike indicated to
me that since I was coming back to the UK I might be interested in going
to a small get-together to be held at the the University of Gent in Belgium,
that was being organized by that same ubiquitous Willy Sarlet. When I flew
into Brussels I was aware of wild scenes of cheering and enthusiasm which,
much to my disappointment I learned had nothing whatever to do with our
meeting. In fact the period of the meeting coincided with the conclusion of
the 1986 football World Cup and the cheering fans were waiting the arrival of
the Belgium team which had exceeded all expectations by finishing in fourth
place. I was seriously beginning to doubt the usefulness of any such academic
meeting. After all I had been forced to miss the final of the World Cup so
as to arrive at the meeting on time. Could anything justify my missing the
gyrations of Maradona et al?

When I was a graduate student in Chapel Hill there was a seminar entitled
“Fluid Dynamics on the Village Green” which always struck me as being a
little strange. In the first place in most mathematics departments in the US
there is a fierce separation between pure mathematics and physics or engi-
neering, which is not unlike the constitutionally mandated division between
church and state. Why then would a pure mathematics department be holding
seminars on an applied topic at 5:00 pm on Fridays? And would Americans
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know what a “Village Green” was even if they saw one? It took me some time
to realize that the research, such as it was, was being conducted on the viscos-
ity of certain alcoholic beverages and their propensity to percolate down the
human throat. Furthermore, the “Village Green” in question actually alluded
to a bar where there were areas of grass to sit on and quaintly entitled “He’s
not here”, which for a long time believe it or not could well have referred to
me. As for the meeting in Gent one could well have been forgiven for believ-
ing at first glance that its primary purpose too was to conduct research into
fluids. However, such an assessment would be very wide of the mark because
it was at that meeting that was formed the nucleus of the group that has held
a workshop on Differential Geometry and Theoretical Mechanics every year
since. It was also at that first workshop that Willy posed his famous “so what”
question about life, the universe and everything and for which the bureaucrats
who decide about giving out grants are still waiting for an answer. The inves-
tigation into the behaviour of fluids has continued to be an important, not to
say, indispensable feature of subsequent meetings, mostly notably at a certain
famous seminar at Gent in 1992.

“...and now for something completely different”, as the famous saying goes.
The rest of the article is supposed to be a little more serious. I wanted to take
this opportunity to put some of the work that has been done on the inverse
problem into context and try to devine some future directions of research. I am
concerned primarily with developments of the last ten years. Many of the ideas
on Lie groups will be treated in more detail elsewhere. As regards notation
the summation convention on repeated indices applies throughout the text.
In Section 5 we use (q, x, y, z, w) as local coordinates on R5 to describe our
connections. In order to avoid having an excessive number of dots, the corre-
sponding derivative or velocity variables will be denoted by (p, u, v, s, t). The
method that we follow amounts to solving the Helmholtz conditions, which
consist of solving in turn some algebraic, ordinary differential and finally some
partial differential equations. When we solve the algebraic conditions (equa-
tions (3) and (4) below) we generally denote the parameters of the solution by
lower case Greek letters. The arbitrary functions that enter from integrating
the ODE conditions (equations (7) below) are generally denoted by capital
Roman letters and are first integrals of the geodesics. We also acknowledge
the indispensable role that MAPLE played in carrying out and checking many
of our calculations.

2 The inverse problem

The inverse problem of Lagrangian dynamics consists of finding necessary
and sufficient conditions for a system of second order ordinary differential
equations to be the Euler-Lagrange equations of a regular Lagrangian function
and in case they are, to describe all possible such Lagrangians. Work on the
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problem had begun even at the end of the nineteenth century but by far the
most important contribution was the 1941 article of Douglas [8]. However,
Douglas’ analysis of the two degrees of freedom case turned out to be so
involved that work on the problem was effectively stalled for more than thirty
years. Only with the rise of global differential geometric methods was progress
possible. Three important contributions were the papers of Crampin et al
[3,4,7] Henneaux and Shepley [14] and Sarlet [22]. In [8] the fundamental
differantial system of Douglas was recast into coordinate-free language. It is a
very elegant paper which illustrates the advantages of the invariant formalism
and one to which I returned many times for formulae and inspiration. In
[14] the Kepler problem in dimension three was studied and a wide class of
non-standard Lagrangians was obtained. Lastly in [22] it was shown how the
Helmholtz conditions could be manipulated so as to derive some hidden, purely
algebraic conditions. An excellent and comprehensive analysis of the state of
the art in 1990, which owes much to the workshops that had already been held,
is given in the article by Morandi et al [19]. However, it is clear from [19], that
further progress would require the development of yet new techniques and
methods.

In the 1990’s investigations advanced on three fronts. In [1] Anderson and
Thompson presented an algorithm for solving the inverse problem in a con-
crete situation, which consists of formulating the Helmholtz conditions as an
exterior differential system. We shall outline this method for solving the in-
verse problem, but we suppress the EDS aspects and deal directly with the
closure conditions as a PDE system. We consider a system of second order
ODE of the form

ẍi = f i(xj , ẋj). (1)

In fact, we shall denote ẋi by ui. The first step in the method is to construct
the n× n matrix of functions Φ defined by

Φi
j =

1

2

d

dt

(
∂f i

∂uj

)

− ∂f i

∂xj
− 1

4

∂f i

∂uk

∂fk

∂uj
. (2)

Actually the Φi
j are in a certain sense the components of a tensor field known

as the Jacobi endomorphism field [5]. One now finds the algebraic solution for
g of the equation

gΦ = (gΦ)t (3)

which expresses the self-adjointness of Φ relative to g. The symmetric matrix
g will represent the Hessian with respect to the ui variables of a putative
Lagrangian L. Since there is just a single matrix Φ, one can always find non-
degenerate solutions to (3), whatever the algebraic normal of Φ may be. In

fact, (3) imposes at most n(n−1)
2

conditions on the n(n+1)
2

components of g.
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In the general theory there is a hierarchy
n

Φ of matrices defined recursively by

n+1

Φ =
d

dt

(

n

Φ

)

− 1

2

[

∂f

∂u
,

n

Φ

]

(4)

and the multiplier g is such that each
n

Φ is self-adjoint relative to g. There
is also a second hierarchy of algebraic conditions that must be satisfied by g.
Define functions Ψi

jk by

Ψi
jk =

1

3

(

∂Φi
j

∂uk
− ∂Φi

k

∂uj

)

. (5)

Then the Ψi
jk are the principal components of the curvature of the linear

connection associated to the ODE system (1) (see [5] for further details). The
first set of conditions in the hierarchy is given by

gmiΨ
m
jk + gmkΨ

m
ij + gmjΨ

m
ki = 0, (6)

and the higher order Ψi
jk’s are obtained from Ψi

jk much in the same way that

the
n

Φ’s are obtained from the Φ. As I mentioned in Section 1 Willy Sarlet was
the first to consider these extra algebraic conditions in [22].

According to the general theory we now assume that we have a basis of solu-
tions to the double hierarchy of algebraic conditions. If we cannot find a non-
singular solution then we can be sure at this stage that no regular Lagrangian
exists for the problem under consideration. Using our basis of solutions we can
think of each basis element as giving a “Cartan two-form” for (1). The prob-
lem is that such a two-form need not be closed. One of the auxiliary conditions
that must be satisfied by g if the corresponding two-form is to be closed is

dgij

dt
+

1

2

∂fk

∂ui
gkj +

1

2

∂fk

∂uj
gki = 0. (7)

Now (7) is a system of ODE’s and it is possible, in principle, to scale basis
elements which are solutions to (3) by first integrals of (1) so as to satisfy
(7). Being able to carry out the preceding step in practice depends on hav-
ing explicit first integrals of (1) available. After we have obtained a basis of
solutions for (3), each of which satisfies (7), the final step is to impose the
so-called closure conditions

∂gij

∂uk
− ∂gik

∂uj
= 0. (8)

This step is accomplished by looking for linear combinations of the basis el-
ements over the ring of first integrals for (1) so that (8) is satisfied. Then
(3) and (7) still hold and the resulting closed two-forms, if indeed they exist,
will be Cartan two-forms, albeit possibly degenerate. We remark that (3), (7)
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and (8) together with the symmetry and non-degeneracy of g constitute the
Helmholtz conditions for the inverse problem for (1). The double hierarchy of
algebraic conditions are actually integrability conditions of zeroth order that
can be deduced from (3),(7) and (8) so that there is no loss of generality in as-
suming that they are satisfied from the outset. See [1,23] for more details. One
of the curious aspects of the inverse problem is that, in practice, these auxil-
iary algebraic conditions rarely do seem to materially decrease the difficulty
of solving the Helmholtz conditions.

The reader should observe that the Helmholtz conditions and its modification
in [1] are concerned with finding all possible Hessians of Lagrangians for a
given second order ODE system. It is unrealistic to hope to give all possible
Lagrangians in closed form, even for a free particle system. To pass from the
Hessian to the Lagrangian requires two integrations and Douglas [8] explains
how the linear and zeroth order terms may added so as to obtain a bona fide
Lagrangian; in particular, the fact that appropriate terms can be found is a
consequence of the Helmholtz conditions and the only ambiguity in passing
from Hessian to Lagrangian is the trivial one of scaling by a constant and
adding a total time derivative. The drawback, if such it is, of this approach
is that it does not make evident all the integrability conditions that arise
from (1). It is not even clear how to obtain the extra conditions obtained by
Muzsnay and Grifone [11,12].

The second approach to the inverse problem is due to Muzsnay and Grifone
who completely by-pass the Helmholtz conditions. They work directly with
the Euler-Lagrange operator and employ the techniques of Spencer cohomol-
ogy [11,12]. They obtain yet more purely algebraic conditions but their results
are difficult to reconcile with the Helmholtz conditions approach, all the more
so because of the dearth of examples. In their approach, the first obstruction
in prolonging solutions from order to two to order three is expressed by the
condition that the horizontal distribution should be Lagrangian for the re-
quired Cartan two-form. The Euler-Lagrange operator is now augmented by
this second order condition. In the Helmholtz formulation, this condition is
automatically satisfised as too, of course, is the same condition for the verti-
cal distribution. The condition that permits one to prolong a solution to the
augmented system from order two to order three is precisely expressed by (3)
and (7) above. Two major themes of Muzsnay and Grifone are whether the
variational multiplier is diagonal or not and whether the second order system
(“spray” in their terminology) is “typical” or “atypical”, the distinction be-
tween the two being that in the former case, the spray is an eigenvector of
Φ whereas in the latter it is not. The reason for the term “typical” is that
geodesic sprays of linear connections begin to this class, though paradoxically,
it is obviously a non-generic condition. It is much easier to test whether the
symbols of the prolongation of “typical” systems are involutive, whereas in
the atypical case, more prolongations and messy arguments are required.
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The third direction in the inverse problem was initiated by Martinez, Sarlet
and Crampin [5,23]. They and others developed a powerful calclulus associated
to any second order ODE system. The most interesting feature of this calculus
is that all objects are considered to be defined “along the tangent bundle pro-
jection” and a remarkable efficiency in computation is thereby obtained. They
used this calculus to solve a number of problems related to the inverse prob-
lem, such as determining necessary and sufficient conditions for a second order
ODE system to decouple into scalar equations under a point transformation
[5,17,24]. Let me record here some small related results. The key construct in
the decoupling problem is the H-tensor: it is in fact a concomitant associated
to any field of endomrphisms. Now in [17] the situation is more complicated
because all the tensorial objects are defined along the tangent bundle pro-
jection. As such there are both vertical and horizontal H-tensors. In fact the
H-tensor in [17] is introduced by means of an auxiliary tensor C that is de-
fined and actually depends on a connection, which, in the context of [5,17,24],
is provided by the vertical and horiziontal covariant derivatives that are asso-
ciated to the system of second order ODE in question. However, the H-tensor
can be defined directly, and so is independent of any such connection. Indeed
we have:

Proposition 2.1 Let U be a field of endomorphisms defined on an n-manifold
M . Then H defined by the formula

HU(X, ·) = [LU2XU, U ]− 2U ◦ [LUXU, U ] + U2 ◦ [LXU, U ] (9)

is a tensor of type (1,2), where X is an arbitrary vector field on M and the
bracket denotes the algebraic commutator of endomorphisms and not the Ni-
jenhuis bracket.

Proof The proof is a routine calculation using the formula

LXfU = fLXU + U(X)⊗ df −X ⊗ U(df), (10)

where f , X and U denote a function, vector field and field of endomorphisms,
respectively. 2

Recent investigations of myself and my student Chamath Hettiarchchi suggest
that more remains to be discovered about H although in practice it turns out
to be a quite complicated object. Another computation leads to:

Proposition 2.2 Let U and H be defined as above. Then

HU(X, ·) = U ◦ [NU (·, X), U ] + [U, NU(·, UX)] (11)

where NU denotes the Nijenhuis tensor of U . 2
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The local expression for H is given by

H l
mn = U l

jN
j
knUk

m − U l
jU

k
nN j

km + U l
jN

j
mkU

k
n −N j

nkU
k
mU l

j. (12)

Turning now to the two degrees of freedom case, there are now three compre-
hensive analyses. First of all there is Douglas’ version [8]. Douglas claimed to
have investigated every possible eventuality. Since Douglas was a Fields medal
winner and not prone to making errors one is inclined to believe him. The dif-
ficult cases arise from having to take many prolongations in the application
of Riquier’s theory of differential systems. Unfortunately the calculations are
so involved, with so many “dots”, that it is not clear that all the cases con-
sidered by Douglas can indeed occur; and one does not have much incentive
for investing a lot of time in very complicated cases, which after the fact, may
prove to be non-existent. Douglas does supply lots of examples, however, it is
not clear whether the “missing ” examples are oversights on his part or simply
that he chose not to write them down. For example, he offers no systems which
belong to case IIa3, though he does claim that they are quite extensive. After
a considerable effort Ian Anderson and I did find a class of examples of that
type. Another example that we were unable to find was for case IIIa where the
system is not variational. That case depends on the closure of a certain one-
form but in all the systems with which I am familiar, the one-form is closed
and there is a Lagrangian. After expending a lot of effort in the early nineteen
nineties trying to construct many of these examples, I reached the conclusion
that, although one may be able to establish the existence of certain types of
Lagrangians by using Riquier, Cartan-Kahler or Spencer theory and although
some of these cases may in a certain sense be “generic” within a subclass, it
may not be possible to write down a concrete exmple in terms of elementary
functions. See also page 124 in Douglas, where he gives an “example” belong-
ing to case IIb. At that point one is bound to ask whether the whole enterprise
is any longer worthwhile. I have never been attracted to the kind of research
that produces six mathematical theorems in search of a single example.

The second comprehensive analysis of the two degrees of freedom case is by
Muzsnay and Grifone [12]. They too claim to cover every eventuality. The re-
ally difficult case to analyze is in Douglas’ classification case II. Muzsnay and
Grifone devote 57 pages to the subcase of II in which the spray is atypical.
Again for this author, as in the version of Douglas, the remoteness from con-
crete examples is extremely disturbing. To take one case in point Muzsnay and
Grifone discuss in the case where the multiplier is diagonal and distinguish var-
ious subcases as “reducible”, “semi-reducible” and “irreducible”, which they
say, “ ...is very close to but not exactly the same as Douglas’ classification
of separable, semi-separable and non-separable sprays.” However, they fail to
tell us precisely what the differences are and the interested reader is faced
with working through pages of calculations. To be fair, perhaps this author is
asking for something that is impossible, namely, a comprehensive collection of
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examples that illustrate all the principal cases.

The third account of the two degrees of freedom case is by Sarlet, Thompson
and Prince [25]. This analysis uses the tangent bundle-projection calculus and
while it does not claim to be exhaustive, it does provide an effective means of
obtaining the principal cases.

3 The Lie group problem

One aspect of the inverse problem which until recently was little explored,
is the very special case of the geodesic equations of the canonical symmetric
connection, that we shall denote by ∇, belonging to any Lie group G. The
canonical connection ∇ was introduced by Cartan and Schouten in [2]. In fact
∇ is defined on left invariant vector fields X and Y by

∇XY =
1

2
[X, Y ] (13)

and then extended to arbitrary vector fields by making ∇ tensorial in the
X argument and satisfy the Leibnitz rule in the Y argument. Following the
conventions of [13] a left invariant vector field X is denoted by X̃, that is,
X̃(g) = Lg∗X. Likewise the right invariant vector field induced by X is denoted
by X̃R(g) so that X̃R(g) = (Rg)∗X. It follows that

X̃R(g) = (Ad(g−1)X)∼,

where Ad denotes the adjoint representation. If Y is a second tangent vector
then

∇X̃R(g) Ỹ R(g) = ∇(Ad(g−1)X)∼(Ad(g−1)Y )∼

= 1/2 [(Ad(g−1)X)∼, (Ad(g−1)Y )∼]

= 1/2 [X̃R(g), Ỹ R(g)].

Thus in (1) X and Y could equally well denote right invariant rather than left
invariant vector fields.

It can be shown that ∇ is symmetric, bi-invariant and that the curvature
tensor on left or right invariant vector fields is given by

R(X, Y )Z =
1

4
[Z, [X, Y ]]. (14)

Furthermore, G is a symmetric space in the sense that R is a parallel tensor
field. Indeed suppose that W, X, Y and Z are left-invariant vector fields. Then
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from (1) and (2) we have that

4∇WR(X, Y )Z = 1/2[W, [Z, [X, Y ]]] − 4R(∇W X, Y )Z

−4R(X,∇WY )Z − 4R(X, Y )∇WZ

= 1/2[W, [Z, [X, Y ]]] − [Z, [∇WX, Y ]]

−[Z, [X,∇WY ]] − [∇W Z, [X, Y ]]

= 1/2[W, [Z, [X, Y ]]] − 1/2[Z, [[W, X], Y ]]

−1/2[Z, [X, [W, Y ]]] − 1/2[[W, Z], [X, Y ]]

= 1/2([Z, [W, [X, Y ]]] − [Z, [[W, X], Y ]] − [Z, [X, [W, Y ]]])

= 0.

It follows from (2) that ∇ is flat if and only if the Lie algebra g of G is nilpotent
of order two. The geodesics of ∇ are translates of one parameter subgroups of
G. The Ricci tensor Rij of ∇ is symmetric and bi-invariant. In fact, if {Ei} is
a basis of left invariant vector fields then

[Ei, Ej] = Ck
ijEk (15)

where Ck
ij are the structure constants and relative to this basis the Ricci tensor

Rij is given by

Rij =
1

4
C l

jmCm
il (16)

from which the symmetry of Rij becomes apparent. Indeed, Rij is obtained
by translating to the left or right one quarter of the Killing form. Since Ri

jkl

is a parallel tensor field and Rij is symmetric, it follows that Ricci gives rise
to a quadratic Lagrangian which may, however, not be regular. In fact it is a
natural question to ask whether or not there is a metric of some signature for
which ∇ is the Levi-Civita connection. If G is semi-simple then the Killing
form provides a bi-invariant metric whose Levi-Civita connection is ∇. For
this reason, I will usually assume that G is not semi-simple. Now it is known
that if L is the standard quadratic Lagrangian, any smooth function of it
will also be a Lagrangian, subject only to regularity and I conjecture that
it is the only ambiguity in the description of the Lagrangian. I shall also
assume that G is indecomposable in the sense that the Lie algebra g of G is
not a direct sum of lower dimensional algebras. It should be noted however,
that, generally, in solving the inverse problem, it is not sufficient to restrict
to indecomposable algebras. Certainly, if a decomposable algebra is a sum of
algebras, each of which possesses a variational connection, then the sum will
certainly be variational. However, the most general Lagrangian for the sum
need not be just the sum of individual Lagrangians. Furthermore, even if each
component is not variational, it is not clear that the same is true for the sum,
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though I am unaware of a counterexample. The smallest dimension in which
such a phenomenon could occur is five.

I have investigated the situation for Lie groups of dimension two and three in
[29]. It was found in [29] that in all these cases the geodesics were the Euler
-Lagrange equations of a suitable Lagrangian defined on an open subset of the
tangent bundle TG. In [10] the inverse problem for the canonical connection in
the case of Lie groups of dimension four was studied and some rather compre-
hensive results were obtained. We began our investigations at the Lie algebra
level and worked from the list of four-dimensional Lie algebras given in [20].
The Lagrangians are constructed by implementing the algorithm described in
detail in [1]. The fact that the procedure can be carried out can be traced ulti-
mately to the fact that every left and right-invariant one form on G gives rise
to a first integral for the geodesics of ∇. However, we have found it convenient
in several cases to modify the usual procedure, for example, by simplifying
the system of geodesics before implementing the algorithm. In other cases it
is profitable to introduce complex coordinates and regard two of the geodesic
equations as the real and imaginary parts of a single complex equation. It
was found that there are several classes of group whose geodesic equations are
not the Euler-Lagrange equations of any regular Lagrangian and this primary
existence test can be performed as a pure Lie algebra calculation. For the re-
maining groups, classes of Lagrangian were obtained depending on arbitrary
functions and in several cases a complete description of all possible Hessians
was obtained. The case of dimension four is probably the last case in which
it is feasible to obtain comprehensive results. In forthcoming investigations
we hope to be able to study canonical connections in higher dimensions and
for nilpotent algebras and construct the symmetry groups as well as consid-
ering the special case where the connection is of Levi-Civita type. We shall
also consider the Helmholtz conditions as a differential system using right-
invariant coordinates, as opposed to the straightforward approach adopted
here, and investigate various integrability conditions that arise. There are two
cases in dimension four where the connection is the Levi-Civita connection of
a bi-invariant metric, but for these cases, the closure conditions are the most
involved and at the moment a complete understanding is lacking. Notice that
if a canonical connection is of Levi-Civita type the associated metric is not
necessarily bi-invariant. In dimension five there are two flat nilpotent connec-
tions for which the corresponding metrics are not bi-invariant. In fact I would
make the following conjecture:

Conjecture: If a Lagrangian associated to an invariant connection is bi-
invariant, then there is another equivalent Lagrangian which is the quadratic
Lagrangian of a bi-invariant metric. Furthermore, the only ambiguity in the
Lagrangian arises from scaling by constants and the addition of symmetrized
products of parallel one-forms.

At the moment I do have not a method for proving this conjecture, but I know
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of no counterexamples. On the other hand one has to decide exactly what one
means by “bi-invariant Lagrangian”, because such a Lagrangian is defined on
TG and not on G. If the conjecture is in the appropriate sense true, then it
says that the Lie group project is only of limited interest.

Since our starting point is the Lie algebra g of a Lie group and since we are
assuming that G is not semi-simple, it is of interest to ask how the ideals of g
are related to ∇. To this end we shall quote the following result [16].

Proposition 3.1 Let ∇ denote a symmetric connection on a smooth manifold
M . Necessary and sufficient conditions that there exist a submersion from M
to a quotient space Q such that ∇ is projectable to Q are that there exists an
integrable distribution D on M that satisfies:

(i) ∇XY belongs to D whenever Y belongs to D and X is arbitrary;

(ii) R(Z, X)Y belongs to D whenever Z belongs to D and X and Y are arbi-
trary, where R denotes the curvature of ∇. 2

Clearly in the case of the canonical connection on G the two conditions of
the last Proposition coalesce into just one. Furthermore if h is an ideal in g
it gives rise to an integrable distribution on G for which this single condition
holds. Thus we have:

Proposition 3.2 Every ideal h of g gives rise to a quotient space Q consisting
of the leaf space of the integrable distribution determined by h and ∇ on G
projects to Q. 2

The center of g is of course an ideal and it has the property that any element
of it gives rise to a parallel vector field on G. A very interesting situation
occurs where g possesses two ideals h1 and h2 such that h1∩h2 is zero. Denote
the corresponding distributions on G by D1 and D2, respectively. Since we
are always assuming that g is indecomposable, g cannot be the direct sum of
h1 and h2 and hence D1 ∩ D2 is non-zero. In fact D1 ∩ D2 is the integrable
distribution on G that corresponds to the ideal h1 +h2 of g and simliarly D1 +
D2 corresponds to the ideal h1 ∩ h2. In the most favourable of circumstances,
one is able to construct all Lagrangians from a knowledge of Lagrangians on
two quotient spaces [10].

We turn our attention next to properties of the geodesic flow Γ of ∇. We note
first of all that since ∇ is bi-invariant any left-invariant vector field will be
a Killing vector field or affine collineation of ∇. Indeed if X and Y are also
left-invariant one finds that the Lie derivative of ∇ along Z is given by

(LZ∇)XY = [Z,∇XY ] −∇[Z,X]Y −∇X [Z, Y ]

= 1
2
([Z, [X.Y ]] + [[X, Z], Y ]) + [X, [Y, Z]])

= 0
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because of the Jacobi identity. The same argument applies equally to right-
invariant vector fields. Again if Z is a left or right-invariant vector field it
follows that on TG the fields Γ and ZC commute where ZC is the complete
lift of Z to TG. A very interesting consequence of the latter remark is that
whenever L is a Lagrangian that engenders Γ as its Euler-Lagrange vector
field, the function ZCL is another, possibly degenerate Lagrangian. See [21]
for a further discussion of this point.

The case of dimension five will be the subject of the doctoral dissertation of
Igor Strugar [26] and will continue the investigations in [29,10]. The primary
concern is to ascertain whether or not a particular connection is derivable
from a Lagrangian function and, if so, to give at least one such Lagrangian.
In the future I would like to be able look at the inverse problem for the six-
dimensional nilpotent Lie algebras of which there are 24 classes. At that point
the the low dimensional classification of Winternitz et al will have been ex-
hausted, though Ian Anderson is in the process of completing a new description
of all six-dimensional algebras of which there are 99 classes.

4 Lie group algorithm

In this section let us explain next how the general theory of Section 3 simplifies
for the case of the geodesic equations associated to a canonical connection. In
the case of a symmetric linear connection the matrix Φ is of the form

Φi
j = Ri

kjlu
kul (17)

where Ri
kjl are the components of the curvature R of the connection rela-

tive to a coordinate system (xi). The higher order Φ-tensors in this case just
correspond to covariant derivatives of the curvature so that, for example,

1

Φ
i

j= Ri
kjl;mukulum. (18)

Since R is parallel all the higher order Φ-tensors vanish. Similarly for the case
of a linear connection, one finds that

Ψi
jk = Ri

ljku
l (19)

and again the higher order Ψ’s correspond to covariant derivatives of R. Thus,
for example,

1

Ψ
i

jk= Ri
ljk;mulum. (20)

Again since R is parallel the higher order Ψ-tensors vanish. The condition
coming from Φ is

(

gmiR
i
pjq − gjiR

i
pmq

)

upuq = 0, (21)
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while the condition coming from Ψ is

(gmiR
i
pjq + gqiR

i
pmj + gjiR

i
pqm)up = 0. (22)

If we contract uq into (22) we find from (21) that

gqiR
i
pmju

puq = 0. (23)

Thus, for the special case of a canonical connection, we can use (22) and
(23) as the first and only algebraic conditions in the double hierarchy and the
calculation can be done at the Lie algebra level without the need for having a
group representation. In some cases we find that, even at that level, the matrix
gij is forced to be singular. In such a case we can be sure that there will be no
Lagrangian corresponding to the geodesic equations of any Lie group that has
g as its Lie algebra. Suppose, however, that conditions (22) and (23) do not
entail that gij should be singular. One is now faced with the problem of finding
a Lie group G so that g is its Lie algebra. An answer of sorts is furnished
by Ado’s theorem [15], which asserts, in the first instance, that any finite
dimensional Lie algebra over R or C has a faithful finite -dimensional linear
representation. The corresponding group can then be obtained, in principle,
by exponentiation. If g has only a trivial center then the adjoint representation
is faithful. If the center is non-trivial then there is no obvious representation
available. Ado’s theorem appears to offer no information on the order of the
representating matrices.

It is very convenient, if not essential for our purposes, to work with linear rep-
resentations of order n for algebras and groups of order n. Now it would seem
to be impossible to obtain a classification of all finite-dimensional Lie algebras,
let alone Lie groups. Nonetheless such classifications, or perhaps descriptions,
are available in dimensions 2,3,4 and 5 [20]. The cases of dimensions 2 and 3
have been discussed in [29]. As for dimension 4, we have in every case been
able to find a faithful linear representation by 4×4 matrices without recourse
to Ado’s theorem [10]. Thus

Theorem 4.1 Every Lie algebra in dimensions two, three and four has a
faithful representation by matrices of order two, three and four, respectively.

Let us assume now that we have a Lie algebra g, that conditions (22) and
(23) do not entail that the matrix gij is singular and that we have a matrix
representation and that we are able to determine a corresponding Lie group
G by exponentiation. On G we construct the right invariant Maurer-Cartan
one-form and then by dualizing, we obtain a basis for the right invariant vector
fields. We obtain thereby a representation of g by vector fields. From Section 4
we see that no further algebraic conditions can arise and we proceed to formu-
late conditions (7). We solve these conditions with the help of first integrals
of the geodesic equations of the canonical connection ∇ on G. Finally, we
formulate and solve to the extent that is possible, the closure PDE conditions
(8).
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We state next without proof several results about first integrals. The exis-
tence of these integrals in the Lie group context is the ultimate reason that
conditions (7) and (8) can be implemented in practice.

Proposition 4.1 Any left or right invariant one-form on G gives rise to a
linear first integral on TG. 2

Proposition 4.2 Consider the following conditions for a one-form α on G:

(i) α is right-invariant and closed;
(ii) α is left-invariant and closed;
(iii) α is bi-invariant;
(iv) α is parallel.

Then we have the following implications: (iii) implies (i); (iii) implies (ii);
each of (i),(ii) or (iii) implies (iv). 2

Proposition 4.3 Suppose that a basis for a Lie algebra g of a Lie group G
consists of

Xi =
∂

∂xi
, W =

∂

∂w
+ ak

j x
j ∂

∂xk
, (24)

where ak
j is a constant n × n matrix. Then the geodesic equations for the

canonical connection on G are given by

ẍi = ai
j ẋ

jẇ, ẅ = 0. (25)

This last proposition pertains to the class of Lie algebras that have a codimen-
sion one abelian nilradical. Such algebras are characterized by a single “ad”
matrix.

5 Examples

In keeping with my usual philosophy I will exhibit several Lie group examples
in this final section. The numbering of the Lie algebras comes from Winternitz’
1976 classification [20].

Example 1: The Euclidean group of the plane

This example is particularly nice and the entire algorithm can be carried
through completely. The corresponding Lie algebra is denoted by A3,6 in [20]
and has basis e1, e2, e3 with non-zero brackets, [e1, e3] = −e2 and [e2, e3] = e1.
As in [29] the geodesics are given by

u̇ = tv, v̇ = −tu, ṫ = 0, (26)

where u, v and t denote ẋ, ẏ and ẇ, respectively. The connection form θ is
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given by

−2θ =















0 −dw −dy

dw 0 dx

0 0 0















and the curvature two-form is given by

4Ω =















0 0 dxdw

0 0 dydw

0 0 0















.

Hence we see that the curvature tensor has essentially only the following non-
zero components

4R1
313 = 1, 4R2

323 = 1. (27)

Conditions (22) and (23) entail that gij satisfies the conditions

g1qu
q = g2qu

q = 0

and the solution of the ODE conditions (7) imply that gij is given by

gij = M















t2u t2v −t(u2 + v2)

t2v −t2u 0

−t(u2 + v2) 0 u(u2 + v2)















+ P















t2 0 −tu

0 t2 −tv

−tu −tv u2 + v2















+ N















−t2v t2u 0

t2u t2v −t(u2 + v2)

0 −t(u2 + v2) v(u2 + v2)















+















0 0 0

0 0 0

0 0 F















.

The closure conditions (8) turn out to be

uMu + vMv + tMt + 4M = 0 (28)

uNu + vNv + tNt + 4N = 0 (29)

uPu + vPv + tPt + 3P = 0 (30)

Fu = 0 (31)

Fv = 0 (32)

Pv + 2N + tNt + uMv − vMu = 0 (33)

Pu + 2M + tMt − uNv + vNu = 0. (34)
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The closure conditions can be solved by introducing the following first inte-
grals: α =u

t
− y, β =v

t
+ x, γ= cos(w)u−sin(w)v

t
, δ= cos(w)v+sin(w)u

t
. Thus

F = F (t) (35)

M =
m(α, β)

t4
(36)

N =
n(α, β)

t4
(37)

P =
(2n + δmγ − γmδ)β + (2m − δnγ + γnδ)α

t3
(38)

where m, n and F are arbitrary smooth functions.

A very simple Lagrangian in this case is given by

L =
(u2 + v2)

t
+ xv − yu + t2. (39)

Example 2: A4,4

The Lie algebra relations are:

[e1, e4] = e1, [e2, e4] = e1 + e2, [e3, e4] = e2 + e3. (40)

On exponentiating the matrices E1, E2, E3, E4 one finds that a typical element
S of the Lie group associated to the Lie algebra is given by

S =





















ew eww eww2

2
x

0 ew eww y

0 0 ew z

0 0 0 1





















.

The one-forms dw, dx− (x+y)dw, dy− (y +z)dw, dz−zdw comprise a right-
invariant coframe. The corresponding right-invariant frame of vector fields is
given by

W =
∂

∂w
+ (x + y)

∂

∂x
+ (y + z)

∂

∂y
+ z

∂

∂z
,

X =
∂

∂x
, Y =

∂

∂y
, Z =

∂

∂z
. (41)

The corresponding system of geodesic equations is given by

ṫ = 0, u̇ = tu, v̇ = t(u + v), ṡ = t(v + s) (42)

where s, t, u and v denote ż, ẇ, ẋ and ẏ, respectively. For later use we define
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the following first integrals of the geodesics:

α =
e−xt

u
, β =

t − wu

u
, γ =

e−x(s − xt)

u
, δ =

s

u
− (z + w),

ζ =
v

u
− (y + z), η =

e−x(v − xs + x2t
2

)

u
.

The connection form θ is given by

−2θ =





















0 0 0 0

dy + dz dx dx 0

dz + dw 0 dx dx

dw 0 0 dx





















and the curvature two-form is given by

4Ω =





















0 0 0 0

dx(dy + 2dz + dw) 0 0 0

dx(dz + 2dw) 0 0 0

dxdw 0 0 0





















.

We see that the curvature tensor has essentially only the following non-zero
components

4R2
112 = 1, 2R2

113 = 1, 4R3
113 = 1, 4R2

114 = 1, 2R3
114 = 1, 4R4

114 = 1. (43)

Conditions (22) and (23) entail that gij satisfies the following condition:

gij =





















λ t3µ t2σ tρ

t3µ 0 0 −t2µ

σt2 0 −µt2 −σtu + µstu

tρ −t2µ −σtu + µstu µ(tuv − s2u) + σsu − ρu





















.

The ODE conditions (7) are given by

λ̇ + (s + v)t3µ + (s + t)t2σ + t2ρ = 0 (44)

µ̇t + 2µṫ + utµ = 0 (45)

tρ̇ + ρṫ = 0 (46)

tσ̇ + 2ṫσ = 0. (47)
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The solution to these ODE conditions is given by

gij = M





















− v
u

1 0 0

1 0 0 −u
t

0 0 −u
t

−su
t2

0 −u
t
−su

t2
tuv−s2u

t3





















+ S





















− s
u

0 1 0

0 0 0 0

1 0 0 −u
t

0 0 −u
t

su
t2





















+





















L 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















+ R





















− t
u

0 0 1

0 0 0 0

0 0 0 0

1 0 0 −u
t





















where L, M, R, S are first integrals.

After some rearrangement, the closure conditions turn out to be equivalent
to:

Ls = Lt = Lv = 0 (48)

uMu + tMt + M = 0 (49)

sSs + tSt + uSu + S = 0 (50)

sRs + tRt + uRu + vRv + R = 0 (51)

Ss = Mt, Mt = Rv, St = Rs. (52)

Using the first integrals introduced earlier we can write the solutions for
L, M, R, S as

L = L(u) (53)

uM = a(α, β) (54)

uS = b(α, β) (55)

uR = c((α, β, γ, δ, η, ζ)). (56)

There are three closure conditions that remain to be satisfied. However, they
already imply that

Rvv = 0, Rsv = 0, Rsss = 0.

It follows that we may write

uS = A(α, β)γ + B(α, β)δ (57)

and

uR = H(α, β)η + J(α, β)ζ + C(α, β)(δ)2

+D(α, β)δ + E(α, β)(γ)2 + F (α, β)γ + G(α, β).
(58)
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In (57) and (58) A, B, ..., J are arbitrary smooth functions of their arguments.
If we substitute (57) and (58) into (52) these functions may be identified via
the following equations:

uS = aαγ + aβδ (59)

and

uR = aαη + aβζ + aβ,β

δ2

2
+ aα,α

γ2

2
+ G(α, β). (60)

Thus the Hessian is parametrized by the functions a, G and L. A concrete
Lagrangian is given by

L = (2s + u − v) ln(
u

t
) − 2ws − wv +

v2

u
+ t2. (61)

Example 3: A4,9 (b = 0)

The system of geodesic equations is given by

ṫ = 0, u̇ = 0, v̇ = tv, ṡ = uv + st, (62)

where the same notation as in the previous example is used. The curvature
tensor has essentially only the following non-zero components

4R4
123 = 1, 4R3

113 = 1, 4R4
213 = 1, 4R4

114 = 1. (63)

Conditions (22) and (23) entail that gij satisfies the following conditions:

uqgq3 = uqgq4 = g24 = g44 = g14 − g23 = 0. (64)

The algebraic solution for g may be written as

g =





















λ µ σ −vτ
t

µ ρ −vτ
t

0

σ −vτ
t

(uv−st)τ
tv

τ

−vτ
t

0 τ 0





















.

The ODE conditions (7) are given by

λ̇ + vσ −
svτ

t
= 0, ρ̇ = 0, µ̇ −

v2τ

t
= 0, σ̇ = 0, τ̇ + tτ = 0. (65)
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When (65) are integrated we find that a new solution for g is given by

g = P





















s
t2
− 2uv

t3
v
t2

u
t2

−1
t

v
t2

0 −1
t

0

u
t2

−1
t
− s

v2
1
v

−1
t

0 1
v

0





















+ Ne−w





















2v2

t3
0− 2v

t2
0

0 0 0 0

−2v
t2

0 2
t

0

0 0 0 0





















+





















K L 0 0

L M 0 0

0 0 0 0

0 0 0 0





















.

At this point we cannot make a definitive decision about the existence of
a Lagrangian and we are thus compelled to explore the closure conditions
(8). After a long calculation we find that they are equivalent to the following
conditions:

K = K(t, u)

L = L(t, u)

M = M(t, u)

Mt − Lu = 0

Ku − Lt = 0

(66)

and

tNt + uNu + vNv + sNs = 0

Ns − Pv = 0

Pt − Nu = 0

vPv + tPt = 0

Pu = Ps = 0.

(67)

Thus the conditions involving K, L and M decouple from the ones for N and
P and we analyze the latter two functions in the following way. We note first
of all that the following seven functions constitute a maximally functionally
independent set of linear first integrals: t, u, e−wv, xu − wu, e−w(s − vx), yt −
v, s− yu− zt. For P we note that it is annihilated by ∂

∂u
, ∂

∂s
, t ∂

∂t
+ v ∂

∂v
and the

geodesic vector field Γ where

Γ = t
∂

∂w
+ u

∂

∂x
+ v

∂

∂y
+ s

∂

∂z
+ vt

∂

∂v
+ (uv + st)

∂

∂s
. (68)

A short calculation shows that these differential operators span a six-dimensional
integrable distribution and that the general solution for P is given by

P = P (α, β) (69)

where
α = y −

v

t
, β = e−w v

t
. (70)
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As for N , at the outset it is subject to three conditions. Two of them are
embodied in (67) and the third arises from the fact that N is a first integral
and so is annihilated by the geodesic vector field Γ. In addition to Γ and ∂

∂u

and ∂
∂s

define the following two differential operators:

∆ = t
∂

∂t
+ u

∂

∂u
+ v

∂

∂v
+ s

∂

∂s
(71)

T = t
∂

∂u
+ v

∂

∂s
. (72)

We find now that the operators ∆, Γ, T and [T, Γ] close as a four-dimensional
integrable module. Hence the general solution for N involves four arbitrary
functions. Finally there remain the two conditions relating N and P in (67)
and when they are imposed one finds the following general solution:

N = (z +
(uv − st)

t2
)
∂P

∂α
+

e−w(uv − st + xtv)

t2
∂P

∂β
+ R(α, β) (73)

where R is an arbitrary function. Together (69) and (73) furnish a complete
solution for the Hessian of the Lagrangian that we are seeking. A particular
Lagrangian is given by

L = s ln(
v

t
) −

uv

t
+ tu + zt − xv. (74)
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