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Contact symmetries and variational sequences

Demeter Krupka, Olga Krupkova, Geoff Prince and Willy Sarlet

ABsTRACT. One of the results of the variational sequence theory, related to the
inverse problem of the calculus of variations, states that a dynamical form e,
representing a system of partial differential equations, is locally variational if and
only if the Helmholtz form H(e) vanishes. In this paper, a relationship between
the Lie derivatives of ¢ and H(e) is studied. It is shown that invariance of the
Helmbholtz form H (e) with respect to a vector field Z preserving contact forms is
equivalent with local variationality of the Lie derivative of € by Z.

1. Introduction

In this paper we study conditions which ensure that the Lie derivative dz¢ of a
dynamical form ¢ by a vector field Z, defined on the domain of ¢, is a variational
dynamical form. In particular, we find equations for the vector fields Z, transforming
a non-variational dynamical form € to variational ones, 0ze. We call such vector fields
variational vector fields for the dynamical form e.

We use the theory of global higher order variational functionals in fibered spaces,
our main sources are Goldschmidt and Sternberg [5], Krupka [6], [7], [8], and Traut-
man [18]. We also recall the variational sequence theory due to Krupka [9], [10].
For different aspects of the inverse variational problem and its connection to closed
differential forms we refer to Crampin, Prince and Thompson [2|, and Krupkova [12],
[13], [14].

Then we explain a new idea, namely that there should exist, in a certain sense, a
close correspondence between the notions of variationality of a differential form and
invariance of its exterior derivative. We introduce contact symmetries as vector fields,
preserving contact differential forms (Garcia [4]). We show that the Lie derivative
of a dynamical form ¢ by a contact symmetry is variational if and only if Z leaves
invariant the Helmholtz form H(e) of ¢, i.e., 9z H(g) = 0.

The next part of the paper is devoted to fibered mechanics, i.e., the variational
theory on fibered manifolds over 1-dimensional bases. We give explicit formulas for
contact symmetries, and derive equations for variational vector fields. In particular,
we analyze a class of 2-forms, locally generated by contact 1-forms. Their fundamen-
tal property is that they correspond to systems of second order ordinary differential
equations, linear in the second derivatives; moreover, closed 2-forms are in one-to-one
correspondence with variational dynamical forms.
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Finally we discuss an example due to Douglas [3]. In particular, we show that
there may exist systems of equations which are not variational, even do not possess
variational multipliers, but admit variational contact symmetries.

Our discussion evidently opens several new questions that we do not touch in this
paper. Among them, one of the most important concerns the relationship between
solutions of the equations defined by the dynamical form €, and those of the equations
given by the transformed dynamical form O0ze (here we refer to Prince [15|, where
similar features were observed).

2. Differential forms on a fibered manifold

Throughout the paper, Y is a fibered manifold with base X and projection .
We put n =dim X, n+m =dimY. J"Y, r > 0, is the r-jet prolongation of Y, and
% J'Y — J°Y, 1" J'Y — X are the canonical jet projections. The points of
J"Y are r-jets JI v of sections v of Y at x € X; the r-jet prolongation of v is the
mapping x — J"y(x) = JI7.

Any fibered chart (V,4), 1 = (2*,4°) on Y induces the associated charts (U, ¢),
¢ = (2*) on X, and (V",¢"), " = (xi,y",y;’l,y;’m,...,y}’mmﬁ) on J"Y, where
U=na(V),and V" = (7") "2 (V), 1 <i,j1,52,--,Jr <N, 1 <o < m.

A vector E at y € Y is m-vertical if Tym - = = 0. A differential form p on Y is
m-horizontal if it vanishes whenever one of its arguments is a m-vertical vector.

For any open set W C Y we denote by Q"W the exterior algebra on W" =
(7")H(W). QW and QW are the ring of smooth functions and the Q5W-module of
smooth k-forms on W7, respectively. We also use some submodules, Qp, xW C W,
the submodule of 7"-horizontal forms, and € W C Q; W, the submodule of a0
horizontal forms. 7

We have a morphism of exterior algebras h : QW — Q’,;JS%W, defined by

(2.1) hf=fr"tN hda' =dat,  hdyS, 5 = Yo 0T

where f : V" — R is a function. Obviously, J"v*p = J"H1~*hp for every section 7
of m. We call h the w-horizontalization.

We say that a form p € QW is contact if hp = 0. For any fibered chart (V,),
Y = (2%,y7), the 1-forms

(2.2) g

P g 7. . p
w]l]2~~~]z dy]l]2---]l y]1]2---]lpdm )

where 0 < I < r — 1, are examples of contact forms on V". The system of forms
(2.3) (dz',w®, ... ,w

is a basis of linear forms on V". By the contact ideal on W we mean the ideal
O"W in the exterior algebra Q"W locally generated by the forms w7 . .d
0<I<r—1. Since

o g
Fidnedr1> W51 jagi)

g
“Yitegr

(2.4) dw}'jl...jl = _dygl---jlp A dx?,
the contact ideal is also generated by the forms w”, w7 ,... w7 , ,dw] . .
A form p € Qi W has a unique decomposition
(2.5) (7" p = hp+ pip+ pap+ - + Prp,
in which p;p contains, in any fibered chart, exactly ¢ exterior factors wj ; . Trans-

formation properties of these forms guarantee invariance of the decomposition. p;p
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is the i-contact component of p. If k > n + 1, we define p € QLW to be strongly
contact if pr_,p = 0.

By a w-projectable vector field we mean a vector field = on Y such that there exists
a vector field ¢ on X satisfying T'n-=Z = £om. We denote by J" = the r-jet prolongation
of =. We shall need the behavior of the projections h,pi,...,pr under the Lie
derivative d r=. Since for any m-projectable vector field = the operator 0 r= preserves
contact forms, and (7" T5")*0rzp = 0 ri1=(7" ) p, we have hdjrzp = Ojri1z hp,
and for all i = 1,2,... &k, p;0jr=p = Ojr+12 Dip-

A dynamical form (of order r) is defined to be a 1-contact element ¢ of the module
Q7,1 yW, where W is an open subset of ¥’ (Takens calls these forms source forms
[17]). A Lagrangian (of order r) for 7 is defined to be an element A € Q] W. In a

fibered chart (V,v), v = (2%,9%),

(2.6) e =e,w’ Awy,
and
(2.7) A= LWO,

where wy = dz' A dax®? A --- Adx™. The component L : V" — R is a Lagrange
function. The components €, of a dynamical form of order r represent left-hand
sides of a system of m differential equations of order r for sections of © (ODE if
dim X =1 and PDE if dim X =n > 1).

A form p € QJW is called a Lepage equivalent of a Lagrangian A if hp = A
(up to a canonical jet projection), and pi1dp € Qf;llYW The dynamical form pidp
(depending only on ) is called the Fuler-Lagrange form of A and denoted by E(\).
In a fibered chart

(2.8) E(\) = E,(L)w’ A wy,
where
d oL
(2.9) E,(L) = (-1)'d;,d; ...dﬁW.
1=0 J1J2---J1

The components of E(\) are called the Euler—Lagrange expressions. The mapping
(2.10) Qn xW A= E\) €Y, yW,

n

assigning to a Lagrangian its FEuler—Lagrange form, is called the Fuler—Lagrange
mapping. Forms belonging to the kernel of the Euler-Lagrange mapping are called
variationally trivial, elements of the image are called variational forms.

The inverse problem of the calculus of variations for a dynamical form e consists
in finding a Lagrangian A such that ¢ = E()\). A weaker version of the inverse
problem, the variational multipliers problem for a dynamical form e, then means to
find a regular matrix (G%) such that & with components £, = G%e, is variational.
In this weaker version € and & have the same solutions.

3. Variational sequences

We recall the main steps of the construction of an exact sequence of sheaves, the
variational sequence, in which the Euler-Lagrange mapping appears as a sequence
morphism. By means of this sequence one obtains more information about the
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structure of the Euler-Lagrange mapping, and discovers new objects, describing its
local and global properties.

Put Qf . = {0}, and let €} . be the sheaf of contact k-forms if &k < n, or the sheaf
of strongly contact k-forms if £ > n, on J"Y. We set

(31) 62 = 7];’,0 + sz—l,cv

where d€;,_, . is the image sheaf of d2},_, . by the exterior derivative d. It can be
shown that we get an exact sequence of soft sheaves 0 — O] — 05 — 0 — ...,
where each of the morphisms is the exterior derivative, i.e., a subsequence of the De
Rham sequence 0 — R — Q] — Qf — Qf — .... The quotient sequence

(3.2) 0—-R—-Q5—Q7/0] - Q5/05 — Q5 /05 — ...

which is also exact, is called the r-th order variational sequence on Y. We denote
the sequence (3.2) symbolically by 0 — R — V", and the quotient mappings by

The variational sequence is an acyclic resolution of the constant sheaf R over Y.
Let T'(Y, V") denote the cochain complex of global sections of (3.2), i.e.,

(34)  0—T(V,R) - (Y, Q) — (Y, Q,/0%) — D(Y, Q5/0%) — ....

As a corollary to the Abstract De Rham Theorem we get the following identifica-
tion of the cohomology groups H*(I'(Y,V")) of this complex with the De Rham
cohomology groups of the manifold Y:

(3.5) H*T(Y,V")) = H*Y.

To understand the meaning of variational sequences for global higher order varia-
tional theory, first note that the quotient sheaves €2}, /©;. are determined up to natural
isomorphisms of Abelian groups. Thus, the classes in Q) /O] admit various equiv-
alent characterizations. A simple analysis shows that the sections of the quotient
sheaf Q7 /O! can be identified, in a fibered chart, with some n-forms A\ = Luwy, i.e.,
with some Lagrangians. Elements of €2 ., /©] ., can be identified with some (n+1)-
forms € = e,w? A wy, i.e., with dynamical forms. More precisely, we can prove that

the sheaf 27 /©7 is isomorphic with a subsheaf of the sheaf of Lagrangians Q;JS%, and

2r+1

0}, +1/67, 44 is isomorphic with a subsheaf of the sheaf of dynamical forms ;77 .

The quotient mapping
(3.6) E,:Q, /0, — Q. 1/0;

in this representation of sheaves coincides with the Euler—Lagrange mapping.

We say that a dynamical form e € € ., is associated with a (n + 1)-form
p € QW if e = [p] (here [p] denotes the class of p, belonging to €2 /O] ;). Then
we call the class E,11(g) = [dp| the Helmholtz class of € = [p]. The mapping
(3.7) Eng1 o Q01/0000 — Q100/05 1

is called the Helmholtz mapping. When we do not want to stress the context of the
variational sequence, we also write for the Helmholtz class of ¢ = [p]

(3.8) H(e) = Enya(e).

Now it is clear what kind of results are described by the variational sequence:
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(1) Assume that a Lagrangian A = [p| satisfies F,,(A\) = 0. Then by exactness of
(3.2), there always exists a class [ such that E,_1([n]) = [p] = [dn]. This means
that, locally, p decomposes as the sum of a closed form and a contact form. Condition

(3.9) En,(\) =0

is the local variational triviality condition. If, in addition, H"Y = {0}, (3.5) says that
that 1 may be chosen globally defined on J"Y. Condition (3.9) strongly determines
the structure of Lagrangians whose Euler-Lagrange forms vanish identically.

(i) Suppose that we have a dynamical form & = [p]. Similarly as above, we have
the local variationality condition

(3.10) Epi1() =0,

stating that ¢ is locally variational if and only if the associated Helmholtz class
vanishes. If ¢ satisfies (3.10) then there exists a class [n] such that E,([n]) = ¢ =
[p] = [dn]. Thus, locally, p can be expressed as the sum of a closed form and a
strongly contact form. If, in addition, H" ™'Y = {0}, (3.5) guarantees that 1 may

be chosen globally defined on J"Y. Again, condition (3.10) strongly determines the
structure of locally variational dynamical forms.

4. Variational vector fields

We say that a vector field Z on J"Y preserves contact forms if for any contact
form p on J"Y the Lie derivative dzp is again a contact form; we also say that Z is
a contact symmetry.

If Z is a contact symmetry then for any two k-forms p1, po belonging to the same
class in the variational sequence, the k-forms O0zp1, Ozps also belong to the same
class. Thus we can define the Lie derivative of a class [p] to be the class

(4.1) 9z[p] = [0zp]-

For any m-projectable vector field Z on an open subset of Y, the r-jet prolongation
Z = J"Z is a contact symmetry. This property of the vector field J"= implies,
among others, the commutativity of the Lie derivative 0= and the Euler-Lagrange

mapping,

(42)) anrEE()\) == E(aJrE)\)

(see Krupka [6], [7]). One can easily show that an analogous property holds for any
contact symmetry and any morphism Ej : Q /0O — Qp /O] -

THEOREM 1. Let W C Y be an open set, and let a vector field Z, defined on W,
be a contact symmetry. Then for all k,

(4.3) 0z Ex([p]) = Ex(0z[p]) = Ex([izdp]).

PROOF. Since the Lie derivative commutes with the exterior derivative, we have
for any k-form p on J'Y

(4.4) 9z(|dp]) = [0zdp] = [dOzp] = [dizdp].
Writing this formula in terms of the morphism Ej we get (4.3). O

Our main goal is to introduce the concept of a variational vector field for a given
dynamical form.
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DEFINITION 1. Let e € Q5 | W be a dynamical form such that e = [p] for some
p € Qp, W. We say that a vector field Z on W* C J®Y is a variational vector field

for e = [p] if the Lie derivative Oz¢ is a locally variational form.

The proof of the following theorem is based on a simple observation explaining
the meaning of identity (4.3) for the Helmholtz mapping E,, 1.

THEOREM 2. Let W C Y be an open set, let ¢ be a dynamical form on W* C J°Y,
and Z be a wvector field on W?. Suppose that Z is a contact symmetry. Then the
following two conditions are equivalent:

e 7 is a variational vector field for €, i.e., E,1(0z¢) = 0.
e 7 leaves invariant the Helmholtz class, i.e. 0z E,+1(¢) = 0.

PrOOF. We choose p € QW such that ¢ = [p] and then apply Theorem
1. We obtain 9z E,+1(¢) = Ep4+1(9z¢). Theorem 2 is a direct consequence of this
formula. U

5. Variational contact symmetries of second order dynamical forms

In what follows, we shall specify the above results for the case of mechanics, i.e.
for second-order dynamical forms on fibered manifolds with 1-dimensional bases. A
fibered chart on Y is denoted by (V,), ¥ = (t,q%), the associated charts on J'Y
and J2Y by (V1,¢h), ¢! = (t,¢%,47) and (V2,4?), ¥* = (t,¢°, %, "), respectively.
In this notation,

w? =dq° — ¢°dt, W’ =dq° — §°dt.
For any differentiable function f : V! — R we have
d¢ _of of ., Of .,

a = ot ot Tt

and we define the cut formal derivative operator d'f/dt by

df of of .,

2 = 4 q’.

dt ot Og”

The formal derivative df /dt is defined on V2, and d'f/dt is a function on V.

The following simple observation gives us a geometric description of second order
dynamical forms, depending linearly on the second derivatives.

(5.1)

LEMMA 1. Let € be a dynamical form, expressed in a fibered chart by
(5.2) e =¢cow’ Adt.
The following two conditions are equivalent:

(1) The components of ¢ are linear in the second derivatives,
(5.3) e = Ay + Curg”.

(2) On V', there exists a 2-form p, generated by the contact forms w®, such
that € = [p).

PrROOF. If the components ¢, are of the form (5.3), we set
(5.4) p=w? A (Aydt + Cy,dg”).

Then (721)*p = Agw® Adt+ Cppw? A (WY +§Vdt) = e,w Adt+ Cyyw’ AWY, showing
that € = [p].
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Conversely, if p is a 2-form generated by the contact forms w?, i.e., p = W7 A
(Aydt + Byyw” + Cyudg?), then [p] = (A + Cpu¢”)w? A dt. g

We now discuss the question under what conditions a dynamical form e with
components (5.3) is variational. The above Lemma says that variationality of ¢ is
closely related with the properties of the form p (5.4). For these forms the Helmholtz
form reads (see Krupka [10], [11])

(5.5) H(e) = (Fpuw® + Gopw’ 4+ Hypyd%) Aw” Adt,
where
1,04, 0A, 1d /04, O0A, 1,0C,;, 9Cyr\ .
FO’I/ = 3 - — 7S\ a5 — N N - T
(8(]" g ) 4 dt ( 0¢° 0¢ ) ( 0q° g )q
_1d (801/7- B 8CUT) o 1<8Cw B 8CUT>-Q-T
(5.6) 4dt \ 0¢° ¢ d¢° olid ’
G — 1(8A1/ + 8A0) . ld(CVO' + CO'I/) + 1(801/7' 8007—) r
v~ o\ag T o) 2 dt 2\ o o )1
Hm/ - %(Cucr - Cm/)'

Next, by straightforward computations using the definition, we obtain the following
complete description of contact symmetries on W?2, where W C Y is an open set:

LEMMA 2. (1) Let dimY = 2, and let Z be a vector field on J?Y,
(5.7) Z = co -+ C— + C— + g—

The following three conditions are equwalent:
(a) Z is a contact symmetry.
(b) There exists a function f = f(t,q,q) such that

_ o f . df . ddf
(58) =5 (=F-ge (=G (=50
(¢) The components (o and ¢ depend on t,q,q only, and satisfy
o¢  9G.
and
e deo, s dCdGo,
(5.10) S T T S T e |
(2) Let dimY > 3. A vector ﬁeld
0 8 8
(5.11) Z = Co +CU +CU +CU

s a contact symmetry if and only if the functwns (o and C" depend on t,q"” only,
and

(5.12) é"_ﬁ—@" (o=

d*¢7 &% ., 2@..0
dt dt '

az  ae ! ar
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DEFINITION 2. If Z is a contact symmetry and f is a function such that condi-
tions (5.8) are satisfied, we say that Z is associated with f.

Note that, by (5.8), f = ¢ — (o¢. Formulas (5.10) for contact symmetries on
2-dimensional fibered manifolds Y have the same form as (5.12). Thus, we can
use formulas (5.12) independently of the dimension of Y, having in mind, however,
differences in the dependence of (y and ¢ on the coordinates.

LEMMA 3. Let € be a dynamical form with components (5.3). Then the Lie
derivative Oze by a contact symmetry Z is of the same form, i.e.,

(5.13) Oze = [0zp] = elw” N adt,
where
(5.14) el = A7 +CLq",
with
(5.15) _ _
(¢" — Cod") 9 . 9o . a¢v o .
Z _ Y\ 50 ) “50 Y50 .1 T
Ay =078+ = At (30 + g4 )ar+ (G + Bg7 4 )Cov.
ny = 82001, + CTVM + 8C0 Aa + %CUT’
0q° ag¥ o¢”

Using Theorem 2 together with the above Lemmas we can find equations for a
vector field to be a variational contact symmetry:

THEOREM 3. Let p be a 2-form locally generated by the contact forms w’, ez-
pressed by (5.4). Then a contact symmetry Z is variational for the dynamical form
e = [p] if and only if

DAZ  9AZ 1d <6A5 aAg) (80,%_80£)..T

oq° o¢¥  2dt\ 0q° 1ol oq° oq¥
1d/0Ct  9C% 1,90CZ  9CZ\ ...
___(#_ '07).-7—__<#_#)qu07
(5.16) 2dt\ 0¢° (ol 2\ 0¢° ol
0AZ 9AZ d(CZ +CZ) ,0C%Z  9CZN ..
T A + ( : , )q —0,

0¢°  0¢” dt d4° dq”

CZ/ZO' - ny = 0.

6. Symmetries of the Helmholtz form: Example

Let Y = RS, X = R. Let us consider, in the canonical coordinates on J 2R3, the
second order dynamical form e = (gyw! + gow?) A dt given by

(6.1) e1=¢+§", e2=¢+q

We wish to find vertical contact symmetries Z of the Helmholtz form H(e) of €, and
verify by a direct computation that the Lie derivative Oz¢ is a variational dynamical
form.

Expressions (6.1) were studied by Douglas [3] in connection with his analysis of
variational integrators for systems of two second order ordinary differential equations.
He proved that ¢ is not variational and has no variational integrators (cf. also [1]
and [16] for a geometric analysis of the problem).
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We restrict ourselves to invariance with respect to vector fields Z = J?Z, where

0
6.2 ==&
( ) 5 aqu’
and " = £(t,q%). The Helmholtz form H (e) is given by
(6.3) H(e) = 3(@? Aw' + ot Aw?) A dt,

and it is easily seen that the condition 0z H (¢) = 0 is equivalent with the system

-2 ‘1 2 2 1 1
L L L L O

4 B B = — = =0.
(64) d¢z  Oq! T gt T0q2 ot T 0qg?
Solving this system we obtain
(6.5) g =A+0q, €=B-C¢

where A = A(t), B = B(t) are arbitrary functions, and C' € R. The dynamical form
Oze, with Z = J?Z defined by (6.5), is given as dz¢ = (F1w! + &w?) A dt, where

(6.6) £ =2C¢', & =B -2Cq¢ —2C§.

From these formulas it immediately follows that H(0ze) = 0, which proves that the
dynamical form Jze is variational.

Clearly, the same result can be obtained from Theorem 3.

Note that in the family of vector fields Z = J?Z where Z is defined by (6.5) there
exist vector fields such that the systems e1 = 0, e = 0 and &1 = 0, €2 = 0 have
common solutions. Indeed, setting B = 0, we can easily check that the functions
q' =at +b, ¢> =0, in which a,b € R, verify both the systems.
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