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Abstract

In this paper, vector fields which are symmetries of the contact ideal are studied. It is shown that contact symmetries of the
Helmholtz form transform a dynamical form to a dynamical form which is variational (i.e. comes as the Euler–Lagrange form from
a Lagrangian). The case of dynamical forms representing first-order classes in the variational sequence is analysed in detail, which
means, by the variational sequence theory, that systems of ordinary differential equations of order � 3 are concerned.
© 2007 Elsevier B.V. All rights reserved.

MSC: 49Q99; 49S05; 58A15; 58A20; 58E30

Keywords: Fibred manifold; Lagrangian; Dynamical form; Variational sequence; Contact form; Contact symmetry; Helmholtz form

1. Introduction

One of the results of the variational sequence theory, related to the inverse problem of the calculus of variations,
states that a dynamical form ε, representing a system of ordinary or partial differential equations, is locally variational
if and only if the Helmholtz form H(ε) vanishes. Invariance properties of classes in the variational sequence then
suggest a new idea, namely that there should exist a close correspondence between the notions of variationality of a
differential form and invariance of its exterior derivative. The aim of this paper is to study a relationship between the
Lie derivatives of ε and H(ε). We prove that invariance of the Helmholtz form H(ε) with respect to a vector field Z,
preserving contact forms, is equivalent with local variationality of the Lie derivative ∂Zε of ε by Z, meaning that the
dynamical form ∂Zε is the Euler–Lagrange form of a Lagrangian. This result is then analysed in detail for the case of
dynamical forms on J 3Y which are known to represent classes in the (n + 1)st column of the first-order variational
sequence.
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First, in Section 2, we present a survey of basic concepts of the theory of global higher-order variational func-
tionals in fibred spaces as developed in Goldschmidt and Sternberg [5], Krupka [6–8], and Trautman [21], and of the
variational sequence theory due to Krupka [9,10]. Then we introduce contact symmetries as vector fields, preserving
contact differential forms (Garcia [4]), and we prove a key result that the Lie derivative of a dynamical form ε by a
contact symmetry Z is variational if and only if Z leaves invariant the Helmholtz form of ε. We call vector fields Z,
transforming a non-variational dynamical form ε to a variational one ∂Zε, variational vector fields.

The idea to transform a non-variational form to a variational one by means of a contact symmetry was announced
in the conference paper [12]. In that paper we studied this problem for second-order dynamical forms with compo-
nents affine in the highest derivatives, representing second-order ordinary differential equations. It turned out that this
problem can have interesting applications, namely to a system of equations which is not variational and even does not
possess any variational multiplier (Douglas [3]) one can find a variational system related by a contact transformation.
In this paper we continue studies in this direction. The aim is to investigate contact transformations related with objects
in the first-order variational sequence in mechanics. From the side of dynamical forms (and differential equations)
this means that our results concern systems of first-order ODE, of second-order ODE affine in the second derivatives,
and a class of third-order ODE, namely those defined by dynamical forms ε = εσ dqσ ∧ dt , of the following structure

(1.1)εσ = Aσ +
(

Cσν − 2
dDσν

dt

)
q̈ν − dEσ

dt
− 2Dσν

...
q ν

,

where Aσ ,Cσν,Dσν and Eσ are functions of t, qτ , q̇τ . In Section 3 we derive all important formulas for main ob-
jects appearing in the first three columns of the first-order variational sequence: Lagrangians, dynamical forms and
Helmholtz forms. In proofs we present explicit computations in order to provide techniques and useful tricks of
computation of classes and representatives. Then we find an explicit characterisation of contact symmetries, and of
transformed classes in the variational sequence. Finally, we derive a general form of equations for variational contact
symmetries.

In Section 4, illustrative examples are presented. We discuss briefly the case of second-order ODE’s, and bring
concrete examples of contact symmetries of Helmholtz forms, including Douglas’ equations mentioned above.

2. Variational sequences

Throughout this section, Y is a fibred manifold with base X and projection π . We denote n = dimX, n + m =
dimY . J rY , r > 0, is the r-jet prolongation of Y , and πr,s :J rY → J sY , πr :J rY → X are the canonical jet pro-
jections. The points of J rY are r-jets J r

x γ of sections γ of Y at x ∈ X; the r-jet prolongation of γ is the mapping
x → J rγ (x) = J r

x γ . A vector ϑ at y ∈ Y is π -vertical, if Tyπ · ϑ = 0; a differential form ρ on Y is π -horizontal, if
it vanishes whenever one of its arguments is a π -vertical vector. Any fibred chart (V ,χ), χ = (xi, yσ ), on Y induces
the associated charts (U,ω), ω = (xi), on X, and (V r ,χr), χr = (xi, yσ , yσ

j1
, yσ

j1j2
, . . . , yσ

j1j2...jr
), on J rY , where

U = π(V ), and V r = (πr,0)−1(V ), 1 � i, j1, j2, . . . , jr � n, 1 � σ � m.

2.1. Differential forms on a fibred manifold

For any open set W ⊂ Y we denote by ΩrW the exterior algebra on Wr = (πr,0)−1(W). Ωr
0W and Ωr

kW are the
ring of smooth functions and the Ωr

0W -module of smooth k-forms on Wr , respectively. We also use some submodules,
the submodule of πr -horizontal k-forms Ωr

k,XW ⊂ Ωr
kW , and the submodule of πr,0-horizontal k-forms Ωr

k,Y W ⊂
Ωr

kW . We have a morphism of exterior algebras

(2.1)h :Ωr
kW → Ωr+1

k,X W

defined by

(2.2)hf = f πr+1,r , hdxi = dxi, hdyσ
j1j2...jl

= yσ
j1j2...jlp

dxp,

where f :V r → R is a function; obviously, J rγ ∗ρ = J r+1γ ∗hρ for every section γ of Y . We call h the π -
horizontalisation. We say that a form ρ ∈ ΩrW is contact, if hρ = 0. For any fibred chart (V ,χ), χ = (xi, yσ ),
k



520 D. Krupka et al. / Differential Geometry and its Applications 25 (2007) 518–542
the 1-forms

(2.3)ωσ
j1j2...jl

= dyσ
j1j2...jl

− yσ
j1j2...jlp

dxp,

where 0 � l � r − 1, are examples of contact forms. The system of forms

(2.4)dxi, ωσ , . . . , ωσ
j1j2...jr−1

, dyσ
j1j2...jr

is a basis of linear forms on V r . By the contact ideal on W we mean the ideal ΘrW in the exterior algebra ΩrW

locally generated by the forms ωσ
j1j2...jl

, dωσ
j1j2...jl

, where 0 � l � r − 1. Since

(2.5)dωσ
j1j2...jl

= −ωσ
j1j2...jl s

∧ dxs,

the contact ideal is also generated by the forms

(2.6)ωσ , ωσ
j1

, ωσ
j1j2

, . . . , ωσ
j1j2...jr−1

, dωσ
j1j2...jr−1

.

A form ρ ∈ Ωr
kW has a unique decomposition

(2.7)(πr+1,r )∗ρ = hρ + p1ρ + p2ρ + · · · + pkρ,

in which piρ contains, in any fibred chart, exactly i exterior factors ωσ
j1j2...jl

; transformation properties of the forms
(2.3) guarantee invariance of the decomposition (2.7). In (2.7), piρ is called the i-contact component of ρ. If k �
n + 1, then we define ρ ∈ Ωr

kW to be strongly contact, if pk−nρ = 0.
By a π -projectable vector field we mean a vector field ϑ on Y such that there exists a vector field ϕ on X satisfying

T π · ϑ = ϕ ◦ π . We denote by J rϑ the r-jet prolongation of ϑ .
We shall need the behaviour of the projections h, p1, p2, . . . , pk under the Lie derivatives ∂J rϑ . Since for any

π -projectable vector field ϑ the operator ∂J rϑ preserves contact forms, and

(2.8)(πr+1,r )∗∂J rϑρ = ∂J r+1ϑ(πr+1,r )∗ρ,

we have

(2.9)h∂J rϑρ = ∂J r+1ϑhρ,

and for all i = 1,2, . . . , k,

(2.10)pi∂J rϑρ = ∂J r+1ϑpiρ.

2.2. Lagrangians, variational functionals

By a Lagrangian (of order r) for Y we mean an element λ of the module Ωr
n,XW , where W is an open subset of Y .

In a fibred chart (V ,χ), χ = (xi, yσ ),

(2.11)λ = Lω0,

where

(2.12)ω0 = dx1 ∧ dx2 ∧ · · · ∧ dxn.

The component L :V r → R is the Lagrange function. Let Ω be a piece of X, i.e., a compact, n-dimensional sub-
manifold with boundary ∂Ω , and let ΓΩY be the set of sections of Y , defined on Ω . λ gives rise to the variational
functional

(2.13)ΓΩY � γ → λΩ(γ ) =
∫
Ω

J rγ ∗λ ∈ R.

Let U ⊂ X be an open set, let γ :U → Y be a section. Let ϑ be a π -projectable vector field on an open set
W ⊂ Y such that γ (U) ⊂ W . If αt is the flow of ϑ , and α(0)t is its π -projection, then since παt = α(0)tπ for all t ,
γt = αtγ α−1 is a 1-parameter family of sections of Y , depending smoothly on the parameter t . Sometimes γt is called
(0)t
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the variation, or the deformation of γ , induced by ϑ . We get a real-valued function on a neighbourhood (−ε, ε) of the
origin 0 ∈ R,

(2.14)(−ε, ε) � t → λα(0)t (Ω)(αtγ α−1
(0)t ) =

∫
α(0)t (Ω)

J r(αtγ α−1
(0)t )

∗λ ∈ R.

Differentiating this function at t = 0 we obtain

(2.15)(∂J rϑλ)Ω(γ ) =
∫
Ω

J rγ ∗∂J rϑλ.

The number (2.15) is the variation of the variational functional λΩ at γ , induced by the vector field ϑ . This formula
shows, in particular, that the function

(2.16)ΓΩY � γ → (∂J rϑλ)Ω(γ ) ∈ R

is the variational functional (over Ω) associated with a new Lagrangian ∂J rϑλ. We call this function the (first) varia-
tional derivative, or the (first) variation of λΩ by ϑ . Formula (2.15) can be used in a standard way to define extremals,
and higher order variational derivatives of λΩ .

2.3. The Euler–Lagrange mapping

Now we shall analyse the structure of the variational derivatives by means of invariant differential-geometric oper-
ations. We know that if η is a differential form on a manifold X, and ϕ is a vector field on X, then the Lie derivative
∂ϕη decomposes into two terms,

(2.17)∂ϕη = iϕdη + diϕη;
in this formula, iϕ denotes the contraction of a form by ϕ. We wish to apply this decomposition to formula (2.15).

Let W ⊂ Y be an open set, and let λ ∈ Ωr
n,XW be a Lagrangian. Formally, we define a form ρ ∈ Ωs

nW to be a
Lepage equivalent of λ, if

(a) hρ = λ (up to a canonical jet projection), and
(b) the form p1 dρ is πs+1,0-horizontal.

If ρ ∈ Ωs
nW is a Lepage equivalent of λ, then condition (a) implies that

(2.18)
∫
Ω

J sγ ∗ρ =
∫
Ω

J s+1γ ∗hρ =
∫
Ω

J rγ ∗λ.

This means, in particular, that ρ defines the same variational functional as λ.
We have noticed in Section 2.1 that for any π -projectable vector field ϑ on W , the Lie derivative operator with

respect to J rϑ commutes with the horizontalisation h. Then

(2.19)∂J rϑλ = ∂J rϑhρ = h∂J sϑρ,

so we have for any section γ of Y with values in W ,

(2.20)J rγ ∗∂J rϑλ = J sγ ∗iJ sϑ dρ + dJ sγ ∗iJ sϑρ.

This is the first variation formula for the Lagrangian λ. Equivalently, formula (2.20) can be expressed as

(2.21)∂J rϑλ = iJ s+1ϑp1 dρ + hdiJ sϑρ.

Let λ ∈ Ωr
n,XW be a Lagrangian, expressed in a fibred chart by (2.11). Denote

(2.22)ωi = (−1)i−1 dx1 ∧ dx2 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn.
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A form ρ ∈ Ωs
nW is a Lepage equivalent of λ if and only if (πs+1,s )∗ρ has an expression

(2.23)(πs+1,s )∗ρ = Θλ + dη + μ,

where

(2.24)Θλ = Lω0 +
r−1∑
k=0

(
r−1−k∑

l=0

(−1)l dp1 dp2 . . . dpl

∂L
∂yσ

j1j2...jkp1p2...pl i

)
ωσ

j1j2...jk
∧ ωi,

η is a contact (n−1)-form, and the order of contactness of μ is � 2. The n-form Θλ, defined by (2.24), is the principal
Lepage equivalent of λ. Θλ is defined on the corresponding coordinate neighbourhood. Existence of global Lepage
equivalents can be proved by partitions of unity. In general, Lepage equivalent of a Lagrangian is non-unique.

Applying the decomposition of dρ into contact components (formula (2.7)) to (2.23) we obtain a decomposition

(2.25)(πs+1,s )∗dρ = E(λ) + F,

enjoying the following properties:
(a) E(λ) is the 1-contact component of dρ, i.e., E(λ) = p1 dρ; moreover, E(λ) does not depend on the choice of

the Lepage equivalent ρ of λ. In a fibred chart

(2.26)E(λ) = Eσ (L)ωσ ∧ ω0,

where

(2.27)Eσ (L) =
r∑

l=0

(−1)l dp1 dp2 . . . dpl

∂L
∂yσ

p1p2...pl

.

(b) hF = 0 and p1F = 0, i.e., the order of contactness of F is � 2.
The form E(λ), called the Euler–Lagrange form associated with λ, can be regarded as an element of the module

Ω2r
n+1,Y W ; its components Eσ (L) are the Euler–Lagrange expressions. The mapping

(2.28)Ωr
n,XW � λ → E(λ) ∈ Ω2r

n+1,Y W,

assigning to a Lagrangian its Euler–Lagrange form, is R-linear, and is called the Euler–Lagrange mapping. The forms
belonging to the kernel of the Euler–Lagrange mapping are called variationally trivial; elements of the image are
called variational forms. A 1-contact form ε ∈ Ωs

n+1,Y W is called a dynamical form (cf. [14]; Takens [20] calls these
forms source forms). The inverse problem of the calculus of variations for a dynamical form ε consists in finding a
Lagrangian λ such that ε = E(λ).

2.4. Invariance transformations

Recall that a form η on a manifold M is said to be invariant with respect to a vector field ϕ on M , if ∂ϕη = 0. We
now apply this definition in the context of higher order calculus of variations in fibred manifolds.

Let λ be a Lagrangian of order r for Y , and let ϑ be a π -projectable vector field. We say that λ is invariant with
respect to ϑ if ∂J rϑλ = 0. Analogously, we say that the Euler–Lagrange form E(λ) is invariant with respect to ϑ if
∂J 2rϑE(λ) = 0. Since the Lie derivative ∂J sϑ commutes with the mappings h,p1,p2, . . . , pk (Section 2.1), we have
∂J s+1ϑp1 dρ = p1 d∂J sϑρ for any Lepage equivalent of λ. But h∂J sϑρ = ∂J s+1ϑhρ, so the form ∂J sϑρ is a Lepage
equivalent of ∂J s+1ϑλ, and

(2.29)∂J s+1ϑE(λ) = E(∂J sϑλ).

Thus, E(λ) is invariant with respect to ϑ if and only if the transformed Lagrangian ∂J sϑλ belongs to the kernel of the
Euler–Lagrange mapping.
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2.5. The variational sequence

We now recall the main steps of the construction of an exact sequence of sheaves, the variational sequence, in
which the Euler–Lagrange mapping E appears as a sequence morphism. By means of this sequence we obtain more
information about the structure of the Euler–Lagrange mapping, and discover new objects, describing its local and
global properties.

Let Ωr
0,c = {0}, and let Ωr

k,c be the sheaf of contact k-forms, if k � n, or the sheaf of strongly contact k-forms, if
k > n, on J rY . We set

(2.30)Θr
k = Ωr

k,c + dΩr
k−1,c,

where dΩr
k−1,c is the image sheaf of Ωr

k−1,c by the exterior derivative d . It can be shown that we get an exact sequence
of soft sheaves

(2.31)0 → Θr
1 → Θr

2 → Θr
3 → ·· · ,

where the morphisms are the exterior derivative, i.e., a subsequence of the De Rham sequence

(2.32)0 → R → Ωr
0 → Ωr

1 → Ωr
2 → Ωr

3 → ·· · .
The quotient sequence

(2.33)0 → R → Ωr
0 → Ωr

1/Θr
1 → Ωr

2/Θr
2 → Ωr

3/Θr
3 → ·· ·

which is also exact, is called the r-th order variational sequence on Y . We denote the sequence (2.33) symbolically
by

(2.34)0 → R → Vr ,

and the quotient mappings by

(2.35)Ek :Ωr
k/Θr

k → Ωr
k+1/Θ

r
k+1.

The class of a form ρ is denoted by [ρ].
The variational sequence is an acyclic resolution of the constant sheaf R over Y . Let Γ (Y,Vr ) denote the cochain

complex of global sections of (2.33),

(2.36)0 → Γ (Y,R) → Γ (Y,Ωr
0) → Γ (Y,Ωr

1/Θr
1) → Γ (Y,Ωr

2/Θr
2) → ·· · .

As a corollary to the abstract De Rham theorem we get the following identification of the cohomology groups
Hk(Γ (Y,Vr )) of this complex with the De Rham cohomology groups of the manifold Y :

(2.37)Hk
(
Γ (Y,Vr )

) = HkY.

To understand the meaning of variational sequences for global higher order variational theory, first note that the
quotient sheaves Ωr

k/Θr
k are determined up to natural isomorphisms of Abelian groups. Thus, the classes in Ωr

k/Θr
k

admit various equivalent characterisations. A simple analysis shows that the sections of the quotient sheaf Ωr
n/Θr

n can
be identified, in a fibred chart, with some n-forms λ = Lω0, i.e., with some Lagrangians. Elements of Ωr

n+1/Θ
r
n+1

can be identified with some (n + 1)-forms ε = εσ ωσ ∧ ω0, i.e., with dynamical forms. More precisely, we can prove
that the sheaf Ωr

n/Θr
n is isomorphic with a subsheaf of the sheaf of Lagrangians Ωr+1

n,X , and Ωr
n+1/Θ

r
n+1 is isomorphic

with a subsheaf of the sheaf of dynamical forms Ω2r+1
n+1,Y ; the quotient mapping

(2.38)En :Ωr
n/Θr

n → Ωr
n+1/Θ

r
n+1

in this representation of the sheaves coincides with the Euler–Lagrange mapping.
We say that a dynamical form ε ∈ Ωs

n+1,Y W is associated with a 2-form ρ ∈ ΩrW if ε = [ρ]. Then we call the
class En+1(ε) = [dρ] the Helmholtz class of ε. The mapping

(2.39)En+1 :Ωr
n+1/Θ

r
n+1 → Ωr

n+2/Θ
r
n+2
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is called the Helmholtz mapping. When we do not want to stress the context of the variational sequence, we also write
for the Helmholtz class of ε = [ρ]

(2.40)H(ε) = En+1(ε).

Now it is clear what kind of results are described by the variational sequence:
(i) Assume that a Lagrangian λ = [ρ] satisfies En(λ) = 0. Then by exactness of (2.33), there always exists a class

[η] such that En−1([η]) = [ρ] = [dη]. This means that, locally, ρ decomposes as the sum of a closed form and a
contact form. Condition

(2.41)En(λ) = 0

is the local variational triviality condition. If in addition, HnY = {0}, (2.37) says that η may be chosen globally
defined on J rY . The local variational triviality condition strongly determines the structure of Lagrangians whose
Euler–Lagrange forms vanish identically.

(ii) Suppose that we have a dynamical form ε = [ρ]. In analogy with Lagrangians, we have the local variationality
condition

(2.42)En+1(ε) = 0,

stating that ε is locally variational if and only if the associated Helmholtz class vanishes. If ε satisfies the local
variationality condition, then there exists a class [η] such that En([η]) = ε = [ρ] = [dη]. Thus, locally, ρ can be
expressed as the sum of a closed form and a strongly contact form. If in addition, Hn+1Y = {0}, (2.37) guarantees
that η may be chosen globally defined on J rY . The local variationality condition strongly determines the structure of
dynamical forms.

2.6. Variational vector fields

We say that a vector field Z on J rY preserves contact forms, if for any contact form ρ on J rY , the Lie derivative
∂Zρ is again a contact form; we also say that Z is a contact symmetry.

If Z is a contact symmetry, then for any two k-forms ρ1, ρ2 belonging to the same class in the variational sequence,
the k-forms ∂Zρ1, ∂Zρ2 also belong to the same class. Thus, we can define the Lie derivative of a class [ρ] to be the
class

(2.43)∂Z[ρ] = [∂Zρ].
For any π -projectable vector field ϑ on an open subset of Y , the r-jet prolongation Z = J rϑ is a contact sym-

metry. This property of the vector field J rϑ implies, among others, the commutativity of the Lie derivative ∂J rϑ and
the Euler–Lagrange mapping E (cf. (2.29)). One can easily show that an analogous property holds for any contact
symmetry, and any morphism Ek :Ωr

k/Θr
k → Ωr

k+1/Θ
r
k+1.

Theorem 1. Let W ⊂ Y be an open set, and let a vector field Z, defined on Wr , be a contact symmetry. Then for all k,

(2.44)∂ZEk

([ρ]) = Ek

(
∂Z[ρ]) = Ek

([iZ dρ]).
Proof. Since the Lie derivative commutes with the exterior derivative, we have for any k-form ρ on J rY ,

(2.45)∂Z[dρ] = [∂Z dρ] = [d∂Zρ] = [diZ dρ].
Writing this formula in terms of the morphism Ek , we get (2.44). �

Our main goal is to introduce the concept of a variational vector field for a given dynamical form. Let ε ∈ Ωs
n+1,Y W

be a dynamical form such that ε = [ρ] for some ρ ∈ Ωr
n+1W . We say that a vector field Z on Ws ⊂ J sY is a variational

vector field for ε = [ρ], if the Lie derivative ∂Zε is a locally variational form.
The proof of the following theorem is based on a simple observation explaining the meaning of the identity (2.44)

for the Helmholtz mapping En+1.
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Theorem 2. Let W ⊂ Y be an open set, let ε be a dynamical form on Ws ⊂ J sY , and let Z be a vector field on Ws .
Suppose that Z is a contact symmetry. Then the following two conditions are equivalent:

(1) Z is a variational vector field for ε, i.e.,

(2.46)En+1(∂Zε) = 0.

(2) Z leaves invariant the Helmholtz class, i.e.,

(2.47)∂ZEn+1(ε) = 0.

Proof. We choose ρ ∈ Ωr
n+1W such that ε = [ρ] and then apply Theorem 1. We obtain

(2.48)∂ZEn+1(ε) = En+1(∂Zε).

Theorem 2 is a direct consequence of this formula. �
3. Variationality and invariance: Fibred mechanics

In this section, Y is a fibred manifold with 1-dimensional base X and projection π , and dimY = m + 1. A fibred
chart on Y is denoted by (V ,χ), χ = (t, qσ ). The associated fibred chart on J rY is denoted by (V r ,χr), χr =
(t, qσ , qσ

(1), q
σ
(2), . . . , q

σ
(r)), for r = 3 we usually write χ3 = (t, qσ , q̇σ , q̈σ ,

...
q σ

). For any fibred chart (V ,χ), χ =
(t, qσ ), and any differentiable function f :V r → R, we define the “cut formal derivative operator” d ′f/dt by

(3.1)
d ′f
dt

= ∂f

∂t
+ ∂f

∂qν
qν

1 + ∂f

∂qν
1
qν

2 + · · · + ∂f

∂qν
r−1

qν
r .

The formal derivative df/dt is defined on V r+1, and d ′f/dt is a function on V r .

3.1. Euler–Lagrange mapping

Let us consider the variational sequence on J 1Y ,

(3.2)0 → R → Ω1
0 → Ω1

1/Θ1
1 → Ω1

2/Θ1
2 → Ω1

3/Θ1
3 → ·· · .

We now give explicit formulas for elements of this sequence belonging to the terms

• Ω1
1/Θ1

1 (Lagrange classes, or Lagrangians),

• Ω1
2/Θ1

2 (Euler–Lagrange classes, or dynamical forms), and

• Ω1
3/Θ1

3 (Helmholtz classes),

and for the corresponding quotient mappings.

Theorem 3.

(1) If ρ is a 1-form on J 1Y ,

(3.3)ρ = Adt + Bσ ωσ + Cσ dq̇σ ,

then

(3.4)[ρ] = Ldt,

where

(3.5)L= A + Cσ q̈σ .
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(2) If ρ is a 2-form on J 1Y ,

(3.6)ρ = ωσ ∧ (Aσ dt + Bσνω
ν + Cσν dq̇ν) + Dσν dq̇σ ∧ dq̇ν + Eσ dq̇σ ∧ dt,

then

(3.7)[ρ] = εσ ωσ ∧ dt,

where

(3.8)εσ = Aσ +
(

Cσν − 2
dDσν

dt

)
q̈ν − dEσ

dt
− 2Dσν

...
q ν

.

(3) If ρ is a 1-form, the class [dρ] is given by

(3.9)[dρ] = Eσ ωσ ∧ dt,

where

(3.10)Eσ = ∂A

∂qσ
− d

dt

∂A

∂q̇σ
+

(
∂Cν

∂qσ
− d

dt

∂Cν

∂q̇σ

)
q̈ν − ∂Cν

∂q̇σ

...
q ν + d2Cσ

dt2
.

The functions Eσ depend on the class [ρ] only, and can be written in the form

(3.11)Eσ = ∂L
∂qσ

− d

dt

∂L
∂q̇σ

+ d2

dt2

∂L
∂q̈σ

.

Proof. (1) Formula

(3.12)(π2,1)∗ρ = (A + Cσ q̈σ ) dt + Bσ ωσ + Cσ ω̇σ

gives (3.5).
(2) We have

(π3,1)∗ρ = (Aσ + Cσνq̈
ν)ωσ ∧ dt + (2Dσνq̈

ν + Eσ )ω̇σ ∧ dt

(3.13)+ Bσνω
σ ∧ ων + Cσνω

σ ∧ ω̇ν + Dσνω̇
σ ∧ ω̇ν .

But since dωσ = −ω̇σ ∧ dt , we obtain

(2Dσνq̈
ν + Eσ )ω̇σ ∧ dt = −d(2Dσνq̈

ν + Eσ )

dt
ωσ ∧ dt

(3.14)+ pd(2Dσνq̈
ν + Eσ ) ∧ ωσ − d

(
(2Dσνq̈

ν + Eσ )ωσ
)
,

which implies (3.8).
(3) We describe the class [dρ] for a form ρ defined by (3.3). We obtain

(3.15)dρ = Ãσ ωσ ∧ dt + Ẽσ dq̇σ ∧ dt + B̃σνω
σ ∧ ων + C̃σνω

σ ∧ dq̇ν + D̃σν dq̇σ ∧ dq̇ν,

where

Ãσ = ∂A

∂qσ
− d ′Bσ

dt
,

B̃σν = 1

2

(
∂Bσ

∂qν
− ∂Bν

∂qσ

)
,

C̃σν = −∂Bσ

∂q̇ν
+ ∂Cν

∂qσ
,

D̃σν = −1

2

(
∂Cσ

∂q̇ν
− ∂Cν

∂q̇σ

)
,

(3.16)Ẽσ = ∂A

σ
− Bσ − d ′Cσ

.

∂q̇ dt
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Then writing the class [dρ] as in (3.8) we get from (3.13) [dρ] = Eσ ωσ ∧ dt , where

(3.17)Eσ = Ãσ +
(

C̃σν − 2
dD̃σν

dt

)
q̈ν − dẼσ

dt
− 2D̃σν

...
q ν

.

From (3.16) we get

Eσ = ∂A

∂qσ
− d

dt

∂A

∂q̇σ
+ ∂Cν

∂qσ
q̈ν − d

dt

∂Cν

∂q̇σ
q̈ν − ∂Cν

∂q̇σ

...
q ν

(3.18)+ d

dt

∂Cσ

∂q̇ν
q̈ν + ∂Cσ

∂q̇ν

...
q ν + d

dt

d ′Cσ

dt
.

We now obtain (3.10) by substituting to (3.18) from

(3.19)
d2Cσ

dt2
= d

dt

dCσ

dt
= d

dt

d ′Cσ

dt
+ d

dt

∂Cσ

∂q̇ν
q̈ν + ∂Cσ

∂q̇ν

...
q ν

.

Finally, on the other hand, we have using (3.5)

(3.20)
∂L
∂q̈σ

= Cσ ,
∂L
∂q̇σ

= ∂A

∂q̇σ
+ ∂Cτ

∂q̇σ
q̈τ ,

∂L
∂qσ

= ∂A

∂qσ
+ ∂Cτ

∂qσ
q̈τ ,

hence

(3.21)
∂L
∂qσ

− d

dt

∂L
∂q̇σ

+ d2

dt2

∂L
∂q̈σ

= ∂A

∂qσ
+ ∂Cτ

∂qσ
q̈τ − d

dt

∂A

∂q̇σ
− d

dt

∂Cτ

∂q̇σ
q̈τ − ∂Cτ

∂q̇σ

...
q τ + d2Cσ

dt2
.

Comparing this expression with Theorem 3, we get formula (3.11). �
Theorem 3 gives us an explicit expression for the Euler–Lagrange mapping

(3.22)E1 :Ω1
1/Θ1

1 → Ω1
2/Θ1

2 .

3.2. The Helmholtz mapping

In the following explicit description of the Helmholtz class we use the notation of Theorem 3.

Theorem 4.

(1) If μ is a 3-form on J 1Y , expressed by

μ = Aσνω
σ ∧ ων ∧ dt + Bσν dq̇σ ∧ ων ∧ dt + Cσν dq̇σ ∧ dq̇ν ∧ dt

+ Dσντω
σ ∧ ων ∧ ωτ + Eσντ dq̇σ ∧ ων ∧ ωτ + Fσντ dq̇σ ∧ dq̇ν ∧ ωτ

(3.23)+ Gσντ dq̇σ ∧ dq̇ν ∧ dq̇τ ,

then

(3.24)[μ] = (Pσνω
σ + Qσνω̇

σ + Rσνω̈
σ ) ∧ ων ∧ dt,

where

Pσν = Aσν + Eτσνq̈
τ − 1

2

d

dt

(
1

2
(Bσν − Bνσ ) − (Fστν − Fντσ )q̈τ − d(Cσν + 3Gσντ q̈

τ )

dt

)
,

Qσν = 1

2
(Bσν + Bνσ ) − (Fστν + Fντσ )q̈τ ,

(3.25)Rσν = −Cσν − 3Gσντ q̈
τ .
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(2) If ρ is a 2-form on J 1Y , expressed as in Theorem 3, (3.6), then

(3.26)[dρ] = (Fσνω
σ + Gσνω̇

σ + Hσνω̈
σ ) ∧ ων ∧ dt,

where

Fσν = 1

2

(
−∂Aσ

∂qν
+ ∂Aν

∂qσ

)
− 1

4

d

dt

(
∂Aν

∂q̇σ
− ∂Aσ

∂q̇ν

)
− 1

2

(
∂Cστ

∂qν
− ∂Cντ

∂qσ

)
q̈τ

+ 1

4

d

dt

(
−∂Cντ

∂q̇σ
+ ∂Cστ

∂q̇ν

)
q̈τ + 1

4

(
−∂Cντ

∂q̇σ
+ ∂Cστ

∂q̇ν

)
...
q τ

+ 1

2

d

dt

(
∂Dστ

∂qν
− ∂Dντ

∂qσ

)
q̈τ + 1

2

(
∂Dστ

∂qν
− ∂Dντ

∂qσ

)
...
q τ + 1

2

d3Dσν

dt3

− 1

2

d2

dt2

(
∂Dστ

∂q̇ν
− ∂Dντ

∂q̇σ

)
q̈τ − d

dt

(
∂Dστ

∂q̇ν
− ∂Dντ

∂q̇σ

)
...
q τ

− 1

2

(
∂Dστ

∂q̇ν
− ∂Dντ

∂q̇σ

)
qτ
(4) − 1

4

d2

dt2

(
∂Eσ

∂q̇ν
− ∂Eν

∂q̇σ

)
+ 1

4

d

dt

(
∂Eσ

∂qν
− ∂Eν

∂qσ

)
,

Gσν = 1

2

(
∂Aν

∂q̇σ
+ ∂Aσ

∂q̇ν

)
− 1

2

(
∂Eσ

∂qν
+ ∂Eν

∂qσ

)
−

(
∂Dστ

∂qν
+ ∂Dντ

∂qσ

)
q̈τ

− 1

2

d(Cσν + Cνσ )

dt
+ 1

2

(
∂Cντ

∂q̇σ
+ ∂Cστ

∂q̇ν

)
q̈τ ,

(3.27)Hσν = −1

2
(Cσν − Cνσ ) + 1

2

(
∂Eσ

∂q̇ν
− ∂Eν

∂q̇σ

)
− dDσν

dt
+

(
∂Dστ

∂q̇ν
− ∂Dντ

∂q̇σ

)
q̈τ .

The functions Fσν , Gσν , Hσν can be expressed by means of εσ (cf. (3.7), (3.8)) as follows:

Fσν = −1

2

(
∂εσ

∂qν
− ∂εν

∂qσ
− 1

2

d

dt

(
∂εσ

∂q̇ν
− ∂εν

∂q̇σ
− 1

2

d2

dt2

(
∂εσ

∂
...
q ν − ∂εν

∂
...
q σ

)))
,

Gσν = 1

2

(
∂εσ

∂q̇ν
+ ∂εν

∂q̇σ
− d

dt

(
∂εσ

∂q̈ν
+ ∂εν

∂q̈σ

))
,

(3.28)Hσν = −1

2

(
∂εσ

∂q̈ν
− ∂εν

∂q̈σ
− 3

2

d

dt

(
∂εσ

∂
...
q ν − ∂εν

∂
...
q σ

))
.

Proof. (1) To derive formulas (3.25) note that

p2μ = (Aσν + Eτσνq̈
τ )ωσ ∧ ων ∧ dt

(3.29)+ (Bσν − 2Fστνq̈
τ )ω̇σ ∧ ων ∧ dt + (Cσν + 3Gσντ q̈

τ )ω̇σ ∧ ω̇ν ∧ dt.

But

(3.30)d(ω̇σ ∧ ων − ω̇ν ∧ ωσ ) = (ω̈σ ∧ ων − ω̈ν ∧ ωσ ) ∧ dt + 2ω̇σ ∧ ω̇ν ∧ dt,

so that

(Cσν + 3Gσντ q̈
τ )ω̇σ ∧ ω̇ν ∧ dt

= −1

2

d(Cσν + 3Gσντ q̈
τ )

dt
(ω̇σ ∧ ων − ω̇ν ∧ ωσ ) ∧ dt

(3.31)− 1

2
(Cσν + 3Gσντ q̈

τ )(ω̈σ ∧ ων − ω̈ν ∧ ωσ ) ∧ dt + η,

where

2η = −pd(Cσν + 3Gσντ q̈
τ ) ∧ (ω̇σ ∧ ων − ω̇ν ∧ ωσ )

(3.32)+ d
(
(Cσν + 3Gσντ q̈

τ )(ω̇σ ∧ ων − ω̇ν ∧ ωσ )
)
.



D. Krupka et al. / Differential Geometry and its Applications 25 (2007) 518–542 529
Hence

p2μ = (Aσν + Eτσνq̈
τ )ωσ ∧ ων ∧ dt

+ 1

2

(
Bσν + Bνσ − 2(Fστν + Fντσ )q̈τ

)
ω̇σ ∧ ων ∧ dt

+ 1

2
(Bσν − 2Fστνq̈

τ )(ω̇σ ∧ ων − ω̇ν ∧ ωσ ) ∧ dt

− 1

2

d(Cσν + 3Gσντ q̈
τ )

dt
(ω̇σ ∧ ων − ω̇ν ∧ ωσ ) ∧ dt

− 1

2
(Cσν + 3Gσντ q̈

τ )(ω̈σ ∧ ων − ω̈ν ∧ ωσ ) ∧ dt

− 1

2
pd(Cσν + 3Gσντ q̈

τ ) ∧ (ω̇σ ∧ ων − ω̇ν ∧ ωσ )

(3.33)+ 1

2
d
(
(Cσν + 3Gσντ q̈

τ )(ω̇σ ∧ ων − ω̇ν ∧ ωσ )
)
.

From the formula

(3.34)(ω̇σ ∧ ων − ω̇ν ∧ ωσ ) ∧ dt = d(ωσ ∧ ων)

we have

1

2
(Bσν − 2Fστνq̈

τ )(ω̇σ ∧ ων − ω̇ν ∧ ωσ ) ∧ dt

− 1

2

d(Cσν + 3Gσντ q̈
τ )

dt
(ω̇σ ∧ ων − ω̇ν ∧ ωσ ) ∧ dt

= 1

2
d

((
Bσν − 2Fστνq̈

τ − d(Cσν + 3Gσντ q̈
τ )

dt

)
ωσ ∧ ων

)

(3.35)− 1

2
d

(
Bσν − 2Fστνq̈

τ − d(Cσν + 3Gσντ q̈
τ )

dt

)
∧ ωσ ∧ ων.

Substituting (3.35) to (3.33) we easily recognise that

[μ] =
(

Aσν + Eτσνq̈
τ − 1

2

d

dt

(
Bσν − 2Fστνq̈

τ − d(Cσν + 3Gσντ q̈
τ )

dt

))
ωσ ∧ ων ∧ dt

+ 1

2

(
Bσν + Bνσ − 2(Fστν + Fντσ )q̈τ

)
ω̇σ ∧ ων ∧ dt

(3.36)− 1

2
(Cσν + 3Gσντ q̈

τ )(ω̈σ ∧ ων − ω̈ν ∧ ωσ ) ∧ dt.

(2) From the expression of ρ we obtain

dρ = Ãσνω
σ ∧ ων ∧ dt + B̃σν dq̇σ ∧ ων ∧ dt + C̃σν dq̇σ ∧ dq̇ν ∧ dt

+ D̃σντω
σ ∧ ων ∧ ωτ + Ẽσντ dq̇σ ∧ ων ∧ ωτ + F̃σντ dq̇σ ∧ dq̇ν ∧ ωτ

(3.37)+ G̃σντ dq̇σ ∧ dq̇ν ∧ dq̇τ ,

where

Ãσν = 1

2

(
−∂Aσ

∂qν
+ ∂Aν

∂qσ

)
+ d ′Bσν

dt
,

B̃σν = 2Bσν + ∂Aν

∂q̇σ
− d ′Cνσ

dt
− ∂Eσ

∂qν
,

C̃σν = 1
(

Cσν − Cνσ − ∂Eσ

ν
+ ∂Eν

σ

)
+ d ′Dσν

,

2 ∂q̇ ∂q̇ dt
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D̃σντ = −1

3

(
∂Bσν

∂qτ
− ∂Bτν

∂qσ
− ∂Bστ

∂qν

)
,

Ẽσντ = ∂Bντ

∂q̇σ
− 1

2

(
∂Cνσ

∂qτ
− ∂Cτσ

∂qν

)
,

F̃σντ = 1

2

(
−∂Cτν

∂q̇σ
+ ∂Cτσ

∂q̇ν

)
+ ∂Dσν

∂qτ
,

(3.38)G̃σντ = 1

3

(
∂Dσν

∂q̇τ
− ∂Dτν

∂q̇σ
− ∂Dστ

∂q̇ν

)
.

Now we can compute the class [dρ] from formula (3.25). We get formula (3.26), where

Fσν = Ãσν + Ẽτσν q̈
τ − 1

2

d

dt

(
1

2
(B̃σν − B̃νσ ) − (F̃στν − F̃ντσ )q̈τ − d(C̃σν + 3G̃σντ q̈

τ )

dt

)
,

Gσν = 1

2
(B̃σν + B̃νσ ) − (F̃στν + F̃ντσ )q̈τ ,

(3.39)Hσν = −C̃σν − 3G̃σντ q̈
τ .

Formulas (3.27) follow directly from (3.38). Formulas (3.28) then are derived by a direct computation. �
Theorem 4 describes the Helmholtz mapping

(3.40)E2 :Ω1
2/Θ1

2 → Ω1
3/Θ1

3 ,

assigning to a class ε = [ρ] (3.7) a class E2(ε) = [dρ], expressed by formula (3.28). In the well-known sense, equa-
tions

(3.41)Fσν = 0, Gσν = 0, Hσν = 0

express necessary and sufficient conditions for existence of (local) Lagrangians for ε (Helmholtz conditions).

Remark 1. For a general 3rd order dynamical form ε = εσ ωσ ∧ dt , which is not necessarily of the form ε = [ρ]
(cf. (3.8)), the Helmholtz class E2(ε) is given by

E2(ε) = −1

2

(
∂εσ

∂qν
− ∂εν

∂qσ
− 1

2

d

dt

(
∂εσ

∂q̇ν
− ∂εν

∂q̇σ
− 1

2

d2

dt2

(
∂εσ

∂
...
q ν − ∂εν

∂
...
q σ

)))
ωσ ∧ ων ∧ dt

+ 1

2

(
∂εσ

∂q̇ν
+ ∂εν

∂q̇σ
− d

dt

(
∂εσ

∂q̈ν
+ ∂εν

∂q̈σ

))
ω̇σ ∧ ων ∧ dt

− 1

2

(
∂εσ

∂q̈ν
− ∂εν

∂q̈σ
− 3

2

d

dt

(
∂εσ

∂
...
q ν − ∂εν

∂
...
q σ

))
ω̈σ ∧ ων ∧ dt

(3.42)+ 1

2

(
∂εσ

∂
...
q ν + ∂εν

∂
...
q σ

)
...
ωσ ∧ ων ∧ dt.

Expression (3.42) is in accordance with the Helmholtz class of a dynamical form on a general fibred manifold
(dimX = n) obtained in (Krupka [11]).

Remark 2. It is worth notice that for computing the Euler–Lagrange and Helmholtz classes [ρ] and [dρ], we can
restrict ourselves to representatives ρ such that Bσν = 0 and Eσ = 0, i.e., to

(3.43)ρ = ωσ ∧ (Aσ dt + Cσν dq̇ν) + Dσνdq̇σ ∧ dq̇ν.

Indeed, writing

(3.44)Eσ dq̇σ ∧ dt = −d(Eσ ωσ ) + dEσ ∧ ωσ
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in formula (3.6), we can see that

(3.45)ρ = ωσ ∧ (Āσ dt + C̄σν dq̇ν) + Dσν dq̇σ ∧ dq̇ν + μ,

with Āσ and C̄σν given by

(3.46)Āσ = Aσ − ∂Eσ

∂t
− ∂Eσ

∂qν
q̇ν, C̄σν = Cσν − ∂Eσ

∂q̇ν
,

and μ ∈ Θ1
2W ,

(3.47)μ = Bσνω
σ ∧ ων − d(Eσ ωσ ).

Hence, the reduced form

(3.48)ρ̄ = ωσ ∧ (Āσ dt + C̄σν dq̇ν) + Dσν dq̇σ ∧ dq̇ν

satisfies [ρ] = [ρ̄] and [dρ] = [dρ̄].

3.3. Contact symmetries

In this section we give a complete description of contact symmetries on W 3, where W ⊂ Y is an open set. Recall
that in a fibred chart the contact ideal Θ3W is generated by the 1-forms

(3.49)ωσ = dqσ − q̇σ dt, ω̇σ = dq̇σ − q̈σ dt, ω̈σ = dq̈σ − ...
q σ

dt,

and the 2-forms

(3.50)dω̈σ = −d
...
q σ ∧ dt.

Let Z be a vector field on J 3Y ,

(3.51)Z = ζ0
∂

∂t
+ ζ τ ∂

∂qτ
+ ζ̇ τ ∂

∂q̇τ
+ ζ̈ τ ∂

∂q̈τ
+ ...

ζ
τ ∂

∂
...
q τ .

To derive equations for Z to be a contact symmetry, we require the forms ∂Zωσ , ∂Zω̇σ , and ∂Zω̈σ be contact. We have

∂Zωσ =
(

d ′ζ σ

dt
− ζ̇ σ − d ′ζ0

dt
q̇σ

)
dt +

(
∂ζ σ

∂qτ
− ∂ζ0

∂qτ
q̇σ

)
ωτ

+
(

∂ζ σ

∂q̇τ
− ∂ζ0

∂q̇τ
q̇σ

)
ω̇τ +

(
∂ζ σ

∂q̈τ
− ∂ζ0

∂q̈τ
q̇σ

)
ω̈τ

(3.52)+
(

∂ζ σ

∂
...
q τ − ∂ζ0

∂
...
q τ q̇σ

)
d

...
q τ

,

and analogous expressions are obtained for ∂Zω̇σ and ∂Zω̈σ . Thus, we have the following system of equations for the
components of Z:

ζ̇ σ − ζ0q̈
σ = d ′(ζ σ − ζ0q̇

σ )

dt
,

∂(ζ σ − ζ0q̇
σ )

∂
...
q τ = 0,

ζ̈ σ − ζ0
...
q σ = d ′(ζ̇ σ − ζ0q̈

σ )

dt
,

∂(ζ̇ σ − ζ0q̈
σ )

∂
...
q τ = 0,

(3.53)
...
ζ

σ = d ′(ζ̈ σ − ζ0
...
q σ

)

dt
,

∂(ζ̈ σ − ζ0
...
q σ

)

∂
...
q τ + δσ

τ ζ0 = 0.

We can integrate Eqs. (3.53) by elementary methods. To this end, it is convenient to consider the cases dimY = 2, and
dimY � 3 separately.
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Lemma 1. Let dimY = 2, and let Z be a vector field on J 3Y ,

(3.54)Z = ζ0
∂

∂t
+ ζ

∂

∂q
+ ζ̇

∂

∂q̇
+ ζ̈

∂

∂q̈
+ ...

ζ
∂

∂
...
q

.

The following three conditions are equivalent:

(1) Z is a contact symmetry.
(2) There exists a function f = f (t, q, q̇) such that

(3.55)ζ0 = −∂f

∂q̇
, ζ = f − ∂f

∂q̇
q̇, ζ̇ = d ′f

dt
, ζ̈ = d ′

dt

df

dt
,

...
ζ = d ′

dt

d2f

dt2
.

(3) The components ζ0 and ζ depend on t, q, q̇ only, and satisfy

(3.56)
∂ζ

∂q̇
− ∂ζ0

∂q̇
q̇ = 0,

and

(3.57)ζ̇ = dζ

dt
− q̇

dζ0

dt
, ζ̈ = dζ̇

dt
− q̈

dζ0

dt
,

...
ζ = dζ̈

dt
− ...

q
dζ0

dt
.

If Z is a contact symmetry and f is a function such that conditions (3.55) are satisfied, we say that Z is associated
with f .

Lemma 2. Let dimY � 3. A vector field Z (3.51) is a contact symmetry if and only if ζ0 and ζ σ depend on t, qν only,
and

ζ̇ σ = dζσ

dt
− dζ0

dt
q̇σ ,

ζ̈ σ = d2ζ σ

dt2
− d2ζ0

dt2
q̇σ − 2

dζ0

dt
q̈σ ,

(3.58)
...
ζ

σ = d3ζ σ

dt3
− d3ζ0

dt3
q̇σ − 3

d2ζ0

dt2
q̈σ − 3

dζ0

dt

...
q σ

.

It is immediately seen that the set of contact symmetries includes all vector fields, expressible as the 3-jet prolon-
gations of π -projectable vector fields. Recall that if ϑ is a π -projectable vector field, expressed by

(3.59)ϑ = ϑ0
∂

∂t
+ ϑσ ∂

∂qσ

then the 3-jet prolongation J 3ϑ is given by

(3.60)J 3ϑ = ϑ0
∂

∂t
+ ϑσ ∂

∂qσ
+ ϑ̇τ ∂

∂q̇τ
+ ϑ̈τ ∂

∂q̈τ
+ ...

ϑ
τ ∂

∂
...
q τ ,

where

(3.61)ϑ̇τ = dϑτ

dt
− q̇τ dϑ0

dt
, ϑ̈τ = dϑ̇τ

dt
− q̈τ dϑ0

dt
,

...
ϑ

τ = dϑ̈τ

dt
− ...

q τ dϑ0

dt
;

π -projectability means that ϑ0 depends on t only.

Lemma 3. For any π -projectable vector field ϑ , defined on an open set W ⊂ Y , the 3-jet prolongation J 3ϑ is a
contact symmetry.

Proof. If ϑ is a π -projectable vector field on W expressed by (3.59) then ϑ0 = ϑ0(t) and ϑσ = ϑσ (t, qν). Thus, our
assertion follows from Lemmas 1, 2, and formula (3.61). �
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Remark 3. Eq. (3.56) can be easily solved. We obtain

(3.62)ζ = q̇2

1∫
0

∂ζ0(t, q, sq̇)

∂q̇
s ds + ξ,

where ξ = ξ(t, q) is an arbitrary function.

3.4. Variational vector fields

Let W ⊂ Y be an open set, and let ε be a dynamical form on W 3 ⊂ J 3Y . Suppose that ε = [ρ] for some ρ ∈ Ω1
2W .

Recall that a vector field Z on W 3 is a variational vector field for ε, if the class ∂Zε, is a variational form. We know
that a contact symmetry Z is variational for ε if and only if it leaves invariant the Helmholtz class H(ε) = E2(ε)

(Theorem 2). In this section we derive the variationality equations for contact symmetries.

Lemma 4.

(1) Let dimY = 2, and let Z (3.54) be a contact symmetry, associated with a function f . Then

∂Zω = ∂f

∂q
ω,

∂Zω̇ = ∂

∂q

df

dt
ω + ∂

∂q̇

df

dt
ω̇,

(3.63)∂Zω̈ = ∂

∂q

d2f

dt2
ω + ∂

∂q̇

d2f

dt2
ω̇ + ∂

∂q̈

d2f

dt2
ω̈.

(2) Let dimY � 3, and let Z (3.51) be a contact symmetry. Then

∂Zωσ = P σ
τ ωτ ,

∂Zω̇σ = Qσ
τ ωτ + Rσ

τ ω̇τ ,

(3.64)∂Zω̈σ = Sσ
τ ωτ + T σ

τ ω̇τ + Uσ
τ ω̈τ ,

where

P σ
τ = ∂(ζ σ − ζ0q̇

σ )

∂qτ
, Qσ

τ = ∂

∂qτ

d(ζ σ − ζ0q̇
σ )

dt
,

Rσ
τ = ∂

∂q̇τ

d(ζ σ − ζ0q̇
σ )

dt
, Sσ

τ = ∂

∂qτ

d2(ζ σ − ζ0q̇
σ )

dt2
,

(3.65)T σ
τ = ∂

∂q̇τ

d2(ζ σ − ζ0q̇
σ )

dt2
, Uσ

τ = ∂

∂q̈τ

d2(ζ σ − ζ0q̇
σ )

dt2
.

Proof. All these formulas can be obtained by a direct computation. �
Remark 4. Formulas (3.56), (3.57) for contact symmetries on 2-dimensional fibred manifolds Y can be written in the
same form as (3.58), because

(3.66)f = ζ − ζ0q̇.

Thus, we can use formulas (3.58) independently of the dimension of Y , having in mind, however, differences in the
dependence of ζ0 and ζ on the coordinates. The same arguments apply to formulas (3.63) and (3.64), (3.65) above.

Let us turn to study transformations of classes in the variational sequence. To this end, note that we may suppose
without loss of generality that the representative ρ of the class ε is already in the reduced form (3.43). Indeed, if we
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write ρ = ρ0 + μ, where μ ∈ Θ1
2W , then [ρ] = [ρ0], and

(3.67)[∂Zdρ] = [∂Zdρ0] + [∂Zdμ] = [∂Zdρ0]
for any contact symmetry Z. However, by Theorems 3 and 4, and Remark 2, the class ε = [ρ] is given by ε =
εσ ωσ ∧ dt , where

(3.68)εσ = Aσ +
(

Cσν − 2
dDσν

dt

)
q̈ν − 2Dσν

...
q ν

,

and the Helmholtz class H(ε) = E2(ε) is expressed by

(3.69)H(ε) = [dρ] = (Fσνω
σ + Gσνω̇

σ + Hσνω̈
σ ) ∧ ων ∧ dt,

where the components Fσν , Gσν , Hσν are given by

Fσν = 1

2

(
−∂Aσ

∂qν
+ ∂Aν

∂qσ

)
− 1

4

d

dt

(
∂Aν

∂q̇σ
− ∂Aσ

∂q̇ν

)

− 1

2

(
∂Cστ

∂qν
− ∂Cντ

∂qσ

)
q̈τ + 1

4

d

dt

(
−∂Cντ

∂q̇σ
+ ∂Cστ

∂q̇ν

)
q̈τ

+ 1

4

(
−∂Cντ

∂q̇σ
+ ∂Cστ

∂q̇ν

)
...
q τ + 1

2

d

dt

(
∂Dστ

∂qν
− ∂Dντ

∂qσ

)
q̈τ

+ 1

2

(
∂Dστ

∂qν
− ∂Dντ

∂qσ

)
...
q τ + 1

2

d3Dσν

dt3
− 1

2

d2

dt2

(
∂Dστ

∂q̇ν
− ∂Dντ

∂q̇σ

)
q̈τ

− d

dt

(
∂Dστ

∂q̇ν
− ∂Dντ

∂q̇σ

)
...
q τ − 1

2

(
∂Dστ

∂q̇ν
− ∂Dντ

∂q̇σ

)
qτ
(4),

Gσν = 1

2

(
∂Aν

∂q̇σ
+ ∂Aσ

∂q̇ν

)
−

(
∂Dστ

∂qν
+ ∂Dντ

∂qσ

)
q̈τ

− 1

2

d(Cσν + Cνσ )

dt
+ 1

2

(
∂Cντ

∂q̇σ
+ ∂Cστ

∂q̇ν

)
q̈τ ,

(3.70)Hσν = −1

2
(Cσν − Cνσ ) − dDσν

dt
+

(
∂Dστ

∂q̇ν
− ∂Dντ

∂q̇σ

)
q̈τ .

Lemma 5. Let Z be a contact symmetry on J 3Y . If ρ is expressed by (3.43) then

(3.71)∂Zρ = ωσ ∧ (AZ
σ dt + BZ

σνω
ν + CZ

σν dq̇ν) + DZ
σν dq̇σ ∧ dq̇ν + EZ

σ dq̇σ ∧ dt,

where

AZ
σ = ∂ZAσ + ∂(ζ τ − ζ0q̇

τ )

∂qσ
Aτ + d ′ζ0

dt
Aσ + d ′ζ̇ ν

dt
Cσν,

BZ
σν = 1

2

(
∂ζ0

∂qν
Aσ − ∂ζ0

∂qσ
Aν + ∂ζ̇ τ

∂qν
Cστ − ∂ζ̇ τ

∂qσ
Cντ

)
,

CZ
σν = ∂ZCσν + Cτν

∂(ζ τ − ζ0q̇
τ )

∂qσ
+ ∂ζ0

∂q̇ν
Aσ + ∂ζ̇ τ

∂q̇ν
Cστ + 2Dτν

∂ζ̇ τ

∂qσ
,

DZ
σν = ∂ZDσν + Dτν

∂ζ̇ τ

∂q̇σ
− Dτσ

∂ζ̇ τ

∂q̇ν
,

(3.72)EZ
σ = −2Dνσ

d ′ζ̇ ν

dt
.
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Proof. To consider the cases dimY = 2 and dimY � 3 together, we suppose for the following computations that the
components ζ0, ζ σ of Z depend on t, qτ , q̇τ ,

(3.73)ζ0 = ζ0(t, q
τ , q̇τ ), ζ σ = ζ σ (t, qτ , q̇τ )

(cf. Remark 4). Using Lemma 4 and the expressions

∂Z dt = dζ0 =
(

∂ζ0

∂t
+ ∂ζ0

∂qτ
q̇τ

)
dt + ∂ζ0

∂qτ
ωτ + ∂ζ0

∂q̇τ
dq̇τ ,

(3.74)∂Z dq̇σ = dζ̇ σ =
(

∂ζ̇ σ

∂t
+ ∂ζ̇ σ

∂qτ
q̇τ

)
dt + ∂ζ̇ σ

∂qτ
ωτ + ∂ζ̇ σ

∂q̇τ
dq̇τ ,

we obtain (3.72) by a straightforward computation. �
Remark 5. In several particular cases, expressions (3.72) can be further simplified. We mention the following three
cases:

(1) dimY = 2; in this case m = dimY − dimX = 1, hence, D ≡ 0, and consequently, DZ = 0, EZ = 0.
(2) dimY � 3; then according to Lemma 2, ∂ζ0/∂q̇ν = 0.
(3) Z = J 3ϑ , where ϑ is a π -vertical vector field; in this case, ζ0 = 0, and ζ σ = ζ σ (t, qτ ).

We now compute the Lie derivative ∂Zε of the class ε. Using notations introduced in Remark 2 we have:

Lemma 6. If ρ is given by (3.43) and ε = [ρ] is expressed by (3.68), then

(3.75)∂Zε = εZ
σ ωσ ∧ dt,

where

εZ
σ = AZ

σ +
(

CZ
σν − 2

dDZ
σν

dt

)
q̈ν − dEZ

σ

dt
− 2DZ

σν

...
q ν

(3.76)= ĀZ
σ +

(
C̄Z

σν − 2
dDZ

σν

dt

)
q̈ν − 2DZ

σν

...
q ν

with

(3.77)ĀZ
σ = AZ

σ − ∂EZ
σ

∂t
− ∂EZ

σ

∂qν
q̇ν, C̄Z

σν = CZ
σν − ∂EZ

σ

∂q̇ν
.

Proof. We know that ∂Zε is the class [∂Zρ], represented by the two-form ∂Zρ given by expressions (3.71) and (3.72).
To compute the class, we can use either Theorem 3, or proceed with the corresponding equivalent reduced form (cf.
Remark 2). This gives us the desired formulas. �
Remark 6. Lemma 6 characterises the general structure of dynamical forms ∂Zε for given ε (3.68). In particular,
formulas (3.76), (3.72) describe the structure of the corresponding dynamical equations.

Finally, we need a formula for the class ∂ZH(ε) = E2([∂Zρ]) = [d∂Zρ].

Lemma 7. If ρ is given by (3.43) and ε = [ρ] is expressed by (3.68) then

(3.78)∂ZH(ε) = (FZ
σνω

σ + GZ
σνω̇

σ + HZ
σνω̈

σ ) ∧ ων ∧ dt,

where (with the notation (3.77) and (3.72))

FZ
σν = 1

(
∂ĀZ

ν

σ
− ∂ĀZ

σ

ν

)
− 1 d

(
∂ĀZ

ν

σ
− ∂ĀZ

σ

ν

)

2 ∂q ∂q 4 dt ∂q̇ ∂q̇
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− 1

2

(
∂C̄Z

στ

∂qν
− ∂C̄Z

ντ

∂qσ

)
q̈τ + 1

4

d

dt

(
−∂C̄Z

ντ

∂q̇σ
+ ∂C̄Z

στ

∂q̇ν

)
q̈τ

+ 1

4

(
−∂C̄Z

ντ

∂q̇σ
+ ∂C̄Z

στ

∂q̇ν

)
...
q τ + 1

2

d

dt

(
∂DZ

στ

∂qν
− ∂DZ

ντ

∂qσ

)
q̈τ

+ 1

2

(
∂DZ

στ

∂qν
− ∂DZ

ντ

∂qσ

)
...
q τ + 1

2

d3DZ
σν

dt3
− 1

2

d2

dt2

(
∂DZ

στ

∂q̇ν
− ∂DZ

ντ

∂q̇σ

)
q̈τ

− d

dt

(
∂DZ

στ

∂q̇ν
− ∂DZ

ντ

∂q̇σ

)
...
q τ − 1

2

(
∂DZ

στ

∂q̇ν
− ∂DZ

ντ

∂q̇σ

)
qτ
(4),

GZ
σν = 1

2

(
∂ĀZ

ν

∂q̇σ
+ ∂ĀZ

σ

∂q̇ν

)
−

(
∂DZ

στ

∂qν
+ ∂DZ

ντ

∂qσ

)
q̈τ

− 1

2

d(C̄Z
σν + C̄Z

νσ )

dt
+ 1

2

(
∂C̄Z

ντ

∂q̇σ
+ ∂C̄Z

στ

∂q̇ν

)
q̈τ ,

(3.79)HZ
σν = −1

2
(C̄Z

σν − C̄Z
νσ ) − dDZ

σν

dt
+

(
∂DZ

στ

∂q̇ν
− ∂DZ

ντ

∂q̇σ

)
q̈τ .

Proof. The form ∂Zρ is given by Lemma 5. Formulas in (3.79) then follow from Theorem 4 and Remark 2. �
We now state a general form of equations for variational contact symmetries.

Theorem 5. A contact symmetry Z is variational for a dynamical form ε = [ρ] if and only if

(3.80)FZ
σν = 0, GZ

σν = 0, HZ
σν = 0.

Proof. This is an immediate consequence of Lemma 7. �
4. Examples

We shall illustrate some of the above results on examples concerning second-order dynamical forms. For more
details on geometric structures related with second and higher-order ordinary differential equations, and for different
aspects of the inverse variational problem and its connection to closed differential forms, we refer e.g. to Crampin,
Prince, and Thompson [2] Krupková [13–15], and Sarlet, Thompson and Prince [19].

4.1. Second-order differential equations

A system of regular second-order ordinary differential equations (SODE) for the fibred manifold Y is given by a
semispray connection Γ :J 1Y → J 2Y , or equivalently, by a semispray distribution of rank one on J 1Y . If (V ,χ) is a
fibred chart on Y then on the open set V 1 = (π1,0)−1V ⊂ J 1Y the distribution is spanned by the vector field (denoted
for simplicity by the same symbol)

(4.1)Γ = ∂

∂t
+ q̇σ ∂

∂qσ
+ Fσ ∂

∂q̇σ
,

respectively, annihilated by the 1-forms

(4.2)ωσ , ω̇σ
Γ = dq̇σ − Fσ dt, 1 � σ � m.

Indeed, integral sections of Γ are solutions of the system of equations

(4.3)q̈σ = Fσ , 1 � σ � m.

We say that a semispray connection Γ is variational, or equivalently, that Eqs. (4.3) have a variational multiplier,
(Bσν), if there exists a system of functions Bσν , 1 � σ, ν � m, on V 1 such that the matrix (Bσν) is regular at each
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point of V 1, and the dynamical form ε = Bσν(q̈
ν − Fν)ωσ ∧ dt is variational (recall that this means that there exists

a Lagrangian λ such that ε = E(λ)).
We have on V 1 a dynamical form ε = εσ ωσ ∧ dt ,

(4.4)εσ = δσν(q̈
ν − Fν),

naturally associated to Γ . In notations of Section 3, (3.68),

(4.5)Aσ = −δσνF
ν, Cσν = δσν, Dσν = 0.

By Theorem 3 and Remark 2, ε = [ρ], where

(4.6)ρ = ωσ ∧ δσν(dq̇ν − Fν dt) = δσνω
σ ∧ ω̇ν

Γ

(cf. (3.48)). The Helmholtz class of (4.4) becomes according to (3.69) and (3.70)

H(ε) = [dρ]
= −1

2

(
∂Aσ

∂qν
− ∂Aν

∂qσ
− 1

2

d

dt

(
∂Aσ

∂q̇ν
− ∂Aν

∂q̇σ

))
ωσ ∧ ων ∧ dt

+ 1

2

(
∂Aν

∂q̇σ
+ ∂Aσ

∂q̇ν

)
ω̇σ ∧ ων ∧ dt

= 1

2
δστ

(
∂F τ

∂qν
− ∂F ν

∂qτ
− 1

2

d

dt

(
∂F τ

∂q̇ν
− ∂F ν

∂q̇τ

))
ωσ ∧ ων ∧ dt

(4.7)− 1

2
δστ

(
∂F τ

∂q̇ν
+ ∂F ν

∂q̇τ

)
ω̇σ ∧ ων ∧ dt,

since Hσν = 0. Note that condition H(ε) = 0 gives the well-known variationality conditions for a first-order force
F = (F σ ) (Whittaker [22]).

Using Theorem 5 and the preceding lemmas we can write down conditions for a vector field Z on J 1Y to be a
variational vector field for the dynamical form ε (4.4): From (3.72) we can see that DZ

σν = 0 and EZ
σ = 0, hence

ĀZ
σ = AZ

σ and C̄Z
σν = CZ

σν (cf. (3.77)). Now, we shall consider the cases dimY = 2 and dimY > 2 separately.
(1) dimY = 2 (a single differential equation q̈ = F ): We have

AZ = −∂ZF −
(

∂ζ

∂q
+ ∂ζ0

∂t

)
F + d ′

dt

(
dζ

dt
− q̇

dζ0

dt

)
,

(4.8)CZ = 2
∂(ζ − ζ0q̇)

∂q
− ∂ζ0

∂q̇
F − d ′ζ0

dt
,

where we have used the relation

(4.9)
∂ζ̇

∂q̇
= d

dt

∂ζ

∂q̇
+ ∂ζ

∂q
− dζ0

dt
− q̇

d

dt

∂ζ0

∂q̇
− ∂ζ0

∂q
q̇ = ∂(ζ − ζ0q̇)

∂q
− d ′ζ0

dt

following from (3.57) and (3.56). Hence, Z is variational if and only if

(4.10)
∂ζ

∂q̇
− ∂ζ0

∂q̇
q̇ = 0, ζ̇ = dζ

dt
− q̇

dζ0

dt
,

and

(4.11)
∂AZ

∂q̇
− d ′CZ

dt
= 0.

The corresponding variational dynamical form then reads

(4.12)ε′ = ∂Zε = (AZ + CZq̈) dq ∧ dt,

i.e., the obtained variational equation takes the form

(4.13)

(
2
∂(ζ − ζ0q̇) − ∂ζ0

F − d ′ζ0
)

q̈ = ∂ZF +
(

∂ζ + ∂ζ0
)

F − d ′ (dζ − q̇
dζ0

)
.

∂q ∂q̇ dt ∂q ∂t dt dt dt
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It is regular if CZ �= 0.
(2) dimY � 3: We have

AZ
σ = −∂ZFσ − ∂(ζ τ − ζ0q̇

τ )

∂qσ
F τ − dζ0

dt
F σ + d ′

dt

(
dζσ

dt
− q̇σ dζ0

dt

)
,

(4.14)CZ
σν = ∂(ζ ν − ζ0q̇

ν)

∂qσ
+ ∂(ζ σ − ζ0q̇

σ )

∂qν
− dζ0

dt
δσν = CZ

νσ .

Note that

(4.15)
∂CZ

σν

∂q̇τ
= −

(
∂ζ0

∂qσ
δντ + ∂ζ0

∂qν
δστ + ∂ζ0

∂qτ
δσν

)
= ∂CZ

τν

∂q̇σ
.

Substituting into (3.78), (3.79), we can see that

∂ZH(ε) = H(∂Zε) = [d∂Zρ]
= 1

2

(
∂AZ

ν

∂qσ
− ∂AZ

σ

∂qν
− 1

2

d

dt

(
∂AZ

ν

∂q̇σ
− ∂AZ

σ

∂q̇ν

)
−

(
∂CZ

στ

∂qν
− ∂CZ

ντ

∂qσ

)
q̈τ

)
ωσ ∧ ων ∧ dt

(4.16)+
(

1

2

(
∂AZ

ν

∂q̇σ
+ ∂AZ

σ

∂q̇ν

)
− d ′CZ

σν

dt

)
ω̇σ ∧ ων ∧ dt.

This means that Helmholtz conditions for ∂Zε take a simplified form

∂AZ
ν

∂qσ
− ∂AZ

σ

∂qν
− 1

2

d

dt

(
∂AZ

ν

∂q̇σ
− ∂AZ

σ

∂q̇ν

)
−

(
∂CZ

στ

∂qν
− ∂CZ

ντ

∂qσ

)
q̈τ = 0,

(4.17)
∂AZ

ν

∂q̇σ
+ ∂AZ

σ

∂q̇ν
− 2

d ′CZ
σν

dt
= 0,

or, equivalently,

∂AZ
ν

∂qσ
− ∂AZ

σ

∂qν
− 1

2

d ′

dt

(
∂AZ

ν

∂q̇σ
− ∂AZ

σ

∂q̇ν

)
= 0,

∂AZ
ν

∂q̇σ
+ ∂AZ

σ

∂q̇ν
− 2

d ′CZ
σν

dt
= 0,

(4.18)
∂

∂q̇τ

(
∂AZ

ν

∂q̇σ
− ∂AZ

σ

∂q̇ν

)
−

(
∂CZ

στ

∂qν
− ∂CZ

ντ

∂qσ

)
= 0.

The last condition above is, however, a consequence of the preceding one, and (4.15). Summarising, we get that a
contact symmetry Z is variational if and only if

∂AZ
ν

∂qσ
− ∂AZ

σ

∂qν
− 1

2

d ′

dt

(
∂AZ

ν

∂q̇σ
− ∂AZ

σ

∂q̇ν

)
= 0,

(4.19)
∂AZ

ν

∂q̇σ
+ ∂AZ

σ

∂q̇ν
− 2

d ′CZ
σν

dt
= 0.

The corresponding variational equations then take the form

(4.20)AZ
σ + CZ

σνq̈
ν = 0,

and they are regular if the matrix (CZ
σν) is regular. In this case we can write

(4.21)q̈σ = FZσ ,

where FZ = −(CZ)−1AZ .
Note that condition FZ = F , i.e., that the transformed dynamical form ∂Zε defines the same semispray connection

Γ as ε, means that

(4.22)CZF + AZ = 0.
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4.2. Variational vector fields for non-variational equations

Let Y = R
3, X = R. Let us consider, in the canonical coordinates on J 2

R
3, equations

(4.23)q̈1 = −q̇2, q̈2 = −q2.

Eqs. (4.23) were studied by Douglas [3] in connection with his analysis of variational multipliers for systems of two
second-order ordinary differential equations. He proved that these equations have no variational multiplier (cf. also [1]
and [19] for a geometric analysis of the problem).

We shall show that Eqs. (4.23) possess variational vector fields which transform them to variational equations.
Consider the canonical dynamical form ε = (ε1ω

1 + ε2ω
2) ∧ dt for (4.23), given by

(4.24)ε1 = q̇2 + q̈1, ε2 = q2 + q̈2.

We wish to find vertical contact symmetries Z of the Helmholtz form H(ε) of ε. Then the Lie derivative ∂Zε will be
a variational dynamical form. Since dimY = 3, vertical contact symmetries on J 2Y are vector fields

(4.25)Z = ζ σ (t, q)
∂

∂qσ
+ dζσ

dt

∂

∂q̇σ
+ d2ζ σ

dt2

∂

∂q̈σ
.

Substituting into (4.14) we have

AZ
1 = ∂Zq̇2 + ∂ζ 1

∂q1
q̇2 + ∂ζ 2

∂q1
q2 + d ′

dt

dζ 1

dt

= ∂ζ 2

∂t
+ ∂ζ 2

∂qν
q̇ν + ∂ζ 1

∂q1
q̇2 + ∂ζ 2

∂q1
q2 + ∂2ζ 1

∂t2
+ 2

∂2ζ 1

∂t ∂qν
q̇ν + ∂2ζ 1

∂qν∂qτ
q̇ν q̇τ ,

AZ
2 = ∂Zq2 + ∂ζ 1

∂q2
q̇2 + ∂ζ 2

∂q2
q2 + d ′

dt

dζ 2

dt

= ζ 2 + ∂ζ 1

∂q2
q̇2 + ∂ζ 2

∂q2
q2 + ∂2ζ 2

∂t2
+ 2

∂2ζ 2

∂t ∂qν
q̇ν + ∂2ζ 2

∂qν∂qτ
q̇ν q̇τ ,

(4.26)CZ
11 = 2

∂ζ 1

∂q1
, CZ

12 = CZ
21 = ∂ζ 2

∂q1
+ ∂ζ 1

∂q2
, CZ

22 = 2
∂ζ 2

∂q2
.

Eqs. (4.19) for Z be a symmetry of H(ε), i.e., a variational vector field, take the form

∂AZ
1

∂q̇1
− d ′CZ

11

dt
= ∂ζ 2

∂q1
= 0,

(4.27)
∂AZ

2

∂q̇2
− d ′CZ

22

dt
= ∂ζ 1

∂q2
= 0,

and (with help of the above)

∂AZ
2

∂q̇1
+ ∂AZ

1

∂q̇2
− 2

dCZ
12

dt
= ∂ζ 2

∂q2
+ ∂ζ 1

∂q1
= 0,

(4.28)
∂AZ

2

∂q1
− ∂AZ

1

∂q2
− 1

2

d

dt

(
∂AZ

2

∂q̇1
− ∂AZ

1

∂q̇2

)
= d

dt

∂ζ 1

∂q1
= 0.

Solving this system we obtain

(4.29)ζ 1 = A + Cq1, ζ 2 = B − Cq2,

where A = A(t), B = B(t) are arbitrary functions, and C ∈ R. Take for simplicity A,B = const. Then the dynamical
form ∂Zε, with Z = J 2Ξ defined by (4.29) is given as ∂Zε = (ε̃1ω

1 + ε̃2ω
2) ∧ dt , where

(4.30)ε̃1 = 2Cq̈1, ε̃2 = B − 2Cq2 − 2Cq̈2,
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and it is variational (H(∂Zε) = 0).
Note that in the family of vector fields Z = J 2Ξ where Ξ is defined by (4.29) there exist vector fields such that the

systems ε1 = 0, ε2 = 0 and ε̃1 = 0, ε̃2 = 0 have common solutions. Indeed, setting A = const., B = 0, we can easily
check that the functions q1 = at + b, q2 = 0, in which a, b ∈ R, verify both the systems.

The same results as above were obtained in [12] by a direct computation of symmetries of the Helmholtz form

(4.31)H(ε) = 1

2
(ω̇2 ∧ ω1 + ω̇1 ∧ ω2) ∧ dt

of the dynamical form ε (4.24).
In the paper by Prince [16] a similar and possibly related phenomena was reported: the generic dynamical symmetry

of the vector field Γ of (4.1) maps a variational system to another sharing common solutions with the first.

4.3. Variational vector fields for variational equations

We shall consider equations

(4.32)q̈1 = ρ̇q2 − ρ2q1, q̈2 = −ρ̇q1 − ρ2q2,

where ρ = ρ(t) is a function, ρ̇ �= 0. The canonical dynamical form ε = ε1ω
1 ∧ dt + ε2ω

2 ∧ dt , where

(4.33)ε1 = q̈1 − ρ̇q2 + ρ2q1, ε2 = q̈2 + ρ̇q1 + ρ2q2,

is not variational. However, the semispray connection Γ corresponding to Eqs. (4.33) is variational, since, obviously,
e.g., the equivalent dynamical form ε′ with

(4.34)ε′
1 = −q̈1 + ρ̇q2 − ρ2q1, ε′

2 = q̈2 + ρ̇q1 + ρ2q2,

has a Lagrangian

(4.35)L = 1

2

(
(q̇1)2 − (q̇2)2) + ρ̇q1q2 − 1

2
ρ2((q1)2 − (q2)2)

(this means that Eqs. (4.32) have a variational multiplier). For the corresponding Helmholtz forms we get the formulas

(4.36)H(ε) = 2ρ̇ ω1 ∧ ω2 ∧ dt, H(ε′) = 0.

Let us find vertical contact symmetries of the Helmholtz form (4.36). By a direct computation we have

(4.37)∂ZH(ε) = 2ρ̇

(
∂ζ 1

∂q1
+ ∂ζ 2

∂q2

)
ω1 ∧ ω2 ∧ dt = 0.

Hence, Z = J 1Ξ , where

(4.38)Ξ = ζ 1 ∂

∂q1
+ ζ 2 ∂

∂q2
,

∂ζ 1

∂q1
+ ∂ζ 2

∂q2
= 0.

We obtain variational dynamical forms ε̃ = ∂J 2Ξε, where

ε̃1 = ∂J 2Ξε1 + ε1
∂ζ 1

∂q1
+ ε2

∂ζ 2

∂q1

= 2
∂ζ 1

∂q1
q̈1 +

(
∂ζ 1

∂q2
+ ∂ζ 2

∂q1

)
q̈2 + d

dt

∂ζ 1

∂t
+ q̇1 d

dt

∂ζ 1

∂q1
+ q̇2 d

dt

∂ζ 1

∂q2

+ ρ2
(

ζ 1 + q1 ∂ζ 1

∂q1
+ q2 ∂ζ 2

∂q1

)
− ρ̇

(
ζ 2 + q2 ∂ζ 1

∂q1
− q1 ∂ζ 2

∂q1

)
,

ε̃2 = ∂J 2Ξε2 + ε1
∂ζ 1

∂q2
+ ε2

∂ζ 2

∂q2

=
(

∂ζ 1

2
+ ∂ζ 2

1

)
q̈1 − 2

∂ζ 1

1
q̈2 + d ∂ζ 2

+ q̇1 d ∂ζ 2

1
− q̇2 d ∂ζ 1

1
∂q ∂q ∂q dt ∂t dt ∂q dt ∂q
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(4.39)+ ρ2
(

ζ 2 − q2 ∂ζ 1

∂q1
+ q1 ∂ζ 1

∂q2

)
+ ρ̇

(
ζ 1 − q1 ∂ζ 1

∂q1
− q2 ∂ζ 1

∂q2

)
.

Lagrangians for the transformed dynamical forms can be easily computed using the well-known Tonti formula (see
e.g. [6,7])

(4.40)L̃ = q1

1∫
0

ε̃1(t, uqν,uq̇ν, uq̈ν) du + q2

1∫
0

ε̃2(t, uqν,uq̇ν, uq̈ν) du.

In particular, the following vector fields studied in [17] are symmetries of the Helmholtz form H(ε):

Z(1) = J 1Ξ(1) = 1

2
q1 ∂

∂q1
− 1

2
q2 ∂

∂q2
+ 1

2
q̇1 ∂

∂q̇1
− 1

2
q̇2 ∂

∂q̇2
,

(4.41)Z(2) = J 1Ξ(2) = 1

2
q2 ∂

∂q1
+ 1

2
q1 ∂

∂q2
+ 1

2
q̇2 ∂

∂q̇1
+ 1

2
q̇1 ∂

∂q̇2
.

The corresponding variational dynamical forms are ε̃(1),

(4.42)ε̃
(1)
1 = q̈1 + ρ2q1, ε̃

(1)
2 = −q̈2 − ρ2q2,

and ε̃(2),

(4.43)ε̃
(2)
1 = q̈2 + ρ2q2, ε̃

(2)
2 = q̈1 + ρ2q1,

respectively. Notice that both the symmetries Z(1),Z(2) give rise to the same semispray connection, arising from the
Lagrangian λ̃ = ∂Z(1)λ,

(4.44)L̃ = 1

2

(
(q̇1)2 + (q̇2)2) − 1

2
ρ2((q1)2 + (q2)2).

It is worth comparing all of this with the way the same ingredients enter into the application of the theory of pseudo-
symmetries, as developed in [17]. Eqs. (4.32) are regarded in [17] as representing a non-conservative mechanical
system, the conservative part of which is governed by the function L̃ which is generated here in (4.44). Pseudo-
symmetries are defined with respect to a certain 2-form σ which has the given semispray distribution in its kernel. It
is shown in [17] that pseudo-symmetries of point type generically produce a Lagrangian for the given system (which
may not be known to be variational at the outset). In the case at hand, the 2-form σ is precisely the ρ of (4.6) (up to
a sign). The vector fields Z(i) of (4.41) are indeed pseudo-symmetries of point type with respect to this σ , and thus
give rise to a Lagrangian. For Z(1), this Lagrangian is the function L of (4.35), Z(2) on the other hand gives a different
Lagrangian, namely

(4.45)L̂ = q̇1q̇2 − 1

2
ρ̇
(
(q1)2 − (q2)2) − ρ2q1q2.

It may be of interest to investigate the similarities between both theories in more general terms in the future. Better still,
since the theory of pseudo-symmetries was later reformulated and put into a more general form by the introduction of
the concept of adjoint symmetries (see e.g. [18]), the above observations suggest a comparative study of variational
vector fields and adjoint symmetries.
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