
On the generalized Helmholtz conditions for Lagrangian

systems with dissipative forces

M. Crampin, T. Mestdag and W. Sarlet

Department of Mathematical Physics and Astronomy, Ghent University
Krijgslaan 281, B-9000 Ghent, Belgium

July 7, 2009

Abstract. In two recent papers necessary and sufficient conditions for a given
system of second-order ordinary differential equations to be of Lagrangian form with
additional dissipative forces were derived. We point out that these conditions are
not independent and prove a stronger result accordingly.

Keywords. Lagrangian systems, dissipative forces, inverse problem, Helmholtz
conditions.

MSC (2000). 70H03, 70F17, 49N45

1 Introduction

The Helmholtz conditions, for the purposes of this paper, are the necessary and sufficient
conditions for a given system of second-order ordinary differential equations fa(q̈, q̇, q, t) =
0 to be of Euler-Lagrange type, that is, for there to exist a Lagrangian Λ(q̇, q, t) such
that

fa =
d

dt

(
∂Λ
∂q̇a

)
− ∂Λ
∂qa

. (1)

Here qa are the generalized coordinates (collectively abbreviated to q), q̇a the corre-
sponding generalized velocities, and so on. We shall state the conditions shortly. The
Lagrangian is supposed to be of first order, by which, to be explicit, we mean the fol-
lowing, throughout the paper: a function is of first order if it depends on q̇, q and t
alone, that is, if it is independent of q̈ and higher-order derivative (or more properly jet)
coordinates.

In two recent papers the problem of finding analogous necessary and sufficient conditions
for a given set of functions fa(q̈, q̇, q, t) to take the more general form

fa =
d

dt

(
∂Λ
∂q̇a

)
− ∂Λ
∂qa

+
∂D

∂q̇a
(2)
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for first-order functions Λ (a Lagrangian) and D (a dissipation function) has been dis-
cussed. We shall say that in this case the equations fa = 0 are of Lagrangian form with
dissipative forces of gradient type. The problem is solved, in the sense that a set of nec-
essary and sufficient conditions is given, in terms of standard coordinates, in the fairly
recent paper [3]. In a very recent paper [2] a version of the conditions expressed in terms
of quasi-velocities, or as the authors call them nonholonomic velocities, is obtained. We
shall quote the conditions from [3] explicitly in Section 2. These conditions are described
as generalized Helmholtz conditions to distinguish them from the Helmholtz conditions
discussed in our opening paragraph, which may be called the classical Helmholtz condi-
tions; these must of course comprise a special case of the generalized conditions.

The main purpose of the present paper is to point out that the generalized Helmholtz
conditions as stated in [3] are not independent: in fact two of them are redundant, in
that they can be derived from the remaining ones. This we show in Section 2 below. We
use the same formalism as [3]. However, since the version of the generalized conditions
obtained in [2] is equivalent to that in [3], it is clearly the case that the same redundancy
is present there as well. By taking advantage of the improvement in the formulation of
the generalized Helmholtz conditions that we achieve, we are able to give a shorter and
more elegant proof of their sufficiency than the one to be found in [3].

There are in fact several interesting questions raised by the two papers [2, 3], only one
of which will be dealt with here. In the third and final section of our paper we give an
outline of these additional points of interest, which will receive a fuller airing elsewhere.

We employ the Einstein summation convention throughout.

We end this introduction with a brief summary of the results about the classical Helmholtz
conditions that we shall need.

The classical Helmholtz conditions, which are the necessary and sufficient conditions
for the functions fa(q̈, q̇, q, t) to be the Euler-Lagrange expressions of some first-order
Lagrangian function, as given in equation (1), are that the fa should satisfy

∂fa

∂q̈b
=
∂fb

∂q̈a
(3)

∂fa

∂q̇b
+
∂fb

∂q̇a
= 2

d

dt

(
∂fb

∂q̈a

)
(4)

∂fa

∂qb
− ∂fb

∂qa
= 1

2

d

dt

(
∂fa

∂q̇b
− ∂fb

∂q̇a

)
. (5)

It is a consequence of these (and not an extra condition, as stated in [3]) that

∂2fa

∂q̈b∂q̈c
= 0

(this follows from the vanishing of the coefficient of ...
q c in condition (4)). Thus we may

write fa = gabq̈
b + ha, the coefficients being of first order, with gab = gba as a result of
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condition (3). The Helmholtz conditions can be re-expressed in terms of gab (assumed
to be symmetric) and ha, when they reduce to the following three conditions:

∂gab

∂q̇c
− ∂gac

∂q̇b
= 0 (6)

∂ha

∂q̇b
+
∂hb

∂q̇a
= 2

d̄

dt
(gab) (7)

2
(
∂ha

∂qb
− ∂hb

∂qa

)
=

d̄

dt

(
∂ha

∂q̇b
− ∂hb

∂q̇a

)
, (8)

where
d̄

dt
=

∂

∂t
+ q̇c ∂

∂qc
.

That is to say, the fa are the Euler-Lagrange expressions of some first-order Lagrangian
if and only if fa = gabq̈

b +ha for some first-order functions gab and ha such that gab = gba

and (6)–(8) hold. This reformulation can be found in the book by Santilli [5], for example.

2 The generalized Helmholtz conditions

We next turn to the analysis of the generalized Helmholtz conditions obtained in [3] as the
necessary and sufficient conditions for a system of equations fa = 0 to be of Lagrangian
form with dissipative forces of gradient type, as given in equation (2). Following the
notation of [3] we set

rab =
∂fa

∂qb
− ∂fb

∂qa
+ 1

2

d

dt

(
∂fb

∂q̇a
− ∂fa

∂q̇b

)
sab = 1

2

(
∂fa

∂q̇b
+
∂fb

∂q̇a

)
− d

dt

(
∂fb

∂q̈a

)
.

The generalized Helmholtz conditions as given in [3] are that rab and sab are of first
order, and that in addition

∂fa

∂q̈b
=
∂fb

∂q̈a
(9)

∂sab

∂q̇c
=
∂sac

∂q̇b
(10)

∂rab

∂q̇c
=
∂sac

∂qb
− ∂sbc

∂qa
(11)

0 =
∂rab

∂qc
+
∂rbc
∂qa

+
∂rca
∂qb

. (12)

Our main concern will be with analysing conditions (10)–(12), which correspond to (2.3e),
(2.3f) and (2.3g) of [3]; we shall show that conditions (10) and (12) are redundant, being
consequences of the remaining conditions.
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Our first aim is to understand exactly what it means for rab and sab to be of first order,
bearing in mind condition (9) above.

From the vanishing of the coefficient of ...
q c in sab we have

∂2fa

∂q̈b∂q̈c
= 0.

As before we may write fa = gabq̈
b + ha, the coefficients being of first order and gab

symmetric. The coefficient of ...
q c in rab is

1
2

∂

∂q̈c

(
∂gbd

∂q̇a
q̈d +

∂hb

∂q̇a
− ∂gad

∂q̇b
q̈d − ∂ha

∂q̇b

)
,

whence
∂gbc

∂q̇a
=
∂gac

∂q̇b
.

The coefficient of q̈c in sab, namely

∂gac

∂q̇b
+
∂gbc

∂q̇a
− 2

∂gab

∂q̇c
,

vanishes as a consequence. The coefficient of q̈c in rab is

∂gac

∂qb
− ∂gbc

∂qa
− 1

2

(
∂2ha

∂q̇b∂q̇c
− ∂2hb

∂q̇a∂q̇c

)
,

an expression which for later convenience we write as ρabc; we must of course have
ρabc = 0. The remaining terms in rab and sab are all of first order, and we have

rab =
∂ha

∂qb
− ∂hb

∂qa
− 1

2

d̄

dt

(
∂ha

∂q̇b
− ∂hb

∂q̇a

)
sab = 1

2

(
∂ha

∂q̇b
+
∂hb

∂q̇a

)
− d̄

dt
(gab);

compare with (7) and (8), and also with equations (2.16b) and (2.17c) of [3].

The redundancy of condition (10) is a consequence of the vanishing of ρabc, as we now
show. We have

∂sac

∂q̇b
= 1

2

(
∂2ha

∂q̇b∂q̇c
+

∂2hc

∂q̇a∂q̇b

)
− ∂

∂q̇b

(
d̄

dt
(gac)

)
= 1

2

(
∂2ha

∂q̇b∂q̇c
+

∂2hc

∂q̇a∂q̇b

)
− d̄

dt

(
∂gac

∂q̇b

)
− ∂gac

∂qb
,

using the commutation relation [
∂

∂q̇a
,
d̄

dt

]
=

∂

∂qa
. (13)
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It follows that
∂sac

∂q̇b
− ∂sbc

∂q̇a
= −ρabc = 0.

That is to say, condition (10) holds automatically as a consequence of the first-order
property. Furthermore, ρabc = 0 is equivalent to equation (2.17b) of [3]; in other words,
the redundancy of (10) is actually implicit in [3], though not apparently recognized there.

Before proceeding to consider condition (12) we turn aside to make some remarks about
the classical Helmholtz conditions.

The calculations just carried out are essentially the same as those which lead to the
version of the classical Helmholtz conditions given in equations (6)–(8) at the end of the
introduction. It is easy to see that in that case rab = sab = 0 are necessary conditions.
This observation, together with the part of the argument concerning the vanishing of the
coefficients of ...

q and q̈, leads to the following conditions:

∂gac

∂q̇b
+
∂gbc

∂q̇a
= 2

∂gab

∂q̇c
(14)

∂ha

∂q̇b
+
∂hb

∂q̇a
= 2

d̄

dt
(gab) (15)

∂gab

∂q̇c
− ∂gac

∂q̇b
= 0 (16)

∂2ha

∂q̇b∂q̇c
− ∂2hb

∂q̇a∂q̇c
= 2

(
∂gac

∂qb
− ∂gbc

∂qa

)
(17)

2
(
∂ha

∂qb
− ∂hb

∂qa

)
=

d̄

dt

(
∂ha

∂q̇b
− ∂hb

∂q̇a

)
. (18)

These are the conditions quoted in Remark 3 of Section 1 of [3]. However, it is now
evident that two of them are redundant. Clearly condition (14) (which is the vanishing
of the coefficient of q̈c in sab) follows from condition (16) and the symmetry of gab.
Condition (17) is the condition ρabc = 0. The second part of the argument above,
that leading to the relation ρabc = ∂sbc/∂q̇

a − ∂sac/∂q̇
b, shows that in the classical case

condition (17) follows from the other conditions. When these two redundant conditions
are removed we obtain the classical Helmholtz conditions in the form given at the end
of the introduction.

These results in the classical case are actually very well known, though not apparently
to the authors of [3], and have been known for a long time: they are to be found, for
example, in Santilli’s book of 1978 [5] (which is in fact referred to in [3]).

For the sake of clarity we should point out a difference between the two cases: in the
classical case condition (17) is completely redundant; in the generalized case it is not
redundant, but occurs twice in the formulation of the conditions in [3], once in the
requirement that rab should be of first order and once as the condition ∂sab/∂q̇

c =
∂sbc/∂q̇

a.
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We now return to the generalized conditions, and prove that condition (12) follows from
condition (11). It will be convenient to write condition (12) as∑

a,b,c

∂rab

∂qc
= 0,

where
∑

a,b,c stands for the cyclic sum over a, b and c, here and below. As a preliminary
remark, note that if kabc is symmetric in b and c (say) then

∑
a,b,c kabc =

∑
a,b,c kbac. Now

∂rab

∂qc
=

∂2ha

∂qb∂qc
− ∂2hb

∂qa∂qc
− 1

2

d̄

dt

(
∂2ha

∂qc∂q̇b
− ∂2hb

∂qc∂q̇a

)
,

and so by the preliminary remark

∑
a,b,c

∂rab

∂qc
= −1

2

d̄

dt

∑
a,b,c

(
∂2ha

∂qc∂q̇b
− ∂2hb

∂qc∂q̇a

)
= −1

2

d̄

dt

∑
a,b,c

(
∂2ha

∂qc∂q̇b
− ∂2ha

∂qb∂q̇c

) .

On the other hand, using the commutation relation (13) and the fact that ∂/∂qa and
d̄/dt commute it is easy to see that condition (11) leads to

1
2

∑
a,b,c

(
∂2ha

∂qc∂q̇b
− ∂2ha

∂qb∂q̇c

)
= − d̄

dt
(ρabc) = 0.

We therefore reach the following proposition, which is stronger than the corresponding
result in [3].

Proposition. The necessary and sufficient conditions for the equations fa(q̈, q̇, q, t) = 0
to be of Lagrangian form with dissipative forces of gradient type as in (2) are that the
functions rab and sab are of first order, that

∂fa

∂q̈b
=
∂fb

∂q̈a
,

and that
∂rab

∂q̇c
=
∂sac

∂qb
− ∂sbc

∂qa
. (19)

Just as in the classical case we can give an equivalent formulation of these conditions in
terms of gab and ha. Bearing in mind that rab and sab being of first order are essential
hypotheses, we find that the following conditions are equivalent to those given in the
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proposition above: fa = gabq̈
b + ha with gab symmetric, where gab, ha are of first order

and further satisfy

∂gab

∂q̇c
− ∂gac

∂q̇b
= 0

∂2ha

∂q̇b∂q̇c
− ∂2hb

∂q̇a∂q̇c
= 2

(
∂gac

∂qb
− ∂gbc

∂qa

)
∑
a,b,c

(
∂2ha

∂qb∂q̇c
− ∂2ha

∂qc∂q̇b

)
= 0.

The first of these is one of the classical conditions. The second is the condition ρabc = 0,
which holds in the classical case as we have shown. The third is just condition (19)
above expressed in terms of gab and ha (or as it turns out, in terms of ha alone), and
rab = sab = 0 in the classical case. It is evident therefore that the conditions above are
indeed a generalization of those for the classical case.

We end this section by giving an alternative proof of the sufficiency of the generalized
Helmholtz conditions, based on this formulation of them, which is shorter and in our
view more elegant than the proof in [3] (necessity is an easy if tedious calculation).

We note first that if gab is symmetric and satisfies

∂gab

∂q̇c
=
∂gac

∂q̇b

then

gab =
∂2K

∂q̇a∂q̇b

for some function K = K(q̇, q, t) (a well-known result, which also appears in [3]). Of
course K is not determined by this relation; in fact if Λ = K + Paq̇

a +Q, where Pa and
Q are any functions of q and t, then Λ has the same Hessian as K (the same gab, in other
words). Our aim is to choose Pa and Q so that the given equations are of Lagrangian
form with dissipative forces of gradient type as in (2), with Lagrangian Λ, assuming that
the generalized Helmholtz conditions above hold. In fact we won’t need to consider Q
because it can be absorbed into D: if Λ is a Lagrangian and D a dissipation function
for some functions fa, so are Λ + Q and D + q̇a∂Q/∂qa. We shall therefore take Q = 0
below.

Let Ea be the Euler-Lagrange expressions of K. Then Ea = gabq̈
b + ka for some first-

order ka, by construction, so fa −Ea = ha − ka = κa say, where κa is also of first order.
Moreover, fa satisfies the generalized Helmholtz conditions by assumption, and Ea does
so by construction (it satisfies the classical conditions after all), whence κa satisfies

∂2κa

∂q̇b∂q̇c
− ∂2κb

∂q̇a∂q̇c
= 0 (20)∑

a,b,c

(
∂2κa

∂qb∂q̇c
− ∂2κa

∂qc∂q̇b

)
= 0. (21)
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Let us set
∂κa

∂q̇b
− ∂κb

∂q̇a
= Rab.

Then by (20) Rab is independent of q̇, and by (21)∑
a,b,c

∂Rab

∂qc
= 0.

There are therefore functions Pa(q, t) such that

Rab = 2
(
∂Pa

∂qb
− ∂Pb

∂qa

)
=
∂κa

∂q̇b
− ∂κb

∂q̇a
,

which is to say that if we set

πab =
∂κa

∂q̇b
−
(
∂Pa

∂qb
− ∂Pb

∂qa

)
then πba = πab. Moreover,

∂πab

∂q̇c
=

∂2κa

∂q̇b∂q̇c
=
∂πac

∂q̇b
.

It follows (just as is the case for gab) that there is a first-order function D′ such that

πab =
∂2D′

∂q̇a∂q̇b
,

from which we obtain

κa =
(
∂Pa

∂qb
− ∂Pb

∂qa

)
q̇b +

∂D′

∂q̇a
+ Sa

where Sa is independent of q̇. Now take

Λ = K + Paq̇
a.

Denoting the Euler-Lagrange expressions of K by Ea as before, the Euler-Lagrange
expressions for Λ are

Ea +
(
∂Pa

∂qb
− ∂Pb

∂qa

)
q̇b +

∂Pa

∂t
= Ea + κa −

∂D′

∂q̇a
− Sa +

∂Pa

∂t
.

Thus, putting

D = D′ +
(
Sa −

∂Pa

∂t

)
q̇a,

we get

fa =
d

dt

(
∂Λ
∂q̇a

)
− ∂Λ
∂qa

+
∂D

∂q̇a

as required.

This method of proof works equally well in the classical case. The proof is constructive,
in the same sense that the one in [3] is, in either case. It is particularly well adapted
to the familiar situation in which gab is independent of q̇, when one can take the kinetic
energy 1

2gabq̇
aq̇b for K.

8



3 Concluding remarks

We wish to make four remarks in conclusion, and to announce that these remarks are
the basis for further work and results concerning the issues raised here, which will be the
subject of a future second paper.

The first remark concerns the nature of conditions (10)–(12) on the derivatives of rab

and sab, as originally expressed in [3] (that is, ignoring the question of dependence). In
particular, bearing in mind the fact that rab is skew in its indices, the condition∑

a,b,c

∂rab

∂qc
= 0

is suggestive: if perchance the rab were functions of the q alone this would have a nat-
ural interpretation in terms of the exterior calculus, being the condition for the 2-form
rabdq

a ∧ dqb to be closed, that is, to satisfy d(rabdq
a ∧ dqb) = 0. This point is made,

in somewhat different terms, in [3] (and we appealed to the same general result in our
proof of sufficiency of the generalized Helmholtz conditions in Section 2). The authors of
[3] go on to say, however, that the condition above ‘can be interpreted as the vanishing
curvature of a symplectic space’, which seems to us not to be entirely convincing. In
fact it is possible to interpret the three conditions (10)–(12) collectively as signifying the
vanishing of a certain exterior derivative of a certain 2-form on the space of coordinates
t, q, q̇, q̈, . . . , a 2-form whose coefficients involve both rab and sab. This interpretation re-
ally arises from seeing the problem in the context of the so-called variational bicomplex
(see [6] for a recent review).

Secondly, we contend that the problem we are dealing with should really be regarded
as one about (second-order) dynamical systems. The point is that a dynamical system
may be represented as a system of differential equations in many different coordinate
formulations; the question of real interest is whether there is some representation of it
which takes the form of an Euler-Lagrange system with dissipation, not just whether a
given representation of it takes that form. Of course this point applies equally, mutatis
mutandis, to the case in which there is no dissipation. Now the Helmholtz conditions
as discussed in [2, 3], in both the classical and the generalized versions, suffer from the
disadvantage that they are conditions for a given system of differential equations to be of
Euler-Lagrange type. There is, however, an alternative approach to the problem which
does deal with dynamical systems rather than equations, at least in the case in which
the system can be expressed in normal form q̈a = F a(q̇, q, t). In this approach one asks
(in the absence of dissipation) for conditions for the existence of a so-called multiplier, a
non-singular matrix with elements gab, such that gab(q̈b − F b) takes the Euler-Lagrange
form (so that in particular when the conditions are satisfied gab will be the Hessian of the
Lagrangian with respect to the velocity variables). The basic idea is to put ha = −gabF

b

in the conditions at the end of the introduction, and regard the results as a system of
partial differential equations equations for gab with F a known. The seminal paper in
this approach is Douglas’s of 1941 [1], which analyses in great detail the case of two
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degrees of freedom. For a recent review of developments since then see Sections 5 and 6
of [4] and references therein. One can in fact also formulate conditions on a multiplier
for a second-order dynamical system, expressible in normal form, to be representable as
equations of Lagrangian form with dissipative forces of gradient type; these generalize the
known results for representation in Lagrangian form without dissipation in an interesting
way.

The new ingredient in [2], by comparison with [3], is the expression of the generalized
Helmholtz conditions in terms of quasi-velocities. As presented in the paper this is quite
a long drawn out procedure, because in effect the conditions are rederived from scratch.
Our third remark is that in principle this should be unnecessary: a truly satisfactory
formulation of the conditions should be tensorial, in the sense of being independent of
a choice of coordinates (and of course quasi-velocities are just a certain type of velocity
coordinates). The approach described in the previous paragraph leads to conditions
which have this desirable property.

Fourthly and finally, there is the question of whether generalized Helmholtz conditions
can be derived for other kinds of “generalized force” terms than ∂D/∂q̇a. One important
case is that in which such a term is of gyroscopic type. We have obtained such conditions
in this case, again using the approach discussed in our second remark above.

These points will be discussed in full detail in a forthcoming paper.
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