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Abstract. We examine Lagrangian systems on Rn with standard kinetic energy

terms for the possibility of additional, alternative Lagrangians with kinetic energy

metrics different to the Euclidean one. Using the techniques of the inverse prob-

lem in the calculus of variations we find necessary and sufficient conditions for the

existence of such Lagrangians. We illustrate the problem in dimensions two and

three with quadratic and cubic potentials. As an aside we show that the well-known

anomalous Lagrangians for the Coulomb problem can be removed by switching on a

magnetic field, providing an appealing resolution of the ambiguous quantisations of

the hydrogen atom.

1 Introduction

The inverse problem of Lagrangian mechanics is about deciding whether a given system of
second-order ordinary differential equations (sode for short) can be recast into the form
of Euler-Lagrange equations for some Lagrangian L. The literature about this subject
is vast and so are the different techniques and mathematical tools which have been used
in its development. For a sample of such different approaches (listed in chronological
order) we refer to [13, 12, 2, 6, 1, 3]; many more references can be found for example
in the review paper [9] and it is perhaps worth mentioning that a generalization of the
problem, using the geometric calculus developed in [10], has recently been presented in
[11].

Many of the contributions referred to above make use of different, but quite advanced
differential geometric methods, and often aim at obtaining classification type results
concerning sodes which admit a Lagrangian representation. We wish to emphasise that
our purpose in the present paper is to analyse a very concrete subclass of systems, for
which there exist multiple Lagrangian formulations, and which further have an obvious
physical connotation. Accordingly, we shall keep reference to the differential geometric
background to a minimum and express all conditions of interest in analytical terms.
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The sodes we start from are autonomous differential equations on in normal form, say

ẍa = F a(x, ẋ), a = 1, . . . , n, (1)

which geometrically come from a second-order equation (vector) field, called Γ, on the
tangent bundle TM of some n dimensional configuration manifold M . Coordinates on
TM will be denoted by (xa, ẋa), so

Γ = ẋa
∂

∂xa
+ F a(x, ẋ)

∂

∂ẋa
.

In the autonomous setting, the inverse problem we are addressing is the existence and
uniqueness question for a multiplier matrix gab(x, ẋ), such that

gab(ẍ
b − F b) ≡ d

dt

(
∂L

∂ẋa

)
− ∂L

∂xa
, (2)

for some Lagrangian function L(x, ẋ). Necessary and sufficient conditions for the exis-
tence of a Lagrangian are generally referred to as the Helmholtz conditions, and when
regarded as conditions that a non-singular multiplier must satisfy, they read as follows:

gab = gba, Γ(gab) = gacΓ
c
b + gbcΓ

c
a, gacΦ

c
b = gbcΦ

c
a,

∂gab
∂ẋc

=
∂gac
∂ẋb

, (3)

where

Γab := −1

2

∂F a

∂ẋb
, Φa

b := −∂F
a

∂xb
− ΓcbΓ

a
c − Γ(Γab ).

The interested reader can look up the direct, coordinate free formulation of the conditions
(3), which was developed in [10], in the introduction of [1], for example. We should at
least say that the functions Γab are the connection coefficients of the canonical non-
linear connection which comes with the given sode Γ and that they in turn give rise
to the important concept of dynamical covariant derivative, a derivation ∇, of degree 0,
determined by

∇ ∂

∂xb
= Γab

∂

∂xa
, ∇dxa = −Γabdx

b, ∇F = Γ(F ), F ∈ C∞(TM).

Importantly, an integrability study of the partial differential equations for the gab leads
to further algebraic restrictions, which may give interesting extra information (see e.g.
[13]). For future reference, we mention one of them, called the curvature condition. It
reads

garR
r
bc + gbrR

r
ca + gcrR

r
ab = 0. (4)

Here Rabc are the components of the curvature tensor of the non-linear connection. Their
coordinate expression is

Rabc := Hc(Γ
a
b )−Hb(Γ

a
c ), where Hc :=

∂

∂xc
− Γrc

∂

∂ẋr
.
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Of course, if we can find a solution of the equations (3), we don’t have to worry about
such further conditions, since they are merely integrability conditions for the existence
of solutions.

The restricted, concrete question we shall address in this paper is the characterization
of sodes on Rn which have a Lagrangian representation with a Euclidean kinetic energy
term, and which admit alternative Lagrangian representations including those for which
the multiplier matrix does not depend on the velocities. The main conditions about
detecting such systems are developed in section 2. In section 3, it is shown that such
systems actually decouple into lower dimensional Lagrangian systems in coordinates
which diagonalise the alternative multiplier. A number of explicit examples are worked
out in section 4. The final section concerns the Coulomb/Kepler problem on R3. This
system is known to admit alternative Lagrangians which lead to anomalous quantisations
for the hydrogen atom [7]. Although this is a case where the alternative multiplier
depends on the velocities, it fits with the spirit and results of section 2. We show
that turning on a constant magnetic field removes all the Lagrangian degeneracy in this
problem (the sole and unambiguous quantisation being the hydrogen atom with Zeeman
effect).

2 A particular class of Lagrangian systems

Suppose Γ is a sode field on TM with the property that, in some coordinate system,
there exists a constant (non-singular) multiplier matrix for the inverse problem. Such a
constant symmetric gab is the Hessian of the function T = 1

2gabẋ
aẋb and the preceding

statement means that there exists a Lagrangian L for the given sode, in the class of
functions with the same Hessian. Since the freedom in choosing an L with Hessian gab
amounts to adding to T a linear function in the velocities, the Lagrangian which we
assume to exist will be of the form

L = T +Ac(x)ẋc − V (x). (5)

The identity (2) produces

Fa := gabF
b =

(
∂Ab
∂xa
− ∂Aa
∂xb

)
ẋb − ∂V

∂xa
,

so that the ‘forces’ Fa are necessarily of the form of ‘generalised electromagnetic forces’
in the coordinates under consideration. We shall restrict ourselves here to the case where
M = Rn with the Euclidean metric which gives rise to the given constant multiplier being
the unit matrix in cartesian coordinates (xa): gab = δab; the corresponding Lagrangian
will be denoted L0. The right-hand sides of the given equations will then be of the form
(with Aa = δabAb)

F a =

(
∂Ab

∂xa
− ∂Aa

∂xb

)
ẋb − ∂V

∂xa
, (6)
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for some functions V and Aa on Rn. It follows that the connection coefficients are
skew-symmetric:

Γab = −1
2

∂F a

∂ẋb
=

1

2

(
∂Aa

∂xb
− ∂Ab

∂xa

)
, (7)

while

Φa
c =

1

2

(
∂2Aa

∂xc∂xb
+

∂2Ac

∂xa∂xb
− 2

∂2Ab

∂xa∂xc

)
ẋb − ΓabΓ

b
c +

∂2V

∂xa∂xc
(8)

clearly is symmetric.

We want to investigate the possibility of a second multiplier g for such systems which
does not depend on the velocities. If g does not depend on the velocities, it follows from
the condition

Γ(gab) =
∂gab
∂xc

ẋc = gacΓ
c
b + gbcΓ

c
a,

that g must actually be constant and the matrix (gacΓ
c
b) must be skew-symmetric which,

in view of the skew-symmetry of the Γab , is equivalent to saying that g and (Γab ) commute.
The remaining Helmholtz condition reads gacΦ

c
b = gbcΦ

c
a and is, because of the symmetry

of Φ, also equivalent to the commutativity of g and Φ. From the definition of Φ and the
structure of the functions F a, it is straightforward to show that this condition will be
satisfied if and only if

gac
∂2V

∂xc∂xb
= gbc

∂2V

∂xc∂xa
, (9)

and

gac
∂Γcr
∂xb
− gbc

∂Γcr
∂xa

= gac
∂Γcb
∂xr

. (10)

The first of these puts rather severe restrictions on admissible potentials. Putting γab :=
gacΓ

c
b, the second condition can be written as

∂γar
∂xb

+
∂γrb
∂xa

+
∂γba
∂xr

= 0. (11)

Since γab is skew-symmetric, this expresses the closure of a 2-form, so that there will
exist local functions Ba with

γab = gacΓ
c
b =

∂Ba
∂xb

− ∂Bb
∂xa

.

One can further show that the cyclic sum condition on the γab is the curvature condition
to be satisfied by the multiplier.

Summarizing, we have:

Proposition 1. Assume that the sode Γ on Rn admits a coordinate representation for
which δab is a multiplier matrix for the inverse problem of Lagrangian mechanics. Then
the right-hand sides of the equations (1) are of the form (6) for some functions Aa and V .
Any admitted multiplier matrix gab, not a multiple of the identity and independent of the
velocities, must be constant, must commute with the matrix of connection coefficients,
must satisfy the conditions (9) with respect to the function V and the curvature type
condition (11) must hold with respect to the functions Aa.
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In the next section, we shall see that these conditions entail the existence of a linear
change of coordinates which will partially decouple the given equations.

Functions V which satisfy (9) have some remarkable properties. Since g is constant, (9)
can be written in the form

∂

∂xb

(
gac

∂V

∂xc

)
=

∂

∂xa

(
gbc

∂V

∂xc

)
,

and hence

gac
∂V

∂xc
=

∂ξ

∂xa
or equivalently

∂V

∂xa
= gac

∂ξ

∂xc
,

for some function ξ on Rn. The resulting integrability conditions to be satisfied by V
indicate that ξ will itself be a solution of the equation (9). Alternatively, if we first
multiply (9) by gragsb, we can write it in the form

∂

∂xr

(
gsb

∂V

∂xb

)
=

∂

∂xs

(
gra

∂V

∂xa

)
,

from which a similar Bäcklund type transformation is obtained, by putting

gsb
∂V

∂xb
=

∂ψ

∂xs
or equivalently

∂V

∂xr
= gra

∂ψ

∂xa
,

for some function ψ. We thus obtain a double procedure to construct, in principle, new
admissible potentials from known particular solutions.

Proposition 2. Let (gab) be an arbitrary constant, non-singular, symmetric matrix, and
assume V0(x) is a particular solution of the equation (9). Then, putting

∂V

∂xa
= gab

∂V0
∂xb

, or
∂V

∂xa
= gab

∂V0
∂xb

,

produces two sets of partial differential equations for V which are guaranteed to be inte-
grable and will produce other solutions of the same equation (9).

3 Decoupling and a constructive characterization of the
sodes under consideration

Given a second, constant multiplier matrix g = (gab) arising from proposition 1, there
then exists a constant orthogonal matrix P which diagonalises it, P T gP = diag (λ1 . . . λn)
say. The matrix P can be regarded as the Jacobian of a linear coordinate transformation,

xa = Paby
b, with inverse ya = Pbax

b. (12)

Considering the Lagrangian L0 which produces the given sode with δab as multiplier, it
is clear that an arbitrary orthogonal coordinate transformation fully respects the struc-
ture of the system, i.e. in the new coordinates the system still has the unit matrix as
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multiplier and admits a second constant multiplier gab. Nevertheless, it is a worthwhile
exercise (left to the reader) to double check that all concepts and conditions described in
proposition 1 behave well under such a coordinate transformation. This may be obvious
for g and Φ, for example, which are tensor fields, but less obvious for the matrix of
connection coefficients, (Γab ), which certainly does not behave tensorially under arbitrary
coordinate transformations. To be concrete, if Γ̄ab denotes the connection coefficients in
new coordinates defined by (12), then

Γ̄ab =
1

2

(
∂Āa

∂xb
− ∂Āb

∂xa

)
, with Āa = PbaA

b.

According to the elementary matrix considerations explained in the appendix, the or-
thogonal transformation which diagonalises g will simultaneously transform Φ and Γab ,
which commute with g, into a corresponding block diagonal structure. Reversing the ar-
guments, we are actually looking here at a property which fully characterises the systems
under consideration, and can be expressed as follows.

Proposition 3. Assume we have a Lagrangian, L0, for the given sode, with a Euclidean
kinetic energy term. Then the necessary and sufficient conditions for the existence of an
alternative, constant multiplier g are that Φ and the matrix of connection coefficients Γab
have common constant invariant subspaces, of which there are at least two.

Proof. The necessity of the conditions has been obtained above. Concerning the suffi-
ciency, we reiterate that these conditions have an intrinsic meaning so long as we restrict
ourselves to coordinate transformations which preserve the Euclidean structure, i.e. are
of the form (12). Then, given these common invariant subspaces, it suffices to construct
a corresponding block diagonal g with a single eigenvalue for each of the blocks, making
sure that at least two of these eigenvalues are distinct, so that g does not become a
multiple of the identity after diagonalisation.

We can do even better, by explaining how the block diagonal structure referred to above
will actually lead to a decoupled system of differential equations. With g diagonalised
and Φ in block form, each of the blocks of Φ is spanned by a number of coordinate vector
fields and the dimension of this substructure comes from the maximal degeneracy of
eigenvalues of g. Thus we can define a number of disjoint distributions, DA, A = 1, . . . , r
say, where

DA := Sp

{
∂

∂yAα
, α = 1, . . . ,dimDA

}
such that in a neighbourhood of an arbitrary point, we have TRn = ⊕rA=1DA. The DA
are basic distributions which are invariant under Φ, by construction. Moreover, we have

∇ ∂

∂yAα
=
∑
B,β

Γ̄BβAα
∂

∂yBβ
=
∑
β

Γ̄AβAα
∂

∂yAβ
,

since Γ̄ab has the same block structure. Hence, we also have that ∇DA ⊂ DA.
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It is known (see e.g. Proposition 1 in [14]) that the existence of a basic distribution,
invariant under Φ and ∇, is the necessary and sufficient condition for a sode to be
locally submersive in the sense defined in [8]. This means that in coordinates adapted to
the distribution the second-order equations will display a feature of partial decoupling.
But we have a much stronger situation here, namely a direct sum of a number of such
distributions and the y-coordinates are already adapted to all of the DA. This means
that the linear transformation to the y-coordinates will decouple the given sode into a
number of separate second-order systems of lower dimension.

Proposition 4. Assume that a given sode Γ satisfies the conditions of proposition 1.
Then the linear coordinate transformation which diagonalises the second constant multi-
plier gab will decouple the system into a number of separate sodes, one for each distinct
eigenvalue of g.

This strong conclusion can be understood in terms of the conditions for decoupling estab-
lished by Ferrario et al [5]. In that paper a sode Γ is assumed to admit two Lagrangians
and a type (1, 1) tensor field T on TM is constructed out of the product of one of the
multipliers with the inverse of the other. Decoupling follows if T is diagonalisable, has
even dimensional eigenspaces with constant degeneracy, has zero Nijenhuis torsion, com-
mutes with the vertical endomorphism S and is invariant under Γ. To see how our results
fit into that theory, it suffices to define gab = gacδcb. This gives the (constant) components
of a (1, 1) tensor on M , whose horizontal lift defines a tensor on TM , which is easily
seen to satisfy all conditions of the theorem in [5].

Another interesting point is that, in agreement with the sufficiency statement in propo-
sition 3, the results of proposition 4 can actually be reversed and so provide a concrete
procedure to construct sodes which have both the unit matrix and another (constant)
matrix as multiplier for the inverse problem. To this end, take any number of separate
sodes Γi which are of the form of generalised electromagnetic forces, i.e. have right-hand
sides of the form (6) and admit a corresponding standard Lagrangian Li, with a scalar
and vector potential and the Euclidean metric for the kinetic energy part. Multiply each
Γi with an arbitrary constant λi creating a diagonal multiplier for the direct sum system
Γ = ⊕Γi. Finally, apply an arbitrary linear, orthogonal coordinate transformation to
this system. This will transform Γ into a system which looks completely coupled and
still has the identity matrix as multiplier; at the same time, the function

∑
λiLi will be

transformed into an alternative Lagrangian for Γ, corresponding to a second constant
multiplier which has the chosen constants λi as eigenvalues.

This is not the procedure we would apply if the starting point is a given sode with
right-hand sides of type (6) and we want to find for which scalar potentials V and vector
potentials Aa there exist alternative multipliers. This is the way we will approach the
characterization in the examples in the next section.
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4 Examples

Consider a system ẍa = F a, where the F a are of the form (6). A practical implementation
of the results of proposition 1 works as follows: (i) first compute the matrix γ with
components γab = gacΓ

c
b and impose that γ must be skew-symmetric; (ii) require that the

curvature conditions (11) must hold; (iii) investigate the requirements (9) for admissible
functions V . With a little luck, we will know the admissible vector potentials after the
first two steps (or alternatively have fixed the freedom in the constant multiplier for
given vector potentials), and can then address the remaining question about admissible
potentials V in the third step. The utility of propositions 2 and 3 will be illustrated as
part of this process.

For a start, take n = 2. The skew-symmetry of γ requires that

g12Γ
1
2 = 0 and (g11 − g22)Γ1

2 = 0.

If Γ1
2 were not zero, there would be no g other than a multiple of the identity, in other

words: given a scalar potential the addition of a magnetic (or gyroscopic) type force in
dimension 2 immediately fixes the multiplier. So we must require that Γ1

2 = 0 and the
problem is reduced to the study of the condition

g12

(
∂2V

∂x22
− ∂2V

∂x21

)
= (g22 − g11)

∂2V

∂x1∂x2
.

By way of example, we proceed now to determine all admissible quadratic and cubic
potentials. First, put

V := 1
2kx

2
1 + lx1x2 + 1

2mx
2
2,

Then the condition becomes

g12(m− k) = (g22 − g11) l.

If l = 0 and m = k, then we are in the rather trivial situation where Φ is a multiple of the
identity and every constant (non-singular) g will be a multiplier (the given differential
equations are in fact decoupled from the start). If only l = 0 or only m = k, then
g12 must be zero in the first case, or g11 = g22 in the second; in both cases, we have a
2-parameter family of multipliers still. The more interesting case is the generic situation
that l 6= 0 and m 6= k. Then, if we put l = (m− k)c, the multiplier must have the form

g =

(
a (b− a) c

(b− a) c b

)
for some constants a, b, c and the corresponding admissible potentials read

V = 1
2kx

2
1 + (m− k)c x1x2 + 1

2mx
2
2.
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If we regard such a potential as given, for example, the 2-parameter family of corre-
sponding Lagrangians we obtained reads,

L = 1
2aẋ

2
1 + 1

2bẋ
2
2 + (b− a)cẋ1ẋ2

−1
2(b− a)(m− k)c2(x21 + x22)− 1

2akx
2
1 − c(bm− ak)x1x2 − 1

2bmx
2
2.

Take now, for example, the case that a = 1, b = 2, c = 1, so that l = m−k. Computing the
eigenvalues and eigenvectors of g, we find the matrix P which, according to proposition 4,
should provide a linear coordinate transformation for decoupling the system. In fact,
since an overall factor in such a transformation (12) does not matter for this respect, it
is not necessary to normalise the eigenvectors. The transformation

y1 := 2x1 + (1 +
√

5)x2,

y2 := 2x1 + (1−
√

5)x2,

does the job and the system decouples as

ÿ1 = −
(
k + 1

2(1 +
√

5)(m− k)
)
y1,

ÿ2 = −
(
k + 1

2(1−
√

5)(m− k)
)
y2.

For a test of proposition 2, still with the above choice of the parameters, let V0 be a
potential of the appropriate form and consider any of the following sets of equations for
a new function V ,

∂V

∂x1
=
∂V0
∂x1

+
∂V0
∂x2

,

∂V

∂x2
=
∂V0
∂x1

+ 2
∂V0
∂x2

,

or


∂V

∂x1
= 2

∂V0
∂x1
− ∂V0
∂x2

,

∂V

∂x2
= −∂V0

∂x1
+
∂V0
∂x2

.

These equations are easily seen to be integrable and produce potentials belonging to the
same family.

Next we turn to cubic potentials on R2 and set

V := 1
3kx

3
1 + lx21x2 +mx1x

2
2 + 1

3nx
3
2.

The requirement that γ be skew-symmetric now produces two conditions, namely

g12(m− k) = (g22 − g11) l,
g12(n− l) = (g22 − g11)m.

We shall not go into a detailed discussion of subcases this time. So, in a generic situation,
the two conditions above are compatible only if m(m−k) = l(n− l). For comparison, let
us put l = (m− k)c again, so that m = (n− l)c. The multiplier g then takes exactly the
same form as in the quadratic case, and the corresponding admissible potentials read

V =
1

3
kx31 +

c(nc− k)

1 + c2
x21x2 +

c(n+ ck)

1 + c2
x1x

2
2 +

1

3
nx32.
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To be more concrete, taking a = 1, b = 2, c = 1 as before, we leave it to the reader
to verify that the Bäcklund transformations of proposition 2 perform their task again,
and that the same coordinate transformation to new variables (y1, y2) will decouple the
system.

We now turn to systems with three degrees of freedom, where we can expect vector
potentials to enter the discussion. Taking the symmetry of g and skew-symmetry of Γab
into account, the skew-symmetry of γ first of all requires that

g12Γ
1
2 + g13Γ

1
3 = 0, g12Γ

1
2 − g23Γ2

3 = 0, g13Γ
1
3 + g23Γ

2
3 = 0.

Except for special cases where one or more of the Γab vanish (and which we will not
discuss), these relations indicate firstly that the ratio of any two Γab must be constant.
So, assuming that Γ1

2 6= 0, we can put

Γ1
3 = aΓ1

2, Γ2
3 = bΓ1

2, a, b constant.

It follows that g12 = −a g13 = b g23. The off diagonal elements of γ impose three more
conditions, only two of which are independent, say

(g11 − g22)Γ1
2 = g13Γ

2
3 + g23Γ

1
3, (g11 − g33)Γ1

3 = g23Γ
1
2 − g12Γ2

3.

Since g is only determined up to an overall factor, we can set without loss of generality
g13 = −b, which implies that g23 = a and g12 = ab. If we further rename g11 as the
constant c, we finally obtain the following structure of the multiplier g:

g =

 c ab −b
ab c+ b2 − a2 a
−b a c+ b2 − 1

 . (13)

In dimension three, the curvature type condition contains one requirement, which can
be seen to reduce to

∂Γ1
2

∂x3
− a ∂Γ1

2

∂x2
+ b

∂Γ1
2

∂x1
= 0.

The general solution of this equation is found to be an arbitrary function of two variables,
namely

u := x1 − b x3, v := x2 + a x3. (14)

This means that admissible vector potentials must satisfy

1

2

(
∂A1

∂x2
− ∂A2

∂x1

)
= f(u, v),

1

2

(
∂A1

∂x3
− ∂A3

∂x1

)
= a f(u, v),

1

2

(
∂A2

∂x3
− ∂A3

∂x2

)
= b f(u, v),
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for some arbitrary f . Using the homotopy formula from the standard proof of the
Poincaré lemma, we can actually give an explicit expression for the components Aa,
which reads

A1 = 2

∫ 1

0
tvf(tu, tv)dt,

A2 = −2

∫ 1

0
tuf(tu, tv)dt, (15)

A3 = −2

∫ 1

0
t(au+ bv)f(tu, tv)dt.

Now we are left with the conditions for admissible scalar potentials. There are three of
them, one of which reads

(g11 − g22)
∂2V

∂x1∂x2
+ g12

(
∂2V

∂x22
− ∂2V

∂x21

)
= g23

∂2V

∂x1∂x3
− g13

∂2V

∂x2∂x3
.

The other two are similar in structure. Using the information we already gathered, two
of these equations can be written in the form,

(1− b2) ∂2V

∂x1∂x3
− b

(
∂2V

∂x23
− ∂2V

∂x21

)
= a

∂2V

∂x1∂x2
− ab ∂2V

∂x2∂x3
,

(1− a2) ∂2V

∂x2∂x3
+ a

(
∂2V

∂x23
− ∂2V

∂x22

)
= −b ∂2V

∂x1∂x2
− ab ∂2V

∂x1∂x3
.

The third one, actually the one we displayed first, is just a linear combination of these
two. Once again and quite remarkably, we can obtain the general solution of these
equations. A sketch of the way one can proceed goes as follows. Inspired by the general
solution for the vector potential, we perform a linear coordinate transformation from
the variables (x1, x2, x3) to the variables (u, v, x3). In those variables, the above two
requirements reduce to

(1 + b2)
∂V

∂u
− ab∂V

∂v
− b ∂V

∂x3
= ζ(u, v),

(1 + a2)
∂V

∂v
− ab∂V

∂u
+ a

∂V

∂x3
= η(u, v),

where ζ and η are as yet arbitrary functions of the indicated variables. Eliminating the
derivatives with respect to x3 in these equations, we find that a (∂V/∂u)+b (∂V/∂v) must
be a function of u and v only. This is an equation one can integrate and the immediate
result is that V must be a sum of a function of u and v only, plus a function W of two
variables also, namely x3 and w := av−bu. It is easy to verify that an arbitrary function
of u and v satisfies the requirements for the potential V . Since the equations are linear,
it suffices to see whether the same conclusion holds for W (x3, w). If we insert such a
function into the last two displayed equations for V , they both reduce to an equation
which requires that

(1 + a2 + b2)
∂W

∂w
+
∂W

∂x3

11



must be a function of w only. This in turn implies that W is the sum of a function of w
only, plus another function of only one variable, namely z := (1 + a2 + b2)x3 −w, which
in terms of the original variables reads

z = x3 + bx1 − ax2. (16)

The first part of W can be absorbed into the arbitrary function of u, v in V , so that the
final answer for the general expression for admissible potentials reads:

V = U(u, v) + Z(z), (17)

where U and Z are arbitrary functions of the indicated arguments.

Recapitulating, we can state that for n = 3, in the generic case that none of the Γab
with a 6= b are zero, the most general systems satisfying the conditions of proposition 1,
are such that a multiplier g, different from the identity, will be of the form (13), the
corresponding admissible vector potential is given by (15), and the scalar potential by
(17), where u, v, z are defined by (14) and (16), and f , U and Z are arbitrary functions
of the indicated variables.

The multiplier g has two distinct eigenvalues, namely c−a2−1 and the double eigenvalue
c+ b2. As before, one does not necessarily have to use strictly the orthogonal matrix P
which diagonalises g to find the transformation for decoupling the system. Not surpris-
ingly, the transformation to the variables u, v, z will decouple the system into a coupled
system of two equations for u and v, and a single equation for z:

ü = −2
(
ab u̇+ (1 + b2)v̇

)
f(u, v)− (1 + b2)

∂U

∂u
+ ab

∂U

∂v
,

v̈ = 2
(
(1 + a2)u̇+ ab v̇

)
f(u, v) + ab

∂U

∂u
− (1 + a2)

∂U

∂v
,

z̈ = −(1 + a2 + b2)Z ′(z).

Here is an explicit example of alternative Lagrangians (in fact another 2-parameter family
of examples). Consider the following given sode, where a and b are arbitrary constants:

ẍ1 = −2f(x)(ẋ2 + aẋ3)− 2
3(x1 − bx3)2 − b(x3 + bx1 − ax2),

ẍ2 = 2f(x)(ẋ1 − bẋ3) + a(x3 + bx1 − ax2),
ẍ3 = 2af(x)ẋ1 + 2bf(x)ẋ2 + 2

3b(x1 − bx3)
2 − (x3 + bx1 − ax2),

with
f(x) := x1x2 + ax1x3 − bx2x3 − abx23.

One easily verifies that this particular family of sodes comes from the general results
established above, where we have chosen the arbitrary functions f(u, v), U(u, v), Z(z) to
be: f = uv, U = 1

3u
3, Z = 1

2z
2. The Lagrangian with standard kinetic energy for this

sode, written in a form such as (5), reads:

L0 := 1
2

∑
ẋ2i + 1

2

(
uv2ẋ1 − u2vẋ2 − (au2v + buv2)ẋ3

)
− 1

3u
3 − 1

2z
2.
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Following our generic results, alternative Lagrangians for this system are obtained from
multipliers of the form (2). Since such g are determined up to a scalar factor anyway,
we simply put c = 1. It then follows after some calculations that the corresponding
alternative Lagrangians, again specifically written in the representation (5) which refers
to the original coordinates, are given by

L = 1
2 ẋ

2
1 + 1

2(b2 − a2 + 1)ẋ22 + 1
2bẋ

2
3 + abẋ1ẋ2 − bẋ1ẋ3 + aẋ2ẋ3

+ 1
2(1 + b2)

(
uv2ẋ1 − u2vẋ2 − (au2v + buv2)ẋ3

)
− 1

3(1 + b2)u3 + 1
2a

2z2.

5 The Coulomb problem

In the physical realms of n = 2 and n = 3, the practical implementation of the conditions
of proposition 1 can be seen from different angles. For example, we could start from a
given, fixed potential V . Then, the conditions (9) for admissible potentials become
algebraic relations which will restrict the existence of alternative multipliers. And if
such an alternative multiplier can be found, it is clear that turning on an extra magnetic
field type force, will further severely restrict the possibility of having such g (or simply
make it impossible) through the extra algebraic restrictions that γab = gacΓ

c
b must be

skew-symmetric (as we pointed out in the n = 2 case in the last section). Equivalently,
the matrices with components Φa

b and Γab will now fail the conditions of proposition 3.
In this section, as an aside, we exemplify this effect of adding a magnetic field type force
to a scalar potential in a more general setting in which the multiplier may depend on
the velocities.

Consider the classical problem of the motion of a particle under the influence of a
Coulomb potential. Putting the mass equal to 1 for simplicity, the equations of mo-
tion are of the form r̈ = −(k/r3)r. Clearly, the system has the unit matrix as multiplier,
but it is a simple exercise for the reader to show that no other constant multiplier ex-
ists. Yet, it is known that there are alternative Lagrangians (see [7, 4]) when velocity
dependence is allowed in the multiplier. For example,

Lγ := L0 + γ
J

r2

where γ is a real constant and J is the magnitude of the conserved angular momentum.
As discussed in [7] the quantum mechanics arising from these alternative Lagrangians
are different from the standard hydrogen atom and some sort of selection rule appears
to be required. We will show here that adding a constant magnetic field to the system
has the effect of removing the ambiguity in the choice of a Lagrangian. The quantum
mechanics is then unambiguously the hydrogen atom experiencing the Zeeman effect. At
a quantum mechanical level one can take the zero magnetic field limit and recover the
standard hydrogen atom. [The reader is referred to [12] and references therein to see a
discussion of alternative Lagrangians for a particle in a magnetic field alone.]

13



As usual we choose the z-axis along the given constant magnetic field vector. The
modified system still has the unit matrix as multiplier in the cartesian coordinates,
but it will be more convenient here to work in cylindrical coordinates ρ, θ, z. In those
coordinates, the equations of motion read

ρ̈ = ρθ̇2 +Bρθ̇ − k ρ
r3
,

θ̈ = −2
ρ̇θ̇

ρ
−B ρ̇

ρ

z̈ = −k z
r3
,

where r2 = ρ2 + z2. The standard multiplier is now diag(1, ρ2, 1). We apply the full
inverse problem machinery now in search of a possible second multiplier (allowed to
depend on coordinates and velocities).

The algebraic conditions gabΦ
b
c = gcbΦ

b
a produce the following restrictions on the elements

of the symmetric matrix g:

ρg12 + zg23 = 0,

12k
(
(g11 − g33)ρz + g13(z

2 − ρ2)
)

+B2r5g13 = 0,

12k(g12ρz + g23z
2) +B2r5g23 = 0.

From the first and third of these, it follows that we must have

g23 = g12 = 0.

With this information, the differential conditions ∇g = 0 (the second of the conditions
(3) imply first of all that also g13 must be zero, and hence from the second condition
above that g11 = g33, and further indicate that g22 = ρ2g11, that g11 (and thus g33) must
be first integrals, and that g22 must satisfy the condition

ρΓ(g22)− 2ρ̇g22 = 0.

Finally, the last of the conditions (3) imply that we must have

∂g22
∂ρ̇

=
∂g12

∂θ̇
= 0 in view of g12 = 0,

and likewise that
∂g11

∂θ̇
=
∂g12
∂ρ̇

= 0 and
∂g22
∂ż

=
∂g23

∂θ̇
= 0.

It then further follows from g22 = ρ2g11 that actually all derivatives of g11 and g22 with
respect to velocity coordinates must vanish. But a first integral which does not depend
on velocities necessarily is just a constant, so the conclusion is that the only multipliers
we can obtain are simply constant multiples of the standard one we knew from the start.
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Appendix: Some elementary matrix considerations

It is well known that commuting symmetric matrices can be diagonalised simultaneously.
Let us analyse some aspects of the way this works. Suppose AT = A, BT = B and AB =
BA, so that also (AB)T = AB. If P denotes an orthogonal matrix which diagonalises
A, say P TAP = diag (λ1 . . . λn), and put B′ = P TBP . Then,

P TABP = diag (λ1 . . . λn)B′ = P TBAP = B′ diag (λ1 . . . λn),

from which it follows that

λib
′
ij = b′ijλj (no sum!) ∀i, j,

so that b′ij = 0 when λi 6= λj . This means that B′ will have a block diagonal structure,
the dimension of each block corresponding to the multiplicity of an eigenvalue λi of A.
Looking at each block separately, there is a further orthogonal transformation which will
diagonalise that block without affecting A, because A is a multiple of the identity with
respect to this substructure. This way the simultaneous diagonalisation can be achieved.

We are interested also in the case that one of the matrices is skew-symmetric. So suppose
AT = A, BT = −B and AB = BA. Then (AB)T = −AB, and if P is as before, the
first step of the above procedure remains unchanged and leads to the conclusion that
B′, which is skew-symmetric also, has a block diagonal structure. This time, further
orthogonal transformations which will not affect A can bring each of the blocks of B′ in
‘diagonal form’ in the sense of the real Jordan form. Again, this way, A and B have been
simultaneously diagonalised in the sense just described.
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