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1 Introduction

Many mechanical systems are subject to conservative forces, i.e. forces F = −∇V that can be
derived from a potential V (q). It is well-known that the equations of motion of such systems
take the form of Euler-Lagrange equations,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (1)

where L(q, q̇) = T (q, q̇)−V (q) is the Lagrangian of the system and where T stands for its kinetic
energy. The equations of motion for the harmonic oscillator, mq̈ = −kq, for example, are of
this form, with V (q) = 1

2kq
2 and T (q̇, q) = 1

2mq̇
2. Lagrangian systems have many interesting

features. To name just one of them, it is easy to see that the kinetic energy,

E = T + V = 1
2mq̇

2 + 1
2kq

2,

remains constant along solutions.

Not all mechanical systems have an Euler-Lagrangian description. For example, the equations
of motion for the damped oscillator are only a small modification of those of the harmonic
oscillator, mq̈ = −kq − bq̇, but the additional force, F2 = −bq̇ is not conservative. It is not
possible to add an extra potential to the Lagrangian, not even one that depends on velocities,
to account for the force F2. However, if we rewrite F2 as ∂D/∂q̇, with D(q̇, q) = −1

2bq̇
2, the

equations of motion become of the (general) form

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=
∂D

∂q̇i
. (2)
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Equations of the above type, although more general than the Euler-Lagrange equations, still
exhibit interesting properties. For example, even though the energy E = 1

2mq̇
2 + 1

2kq
2 is no

longer constant, we can still predict its qualitative behaviour along solutions. Indeed, now

dE

dt
= 2D,

and one can conclude that the energy decays when time passes. This is a typical example of
so-called dissipation, and equations of the form (2) are henceforward called Euler-Lagrangian
equations with dissipative forces.

Both the equations of motion for the harmonic oscillator and for the damped oscillator are
(systems of) differential equations of second-order, in general of the form Λi(q, q̇, q̈) = 0. The
inverse problem of the calculus of variations investigates whether or not a second-order system
can be written as the Euler-Lagrange equations (1) of some regular Lagrangian L (see [6] for a
recent review). In this paper we will investigate a generalization of this problem. Clearly, if the
answer to the standard inverse problem is negative, it may still be of interest to know whether
the given second-order equations can be brought in the form of Euler-Lagrange equations with
dissipation (2). The goal of this paper is therefore to find necessary and sufficient conditions for
a given set of functions Λi(q, q̇, q̈) to take the form

Λi =
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
− ∂D

∂q̇i

for functions L(q, q̇) and D(q, q̇).

In the literature one may sometimes find reference to ‘Raleigh dissipation’ (see e.g. [3]). We will
reserve this terminology for a function D that is quadratic in the velocities with a positive or
negative-definite coefficient matrix. It will not be necessary to make these additional assumptions
in this paper.

2 The inverse problem for dissipative systems

The problem as we describe it above has, in fact, already been tackled in the paper [5] by Kielau
and Maisser. In it, they give a set of necessary and sufficient conditions, but their result is
not completely satisfactory, for the following three reasons. In the first place, as we shall show
below, the conditions of [5] are not completely independent: some are even redundant. It is
therefore natural to ask what is the smallest set of necessary and sufficient conditions.

Secondly, in a follow-up paper [4] a version of the conditions expressed in terms of quasi-velocities
(nonholonomic velocities) is re-derived from scratch. This should be unnecessary: a truly sat-
isfactory formulation of the conditions should be tensorial and thus independent of a choice of
coordinates. It seems therefore better to use coordinate independent methods, i.e. methods that
have their roots in differential geometry.

Thirdly, the conditions in [5] test whether a given system Λi = 0 is ‘Lagrangian’. In case
D = 0 (the standard inverse problem), there is, however, a more general approach. Remark first
that, even in the dissipative case, it is obvious that for a function Λi(q̈, q̇, q) to be of the above
described form it should be affine w.r.t. q̈j , i.e. of the form

Λi(q, q̇, q̈) = aij(q, q̇)q̈j +Bi(q, q̇).
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Any non-singular matrix M i
j(q, q̇) will transform the set of equations Λi = 0 into the equivalent

set M i
jΛi = 0. Instead of wondering whether the given system Λi = 0 takes the Lagrangian

form, it is therefore natural to ask the more general question whether we can find a system of
Lagrangian type (1) within the class of all equivalent systems. Remark that, if the coefficient
matrix aij is non-singular the second-order system Λi = 0 is even equivalent with a second-
order system in normal form q̈i = f i(q̇, q). In that case, we can rephrase the more general
problem as the search for a so-called multiplier gij (a non-singular matrix), which is such that
the equivalent system gij(q̈j − f j) = 0 takes the form of the Euler-Lagrange equations (1) for
some regular Lagrangian L. Obviously, when that is the case, gij(q, q̇) will be the Hessian of the
sought Lagrangian L with respect to differentiation by q̇. The conditions for this to occur are
well-known and are usually referred to as the Helmholtz conditions (see e.g. [6]). They form a
mixed set of algebraic and PDE conditions for the unknown multiplier gij . In this paper we will
show that the more general question can also be answered for systems with dissipative forces,
i.e. with D 6= 0.

To conclude, starting from second-order equations in normal form

q̈i = f i(q, q̇),

we wish to investigate the smallest set of (coordinate-independent) conditions for existence of a
non-singular multiplier (gij(q, q̇)) such that

gij(q̈j − f j) =
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
− ∂D

∂q̇i
. (3)

for some (regular) Lagrangian L(q, q̇) and some D(q, q̇).

Let gijk = ∂gij/∂q̇
k. It is easy to see that, as in the standard inverse problem, if a multiplier

exists, it will be the Hessian of the desired Lagrangian. It is therefore natural to assume gij = gji
and gijk = gjik, since then, there exists a function K(q, q̇) such that

gij =
∂2K

∂q̇i∂q̇j
.

All other functions L with that property are of the form L = K + Piq̇
i + Q, where Pi(q) and

Q(q) are functions depending on q only.

We now derive conditions that will fix Pi and Q such that there exist functions L and D that
will bring the equations in the desired form (2). Let, for now, Γ be short hand for the operator
q̇i∂/∂qi + f i∂/∂q̇i. Let us define the functions κi(q, q̇) by

κi = Γ
(
∂K

∂q̇i

)
− ∂K

∂qi
.

Equation (3) is then equivalent with

κi +
(
∂Pi
∂qk
− ∂Pk
∂qi

)
vk − ∂Q

∂qi
=
∂D

∂q̇i
.

for some appropriate functions Pi(q), Q(q) and a D(q, q̇). Obviously, if we set D̃ = D −
(∂Q/∂qi)q̇i, we have incorporated the term in Q into D, so we can forget about it, from now on.
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We will now solve the problem in two steps. A function D̃(q, q̇) with the above property will
exist if and only if there exists basic functions Pi(q) such that

∂κi
∂q̇j

+
∂Pi
∂qj
− ∂Pj
∂qi

=
∂κj
∂q̇i

+
∂Pj
∂qi
− ∂Pi
∂qj

. (4)

If we define functions Sij(q, q̇) by

Sij =
∂κi
∂q̇j
− ∂κj
∂q̇i

,

equation (4) is equivalent with

Sij = 2
(
∂Pj
∂qi
− ∂Pi
∂qj

)
.

The necessary and sufficient conditions for the existence of functions Pi (depending only on q!)
with the above property are

∂Sij
∂q̇k

= 0 and
∑
cyclic

∂Sij
∂qk

= 0.

Remark that we have used Poincaré’s Lemma twice, so the result will only hold locally. We
conclude:

Proposition 1. The necessary and sufficient condition for the second-order system q̈i = f i(q, q̇)
to be of the form (2) is that there exists a non-singular multiplier matrix gij(q, q̇) satisfying:

gij = gji, gijk = gjik,
∂Sij
∂q̇k

= 0, and
∑
i,j,k

∂Sij
∂qk

= 0.

∑
i,j,k stands for the cyclic sum over the indices. The above presented proof may be found with

more details in [2].

We will show that also the last two conditions can be expressed in terms of the multiplier matrix
gij(q, q̇) and its derivatives. Moreover, we will cast the conditions into a coordinate independent
form. For that reason, we will introduce the necessary geometric machinery in the next section.

3 Some elements of the calculus of forms along the tangent bun-
dle projection

We will use the tangent bundle τ : TM → M of the configuration manifold M and natural
coordinates (q, q̇) on it. One can associate a so-called Sode field Γ on TM to the equations
q̈i = f i(q, q̇), namely

Γ = q̇i
∂

∂qi
+ f i(q, q̇)

∂

∂q̇i
.

Remark that we have already encountered this operator in the proof of Proposition 1. In the
next paragraphs we recall some of the basics of Sode geometry.

The vertical and the complete lift are are two canonical ways to lift a vector field X = Xi(q)∂/∂qi

on M to a vector field on TM . They are, respectively,

XV = Xi(q)
∂

∂q̇i
and Xc = Xi(q)

∂

∂qi
+ q̇j

∂Xi

∂qj
∂

∂q̇i
.
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A Sode Γ defines a third horizontal lift (i.e. a non-linear connection on TM):

X ∈ X (M) 7→ XH ∈ X (TM) =
1
2

(Xc + [XV ,Γ]),

Xi(q)
∂

∂qi
7→ XiHi = Xi

(
∂

∂qi
− Γji

∂

∂q̇j

)
, where Γji = −1

2
∂f j

∂q̇i
.

Many objects of interest, although living on TM (a manifold with dimension 2n), are fully
determined by components in dimension n. One way to interpret these objects is to view them
as tensor fields “along the map τ : TM →M”. The idea of what follows is that more efficiency
in the calculations should come from tools and operations which directly act on forms and vector
fields along τ . The main references for this section are [7, 8].

So-called vector fields along τ are sections of the pullback bundle τ∗τ : τ∗TM → TM . A vector
field X along τ can alternatively be defined as a map X : TM → TM with the property that
τ ◦X = τ . Likewise, a 1-form along τ is a map α : T ∗M → TM such that τ∗ ◦ α = τ . These
definitions extend naturally to tensor fields along τ . In general, a vector field (resp. 1-form)
along τ has the following coordinate representation:

X = Xi(q, q̇)
∂

∂qi
, α = αi(q, q̇) dqi.

We will denote the set of vector fields along τ by X (τ) and the set of 1-forms along τ by
∧

(τ).
The canonical vector field along τ given by T = id = q̇i∂/∂qi, is a particular example. Of
course, also vector fields on M can be interpreted as vector fields along τ . In that context, we
will refer to them as ‘basic’ vector fields along τ . In the same spirit, we will also call 1-forms on
M basic.

We will show below that, given the Sode field Γ, the calculus along τ has all the features that
e.g. the ordinary calculus of forms on a Riemannian manifold has: exterior derivative, covariant
derivative and curvature.

Obviously, the vertical and horizontal lift procedures extend naturally to vector fields along τ .
In fact, every ξ ∈ X (TM) has a unique decomposition in a vertical and horizontal part:

ξ = ξv
V + ξh

H for some ξv, ξh ∈ X (τ).

With the aid of the Sode connection on TM , one can construct a linear connection on the
pullback bundle τ∗τ , i.e. a map

D : X (TM)×X (τ)→ X (τ),

by means of the expression

DξX = ([ξhH , XV ])v + ([ξvV , XH ])h, with ξ ∈ X (TM), X ∈ X (τ).

This is said to be a connection of Berwald type. If we first set, for X ∈ X (τ),

DXV = DV
X , DXH = DH

X ,

and define, for functions F on TM ,

DV
XF = XV (F ), DH

XF = XH(F ),
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and then further extend by duality its action to 1-forms, the action of the two operators DV and
DH extends to tensor fields along τ of arbitrary type. The relevant coordinate expressions for
these operators are

DV
XF = Xi Vi(F ), DV

X

∂

∂qi
= 0,

DH
XF = XiHi(F ), DH

X

∂

∂qi
= XjVi(Γkj )

∂

∂qk
.

Here, and in what follows, Vi is short for ∂/∂q̇i. For example, for a function L ∈ C∞(TM),
DV DVL = Vi(Vj(L))dqi ⊗ dqj .

There are two more important operators which contain a great deal of information about the
dynamics Γ: a degree 0 derivation, called the dynamical covariant derivative∇ and a (1,1) tensor
field Φ along τ , called the Jacobi endomorphism. They appear naturally in the decomposition
of certain vector fields on TM :

[Γ, XV ] = −XH + (∇X)V , [Γ, XH ] = (∇X)H + Φ(X)V .

If we set ∇F = Γ(F ) for functions F ∈ C∞(TM), and if we use self-duality again, the action of
∇ can be extended to arbitrary tensor fields along τ . For computational purposes, we list here
the coordinate expressions of ∇ and Φ:

∇
(
∂

∂qi

)
= Γki

∂

∂qk
, ∇(dqi) = −Γik dq

k

Φi
j = −∂f

i

∂qj
− ΓkjΓ

i
k − Γ(Γij).

Finally, the (1,2)-tensor field R(X,Y ) = [Xh, Y h]v along τ plays the role of the curvature of the
nonlinear connection. The coefficients of R can be computed to be

Rkij = Hj(Γki )−Hi(Γkj ) = 1
3(Vi(Φk

j )− Vj(Φk
i )).

4 Coordinate-independent conditions

Let’s come back to the conditions we had found in Proposition 1. The multiplier matrix gij(q, q̇)
can be interpreted as a (0,2) tensor field g along τ , given by

g = gijdq
i ⊗ dqj .

The first condition simply says that this tensor field is symmetric, g(X,Y ) = g(Y,X) for all
X,Y ∈ X (τ). The second condition states that also the tensor field DV g along τ should be
symmetric in all its arguments. One can easily compute that Sij can be expressed as

Sij = 2
(
∂2K

∂qj∂q̇i
− ∂2K

∂qi∂q̇j
− Γkj gki + Γki gkj

)
.

With that, the third condition becomes

Hi(gjk)− gmkΓmij = Hk(gji)− gmiΓmkj .
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Equivalently, this says that the tensor field DHg along τ is symmetric.

Also the fourth condition can be expressed entirely in terms of g. It is easy to see that the
inconvenient terms in e.g.

∂3K

∂qi∂qj∂q̇k

all add up to zero. A tedious calculation further shows that what remains can be related to the
curvature R of the non-linear connection. In fact, the fourth condition is equivalent to∑

X,Y,Z

g(R(X,Y ), Z) = 0,

where
∑

X,Y,Z stands for the cyclic sum over the indicated arguments.

Theorem 1. The second-order field Γ represents a dissipative system of type

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=
∂D

∂q̇i

if and only if there exists a (non-singular) symmetric type (0, 2) tensor g along τ such that

DV
Xg(Y,Z) = DV

Zg(Y,X),

DH
Xg(Y,Z) = DH

Zg(Y,X),∑
X,Y,Z g(R(X,Y ), Z) = 0.

What is remarkable in this result is that the symmetry of DHg and the curvature condition∑
X,Y,Z g(R(X,Y ), Z) = 0, which make their appearance here, are known as integrability con-

ditions for the set of Helmholtz conditions in the standard inverse problem (see the remark
after Theorem 2 for the Helmholtz conditions, and [10] for a discussion on the integrability
conditions).

Let’s compare our result with the version of the conditions that was obtained in [5]. Kielau and
Maisser start from a system of the form Λi(q, q̇, q̈) = 0. Their condition (2.3d) simply says that
the functions Λi should be linear in q̈, i.e. of the form Λi = gij q̈

j +Bi (as we already remarked
above). Their condition (2.3a) says that gij should be symmetric. They further introduce the
objects

rij =
∂Λi
∂qj
− ∂Λj
∂qi

+ 1
2

d

dt

(
∂Λj
∂q̇i
− ∂Λi
∂q̇j

)
sij = 1

2

(
∂Λi
∂q̇j

+
∂Λj
∂q̇i

)
− d

dt

(
∂Λj
∂q̈i

)
,

which, in general, depend on q̈ and ...
q . By not allowing that to be the case (condition (2.3b) and

(2.3c)), one recovers our conditions on the symmetry of the tensor fields DV g and DHg. If one
takes that into account, the objects sij and rij become, in our notations,

rij = gikΦk
j − gjkΦk

i + sikΓkj − sjkΓki and sij = (∇g)ij .

Their condition (2.3e), which is
∂sij
∂q̇k

=
∂sik
∂q̇j

,
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is equivalent with the symmetry of DV∇g. However, since also DV g is symmetric, and given that
the commutator [∇,DV ] = −DH holds, this is equivalent with the already assumed symmetry
of DHg. Condition (2.3e) is therefore superfluous. A straightforward calculation further shows
that our curvature condition is their condition (2.3f), namely

∂rij
∂q̇k

=
∂sik
∂qj
−
∂sjk
∂qi

.

Finally, there is an second superfluous condition (3.3g), given by∑
cyclic

∂rij
∂qk

= 0.

One can show that the above can be written as

∇

 ∑
X,Y,Z

g(R(X,Y ), Z)

 = 0.

and that it is therefore a consequence of the other conditions.

If we find a solution g for the conditions in Theorem 1, the sought Lagrangian L will be such
that its Hessian is g. Theorem 1 does, however, not help to recover the dissipation function D
from the multiplier g. For that, we can use the next theorem.

Theorem 2. The second-order field Γ represents a dissipative system if and only if there exists
a function D and a (non-singular) symmetric type (0, 2) tensor g along τ such that

∇g = DV DVD,

DV
Xg(Y,Z) = DV

Zg(Y,X),

Φ g − (Φ g)T = dV dHD.

Remark that by putting the ‘dissipation function’ D equal to zero in the conditions of Theorem 2,
we recover the necessary and sufficient ‘Helmholtz’ conditions of the standard inverse problem,
see e.g. [8].

The proof of the theorem can be found in [9]. The operators dV and dH in the statement of
Theorem 2 are so-called exterior derivatives for the calculus of forms along τ . Indeed, there is
a canonically defined vertical ‘exterior’ derivative dV , determined by

dVF = Vi(F ) dqi ∀F ∈ C∞(TM)
dVα = 0 for α ∈

∧1(M).

The definition of the horizontal derivative dH requires a non-linear connection, however. Any
choice of a basis of horizontal vector fields

Hi =
∂

∂qi
− Γji (q, q̇)

∂

∂vj
,

allows to construct a horizontal exterior derivative dH given by

dHF = Hi(F ) dqi, F ∈ C∞(TM)
dHα = dα for α ∈

∧1(M).
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In particular, one can take that connection to be the one that comes with the Sode vector field
Γ.

It is now an easy calculation to show that a coordinate-independent representation of the equa-
tions of motion (2) is given by

∇θL − dHL = dVD, (5)

where θL = dVL. If one plugs in a vector field X = ∂/∂qi in the above expression one gets back
the coordinate expression (2) in the natural bundle coordinates (qi, q̇i) for the tangent bundle
τ : TM → M . As is the case for all conditions we have encountered in the theorems above,
there is, however, no need to restrict to expressions in natural bundle coordinates. In some
applications it is appropriate to work with ‘quasi-velocities’ , i.e. fibre coordinates wi in TQ
w.r.t. a non-standard basis {Xi} of vector fields on Q. For example, for a dynamical system
on a Lie group which is invariant under left or right translations, it may be more convenient to
work with a basis of left or right invariant vector fields (see e.g. [1]). It may even be convenient
to choose a frame that does not consist of basic vector fields. In the analysis of the integrability
conditions of the standard inverse problem in [10] it turned out to be useful to use a frame of
eigenvectors of the tensor field Φ along τ .

We now give an expression of the equation (5) in terms of quasi-velocities. If {Xi} is a basis of
vector fields on Q, we have

0 = (∇θL − dHL− dVD)(Xi) = Γ(θL(Xi))− θL(∇Xi)−XH
i (L)−XV

i (D)
= Γ(XV

i (L))−XC
i (L)−XV

i (D).

If Xi = Xj
i ∂/∂q

j and [Xi, Xj ] = AkijXk, then

XC
i = Xj

i

∂

∂qj
−Ajikw

k ∂

∂wj
and XV

i =
∂

∂wi
,

and we get therefore

Γ
(
∂L

∂wi

)
−Xj

i

∂L

∂qj
+Ajikw

k ∂L

∂wj
=
∂D

∂wi
.

These last equations (without the dissipation term) are known as the Boltzmann-Hamel equa-
tions in the literature and they form the starting point for the analysis of the ‘generalization’ of
the problem of [5] in [4]. For us, both the Euler-Lagrange equations as the Boltzmann-Hamel
equations are just two manifestations of the same dynamical equation on a manifold. Needless
to say, any of the other conditions in our theorems can also be recast in terms of quasi-velocities.
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