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Abstract — We discuss a natural symplectic structure on T*T*M and
a natural kth-order almost tangent structure on 7*T*M. The main
result concerns the construction of a vector bundle isomorphism ¢, :
T*T*M — T*T*M (over T*M), which behaves naturally with respect
to all structures of interest. We further use this result to prove that
one can identify spaces such as T"T°M and T*T"M by a map which in
coordinates simply consists in switching suffices.

1. INTRODUCTION. — The existence of a canonical isomorphism between TT*M
and T*T'M is well known and of fundamental importance in many applications. It
is, for example, a key matter in Tulczyjew’s description of Lagrangian and Hamil-
tonian theory, in terms of a Lagrangian submanifold which is shared by two special
symplectic structures on TT*M [1]. Tt is our belief that the canonical isomorphism
between T*T*M and T*T*M, which we will discuss in the present note, has a num-
ber of interesting features in its own right and will be valuable for clarifying certain
aspects of the approach to higher-order mechanics described in [2] and [3].

2. NOTATIONS AND PRELIMINARIES. — We seek conformity in notations with
some of our earlier work (see e.g. [4] and [5]), but slight adaptations are always
necessary. Let 7, : T"N —= N denote the tangent bundle of order k of some
manifold N. For ¢ < k, we have projection operators 7¢ : TKN — T*N. It is known
that a smooth map ¢ : N — N’ induces a map ¢*®) : T*N — T*N’. Thus, for
example, the manifold T*T*M is fibred over T*M (as a vector bundle) through the
map ﬂg\lj), induced by the cotangent bundle projection 7y, : T"M — M. As in
[4] and [6], let T denote the canonical inclusion T : T*"N — TT*!N and dr the
total derivative operator which turns functions and forms on TN into corresponding
objects on T*T'N. Repeated application of this operator on a 1-form o on N results
in a 1-form dr a on TEN. A tangent bundle of order k such as T*N comes naturally
equipped with a type (1,1) tensor field, the so-called vertical endomorphism, which
we will denote by SJ(\]f). We recall from [4] the following commutation relations:
¢*HD o dp = dp o ¢, 71 odp = dp o 7f”, and also, as a map on 1-forms,
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S](\],CH) odr = dt o S](\]f) + T,f+1*. From these properties it is easy to deduce that
¢(k)* odp® = dg* o ¢* and S](\’f) odp® =k 7',?’1* o dpF1 (where for k =1, dr° is to
be regarded as the identity operator). Other canonical objects which are soon to be
discussed are the canonical 1-form of a cotangent bundle (notation: 6,; for T*M),
and dilation vector fields. For notational distinction we will write e.g. A}, for the
dilation field on 7™M and Ag\’;) for the dilation field on T*N. Finally, we will indicate
the complete lift of a geometrical object to its cotangent bundle with a tilde (as in
5]), while for the complete lift of a vector field X on N to a vector field on T*N we
will write X®) (as in [4]).

3. MaAIN RESULTS. — Representing coordinates on T*M as (¢%, p,) (a =
1,...,n =dim M), we will denote the corresponding natural coordinates on T*T*M
by (¢¢,pai) (i =0,...,k) and the coordinates on T*T*M by (¢f, p’).

The space T*T*M obviously carries a kth-order tangent structure. On the other
hand, starting from 6,;, its kth-order total derivative produces a globally defined
1-form on T*T*M , which in coordinates reads

k i k a
dr 0y = Z ; Dalk—i A4;

=0

(with summation over a from 1 to n understood). It is clear from this expression
that the exterior derivative yields a non-degenerate (exact) 2-form, which proves the
following statement.

THEOREM. — (T*T*M, d dt"0,;) is a symplectic manifold.

Next we turn to the space T*T*M which has a natural symplectic structure and
can further be endowed with a type (1,1) tensor field via the complete lift of S](\?.
In coordinates:

) _ 0 ~. 0 ‘
Sy =) 5= ®dgi |+ ) 15— @dp,.
,-; Oq¢ ' ; opi!

a

THEOREM. — S](\?) is an integrable kth-order almost tangent structure on
T*T*M .

Proof. — Inspection of the above coordinate expression shows that for S = SJ(\Z),
ker S7*! and im S¥7 are both spanned by the coordinate vector fields

{9 S
B B B e

} (for j=0,...,k).

The vanishing of the Nijenhuis tensor Ny is obvious because the coefficients in that
same expression are all constants. Thus, all requirements for an integrable kth-order
almost tangent structure are verified.

We now come to the generalization of the diffeomorphism T7T*M <— T*T' M.

2



THEOREM. — There is a vector bundle isomorphism 1y, : TFT*M — T*T*M,
which is both a symplectomorphism and an isomorphism of kth-order almost tangent
structures.

The vector bundle structures we are referring to here are, respectively, the fi-
brations 7\% : TFT*M — T*M and mpeyy : T*TFM —> T*M. Observe first that
the coordinate expression of dr*6,; clearly shows that this 1-form vanishes on vec-
tors which are vertical with respect to W](\l;). This justifies the following intrinsic
construction.

DEFINITION. — For each Q € T*T*M with projection ¢ = ﬂg]})(Q), we define
Yp(Q) € T*TEM to be the covector at g, determined by the relation:

VG €T, (G, vk(Q) = (& (dr*0ur)g).

where &g € ToT*T*M is any vector with the property Tﬂ](\? (&) = (4
It is clear from this definition that 7y, 0 ¥y = WE\?

ToTFT*M,

<§Q7 (Vx" 9TkM)Q> = <T¢k(§Q)v (QT’“M)W(Q)>
= (T o TYr(EQ) , Vi(Q))
= <T7Tz(\§)(€cz), ¢k(@)> = <€Q7 (dieM)Q>7

. Moreover, we have: Vg €

where we have used the definition of Oziy. It follows that y,* 0y, = dr*6. Since
the coordinate expression for Ok, reads Oy, = S8 p! dg?, we see rightaway that
the map v in coordinates is given by

" ; k
(4, paji) —> (q?,pZ = ( )pakz—i) :

?

and is truly a vector bundle isomorphism. Finally, if ¢, stands for the push forward
operation on tensor fields, we have

0 K\ 0 B\
_— _— d ali— — d ]C—Z-i—l‘
77ij* apa‘i (Z) 8p]a€_la 77ij* Pali—1 (Z _ 1) P

The kth-order tangent structure on T*T*M is determined by

0
apa|i

k k

.0 a :

S;k)M => i Y ®dgl, + Y i ® dpaji-1
i-1 04 i=1

and it is now easy to verify that wk*Sr}liQ = S](\?, which completes the proof of our

main theorem.



The geometrical structure of a tangent bundle (of any order) is, in a way, fully
determined by the almost tangent structure and its associated dilation field. The
dilation field associated to S;IZ)M on TFT*M is the vector field

=i 4 Y ipys
i=1 g i=1 apalz’

Obviously, in view of the diffeomorphism ), the dilation field associated to the

almost tangent structure S](\? on T*T*M is the vector field

k k—1 8
AR =S i =+ (k=) pl—.
¢k* T*M 22::1 (X5 8(]? ;( 7’) 2 apz

It is of some interest to find the relation between this vector field and other dilation
fields which naturally live on T*T*M. There are in fact two such dilation fields,
namely the complete lift of the one on T*M and the dilation field of T*T*M as a
cotangent bundle. Their coordinate expressions read

ﬁ):iiqqa —zk:ipi 8. ok :zk:pi 8‘.
= 0q I opl T o,
The following correspondence now can easily be verified.
THEOREM. — The dilation field associated to the almost tangent structure ég/[l;)
on T*T*M is given by v, Ag@M = ANS(/? +k Al
4. REMARKS. — a) For k = 1 we recover the known results. Our present

intrinsic definition of ¢; then coincides with the one in [7].
b) Note that the ¢,-maps induce a projection of cotangent bundles of higher-
order tangent bundles: we can define

Pt T T — T*T* M, pf T =0 oyl

It is easy to show, using the main theorem and results of section 2, that
S](\f[) (eTkM) =k pzil* ekalM.

¢) We know that 6, is uniquely determined by the property a*0,; = «, for any
I-form a on M, regarded as a section of T*M. The induced section a®) of W](\l;) is
easily seen to have the property a®* dp*0,, = di(oz*QM) = dp*a. Tt follows that
U 0 a® = drFa, regarded as a section of mwpuy,.

5. GENERALIZATION OF THE CANONICAL INVOLUTION OF TTM. — Tulczy-
jew’s construction of the map ¢ [1] was based on the canonical involution of TT M.
Roughly speaking, we now want to turn the arguments around and use the fact
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that we already have vy, : T*T*M — T*T*M at our disposal, to define a canonical
diffeomorphism between T*T'M and TT*M. This will then be used to initialize an
induction process.

A point z € T*T'M is the k-velocity of a curve v(t) in TM. Let ¢ € T*M denote
the point r}f)(z), where 7y : TM — M is the tangent bundle projection. The point
of TT*M which we want to associate to z is going to be the vector ¢, € T,T*M,
determined by the condition:

dk
Vay € TyTH (G, ag) = 22 00), x@)]
t=0

where x(t) is a curve in T*M, representing the k-velocity 1, '(a,) € TFT*M and
satisfying 7as(7(t)) = mar(x(t)) Vt.

To see what this means in coordinates, let us denote the coordinates of z as
(465 qi;)- A representative curve y(t) then is given by

v(t) = (Z ﬁqg,i ', Z JQ?Z ﬁ) .
=0 " =0 "

The element ¢, we look for will have coordinates (giy = ¢f;, ¢;). Its pairing with
an arbitrary o, = (¢%,pl) is given by SF a4y p’ and the defining relation will of

-1,
course have to determine the ¢f;. We have U ) = (qg, (k> p’;_l> so that a

(2

representation of an appropriate x(t) reads:

k o F (k=0
v = (3 a2 S M),
i=0 v i=0 :
The right-hand side of the defining relation is precisely the coefficient of (1/k!)t¥
in the product of the second components of v(¢) and x(¢) and is easily found to be
Sk qi, p. It follows that the map T*TM — TT*M simply consists in switching
suffices: ¢}, —qf, (1=0,...,k r=0,1).

For the induction, assume that we know about the identification T"T*M =
T*T"M for some s and all r and that it consists of switching suffices (the case s =1
having just been proved). Using the canonical injection of T**M into TT*M we
then obtain the chain T"T*"M C T"TT*M = TT™T*M = TT*T"™M, which shows
that there is an injective map T"T*"M — TTST"M. A schematic coordinate
representation of this map is obtained as follows (the ranges of the different indices
arei=0,...,s+1;, 7=0,...,m;, m=0,...,s; £=0,1):

(qzj) — (qz%g’j) where qZ’L,E,j = qu with i =m + /¢

— (o) (@) -



Since the image point in TT*T"M satisfies g}, , = ¢}, o When m + £ =m'+ (', it
is actually a point of the submanifold T*"'T7M, which means that there is a final
identification: (qf,,,) — (q5,)-

We conclude that there is a natural identification of T"7T*M and T°T"M for all
r and s. For a derivation of this result in a more abstract setting, see e.g. [8].
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