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Abstract — We discuss a natural symplectic structure on T kT ∗M and
a natural kth-order almost tangent structure on T ∗T kM . The main
result concerns the construction of a vector bundle isomorphism ψk :
T kT ∗M −→ T ∗T kM (over T kM), which behaves naturally with respect
to all structures of interest. We further use this result to prove that
one can identify spaces such as T rT sM and T sT rM by a map which in
coordinates simply consists in switching suffices.

1. Introduction. — The existence of a canonical isomorphism between TT ∗M
and T ∗TM is well known and of fundamental importance in many applications. It
is, for example, a key matter in Tulczyjew’s description of Lagrangian and Hamil-
tonian theory, in terms of a Lagrangian submanifold which is shared by two special
symplectic structures on TT ∗M [1]. It is our belief that the canonical isomorphism
between T kT ∗M and T ∗T kM , which we will discuss in the present note, has a num-
ber of interesting features in its own right and will be valuable for clarifying certain
aspects of the approach to higher-order mechanics described in [2] and [3].

2. Notations and Preliminaries. — We seek conformity in notations with
some of our earlier work (see e.g. [4] and [5]), but slight adaptations are always
necessary. Let τk : T kN −→ N denote the tangent bundle of order k of some
manifold N . For ` < k, we have projection operators τ `k : T kN −→ T `N . It is known
that a smooth map φ : N −→ N ′ induces a map φ(k) : T kN −→ T kN ′. Thus, for
example, the manifold T kT ∗M is fibred over T kM (as a vector bundle) through the

map π
(k)
M , induced by the cotangent bundle projection πM : T ∗M −→ M . As in

[4] and [6], let T denote the canonical inclusion T : T kN −→ TT k−1N and dT the
total derivative operator which turns functions and forms on T `N into corresponding
objects on T `+1N . Repeated application of this operator on a 1-form α on N results
in a 1-form dT

kα on T kN . A tangent bundle of order k such as T kN comes naturally
equipped with a type (1,1) tensor field, the so-called vertical endomorphism, which

we will denote by S
(k)
N . We recall from [4] the following commutation relations:

φ(k+1)∗ ◦ dT = dT ◦ φ(k)∗, τ `+1
k+1

∗ ◦ dT = dT ◦ τ `k
∗
, and also, as a map on 1-forms,
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S
(k+1)
N ◦ dT = dT ◦ S(k)

N + τ kk+1
∗
. From these properties it is easy to deduce that

φ(k)∗ ◦ dTk = dT
k ◦ φ∗ and S

(k)
N ◦ dTk = k τ k−1k

∗ ◦ dTk−1 (where for k = 1, dT
0 is to

be regarded as the identity operator). Other canonical objects which are soon to be
discussed are the canonical 1-form of a cotangent bundle (notation: θM for T ∗M),
and dilation vector fields. For notational distinction we will write e.g. ∆∗M for the

dilation field on T ∗M and ∆
(k)
N for the dilation field on T kN . Finally, we will indicate

the complete lift of a geometrical object to its cotangent bundle with a tilde (as in
[5]), while for the complete lift of a vector field X on N to a vector field on T kN we
will write X̃(k) (as in [4]).

3. Main Results. — Representing coordinates on T ∗M as (qa, pa) (a =
1, . . . , n = dimM), we will denote the corresponding natural coordinates on T kT ∗M
by (qai , pa|i) (i = 0, . . . , k) and the coordinates on T ∗T kM by (qai , p

i
a).

The space T kT ∗M obviously carries a kth-order tangent structure. On the other
hand, starting from θM , its kth-order total derivative produces a globally defined
1-form on T kT ∗M , which in coordinates reads

dT
kθM =

k∑
i=0

(
k

i

)
pa|k−i dq

a
i

(with summation over a from 1 to n understood). It is clear from this expression
that the exterior derivative yields a non-degenerate (exact) 2-form, which proves the
following statement.

Theorem. — (T kT ∗M,d dT
kθM) is a symplectic manifold.

Next we turn to the space T ∗T kM which has a natural symplectic structure and
can further be endowed with a type (1,1) tensor field via the complete lift of S

(k)
M .

In coordinates:

S̃
(k)
M =

k∑
i=1

i
∂

∂qai
⊗ dqai−1 +

k∑
i=1

i
∂

∂pi−1a

⊗ dpia .

Theorem. — S̃
(k)
M is an integrable kth-order almost tangent structure on

T ∗T kM .

Proof. — Inspection of the above coordinate expression shows that for S = S̃
(k)
M ,

kerSj+1 and imSk−j are both spanned by the coordinate vector fields{
∂

∂qak−j
, . . . ,

∂

∂qak
,
∂

∂p0a
, . . . ,

∂

∂pja

}
(for j = 0, . . . , k).

The vanishing of the Nijenhuis tensor NS is obvious because the coefficients in that
same expression are all constants. Thus, all requirements for an integrable kth-order
almost tangent structure are verified.

We now come to the generalization of the diffeomorphism TT ∗M ←→ T ∗TM .
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Theorem. — There is a vector bundle isomorphism ψk : T kT ∗M −→ T ∗T kM ,
which is both a symplectomorphism and an isomorphism of kth-order almost tangent
structures.

The vector bundle structures we are referring to here are, respectively, the fi-
brations π

(k)
M : T kT ∗M −→ T kM and πTkM : T ∗T kM −→ T kM . Observe first that

the coordinate expression of dT
kθM clearly shows that this 1-form vanishes on vec-

tors which are vertical with respect to π
(k)
M . This justifies the following intrinsic

construction.

Definition. — For each Q ∈ T kT ∗M with projection q = π
(k)
M (Q), we define

ψk(Q) ∈ T ∗T kM to be the covector at q, determined by the relation:

∀ ζq ∈ TqT kM, 〈ζq , ψk(Q)〉 =
〈
ξQ , (dT

kθM)Q

〉
,

where ξQ ∈ TQT kT ∗M is any vector with the property Tπ
(k)
M (ξQ) = ζq.

It is clear from this definition that πTkM ◦ψk = π
(k)
M . Moreover, we have: ∀ ξQ ∈

TQT
kT ∗M ,〈

ξQ , (ψk
∗ θTkM)Q

〉
=

〈
Tψk(ξQ) , (θTkM)ψk(Q)

〉
= 〈TπTkM ◦ Tψk(ξQ) , ψk(Q)〉
=

〈
Tπ

(k)
M (ξQ) , ψk(Q)

〉
=
〈
ξQ , (dT

kθM)Q

〉
,

where we have used the definition of θTkM . It follows that ψk
∗θTkM = dT

kθM . Since
the coordinate expression for θTkM reads θTkM =

∑k
i=0 p

i
a dq

a
i , we see rightaway that

the map ψk in coordinates is given by

(qai , pa|i)
ψk7−→

(
qai , p

i
a =

(
k

i

)
pa|k−i

)
,

and is truly a vector bundle isomorphism. Finally, if ψk∗ stands for the push forward
operation on tensor fields, we have

ψk∗
∂

∂pa|i
=

(
k

i

)
∂

∂pk−ia

, ψk∗dpa|i−1 =

(
k

i− 1

)−1
dpk−i+1

a .

The kth-order tangent structure on T kT ∗M is determined by

S
(k)
T ∗M =

k∑
i=1

i
∂

∂qai
⊗ dqai−1 +

k∑
i=1

i
∂

∂pa|i
⊗ dpa|i−1

and it is now easy to verify that ψk∗S
(k)
T ∗M = S̃

(k)
M , which completes the proof of our

main theorem.
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The geometrical structure of a tangent bundle (of any order) is, in a way, fully
determined by the almost tangent structure and its associated dilation field. The
dilation field associated to S

(k)
T ∗M on T kT ∗M is the vector field

∆
(k)
T ∗M =

k∑
i=1

i qai
∂

∂qai
+

k∑
i=1

i pa|i
∂

∂pa|i
.

Obviously, in view of the diffeomorphism ψk, the dilation field associated to the

almost tangent structure S̃
(k)
M on T ∗T kM is the vector field

ψk∗∆
(k)
T ∗M =

k∑
i=1

i qai
∂

∂qai
+

k−1∑
i=0

(k − i) pia
∂

∂pia
.

It is of some interest to find the relation between this vector field and other dilation
fields which naturally live on T ∗T kM . There are in fact two such dilation fields,
namely the complete lift of the one on T kM and the dilation field of T ∗T kM as a
cotangent bundle. Their coordinate expressions read

∆̃
(k)
M =

k∑
i=1

i qai
∂

∂qai
−

k∑
i=1

i pia
∂

∂pia
, ∆∗TkM =

k∑
i=0

pia
∂

∂pia
.

The following correspondence now can easily be verified.

Theorem. — The dilation field associated to the almost tangent structure S̃
(k)
M

on T ∗T kM is given by ψk∗∆
(k)
T ∗M = ∆̃

(k)
M + k ∆∗TkM .

4. Remarks. — a) For k = 1 we recover the known results. Our present
intrinsic definition of ψ1 then coincides with the one in [7].

b) Note that the ψk-maps induce a projection of cotangent bundles of higher-
order tangent bundles: we can define

ρk−1k : T ∗T kM −→ T ∗T k−1M , ρk−1k = ψk−1 ◦ τ k−1k ◦ ψk−1.

It is easy to show, using the main theorem and results of section 2, that

S̃
(k)
M (θTkM) = k ρk−1k

∗
θTk−1M .

c) We know that θM is uniquely determined by the property α∗θM = α, for any

1-form α on M , regarded as a section of T ∗M . The induced section α(k) of π
(k)
M is

easily seen to have the property α(k)∗ dT
kθM = dT

k(α∗θM) = dT
kα. It follows that

ψk ◦ α(k) = dT
kα, regarded as a section of πTkM .

5. Generalization of the canonical involution of TTM . — Tulczy-
jew’s construction of the map ψ1 [1] was based on the canonical involution of TTM .
Roughly speaking, we now want to turn the arguments around and use the fact
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that we already have ψk : T kT ∗M −→ T ∗T kM at our disposal, to define a canonical
diffeomorphism between T kTM and TT kM . This will then be used to initialize an
induction process.

A point z ∈ T kTM is the k-velocity of a curve γ(t) in TM . Let q ∈ T kM denote

the point τ
(k)
M (z), where τM : TM −→M is the tangent bundle projection. The point

of TT kM which we want to associate to z is going to be the vector ζq ∈ TqT
kM ,

determined by the condition:

∀αq ∈ T ∗q T kM : 〈ζq , αq〉 =
dk

dtk
〈γ(t) , χ(t)〉

∣∣∣∣∣
t=0

,

where χ(t) is a curve in T ∗M , representing the k-velocity ψk
−1(αq) ∈ T kT ∗M and

satisfying τM(γ(t)) = πM(χ(t)) ∀ t.

To see what this means in coordinates, let us denote the coordinates of z as
(qa0,i , q

a
1,i). A representative curve γ(t) then is given by

γ(t) =

(
k∑
i=0

1

i!
qa0,i t

i ,
k∑
i=0

1

i!
qa1,i t

i

)
.

The element ζq we look for will have coordinates (qai,0 = qa0,i , q
a
i,1). Its pairing with

an arbitrary αq = (qai , p
i
a) is given by

∑k
i=0 q

a
i,1 p

i
a and the defining relation will of

course have to determine the qai,1. We have ψk
−1(αq) =

(
qai ,

(
k
i

)−1
pk−ia

)
so that a

representation of an appropriate χ(t) reads:

χ(t) =

(
k∑
i=0

1

i!
qai t

i ,
k∑
i=0

(k − i)!
k!

pk−ia ti
)
.

The right-hand side of the defining relation is precisely the coefficient of (1/k!)tk

in the product of the second components of γ(t) and χ(t) and is easily found to be∑k
i=0 q

a
1,i p

i
a. It follows that the map T kTM −→ TT kM simply consists in switching

suffices: qar,i 7−→ qai,r (i = 0, . . . , k; r = 0, 1).

For the induction, assume that we know about the identification T rT sM =
T sT rM for some s and all r and that it consists of switching suffices (the case s = 1
having just been proved). Using the canonical injection of T s+1M into TT sM we
then obtain the chain T rT s+1M ⊂ T rT T sM = TT rT sM = TT sT rM , which shows
that there is an injective map T rT s+1M −→ TT sT rM . A schematic coordinate
representation of this map is obtained as follows (the ranges of the different indices
are i = 0, . . . , s+ 1; j = 0, . . . , r; m = 0, . . . , s; ` = 0, 1):

(qai,j) 7−→ (qam,`,j) where qam,`,j = qai,j with i = m+ `

7−→ (qam,j,`) 7−→ (qaj,m,`) .
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Since the image point in TT sT rM satisfies qaj,m,` = qaj,m′,`′ when m + ` = m′ + `′, it
is actually a point of the submanifold T s+1T rM , which means that there is a final
identification: (qaj,m,`) 7−→ (qaj,i).

We conclude that there is a natural identification of T rT sM and T sT rM for all
r and s. For a derivation of this result in a more abstract setting, see e.g. [8].
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