The canonical isomorphism between $T^{k} T^{*} M$ and $T^{*} T^{k} M$

Frans Cantrijn Mike Crampin Willy Sarlet
David Saunders

Abstract

We discuss a natural symplectic structure on $T^{k} T^{*} M$ and a natural kth-order almost tangent structure on $T^{*} T^{k} M$. The main result concerns the construction of a vector bundle isomorphism ψ_{k} : $T^{k} T^{*} M \longrightarrow T^{*} T^{k} M$ (over $T^{k} M$), which behaves naturally with respect to all structures of interest. We further use this result to prove that one can identify spaces such as $T^{r} T^{s} M$ and $T^{s} T^{r} M$ by a map which in coordinates simply consists in switching suffices.

1. Introduction. - The existence of a canonical isomorphism between $T T^{*} M$ and $T^{*} T M$ is well known and of fundamental importance in many applications. It is, for example, a key matter in Tulczyjew's description of Lagrangian and Hamiltonian theory, in terms of a Lagrangian submanifold which is shared by two special symplectic structures on $T T^{*} M$ [1]. It is our belief that the canonical isomorphism between $T^{k} T^{*} M$ and $T^{*} T^{k} M$, which we will discuss in the present note, has a number of interesting features in its own right and will be valuable for clarifying certain aspects of the approach to higher-order mechanics described in [2] and [3].
2. Notations and Preliminaries. - We seek conformity in notations with some of our earlier work (see e.g. [4] and [5]), but slight adaptations are always necessary. Let $\tau_{k}: T^{k} N \longrightarrow N$ denote the tangent bundle of order k of some manifold N. For $\ell<k$, we have projection operators $\tau_{k}^{\ell}: T^{k} N \longrightarrow T^{\ell} N$. It is known that a smooth map $\phi: N \longrightarrow N^{\prime}$ induces a map $\phi^{(k)}: T^{k} N \longrightarrow T^{k} N^{\prime}$. Thus, for example, the manifold $T^{k} T^{*} M$ is fibred over $T^{k} M$ (as a vector bundle) through the map $\pi_{M}^{(k)}$, induced by the cotangent bundle projection $\pi_{M}: T^{*} M \longrightarrow M$. As in [4] and [6], let \mathbf{T} denote the canonical inclusion $\mathbf{T}: T^{k} N \longrightarrow T T^{k-1} N$ and $d_{\mathbf{T}}$ the total derivative operator which turns functions and forms on $T^{\ell} N$ into corresponding objects on $T^{\ell+1} N$. Repeated application of this operator on a 1 -form α on N results in a 1 -form $d_{\mathbf{T}}{ }^{k} \alpha$ on $T^{k} N$. A tangent bundle of order k such as $T^{k} N$ comes naturally equipped with a type $(1,1)$ tensor field, the so-called vertical endomorphism, which we will denote by $S_{N}^{(k)}$. We recall from [4] the following commutation relations: $\phi^{(k+1)^{*}} \circ d_{\mathbf{T}}=d_{\mathbf{T}} \circ \phi^{(k)^{*}}, \quad \tau_{k+1}^{\ell+1^{*}} \circ d_{\mathbf{T}}=d_{\mathbf{T}} \circ \tau_{k}^{\ell^{*}}$, and also, as a map on 1-forms,
$S_{N}^{(k+1)} \circ d_{\mathbf{T}}=d_{\mathbf{T}} \circ S_{N}^{(k)}+\tau_{k+1}^{k}{ }^{*}$. From these properties it is easy to deduce that $\phi^{(k)^{*}} \circ{d_{\mathbf{T}}}^{k}=d_{\mathbf{T}}{ }^{k} \circ \phi^{*}$ and $S_{N}^{(k)} \circ{d_{\mathbf{T}}}^{k}=k \tau_{k}^{k-1^{*}} \circ d_{\mathbf{T}}{ }^{k-1}$ (where for $k=1,{d_{\mathbf{T}}}^{0}$ is to be regarded as the identity operator). Other canonical objects which are soon to be discussed are the canonical 1-form of a cotangent bundle (notation: θ_{M} for $T^{*} M$), and dilation vector fields. For notational distinction we will write e.g. Δ_{M}^{*} for the dilation field on $T^{*} M$ and $\Delta_{N}^{(k)}$ for the dilation field on $T^{k} N$. Finally, we will indicate the complete lift of a geometrical object to its cotangent bundle with a tilde (as in [5]), while for the complete lift of a vector field X on N to a vector field on $T^{k} N$ we will write $\widetilde{X}^{(k)}$ (as in [4]).
3. Main Results. - Representing coordinates on $T^{*} M$ as $\left(q^{a}, p_{a}\right)(a=$ $1, \ldots, n=\operatorname{dim} M$), we will denote the corresponding natural coordinates on $T^{k} T^{*} M$ by $\left(q_{i}^{a}, p_{a \mid i}\right)(i=0, \ldots, k)$ and the coordinates on $T^{*} T^{k} M$ by $\left(q_{i}^{a}, p_{a}^{i}\right)$.

The space $T^{k} T^{*} M$ obviously carries a kth-order tangent structure. On the other hand, starting from θ_{M}, its kth-order total derivative produces a globally defined 1-form on $T^{k} T^{*} M$, which in coordinates reads

$$
d_{\mathbf{T}}{ }^{k} \theta_{M}=\sum_{i=0}^{k}\binom{k}{i} p_{a \mid k-i} d q_{i}^{a}
$$

(with summation over a from 1 to n understood). It is clear from this expression that the exterior derivative yields a non-degenerate (exact) 2-form, which proves the following statement.

Theorem. - $\left(T^{k} T^{*} M, d d_{\mathbf{T}}{ }^{k} \theta_{M}\right)$ is a symplectic manifold.
Next we turn to the space $T^{*} T^{k} M$ which has a natural symplectic structure and can further be endowed with a type $(1,1)$ tensor field via the complete lift of $S_{M}^{(k)}$. In coordinates:

$$
\widetilde{S_{M}^{(k)}}=\sum_{i=1}^{k} i \frac{\partial}{\partial q_{i}^{a}} \otimes d q_{i-1}^{a}+\sum_{i=1}^{k} i \frac{\partial}{\partial p_{a}^{i-1}} \otimes d p_{a}^{i} .
$$

Theorem. - $\widetilde{S_{M}^{(k)}}$ is an integrable kth-order almost tangent structure on $T^{*} T^{k} M$.

Proof. - Inspection of the above coordinate expression shows that for $S=\widetilde{S_{M}^{(k)}}$, $\operatorname{ker} S^{j+1}$ and $\operatorname{im} S^{k-j}$ are both spanned by the coordinate vector fields

$$
\left\{\frac{\partial}{\partial q_{k-j}^{a}}, \ldots, \frac{\partial}{\partial q_{k}^{a}}, \frac{\partial}{\partial p_{a}^{0}}, \ldots, \frac{\partial}{\partial p_{a}^{j}}\right\} \quad(\text { for } j=0, \ldots, k) .
$$

The vanishing of the Nijenhuis tensor \mathcal{N}_{S} is obvious because the coefficients in that same expression are all constants. Thus, all requirements for an integrable kth-order almost tangent structure are verified.

We now come to the generalization of the diffeomorphism $T T^{*} M \longleftrightarrow T^{*} T M$.

THEOREM. - There is a vector bundle isomorphism $\psi_{k}: T^{k} T^{*} M \longrightarrow T^{*} T^{k} M$, which is both a symplectomorphism and an isomorphism of kth-order almost tangent structures.

The vector bundle structures we are referring to here are, respectively, the fibrations $\pi_{M}^{(k)}: T^{k} T^{*} M \longrightarrow T^{k} M$ and $\pi_{T^{k} M}: T^{*} T^{k} M \longrightarrow T^{k} M$. Observe first that the coordinate expression of $d_{\mathbf{T}}{ }^{k} \theta_{M}$ clearly shows that this 1-form vanishes on vectors which are vertical with respect to $\pi_{M}^{(k)}$. This justifies the following intrinsic construction.

Definition. - For each $Q \in T^{k} T^{*} M$ with projection $q=\pi_{M}^{(k)}(Q)$, we define $\psi_{k}(Q) \in T^{*} T^{k} M$ to be the covector at q, determined by the relation:

$$
\forall \zeta_{q} \in T_{q} T^{k} M, \quad\left\langle\zeta_{q}, \psi_{k}(Q)\right\rangle=\left\langle\xi_{Q},\left(d_{\mathbf{T}}{ }^{k} \theta_{M}\right)_{Q}\right\rangle
$$

where $\xi_{Q} \in T_{Q} T^{k} T^{*} M$ is any vector with the property $T \pi_{M}^{(k)}\left(\xi_{Q}\right)=\zeta_{q}$.
It is clear from this definition that $\pi_{T^{k} M} \circ \psi_{k}=\pi_{M}^{(k)}$. Moreover, we have: $\forall \xi_{Q} \in$ $T_{Q} T^{k} T^{*} M$,

$$
\begin{aligned}
\left\langle\xi_{Q},\left(\psi_{k}^{*} \theta_{T^{k} M}\right)_{Q}\right\rangle & =\left\langle T \psi_{k}\left(\xi_{Q}\right),\left(\theta_{T^{k} M}\right)_{\psi_{k}(Q)}\right\rangle \\
& =\left\langle T \pi_{T^{k} M} \circ T \psi_{k}\left(\xi_{Q}\right), \psi_{k}(Q)\right\rangle \\
& =\left\langle T \pi_{M}^{(k)}\left(\xi_{Q}\right), \psi_{k}(Q)\right\rangle=\left\langle\xi_{Q},\left(d_{\mathbf{T}}{ }^{k} \theta_{M}\right)_{Q}\right\rangle,
\end{aligned}
$$

where we have used the definition of $\theta_{T^{k} M}$. It follows that $\psi_{k}{ }^{*} \theta_{T^{k} M}=d_{\mathbf{T}}{ }^{k} \theta_{M}$. Since the coordinate expression for $\theta_{T^{k} M}$ reads $\theta_{T^{k} M}=\sum_{i=0}^{k} p_{a}^{i} d q_{i}^{a}$, we see rightaway that the map ψ_{k} in coordinates is given by

$$
\left(q_{i}^{a}, p_{a \mid i}\right) \stackrel{\psi_{k}}{\longmapsto}\left(q_{i}^{a}, p_{a}^{i}=\binom{k}{i} p_{a \mid k-i}\right),
$$

and is truly a vector bundle isomorphism. Finally, if $\psi_{k_{*}}$ stands for the push forward operation on tensor fields, we have

$$
\psi_{k *} \frac{\partial}{\partial p_{a \mid i}}=\binom{k}{i} \frac{\partial}{\partial p_{a}^{k-i}}, \quad \psi_{k_{*}} d p_{a \mid i-1}=\binom{k}{i-1}^{-1} d p_{a}^{k-i+1} .
$$

The kth-order tangent structure on $T^{k} T^{*} M$ is determined by

$$
S_{T^{*} M}^{(k)}=\sum_{i=1}^{k} i \frac{\partial}{\partial q_{i}^{a}} \otimes d q_{i-1}^{a}+\sum_{i=1}^{k} i \frac{\partial}{\partial p_{a \mid i}} \otimes d p_{a \mid i-1}
$$

and it is now easy to verify that $\psi_{k_{*}} S_{T^{*} M}^{(k)}=\widetilde{S_{M}^{(k)}}$, which completes the proof of our main theorem.

The geometrical structure of a tangent bundle (of any order) is, in a way, fully determined by the almost tangent structure and its associated dilation field. The dilation field associated to $S_{T^{*} M}^{(k)}$ on $T^{k} T^{*} M$ is the vector field

$$
\Delta_{T^{*} M}^{(k)}=\sum_{i=1}^{k} i q_{i}^{a} \frac{\partial}{\partial q_{i}^{a}}+\sum_{i=1}^{k} i p_{a \mid i} \frac{\partial}{\partial p_{a \mid i}} .
$$

Obviously, in view of the diffeomorphism ψ_{k}, the dilation field associated to the almost tangent structure $\widetilde{S_{M}^{(k)}}$ on $T^{*} T^{k} M$ is the vector field

$$
\psi_{k_{*}} \Delta_{T^{*} M}^{(k)}=\sum_{i=1}^{k} i q_{i}^{a} \frac{\partial}{\partial q_{i}^{a}}+\sum_{i=0}^{k-1}(k-i) p_{a}^{i} \frac{\partial}{\partial p_{a}^{i}} .
$$

It is of some interest to find the relation between this vector field and other dilation fields which naturally live on $T^{*} T^{k} M$. There are in fact two such dilation fields, namely the complete lift of the one on $T^{k} M$ and the dilation field of $T^{*} T^{k} M$ as a cotangent bundle. Their coordinate expressions read

$$
\widetilde{\Delta_{M}^{(k)}}=\sum_{i=1}^{k} i q_{i}^{a} \frac{\partial}{\partial q_{i}^{a}}-\sum_{i=1}^{k} i p_{a}^{i} \frac{\partial}{\partial p_{a}^{i}}, \quad \Delta_{T^{k} M}^{*}=\sum_{i=0}^{k} p_{a}^{i} \frac{\partial}{\partial p_{a}^{i}} .
$$

The following correspondence now can easily be verified.
Theorem. - The dilation field associated to the almost tangent structure $\widetilde{S_{M}^{(k)}}$ on $T^{*} T^{k} M$ is given by $\psi_{k *} \Delta_{T^{*} M}^{(k)}=\widetilde{\Delta_{M}^{(k)}}+k \Delta_{T^{k} M}^{*}$.
4. Remarks. - a) For $k=1$ we recover the known results. Our present intrinsic definition of ψ_{1} then coincides with the one in [7].
b) Note that the ψ_{k}-maps induce a projection of cotangent bundles of higherorder tangent bundles: we can define

$$
\rho_{k}^{k-1}: T^{*} T^{k} M \longrightarrow T^{*} T^{k-1} M, \quad \rho_{k}^{k-1}=\psi_{k-1} \circ \tau_{k}^{k-1} \circ \psi_{k}^{-1} .
$$

It is easy to show, using the main theorem and results of section 2 , that

$$
\widetilde{S_{M}^{(k)}}\left(\theta_{T^{k} M}\right)=k \rho_{k}^{k-1^{*}} \theta_{T^{k-1} M} .
$$

c) We know that θ_{M} is uniquely determined by the property $\alpha^{*} \theta_{M}=\alpha$, for any 1-form α on M, regarded as a section of $T^{*} M$. The induced section $\alpha^{(k)}$ of $\pi_{M}^{(k)}$ is easily seen to have the property $\alpha^{(k)^{*}} d_{\mathbf{T}}{ }^{k} \theta_{M}=d_{\mathbf{T}}{ }^{k}\left(\alpha^{*} \theta_{M}\right)=d_{\mathbf{T}}{ }^{k} \alpha$. It follows that $\psi_{k} \circ \alpha^{(k)}=d_{\mathbf{T}}{ }^{k} \alpha$, regarded as a section of $\pi_{T^{k} M}$.
5. Generalization of the canonical involution of TTM. - Tulczyjew's construction of the map $\psi_{1}[1]$ was based on the canonical involution of TTM. Roughly speaking, we now want to turn the arguments around and use the fact
that we already have $\psi_{k}: T^{k} T^{*} M \longrightarrow T^{*} T^{k} M$ at our disposal, to define a canonical diffeomorphism between $T^{k} T M$ and $T T^{k} M$. This will then be used to initialize an induction process.

A point $z \in T^{k} T M$ is the k-velocity of a curve $\gamma(t)$ in $T M$. Let $q \in T^{k} M$ denote the point $\tau_{M}^{(k)}(z)$, where $\tau_{M}: T M \longrightarrow M$ is the tangent bundle projection. The point of $T T^{k} M$ which we want to associate to z is going to be the vector $\zeta_{q} \in T_{q} T^{k} M$, determined by the condition:

$$
\forall \alpha_{q} \in T_{q}^{*} T^{k} M:\left\langle\zeta_{q}, \alpha_{q}\right\rangle=\left.\frac{d^{k}}{d t^{k}}\langle\gamma(t), \chi(t)\rangle\right|_{t=0},
$$

where $\chi(t)$ is a curve in $T^{*} M$, representing the k-velocity $\psi_{k}{ }^{-1}\left(\alpha_{q}\right) \in T^{k} T^{*} M$ and satisfying $\tau_{M}(\gamma(t))=\pi_{M}(\chi(t)) \quad \forall t$.

To see what this means in coordinates, let us denote the coordinates of z as $\left(q_{0, i}^{a}, q_{1, i}^{a}\right)$. A representative curve $\gamma(t)$ then is given by

$$
\gamma(t)=\left(\sum_{i=0}^{k} \frac{1}{i!} q_{0, i}^{a} t^{i}, \sum_{i=0}^{k} \frac{1}{i!} q_{1, i}^{a} i^{i}\right) .
$$

The element ζ_{q} we look for will have coordinates $\left(q_{i, 0}^{a}=q_{0, i}^{a}, q_{i, 1}^{a}\right)$. Its pairing with an arbitrary $\alpha_{q}=\left(q_{i}^{a}, p_{a}^{i}\right)$ is given by $\sum_{i=0}^{k} q_{i, 1}^{a} p_{a}^{i}$ and the defining relation will of course have to determine the $q_{i, 1}^{a}$. We have $\psi_{k}^{-1}\left(\alpha_{q}\right)=\left(q_{i}^{a},\binom{k}{i}^{-1} p_{a}^{k-i}\right)$ so that a representation of an appropriate $\chi(t)$ reads:

$$
\chi(t)=\left(\sum_{i=0}^{k} \frac{1}{i!} q_{i}^{a} t^{i}, \sum_{i=0}^{k} \frac{(k-i)!}{k!} p_{a}^{k-i} t^{i}\right) .
$$

The right-hand side of the defining relation is precisely the coefficient of $(1 / k!) t^{k}$ in the product of the second components of $\gamma(t)$ and $\chi(t)$ and is easily found to be $\sum_{i=0}^{k} q_{1, i}^{a} p_{a}^{i}$. It follows that the map $T^{k} T M \longrightarrow T T^{k} M$ simply consists in switching suffices: $q_{r, i}^{a} \longmapsto q_{i, r}^{a} \quad(i=0, \ldots, k ; r=0,1)$.

For the induction, assume that we know about the identification $T^{r} T^{s} M=$ $T^{s} T^{r} M$ for some s and all r and that it consists of switching suffices (the case $s=1$ having just been proved). Using the canonical injection of $T^{s+1} M$ into $T T^{s} M$ we then obtain the chain $T^{r} T^{s+1} M \subset T^{r} T T^{s} M=T T^{r} T^{s} M=T T^{s} T^{r} M$, which shows that there is an injective map $T^{r} T^{s+1} M \longrightarrow T T^{s} T^{r} M$. A schematic coordinate representation of this map is obtained as follows (the ranges of the different indices are $i=0, \ldots, s+1 ; j=0, \ldots, r ; m=0, \ldots, s ; \ell=0,1)$:

$$
\begin{aligned}
\left(q_{i, j}^{a}\right) & \longmapsto\left(q_{m, \ell, j}^{a}\right) \quad \text { where } q_{m, \ell, j}^{a}=q_{i, j}^{a} \text { with } i=m+\ell \\
& \longmapsto\left(q_{m, j, \ell}^{a}\right)
\end{aligned} \quad \longmapsto\left(q_{j, m, \ell}^{a}\right) .
$$

Since the image point in $T T^{s} T^{r} M$ satisfies $q_{j, m, \ell}^{a}=q_{j, m^{\prime}, \ell^{\prime}}^{a}$ when $m+\ell=m^{\prime}+\ell^{\prime}$, it is actually a point of the submanifold $T^{s+1} T^{r} M$, which means that there is a final identification: $\left(q_{j, m, \ell}^{a}\right) \longmapsto\left(q_{j, i}^{a}\right)$.

We conclude that there is a natural identification of $T^{r} T^{s} M$ and $T^{s} T^{r} M$ for all r and s. For a derivation of this result in a more abstract setting, see e.g. [8].

Acknowledgements. - This research is supported by NATO, under the Collaborative Research Grants Programme. One of us (M.C.) wishes to thank the Belgian National Fund for Scientific Research for support which made a longer stay possible at the Instituut voor Theoretische Mechanica (Gent).

References

[1] W.M. Tulczyjew, C.R. Acad. Sci. Paris, 283, série A, 1976, p. 675-678.
[2] M. de León and E.A. Lacomba, C.R. Acad. Sci. Paris, 307, série II, 1988, p. 1137-1139.
[3] M. de León and E.A. Lacomba, Lagrangian submanifolds and higherorder mechanical systems, preprint, 1989.
[4] M. Crampin, W. Sarlet and F. Cantrijn, Math. Proc. Camb. Phil. Soc., 99, 1986, p. 565-587.
[5] M. Crampin, F. Cantrijn and W. Sarlet, J. Geom. Phys., 4, 1987, p. 469-492.
[6] W.M. Tulczyjew, Bull. Acad. Polon. Sci., 24, 1976, p. 1089-1096.
[7] S. Benenti, The Category of Symplectic Reductions, Proc. of the meeting Geometry and Physics, Florence, Oct. 12-15 1982, Bologna: Pitagora Editrice, 1983, p. 12-41.
[8] I. KoláŘ, Math. Nachr., 69, 1975, p. 297-306.
F.C. ${ }^{1}$ and W.S. : Instituut voor Theoretische Mechanica Rijksuniversiteit Gent Krijgslaan 281, B-9000 Gent, Belgium M.C. and D.S. : Faculty of Mathematics

The Open University Milton Keynes MK7 6AA, U.K.

[^0]
[^0]: ${ }^{1}$ Research Associate of the National Fund for Scientific Research, Belgium

