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Abstract. The class of so-called Hénon-Heiles systems is slightly broadened by

allowing for the existence of non-standard Hamiltonians. The extra parameter in

the equations of motion is shown to give rise to a generalization of the three known

integrability cases. In addition, three degenerate cases are detected, characterized by

a partial decoupling of the equations. For these cases, we still obtain two independent

first integrals, but their involutiveness can only be understood in terms of a non-

standard Poisson structure.
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1. Introduction

There is a vast literature on case studies of complete integrability of Hamiltonian

systems in general and of so-called Hénon-Heiles systems in particular. For a recent

revision of the present state of the art and a link between integrable cases of the

Hénon-Heiles system and a class of integrable 5th-order PDE’s, see Fordy (1991). The

purpose of this note is to indicate that there are still certain aspects of the problem

which have been overlooked so far and which lead to a larger class of integrable cases.

Our case study concerns the following system of second-order ODE’s,

q̈1 = −c1 q1 + b q21 − a q22 , (1)

q̈2 = −c2 q2 − 2mq1q2. (2)

The original system studied by Hénon and Heiles (1964) corresponds to the case where

all parameters are equal to one. Its non-integrability is now well understood. In all

other searches for special parameter values which entail integrability, one has so far

a priori set m = a. The reason for this is of course very simple : it is the necessary

and sufficient requirement for the existence of a potential function V (q1, q2) such that

the right-hand sides of (1) and (2) are of the form −∂V/∂qi, and one naturally wants

the system to be Hamiltonian from the outset. What is being overlooked, however, is

the possible existence of a non-standard Lagrangian or Hamiltonian for the system,

one which arises after multiplication of the given set of equations with a non-singular

matrix. For example, it is easy to verify that for m and a different from zero, the given

system always admits the multiplier matrix diag(m,a), leading to the Lagrangian

L =
1

2
mq̇21 +

1

2
aq̇22 −

1

2
mc1q

2
1 +

1

3
mbq31 −maq1q

2
2 −

1

2
ac2q

2
2 . (3)

Note that a rescaling of the coordinates can bring the given system back into the more

familiar form only if we have am > 0. Our system (1),(2) therefore is a generalization

of the usual Hénon-Heiles system and provides the additional option of letting one

of the coupling parameters be zero (we of course exclude the trivially decoupled case

a = m = 0).

Among the various techniques which have been developed in the hunt for integrable

cases we prefer to use one which will produce the two independent first integrals in

the process. First integrals can be constructed via a direct search, as in Grammaticos
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et al (1982) and Leach (1980), or via the study of Hamiltonian symmetries or Noether

symmetries, as in Fordy (1983) and Sahadevan and Lakshmanan (1986). The latter

would seem to be excluded here as our extension is meant to cover cases where a

Lagrangian or Hamiltonian is not a priori known. Fortunately, a theory exists which

can cope exactly with this complication and amounts to searching, not for symmetries,

but for so-called adjoint symmetries of the given differential equations. We refer

to Sarlet et al (1987) for the theory of adjoint symmetries of autonomous second-

order equations (the case at hand) and to Sarlet et al (1990) for its extension to

time-dependent systems. What we need of this theory in the present context can be

summarized as follows.

Let Γ denote the vector field associated to the given system, i.e. Γ = vi(∂/∂qi) +

fi(∂/∂vi), where the functions fi represent the right-hand sides of (1),(2). Ad adjoint

symmetry is a 1-form of the type α = αi(q, v) dvi + Γ(αi) dqi, where the leading

coefficients αi satisfy the set of second-order PDE’s,

Γ2(αi) + Γ

(
αj

∂fj
∂vi

)
− αj

∂fj
∂qi

= 0, (4)

which are the adjoints of the equations for a symmetry vector field of Γ. Suppose we

have a solution of (4), matching the additional requirement αi = ∂F/∂vi for some

function F . Then, the function L = Γ(F ) is a Lagrangian for the given system in

the sense that we have the identities Γ(∂L/∂vi) − ∂L/∂qi ≡ 0. This function is not

always terribly interesting as a Lagrangian, because it may be of some degenerate

nature. In particular, we may have Γ(F ) = 0, in which case, of course, F is a first

integral. It is further important to know that every first integral can be obtained

this way. If a regular Lagrangian is a priori known, then there is a map between

adjoint symmetries and symmetries, which makes that we are then essentially talking

about Noether’s theorem. In the other event, while Noether’s theorem is no longer

available, the adjoint symmetry technique still survives with the same level of ease (or

complexity).

2. First integrals of degree 2 and 4

Having the classical results about the Hénon-Heiles system in mind, we now want

to explore the existence of two independent first integrals of (1) and (2), which are
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quadratic or at most of degree 4 in the velocities. For the quadratic case, the leading

coefficients of the corresponding adjoint symmetry will be linear in the velocities.

With this ansatz, the usual proces of splitting up equations (4) into the different parts

coming from independent monomials, gives rise to a set of 20 defining equations. These

and all subsequent computations are . . . straightforward but tedious, but fortunately

computer algebra can be of great assistance (see further). In the generic case (i.e.

no special assumptions on the parameters), only one adjoint symmetry emerges and

it produces a first integral which is the Hamiltonian corresponding to (3). In the

course of the solution process that we followed, we encountered the following list of

special cases that needed a separate investigation (often with a considerable number

of subbranches) : b = 0; b = −2m; b = −m; m = 0; b = −8m/3; a = 0; c2 = c1;

b(c1 + c2) + 2mc1 = 0; b = −6m. It is not excluded, however, that somebody else,

following a different path of solution, would manage to avoid some of these subcases.

We will not list all the cases which led to two or more adjoint symmetries, because

these need not always result in two first integrals. So here is a survey of the interesting

parameter values with the corresponding first integrals.

case 1 : b = −6m (m ̸= 0)

F1 =
1

2
mv21 +

1

2
av22 +

1

2
c1mq21 +

1

2
c2aq

2
2 + amq1q

2
2 + 2m2q31 , (5)

F2 = q2v1v2 − q1v
2
2 +

4c2 − c1
4m

v22 + c2q1q
2
2 +mq21q

2
2 +

c2
4m

(4c2 − c1)q
2
2 −

a

4
q42 . (6)

case 2 : b = −m, c2 = c1 (m ̸= 0)

F1 =
1

2
mv21 +

1

2
av22 +

1

2
c1mq21 +

1

2
c1aq

2
2 + amq1q

2
2 +

1

3
m2q31 , (7)

F2 = v1v2 + c1q1q2 +mq21q2 +
1

3
aq32 . (8)

case 3 : a = 0, b = −2m/5, c2 = 4c1 (m ̸= 0)

F1 =
1

2
v21 +

1

2
c1q

2
1 +

2

15
mq31 , (9)

F2 = q1v1v2 − q2v
2
1 + c1q

2
1q2 +

2

5
mq2q

3
1 . (10)

case 4 : a = 0, b = −2m (m ̸= 0)

F1 =
1

2
v21 +

1

2
c1q

2
1 +

2

3
mq31 , (11)

F2 = mq22v
2
1 − 2mq1q2v1v2 +mq21v

2
2 + (c1 − c2)q1v

2
2 − (c1 − c2)q2v1v2

+
1

4m
(c1 − c2)(c1 − 4c2)v

2
2 − c2(c1 − c2)q1q

2
1 +

c2
4m

(c1 − c2)(c1 − 4c2)q
2
2 .(12)

case 5 : m = 0, b = 0
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F1 =
1

2
v22 +

1

2
c2q

2
2 (13)

F2 =
1

2
(c1 − 4c2)v

2
1 + 2aq2v1v2 − 2aq1v

2
2 +

1

2
c1(c1 − 4c2)q

2
1

+ a(c1 − 2c2)q1q
2
2 +

1

2
a2q41 . (14)

Before entering into a discussion of these results, let us move on to the case of first

integrals of degree 4 in the velocities. With the ansatz that the leading coefficients αi

of adjoint symmetries this time can be of degree 3, the determining equations ensuing

from (4) are already quite horrendous and tend to make the computer algebra package

we have been using run out of memory. However, if we concentrate on the generation

of first integrals, the requirements αi = ∂F/∂vi impose certain relations between the

various coefficients of the αi and one can easily deduce further that the coefficients of

the highest-order terms must be of a certain polynomial nature (as functions of the

qi). For example, the coefficient of v1v
2
2 in α1 will necessarily have to be a polynomial

of degree 2 in q1 with coefficients which are again polynomial of degree 2 in q2. With

this extra knowledge built into the starting equations, we were able to master the

situation and we have further reduced the algebra by investigating this time only the

cases where none of the parameters of the nonlinear terms (a, b or m) is zero. The

special parameter relations which showed up (in order op appearance) read : b = −m;

b = −4m/3; b = −10m/3; b = −6m; b = −2m; c2 = c1; c2 = 4c1; c2 = 9c1;

c1 = 9c2; c2 = 16c1; b = −3m/5; b = −16m/5; b = −16m (again, of course, with

numerous subbranches requiring separate investigation). Not quite surprisingly, only

one additional favourable case was detected and is listed below.

case 6 : b = −16m, c1 = 16c2 (m ̸= 0)

F1 =
1

2
mv21 +

1

2
av22 + 8c2mq21 +

1

2
c2aq

2
2 + amq1q

2
2 +

16

3
m2q31 (15)

F2 =
1

4
v42 +mq1q

2
2v

2
2 +

1

2
c2q

2
2v

2
2 −

1

3
mq32v1v2 +

1

4
c22q

4
2

− 1

3
mc2q1q

4
2 −

1

3
m2q21q

4
2 −

1

18
amq62 . (16)

A number of comments and interpretations are in order now. Clearly, the cases 1, 2 and

6 correspond to the three well-known integrability cases of the Hénon-Heiles system

which can be found in many publications. One must keep in mind, however, that we

are still looking at a more general situation here : the standard cases are recovered for

the additional requirement m = a! For an example of an integrable case which is not
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discussed in the literature so far, we could take e.g. c1 = c2 = m = 1, b = a = −1. The

first integral F1 in the cases 1, 2 and 6 is of course the Hamiltonian corresponding to

(3). It is easy to verify that the formal relationship between integrable Hénon-Heiles

systems and the stationary flow of a class of integrable 5th-order PDE’s, as recently

discussed by Fordy (1991), is not affected by our present extension.

3. Degenerate cases and complete integrability

Let us turn now to the cases 3, 4 and 5, which in some sense are degenerate cases, to

the best of our knowledge not discussed before. Clearly, in each of these cases, there

is a partial decoupling of the given second-order equations (but a nonlinear coupling

term remains). At first glance, there is no reason why, for eaxmple, the first integrals

(9) and (10) would be less valuable than the two first integrals of the cases 1, 2 or 6.

Yet, there is an important difference, because we apparently lost our Hamiltonian :

the first integrals (9), (11) and (13) correspond in each of these cases to a Hamiltonian

for the decoupled equation only. It is accordingly no longer clear to what extent the

two first integrals in these degenerate cases could be regarded as being in involution.

Obviously, if this new question can be resolved, the symplectic form (or the Poisson

bracket) cannot be the standard one and one would perhaps prefer that the first

integral F2 would take over the role of Hamiltonian. To be precise, we are addressing

here the following problem : given the first integral F2, find a non-degenerate 2-form

ω, such that

iΓω + dF2 = 0 and dω = 0. (17)

We will sketch how this problem, at least locally, has a fairly elegant solution for case

3, the other two cases being similar.

As a preliminary remark, using the techniques of the so-called inverse problem of

Lagrangian mechanics, as described e.g. in Sarlet (1982) or Morandi et al (1990), one

can verify that the differential equations for each of these degenerate cases do not

admit a Lagrangian description. This means that there will be no solution for the

symplectic form ω in (17) with vanishing dv1 ∧ dv2-part. It is further known to be

trivial that every system can locally be cast into a Hamiltonian form, and one can
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even do this with a preassigned Hamiltonian as we wish to achieve here. Writing ω in

the form 1
2ωij dxi ∧ dxj , where the xi collectively denote the variables (q1, q2, v1, v2),

and choosing F2 in accordance with (10), the algebraic part of (17) gives rise to a set

of linear equations, whose coefficient matrix has rank 3. We choose to solve the last

three equations for ω12, ω13 and ω14 in terms of ω23, ω24 and ω34. Imposing next the

requirement dω = 0, we end up with the conditions,

∂ω24

∂v1
− ∂ω23

∂v2
− ∂ω34

∂q2
= 0 , Γ(ω24) = 0,

v1 Γ(ω34) = v2 ω24 + v1(q1 + ω23) + Γ(v1)ω34,

v1 Γ(ω23) = Γ(v1) (q1 + ω23) + Γ(v2)ω24 + v21 − 2v1(mq1 + 2c1)ω34.

This is a system of 4 linear PDE’s for only 3 unknowns, but one can show that

formal integrability conditions are satisfied. In fact, the whole problem can be

reduced to finding a particular solution of just one partial differential equation as

follows. Choosing ω24 = 0 and putting ω23 = −q1 + ω̃23, the first equation implies

ω̃23 = −∂f/∂q2, ω34 = ∂f/∂v2 for some function f . Putting further f = v1g, it is

easy to verify that the remaining equations are satisfied, provided g is a particular

solution of the equation

Γ(g) = −2q2. (18)

In terms of such a solution, perhaps difficult to construct but certainly existing locally,

a symplectic form with respect to which F2 is a Hamiltonian for our problem is given

by

ω = dg ∧ (Γ(v1) dq1 − v1 dv1) + v1 dq1 ∧ dq2 − q1(dv1 ∧ dq2 + dq1 ∧ dv2).

Inverting the coefficient matrix of this symplectic form, one obtains a Poisson bracket

structure with respect to which (9) and (10) are in involution. Similar constructions

can be made for the cases 4 and 5.

4. Discussion and outlook for future studies

The approch we have followed puts the emphasis on constructing independent

first integrals of given second-order equations without worrying about a possible
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Hamiltonian structure from the outset. Involutiveness of these first integrals, as

we have seen, is an aspect that can be brought into the picture at a later stage,

if desired. An interesting question for further study thus emerges : “Is it possible to

find criteria for verifying complete integrability directly at the level of the second-order

equations?”. In this context, we can announce forthcoming work with E. Mart´inez

and J.F. Cariñena on a somewhat related question. A theory has been developed which

enables testing given second-order equations for the existence of a suitable coordinate

system in which the equations completely decouple. Case 2 is such a separable case

and the fact that it is slightly broader than the standard case of separability of the

Hénon-Heiles system actually motivated the present paper.

It is worth observing that our results seem to give more ground to the suggestion

of Chang et al (1982) that more cases of integrability of the Hénon-Heiles system

may exist. Translated to the broader system (1),(2), their Painlevé analysis would

point to integrability whenever
√

1− 48m/b is a rational number. Many of the

subbranches in our analysis, which needed separate investigation, actually correspond

to this profile. More importantly, the degenerate cases 3 and 4 (where b = −2m or

b = −2m/5) are exactly of this type. We know of other examples of such ratio’s,

namely b = −2m/15, b = −m/11, b = −3m/5, b = −16m/5, which would certainly

turn up (among others?) if the study of first integrals of degree 4 were completed to

include the degenerate case a = 0. Maybe, the conjecture of Chang et al therefore

only is true if such degenerate cases are allowed into the picture. A word of caution

about the search for higher-order invariants is perhaps appropriate here. Some authors

referred to before, in trying to reduce the algebra, have restricted the structure of the

4th-degree invariant they were looking for by making use of the already known energy

integral. One cannot do this, however, without loss of generality and they were simply

lucky not to miss out a case.

Finally, we would like to describe briefly what kind of computer algebra assistance

we have been able to use. The first part of the problem in our approach concerns

setting up the defining equations for adjoint symmetries of a second-order system.

REDUCE-procedures have been developed by Sarlet and Vanden Bonne (1991) for

the automation of this process. Once an adjoint symmetry has been found, the same

package is able to test whether it matches the additional requirement for producing a

Lagrangian or a first integral and will generally automatically compute this function.
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The hard part, of course, concerns solving the defining equations. For that problem,

one should be able to exploit the know-how which has been put into various programs

for computing Lie symmetries of differential equations. Unfortunately, not many of

these programs offer the possibility of entering this process with one’s own set of

linear, homogeneous, overdetermined PDE’s. A very nice program which has such

an interface is the MUMATH-package LIE, developed by Head (version 2.1, 1990).

We used a slightly customized version of this program for being able to detect the

special parameter relations which require separate investigation. This way, the whole

procedure has to be monitored much more interactively than in the original setup,

but it still remains a great tool.
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