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Abstract. We study derivations of the algebra of differential forms along the
tangent bundle projection τ : TM → M and of the module of vector-valued
forms along τ . It is shown that a satisfactory classification and characteri-
zation of such derivations requires the extra availability of a connection on
TM . The present theory completely explains and generalizes the calculus of
forms associated to a given second-order vector field, which was previously
introduced by one of us.

1 Introduction

The motivation for the work to be presented here to some extent originates from a paper
of 1984 [19], in which a new approach was introduced to the study of geometrical features
of second-order equations in general, and to the characterization of Lagrangian systems
in particular. Basically, this approach relied on introducing for any given second-order
vector field Γ on TM associated sets XΓ of vector fields and X ∗Γ of 1-forms on TM . To
name just a few of the interesting aspects of these sets (the definition of which can be
found in section 7), recall that XΓ contains all symmetries of the given system and that
this system is Lagrangian provided X ∗Γ contains an element which is exact.

A deeper analysis of the structure of these sets led one of us [18] to a new calculus of
certain differential forms on TM . First, a module structure for the sets XΓ and X ∗Γ was
identified. Then, having established their duality, the set X ∗Γ was extended to a complete
algebra of scalar forms on the module XΓ and finally, with the ordinary calculus of differ-
ential forms as a model, properly adapted, fundamental derivations of this algebra were
constructed (“contraction with vector fields”, “exterior derivative” and “Lie derivative”).
Most of the proofs of the various statements in [18] were omitted for the sake of brevity
and have not been published up to date, perhaps because the author felt his story was as
yet incomplete.
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The main purpose of the present paper is to introduce an alternative and more sys-
tematic approach to the subject, which will make the fundamental mechanism behind the
calculus in [18] much more transparent. It will result in simpler proofs and at the same
time contains the generalizations which are needed to make the theory complete.

In order to understand the origin for the present approach, observe, for example, that
a vector field in XΓ locally is of the form X = µi(∂/∂qi) + Γ(µi)(∂/∂vi), whereas the
coordinate expression of an element of X ∗Γ reads : α = αi dv

i + Γ(αi) dq
i. The common

feature of these expressions is that only half of the components, which are functions on
TM , determine them completely. If S = (∂/∂vi) ⊗ dqi is the vertical endomorphism on
TM , then α, for example, is completely determined by the semi-basic form S α = αi dq

i.
This suggests that we are basically looking at a calculus of semi-basic forms on TM . When
one thinks of derivations of such forms, one might in the first place be led to a theory of
derivations of

∧
(TM) which preserve the subset of semi-basic forms. It turns out that

such a theory is not the one which serves our purposes. Instead, we will study derivations
of so-called differential forms along the map τ : TM → M (which can be identified with
semi-basic forms on TM). Perhaps another little warning is in order in this respect :
in dealing with sections along τ , there is a natural way of introducing derivations which
would map forms on M into forms on TM (see e.g. [16] or [22]). Such a theory again is
entirely different from the kind of derivations we will study.

The plan of the paper is as follows. In the next section we recall the notion of sections
along a map and fix notations for different sets which will play a key role further on.
Section 3 introduces the derivations we are interested in and results in a preliminary clas-
sification of them along the lines of the pioneering work of Frölicher and Nijenhuis [10].
A much more elegant and complete classification of these derivations is obtained in Sec-
tion 4, after introducing a connection on TM . Derivations of vector-valued forms along
τ are considered in Section 5; among other things, they permit us to discuss the Lie
algebra structure of the set of vector-valued forms. In Section 6, we establish a number
of important properties of prolongations of vector fields and forms along τ ; they are to a
large extent the properties which explain the origin of the module and algebra structures
invented in [18]. Composing the first prolongation of various objects along τ with the
section of T 2M which represents a given second-order vector field, creates corresponding
objects on TM . We show in Section 7 that these objects are precisely the ingredients of
the calculus in [18] and that the full theory of derivations, developed in Sections 3 to 5,
carries over to a new completed and generalized version of the above cited results. The
paper ends with some concluding remarks.

2 Sections along a map

Let π:E → M be a fibre bundle and f :N → M a differentiable map. By a section of E
along f we mean a section of the pull-back bundle f ∗π: f ∗E → N , see [17]. Equivalently,
we can consider a section σ along f as a map σ:N → E satisfying π ◦ σ = f . If E is a
vector bundle then the set of sections of E along f is a C∞(N)-module.

In this paper we are interested in the case that f is the projection τ :TM → M and
E is some tensorial bundle over M . Specifically, E can be one of the following vector
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bundles: TM , T ∗M , Ωk(M) =
⋃
q∈M Ωk(TqM), Ω(M) = ⊕Ωk(M) or Ω(M ;TM), where

the latter one denotes the bundle whose sections over M are the vector-valued forms on
M . For these choices of E, the set of sections along τ will respectively be denoted by
X (τ),

∧1(τ),
∧k(τ),

∧
(τ), V (τ) =

∧
(τ)⊗ X (τ) and we talk about vector fields, 1-forms,

. . . , vector-valued forms along τ .

An obvious way for obtaining forms and fields along τ is by composing forms and
fields on M with the projection τ . Thus, for X ∈ X (M), α ∈ ∧(M), we will introduce
the notations

X̃ = X ◦ τ ∈ X (τ), α̃ = α ◦ τ ∈ ∧(τ).

We will sometimes call these basic vector fields and basic forms and denote the set of
them by X̃ (τ),

∧̃
(τ). It is clear that every element of X (τ) or

∧
(τ) can locally be written

as a linear combination of basic elements, with coefficients in C∞(TM) =
∧0(τ). A

different way for obtaining scalar and vector-valued forms along τ goes as follows. For
α ∈ ∧p+1(M), we define α̂ ∈ ∧p(τ) at each point v ∈ TM by

α̂(v) (v1, . . . , vp) = α(τ(v)) (v, v1, . . . , vp),

for all v1, . . . , vp ∈ Tτ(v)M . This is a generalization of the well-known association of a 1-
form on M with a function on TM and we will denote the set of such α̂ (for α ∈ ∧p+1(M))
by

∧̂p
(τ). A similar construction can be carried out for vector-valued forms: to each

R ∈ V p+1(M) we can associate an element R̂ ∈ V̂ p(τ) ⊂ V p(τ).

As in the standard theory of tensor fields on a manifold, our scalar and vector-valued
forms along τ , being originally defined as sections of some appropriate pull-back bundle,
can be interpreted equivalently as C∞(TM)-multilinear operators on X (τ). We will often
use this interpretation for constructing new objects.

At this point it is worth mentioning that there exists a natural identification between
X (τ) and X V (TM): the set of vertical vector fields on TM . A vector field on TM

is uniquely determined by its action on functions in C∞(M) and in
∧̂0

(τ). Thus, we
could introduce the identification of X (τ) with X V (TM) as follows: for X ∈ X (τ),
X↑ ∈ X V (TM) is determined by X↑(f) = 0 for f ∈ C∞(M) and

X↑(α̂) = α̃(X), for α ∈ ∧1(M). (1)

The above formula can serve, conversely, to define Y ↓ ∈ X (τ) for each given Y ∈ X V (TM).
Incidentally, observe that vector fields along τ have a module structure over C∞(TM),
but they do not act as derivations on these scalars, which makes it perhaps a bit puzzling
to define a bracket operation. However, we can make use of the above identification and
the fact that the bracket (on TM) of vertical vectors is vertical to define the bracket of
two elements X, Y ∈ X (τ) via the rule

[X, Y ] = [X↑, Y ↑]↓.

We will recover this bracket operation in our later analysis.
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3 Derivations of
∧

(τ )

In this section we introduce the notion of a derivation of the scalar forms along τ and
make a preliminary attempt towards the classification of such derivations along the lines
of the standard work of Frölicher and Nijenhuis [10].

Definition 3.1 A map D:
∧

(τ) → ∧
(τ) is said to be a derivation of

∧
(τ) of degree r if

it satisfies

1. D(
∧p(τ)) ⊂ ∧p+r(τ),

2. D(α + λβ) = Dα + λDβ, and

3. D(α ∧ γ) = Dα ∧ γ + (−1)prα ∧Dγ,

for all λ ∈ R, α, β ∈ ∧p(τ) and γ ∈ ∧q(τ).

As in the classical theory, one easily proves that derivations of
∧

(τ) are local operators.

Proposition 3.2 A derivation D of
∧

(τ) is completely characterized by its action on∧0(τ) and
∧̃1

(τ). Moreover, the action on functions is fully determined by the action on∧̃0
(τ) and

∧̂0
(τ).

Proof: If {αi}i=1,...,m is a local basis for
∧1(M), every ρ ∈ ∧p(τ) can be written as

ρ = ρi1···ip α̃
i1 ∧ · · · ∧ α̃ip , ρi1···ip ∈ C∞(TM).

Then,

Dρ = Dρi1···ip ∧ α̃i1 ∧ · · · ∧ α̃ip

+
p∑
`=1

(−1)(`−1)rρi1···i`···ipα̃
i1 ∧ · · · ∧D(α̃i`) ∧ · · · ∧ α̃ip ,

from which the first part of the statement is obvious. For the second part, a standard
but rather technical argument, involving ideals of germs of functions vanishing at a point,
shows that the action of D on a function (at the point under consideration) is essentially
determined by its action on the first-order Taylor expansion of that function and the
result then readily follows. 2

As a corollary, any map from
∧̃0

(τ)⊕ ∧̂0
(τ)⊕ ∧̃1

(τ) to
∧

(τ), satisfying the derivation
axioms for p+ q ≤ 1 can be extended in a unique way to a derivation of

∧
(τ). It further

follows, as in the usual theory, that there are no derivations of
∧

(τ) of degree r < −1 and
that derivations of degree −1 vanish on

∧0(τ).

The Lie algebra structure of the set of derivations of
∧

(τ) is established by the fol-
lowing proposition, which can be proved in the same manner as in the standard theory.
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Proposition 3.3 Let D1, D2 and D3 be derivations of
∧

(τ) of degree r1, r2 and r3

respectively. Then, the graded commutator

[D1, D2] = D1 ◦D2 − (−1)r1r2D2 ◦D1

is a derivation of degree r1 + r2 and we have the graded Jacobi identity

(−1)r1r3 [D1, [D2, D3]] + (−1)r2r1 [D2, [D3, D1]] + (−1)r3r2 [D3, [D1, D2]] = 0.

If one starts classifying derivations of scalar forms along the path which was set out by
the work of Frölicher and Nijenhuis, one must first identify the kind of “exterior derivative”
which is fundamental for the theory at hand. The natural operation which is available
here is a kind of vertical derivative which can, for example, be introduced as follows: for
F ∈ C∞(TM), we define dVF ∈ ∧1(τ) by

dVF (X) = dF (X↑), X ∈ X (τ),

and for α̃ ∈ ∧̃1
(τ) we set dV α̃ = 0. It is clear that dV has the required properties and

thus extends in a unique way to a derivation of
∧

(τ), vanishing on
∧̃

(τ). In coordinates
we have, for F ∈ C∞(TM),

dVF = (∂F/∂vi) d̃qi,

and e.g. for α = αi(q, v) d̃qi ∈ ∧1(τ),

dVα =
1

2

(
∂αj
∂vi
− ∂αi
∂vj

)
d̃qi ∧ d̃qj.

Proposition 3.4 The vertical derivative on
∧

(τ) has the following properties:

1. For α ∈ ∧p(M) (p > 0): dV α̂ = p α̃.

2. dV ◦ dV = 0.

3. The cohomology of dV is trivial.

Proof:

1. For α ∈ ∧1(M) we have

∀X ∈ X (τ), dV α̂(X) = dα̂(X↑) = X↑(α̂) = α̃(X).

Writing a general p-form β on M as β = βi1···ipα
i1 ∧ · · · ∧ αip , with βi1···ip ∈ C∞(M)

and αij ∈ ∧1(M), it follows from the definition that β̂ ∈ ∧p−1(τ) is given by

β̂ =
p∑
j=1

(−1)j−1βi1···ip α̃
i1 ∧ · · · ∧ α̂ij ∧ · · · ∧ α̃ip .

The general property now easily follows.
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2. Since dV ◦ dV = 1
2
[dV , dV ], it is a derivation, which moreover is zero on

∧̃
(τ). As

a result of proposition 3.2, it suffices to look further at
∧̂0

(τ), for which we find:
dV ◦ dV (α̂) = dV α̃ = 0.

3. Suppose dVα = 0 for α ∈ ∧p(τ), then locally α = dV β for some β ∈ ∧p−1(τ). This
is clear from the local coordinate expression for dVα illustrated before; in fact it
essentially relies on a Poincaré type lemma with respect to the v-coordinates only.
But then, since the fibres of TM are vector spaces, such a Poincaré lemma actually
holds on open sets of the form τ−1(U) with U ⊂M . The global exactness of α then
follows by using a partition of unity on M . 2

Remark: Forms in
∧

(τ) can in a natural way be identified with semi-basic forms on TM
(see later) and with this identification, dV becomes dS where S is the vertical endomor-
phism tensor field on TM . The fact that a dS-closed semi-basic form on TM is indeed
globally dS-exact has been proved in [1].

Recall now that in the standard theory of derivations of scalar forms on a manifold,
every derivation has a unique decomposition into one of type i∗ and one of type d∗; the
first one, moreover, necessarily is of the form iL1 and the second one of the form dL2 ,
where L1 and L2 are suitable vector-valued forms. We wish to investigate first to what
extent a similar classification could be made for the theory of derivations of

∧
(τ).

Definition 3.5 A derivation of
∧

(τ) is said to be of type i∗ if it vanishes on
∧0(τ).

Definition 3.6 Let L ∈ V r(τ) and ω ∈ ∧p(τ) with p > 0, then we define ω∧̄L ∈∧p+r−1(τ) by the rule: ∀Xi ∈ X (τ),

(ω∧̄L)(X1, . . . , Xp+r−1)

=
1

(p− 1)!r!

∑
σ∈Sp+r−1

(sgnσ)ω
(
L(Xσ(1), . . . , Xσ(r)), Xσ(r+1), . . . , Xσ(p+r−1)

)
.

For p = 0 we set ω∧̄L = 0.

Proposition 3.7 For L ∈ V r+1(τ), the map iL:ω 7→ ω∧̄L is a derivation of
∧

(τ) of
degree r and type i∗. Conversely, every derivation D of type i∗ and degree r is of the form
iL for some L ∈ V r+1(τ)

Proof: The first part is a straightforward calculation. For the converse, let {αi} be a
local basis of

∧1(M) with dual basis {Xi}. We locally construct an element L ∈ V r+1(τ)

as L = Dα̃i ⊗ X̃i. This construction has the right tensorial properties with respect to a
change of local basis {αi}, because the given D vanishes on functions. Furthermore, we
have for all Yj ∈ X (τ):

iLα̃i(Y1, . . . , Yr+1) = α̃i(L(Y1, . . . , Yr+1))

= Dα̃i(Y1, . . . , Yr+1).

Since D and iL also coincide on C∞(TM), we conclude that D = iL. 2
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Theorem 3.8 Every derivation D of
∧

(τ) has a unique decomposition D = D1 + D2,
where D1 is of type i∗ and D2 commutes with dV .

Proof: The restriction of D to C∞(TM) can be extended to a derivation D2 of
∧

(τ)
by imposing that D2 commutes with dV . This follows from the fact that it suffices from

proposition 3.2 to specify the action of D2 on
∧̃1

(τ), plus the property that each α̃ ∈ ∧̃1
(τ)

can be written as α̃ = dV α̂. Clearly, D1 = D−D2 vanishes on functions, i.e. is of type i∗.
The uniqueness of this decomposition is obvious. 2

Remark: We prefer at this moment not to call the D2-part of this decomposition a
derivation of type dV

∗ because, as will be shown below, its further characterization in terms
of some vector-valued form is not entirely satisfactory in comparison with the elegance of
the standard theory. As a matter of fact, our subsequent analysis will show that there
is need for an extra tool, preferably a connection on TM , and with the aid of such a
connection we will reach a much more interesting classification of the derivations of

∧
(τ)

in the next section.

For the time being, if D is any derivation of
∧

(τ) of degree r, we can associate to it
a map ψ : X (τ)× · · · × X (τ) −→ X (TM), defined by

ψ(X1, . . . , Xr) (F ) = DF (X1, . . . , Xr).

The map ψ can be identified (in the terminology of e.g ref. [22]) with a vector-valued r-form
on TM , horizontal over M . One might conceive constructing a derivation dV

ψ, which on
functions would be defined as dV

ψ(F ) = iψdF and for the rest would be required to commute
with dV . This dV

ψ would then in effect be the D2-part of D. Such a characterization of D2,
however, is not very elegant, basically for two reasons. First of all, ψ is not an element of
V r(τ), which is the relevant set of vector-valued forms in our present approach. Secondly,
dV
ψ is not the commutator of a type i∗-derivation with dV .

Let us then look at the commutator one would normally expect to enter in our clas-
sification.

Definition 3.9 For L ∈ V r(τ) we define the derivation dV
L as

dV

L = [iL, d
V ] = iL ◦ dV − (−1)r−1dV ◦ iL.

Such derivations are said to be of type dV
∗ .

Note that dV = dV
I◦τ , where I denotes the identity type (1,1) tensor on M .

Proposition 3.10 A derivation D is of type dV
∗ if and only if it commutes with dV and

vanishes on basic functions.

Proof: Any dV
L obviously commutes with dV and vanishes on functions on M . For the

converse, let D be a derivation of degree r with the above two properties and consider the

derivation D of degree r−1 which is determined by the following action on
∧0(τ)⊕ ∧̃1

(τ):

DF = 0, Dα̃ = Dα̂.
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D is of type i∗ and therefore of the form iL for some L ∈ V r(τ). The claim is that D = dV
L.

Now, as observed in the proof of theorem 3.8, derivations which commute with dV are
completely determined by their action on functions. Since D and dV

L certainly coincide

on basic functions, we merely have to look at functions in
∧̂0

(τ). We find that

dV

Lα̂ = iLd
V α̂ = iLα̃ = Dα̂,

which confirms the claim. 2

Theorem 3.11 A derivation D of
∧

(τ) of degree r, which vanishes on basic functions
has a unique decomposition in the form

D = iL1 + dV

L2

for some L1 ∈ V r+1(τ) and L2 ∈ V r(τ).

Proof: In the unique decomposition guaranteed by theorem 3.8, we know that D1 is of
the form iL1 by proposition 3.7 and, in view of the extra assumption, D2 is of the form
dV
L2

by proposition 3.10. 2

We have now clearly identified the problem concerning an elegant classification of all
derivations D: the D2-part of such a derivation need not vanish on basic functions. In
order to characterize that part of a derivation which contributes to its action on functions
on M , we need some way of extending derivations of scalar forms on M to a corresponding
action on

∧
(τ). It will be sufficient for that purpose to extend the fundamental derivation,

i.e. the exterior derivative of
∧

(M) and the most natural way for achieving this is with
the aid of a (generalized) connection on TM .

4 Connections and complete classification

Let us now suppose we are given a connection on the bundle τ :TM → M (for general
references see e.g. [7] and [13]), i.e. we have a splitting of the exact sequence

0−−−−−→V (TM)
i−−−−−→T (TM)

j−−−−−→ τ ∗(TM)−−−−−→ 0

where j is the map j(u) = (v, τ∗u), for v ∈ TM and u ∈ Tv(TM), and i is the inclusion
map of the vertical subbundle V (TM) into T (TM). In other words, considering sections
of T (TM) and τ ∗(TM) over TM , we have a module homomorphism

ξH:X (τ)→ X (TM)

satisfying τ∗ ◦ ξH = idX (τ).

Associated to the connection we can define a derivation dH of degree 1 by means of

its action on
∧0(τ) and

∧̃1
(τ):

1. dHF (v)(w) = [ξH
v (w)]F for F ∈ ∧0(τ) and v, w ∈ TM
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2. dHα̃ = d̃α for α ∈ ∧1(M).

Note that ξH
v : Tτ(v)M → Tv(TM) is related to ξH : X (τ) → X (TM) by the rule

ξH(X)(v) = ξH
v (X(v)), ∀X ∈ X (τ) and that dHF alternatively can be defined by

dHF (X) = ξH(X)(F ). In coordinates, denoting the connection coefficients by Γij, we
have

Hi = ξH

(
∂̃

∂qi

)
=

∂

∂qi
− Γji

∂

∂vj

and the action on dH on
∧0(τ)⊕ ∧̃1

(τ) is given by

dHF = Hi(F )d̃qi, dHα =
1

2
(Hiαj −Hjαi) d̃qi ∧ d̃qj.

It is easy to see that in particular for basic functions we have dHτ ∗f = d̃f .

Definition 4.1 Let L be a vector valued r-form along τ . We define the derivation dH
L by

dH

L = [iL, d
H] = iL ◦ dH − (−1)r−1dH ◦ iL.

A derivation of this type is said to be a type dH
∗ derivation.

Theorem 4.2 Given a connection on TM , every derivation D of
∧

(τ) of degree r has a
unique decomposition of the form

D = iL1 + dV

L2
+ dH

L3
,

for some L2, L3 ∈ V r(τ) and L1 ∈ V r+1(τ).

Proof: For X1, . . . , Xr ∈ X (τ), consider the map ϕX1,...,Xr from C∞(M) to C∞(TM)
given by

ϕX1,...,Xrf = [D(f ◦ τ)](X1, . . . , Xr).

Then ϕX1,...,Xr is a vector field along τ (see e.g. [22]). Since the dependence of ϕX1,...,Xr

on X1, . . . , Xr is multilinear and skew-symmetric, it actually defines some L3 ∈ V r(τ):
ϕX1,...,Xr = L3(X1, . . . , Xr). It follows that D and dH

L3
coincide on basic functions, so

that proposition 3.11 implies the existence of L1 ∈ V r+1(τ) and L2 ∈ V r(τ), such that
D − dH

L3
= iL1 + dV

L2
. 2

For the sake of clarity, we should emphasize that dH
L3

in general need not commute
with dV , so that iL1 differs from the D1 in the decomposition of theorem 3.8. The rest
of this section is devoted to further considerations and properties of dH, in a way which
shows close ressemblance to the theory developed in [7].

Due to the fact that dV vanishes on basic forms, the commutator [dH, dV ] will vanish
on basic functions. Moreover, the Jacobi identity shows that [dH, dV ] commutes with dV .
According to proposition 3.10, we therefore conclude that

[dH, dV ] = dV

T , (2)
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for some T ∈ V 2(τ), which we call the torsion of the given connection. In local coordinates,
T is given by

T =
1

2!

(
∂Γki
∂vj
−
∂Γkj
∂vi

)
d̃qi ∧ d̃qj⊗ ∂̃

∂qk
.

Similarly, the commutator [dH, dH] vanishes on basic functions:

[dH, dH]τ ∗f = 2 dH(dHτ ∗f) = 2 dH(d̃f) = 2 d̃2f = 0.

Thus, there exist P ∈ V 3(τ) and R ∈ V 2(τ) such that

1

2
[dH, dH] = iP + dV

R (3)

The vector-valued 2-form R can rightly be called the curvature of the connection and has
the local expression

R =
1

2!
Ri
jk d̃q

j ∧ d̃qk⊗ ∂̃

∂qi
, (4)

where

Ri
jk =

∂Γij
∂qk
− ∂Γik
∂qj

+
∂Γik
∂vl

Γlj −
∂Γij
∂vl

Γlk.

The coordinate expression of P reads

P =
1

3!
P i
jkl d̃q

j ∧ d̃qk ∧ d̃ql⊗ ∂̃

∂qi
,

where

P i
jkl =

∂Ri
jl

∂vk
+
∂Ri

lk

∂vj
+
∂Ri

kj

∂vl
.

The geometrical meaning of P is reflected by the following properties, which are corre-
sponding generalizations of the Bianchi identities.

Proposition 4.3 The following relations hold

dV

P = [dH, dV

T ], (5)

dH

P = [dH, dV

R]. (6)

Proof: Applying the Jacobi identity to dV , dH and dH we obtain

[dV , [dH, dH]] + 2 [dH, [dV , dH]] = 0

and taking into account (3) we have

−2 dV

P + 2 [dV , dV

R] + 2 [dH, dV

T ] = 0.

Since dV
R commutes with dV , equation (5) follows. The property (6) follows in the same

way from [dH, [dH, dH]] = 0. 2
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A very interesting particular case (see e.g. [11], [12], [14], [9]) concerns the connection
defined by a second-order differential equation field Γ on M (henceforth called sode). If
the local expression of Γ is

Γ = vi
∂

∂qi
+ f i

∂

∂vi
,

then, the coefficients of this connection are

Γij = −1

2

∂f i

∂vj
.

It follows that its torsion vanishes. Conversely, if a connection is torsionless there exists
a sode defining it and proposition 4.3 further implies:

P = 0 and [dH, dV

R] = 0.

5 Derivations of vector-valued forms along τ

The set of vector-valued differential forms along τ can be endowed with a graded module
structure over the graded ring

∧
(τ), with the definitions

(L1 + L2)(X1, . . . , Xp) = L1(X1, . . . , Xp) + L2(X1, . . . , Xp)

(ω ∧ L)(X1, . . . , Xp+q) =

1

p!q!

∑
σ∈Sp+q

(sgnσ)ω(Xσ(1), . . . , Xσ(q))L(Xσ(q+1), . . . , Xσ(p+q)) (7)

where ω ∈ ∧q(τ) and L, L1, L2 ∈ V p(τ). For the sake of completeness, we now study
derivations of this module. The reader can consult some of the work of Michor (see
e.g. [15]) for comparable ideas.

Definition 5.1 A map D:V (τ)→ V (τ) is said to be a derivation of V (τ) of degree r if
it satisfies

1. D(V p(τ)) ⊂ V p+r(τ),

2. D(L1 + λL2) = DL1 + λDL2, λ ∈ R,

3. There exists a map D:
∧

(τ)→ ∧
(τ) such that for all ω ∈ ∧q(τ) and L ∈ V p(τ)

D(ω ∧ L) = (Dω) ∧ L+ (−1)qrω ∧DL. (8)

It can be easily shown that the following properties hold true.

• D is a derivation of scalar forms along τ .

• D is a local operator and is determined by its action on V 0(τ) = X (τ) and V 1(τ).
There are no derivations of degree r < −1, and those of degree −1 vanish on V 0(τ).

11



• Alternatively, D is determined by its associated derivation D and its action on
V 0(τ), whereby it suffices for the latter part to specify the action on X̃ (τ).

• The set of derivations of V (τ) is a graded Lie algebra with the bracket defined by

[D1, D2] = D1 ◦D2 − (−1)r1r2D2 ◦D1.

In order to classify the derivations of V (τ), knowing that they are in part determined
by their D, let us start from the known classification of such derivations and search for
a simple way for extending their action to V (τ). The only feature which must be added
in such an extension is a consistent action on X̃ (τ). If D0 is any derivation of

∧
(τ) and

we look for a covering D such that D = D0, the most simple attempt would be to define
the restriction of D to X̃ (τ) as being zero. For this to make sense, however, thinking of
the product of a basic vector field X̃ with a basic function f and the general rule (8), we
must have

0 = D(f X̃) = D0f ⊗ X̃ + f DX̃ = D0f ⊗ X̃,

which implies that D0 should vanish on basic functions. Hence, we can use this simple
direct construction to extend derivations of type i∗ or of type dV

∗ and we keep the same
notation iL1 or dV

L2
for the corresponding covering derivation of V (τ). The following

property of such an extension will be useful later on.

Lemma 5.2 Let D be a derivation of V (τ) of degree r, which vanishes on basic vector

fields. Then, for any L ∈ V p(τ), the action of DL ∈ V p+r(τ) on basic 1-forms α̃ ∈ ∧̃1
(τ)

is given by
DL(α̃) = D(L(α̃)). (9)

Proof: We have, in all generality, for X1, . . . , Xp+r ∈ X (τ)

DL(α̃) (X1, . . . , Xp+r) = 〈DL(X1, . . . , Xp+r), α̃〉.

Looking at this relation term by term, we can regard L to be of the form L = ω ⊗ X̃,
with ω ∈ ∧p(τ) and X̃ ∈ X̃ (τ). Then, DL = Dω⊗ X̃ so that the right-hand side becomes
Dω(X1, . . . , Xp+r) 〈X̃, α̃〉 or D(L(α̃)) (X1, . . . , Xp+r), from which the result follows. 2

We need a more careful argumentation to find a natural extension of a type dH
∗ deriva-

tion. Again, of course, it suffices for a start to look at X̃ (τ). So, we want to define, for
X̃ ∈ X̃ (τ), dHX̃ as a vector-valued 1-form along τ . This we do, in agreement with general
observations of section 2, by defining the action of dHX̃ on basic vector fields, together
with an imposed C∞(TM)-linearity. Thus, for Z̃ ∈ X̃ (τ), we put

dHX̃(Z̃) = [ξH(Z̃), X̃↑]↓.

To verify that this makes sense, note that the right-hand side starts with computing,
essentially, the bracket of a horizontal and vertical lift of vector fields on M . It is well
known [6] that such a bracket is vertical indeed, that it behaves linearly with respect to
multiplication of Z by functions on M and has the right derivation property concerning

12



multiplication of X by such functions. As argued above, this dH is subsequently extended
to a derivation of the whole V (τ) by requiring that its associated derivation of scalar
forms is the dH we already know. In this way, for example, the coordinate expression for
dHX, when X is a general element of X (τ) (not necessarily basic), is found to be:

dHX =

(
Hi(X

k) +Xj ∂Γki
∂vj

)
d̃qi ⊗ ∂̃

∂qk
.

One can further verify that a direct definition of dHX, for all X ∈ X (τ), can be given
pointwise as follows: ∀Z ∈ X (τ) and arbitrary v ∈ TM ,

(dHX)(Z) (v) = [ξH(Z̃0), X↑]↓ (v),

where Z0 is any vector field on M which at the point τ(v) coincides with Z(v). An
extension of dH

L3
, for which we again maintain the same notation, now is readily obtained

as the commutator of the extensions for iL3 and dH.

Let now D be an arbitrary derivation of V (τ) of degree r and consider the above
proposed extension D1 = iL1 + dV

L2
+ dH

L3
of its associated D. Then, D2 = D − D1 is a

derivation of algebraic type, by which we mean that D2 = 0. For X1, . . . , Xr ∈ X (τ),
we consider the map TX1,...,Xr : X (τ) → X (τ), defined by X 7−→ D2X (X1, . . . , Xr). As
a result of D2 = 0, this map is C∞(TM)-linear and therefore determines a vector-valued
1-form along τ . Moreover, TX1,...,Xr depends multilinearly and skew-symmetrically on
X1, . . . , Xr. This implies that there exists a tensor field Q ∈ ∧r(τ) ⊗ V 1(τ) such that
Q(X1, . . . , Xr) = TX1,...,Xr . This tensor field completely characterizes the derivation D2,
so it is convenient to introduce an appropriate notation reflecting the interference of Q.
We define the map aQ : X (τ)→ V r(τ) by

aQX(X1, . . . , Xr) = Q(X1, . . . , Xr) (X),

and extend its action to V (τ) by putting aQ = 0. Then, clearly, aQX = D2X forX ∈ X (τ)
and the fact that also D2 = 0 implies that D2 = aQ.

It is of some interest to derive an explicit defining relation for the action of this
new type of derivation on a general vector-valued form along τ . Consider an element
L ∈ V p(τ) which is of the form ω ⊗ X, with ω ∈ ∧p(τ) and X ∈ X (τ). Then we have
aQL = (−1)prω ∧ aQX, so that the definition (7) yields

aQL(X1, . . . , Xp+r)

= (−1)pr
1

p!r!

∑
σ∈Sp+r

(sgnσ)ω(Xσ(1), . . . , Xσ(p))Q(Xσ(p+1), . . . , Xσ(p+r)) (X)

= (−1)pr
1

p!r!

∑
σ∈Sp+r

(sgnσ)Q(Xσ(p+1), . . . , Xσ(p+r))
(
ω(Xσ(1), . . . , Xσ(p))X

)
from which it follows that for a general L ∈ V p(τ):

aQL(X1, . . . , Xp+r)

=
1

p!r!

∑
σ∈Sp+r

(sgnσ)Q(Xσ(1), . . . , Xσ(r))
(
L(Xσ(r+1), . . . , Xσ(r+p))

)
.
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Summarizing the results of the preceding analysis, we come to the following statement
about the characterization of derivations of V (τ).

Theorem 5.3 If D is a derivation of V (τ) of degree r, there exist L1 ∈ V r+1(τ), L2, L3 ∈
V r(τ) and Q ∈ ∧r(τ)⊗ V 1(τ), such that

D = iL1 + dV

L2
+ dH

L3
+ aQ.

Note that the coordinate expression of dVL and dHL, if L ∈ V (τ) is of the form

L = Li ⊗ ∂̃
∂qi

, is given by

dVL = dVLi ⊗ ∂̃

∂qi
(10)

and

dHL =

(
dHLi +

∂Γik
∂vj

d̃qk ∧ Lj
)
⊗ ∂̃

∂qi
. (11)

To finish this section, we will have a closer look at the way one can define a graded
Lie algebra structure on the module V (τ). For any L1, L2 ∈ V (τ), the corresponding
derivations dV

L1
, dV

L2
of
∧

(τ) vanish on basic functions and, therefore, so does their com-
mutator. Moreover, it follows from the Jacobi identity that [dV

L1
, dV

L2
] commutes with dV

so that proposition 3.10 implies the existence of a vector valued form along τ , denoted by
[L1, L2], such that

[dV

L1
, dV

L2
] = dV

[L1,L2] (12)

In addition, the graded Jacobi identity satisfied by dV
∗ derivations directly translates

to a graded Jacobi identity for this bracket on V (τ).

Proposition 5.4 The bracket [L,M ] can be expressed as:

[L,M ] = dV

LM − (−1)`mdV

ML (13)

where ` and m are the degrees of L and M , respectively.

Proof: We will prove this equality by proving that their corresponding type dV
∗ deriva-

tions coincide, for which in turn it suffices that the action on
∧̂0

(τ) is the same. For

α ∈ ∧1(M), we have dV α̂ = α̃ ∈ ∧̃1
(τ), and making use of the property (9) we find{

dV

dVLM
− (−1)`mdV

dVML

}
α̂ = idVLM dV α̂− (−1)`midVML d

V α̂

= dV

L iM dV α̂− (−1)`mdV

M iL d
V α̂

= dV

L d
V

M α̂− (−1)`mdV

M dV

L α̂

= dV

[L,M ]α̂,

which indeed implies (13). 2
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A particular case of special interest concerns the bracket of two elements of V 0(τ),
i.e. vector fields along τ . The formula (13) then reduces to [X, Y ] = dV

X Y − dV
Y X, which

in coordinates becomes

[X, Y ] =

(
Xk ∂Y

i

∂vk
− Y k ∂X

i

∂vk

)
∂̃

∂qi

and is seen to be exactly the bracket we mentioned in section 2. Note further that, in
view of dV

X = [iX , d
V ], it can equally be written in the form

[X, Y ] = dV Y (X)− dVX(Y ), (14)

where a type (1,1) tensor field along τ , such as dVX, in accordance with (10) has the
coordinate expression

dVX =
∂Xj

∂vi
d̃qi ⊗ ∂̃

∂qj
. (15)

Remark: The basic obstruction for dH
∗ derivations to define a Lie algebra structure on

V (τ) is the fact that, in general, [dH, dH] 6= 0. Only in the case of a flat connection we
can endow V (τ) with another Lie algebra structure.

The decomposition of most commutators of derivations of
∧

(τ) can be expressed in
terms of dH and dV acting on V (τ). It is, for example, an instructive exercise to verify
the following relation:

[dH, dV

L] = (−1)`idV dHL + dV

dHL − dH

dV L . (16)

The procedure for obtaining such a decomposition explicitly by a coordinate calculation
involves three steps (in agreement with the theory developed in section 4). First, the
action of the derivation in question on functions on M easily leads to the identification
of the dH

∗ part. Next, subtracting this part from the given derivation, one obtains the

dV
∗ part by calculating the action on functions in

∧̂0
(τ). Finally, subtracting this result

again, the i∗ part is found by computing the action on the basis d̃qi of
∧̃1

(τ).

Using (16), it is worthwhile re-expressing the basic commutator (2), together with the
generalized Bianchi identities (5) and (6). One readily finds that these are equivalent to

dV (I ◦ τ) = 0, dH(I ◦ τ) = T,

dVT = 0, dHT = P,

dVR = −P, dHR = 0.

Some of these relations are trivially satisfied, others amount to defining relations; the only
non-trivial equalities are the two Bianchi identities which now take the form

dHR = 0, dHT + dVR = 0.
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6 Prolongations of vector fields and forms along τ

As is well known [8], every function f ∈ C∞(M) can be lifted to a function f 1 ∈ C∞(TM)
by means of

f 1(v) =
d

dt
{f ◦ ρ}

∣∣∣∣∣
t=0

where v ∈ TM and ρ: R → M is any representative curve of v (notice that f 1 = d̂f).
Similarly, for F ∈ ∧0(τ), if j2

0ρ is any point of T 2M , we define F 1 ∈ C∞(T 2M) by

F 1(j2
0ρ) =

d

dt

{
F ◦ j1ρ

}∣∣∣∣∣
t=0

.

Observe here that for f ∈ C∞(M): (f ◦ τ)1 = f 1 ◦ τ21. We can now use these facts to lift
other objects along τ to corresponding objects along τ21 : T 2M → TM as follows. First,
for X ∈ X (τ) we define X1 ∈ X (τ21) by

X1f 1 = (Xf)1

for all f ∈ C∞(M). Next, for α ∈ ∧p(τ) and L ∈ V p(τ), we define the prolongations
α1 ∈ ∧p(τ21) and L1 ∈ V p(τ21) by requiring that for all X1, . . . , Xp ∈ X (τ):

α1(X1
1 , . . . X

1
p ) = [α(X1, . . . , Xp)]

1, L1(X1
1 , . . . X

1
p ) = [L(X1, . . . , Xp)]

1.

That such requirements completely determine X1, α1 and L1 can be argued along the same
lines as in [23] for the complete lifts of various objects on a manifold to its higher-order
tangent bundles. In the present situation, for example, we can choose at every a ∈ T 2M
which is not in the zero section over M , a basis for Tτ21(a)TM , consisting of 2n vectors of
the form X1

k(a) with Xk ∈ X (τ). The argument then is completed by continuity. In fact,
the same kind of reasoning applies just as well for the determination of any element of∧

(τ21) or V (τ21) (not just prolongations) and will indeed tacitly be used further on.

From the definition of F 1 it follows that

(FG)1 = (τ ∗21F )G1 + F 1(τ ∗21G) (17)

for F,G ∈ C∞(TM).

It is easy to see that the map α 7→ α1 is a τ ∗21-derivation (in the sense of Pidello and
Tulczyjew [16]) and (with some obvious identifications) is but the total time derivative
associated to the canonical vector field T along τ . It can be shown [2] that, given X ∈
X (τ), X1 is the unique vector field along τ21 for which τ∗◦X1 = X◦τ21 and T1◦X = X1◦T
(as operators on C∞(M)).

If S is the vertical endomorphism on TM , we can extend its action to vector fields
along τ21 as follows: ∀Y ∈ X (τ21), S(Y ) ∈ X (τ21) is defined pointwise by S(Y )(a) =
Sτ21(a)(Y (a)). In particular, for the prolongation of X ∈ X (τ), it is easy to see that
S(X1) = X↑ ◦ τ21.

Proposition 6.1 If G is a function on TM and X is a vector field along τ then

(GX)1 = (τ ∗21G)X1 +G1S(X1). (18)
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Proof: We first prove that τ ∗21(Xf) = S(X1)f 1. Indeed, if a ∈ T 2M and v = τ21(a), we
have

S(X1)(f 1)(a) = X↑(v)(f 1) = X↑(f 1)(v)

= X↑(d̂f)(v) = d̃f(X)(v)

= X(f)(v),

where we made use of property (1). Next, we find

(GX)1f 1 = (G(Xf))1 = G1τ ∗21(Xf) + τ ∗21G(Xf)1

= G1S(X1)f 1 + (τ ∗21G)X1f 1,

from which the result follows. 2

Proposition 6.2 For α ∈ ∧p(τ) and X1, . . . , Xp ∈ X (τ)

α1(X1
1 , . . . , S(X1

i ), . . . , X1
p ) = α(X1, . . . , Xi, . . . , Xp) ◦ τ21. (19)

Proof: If F is a function on TM then using (18) we have

α1(X1
1 , . . . , (FXi)

1, . . . , X1
p ) = F 1 α1(X1

1 , . . . , S(X1
i ), . . . , X1

p )

+τ ∗21F [α(X1, . . . , Xp)]
1.

On the other hand, from the definition of α1 and (17) we obtain

α1(X1
1 , . . . , (FXi)

1, . . . , X1
p ) = [F α(X1, . . . , Xp)]

1

= F 1 τ ∗21[α(X1, . . . , Xp)] + τ ∗21F [α(X1, . . . , Xp)]
1.

Comparison of both expressions yields the desired result. 2

An interesting consequence of this proposition is that the covariant tensor field along
τ21, formally denoted by S α1 and defined, for all Yk ∈ X (τ21), by

S α1 (Y1, . . . , Yp) = α1(S(Y1), . . . , Yp),

is actually skew-symmetric and thus is a proper p-form along τ21, for which we have the
property

S α1 = ı0α ◦ τ21, (20)

where ı0 stands for the natural identification of the graded algebra
∧

(τ) and the graded
algebra

∧
0(TM) of semi-basic forms on TM . The isomorphism ı0:

∧
(τ) → ∧

0(TM) is
defined by

(ı0α)(Y1, . . . , Yp) = α(τ∗ ◦ Y1, . . . , τ∗ ◦ Yp), (21)

for α ∈ ∧p(τ) and Y1, . . . , Yp ∈ X (TM).

Using (17) and (19), it is now easy to derive the following further properties for
α ∈ ∧p(τ), β ∈ ∧q(τ), G ∈ C∞(TM),

(Gα)1 = (τ ∗21G)α1 +G1(S α1) (22)

(α ∧ β)1 = α1 ∧ (S β1) + (S α1) ∧ β1. (23)

Similar relations hold true for the prolongation of vector-valued forms. Following the
pattern of the proof of (19), it is easy to establish the next result.
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Proposition 6.3 For L ∈ V p(τ) and X1, . . . , Xp ∈ X (τ)

L1(X1
1 , . . . , S(X1

i ) . . . , X1
p ) = S

(
[L(X1, . . . , Xi . . . , Xp)]

1
)
. (24)

Again it follows that S L1 is a vector-valued p-form along τ21 and we propose to
write the above property formally as

S L1 = S ◦ L1. (25)

Still along the lines of the above considerations for scalar forms, it is simple to show, using
(18) and (25) that for L ∈ V p(τ), α ∈ ∧q(τ), G ∈ C∞(TM),

(GL)1 = (τ ∗21G)L1 +G1(S ◦ L1) (26)

(α ∧ L)1 = α1 ∧ (S ◦ L1) + (S α1) ∧ L1. (27)

Finally, as a direct consequence of the defining relations for prolongations, we mention
that for α ∈ ∧1(τ), L ∈ V p(τ) one has the obvious property

(α ◦ L)1 = α1 ◦ L1. (28)

7 Differential calculus relative to a second-order dif-

ferential equation

Let Γ be a sode on M , i.e. Γ ∈ X (TM) is a vector field such that τ∗ ◦Γ = T. Associated
to Γ, we recall from [18] the definition of the following sets:

XΓ = {X ∈ X (TM) |S(LΓX) = 0 },∧p
Γ = {ω ∈ ∧p(TM) |S ω is a p-form andLΓ(S ω) = ω },

T
(1,1)
Γ = {R ∈ T (1,1)(TM) |S ◦R = R ◦ S and S ◦ LΓR = 0 },

which were endowed with a C∞(TM)-module structure by the product rules

F ∗X = FX + (ΓF )S(X),

F ∗ ω = Fω + (ΓF )S ω,

F ∗R = FR + (ΓF )S ◦R.

Moreover, setting
∧0

Γ = C∞(TM), the module
∧

Γ = ⊕p
∧p

Γ is endowed with a graded
algebra structure if we define

α
◦
∧ ω = (S α) ∧ ω + α ∧ (S ω),

for forms of degree different from zero and for F ∈ ∧0
Γ,

F
◦
∧ ω = F ∗ ω.

In order to complete this picture, we now consider vector-valued forms, mapping
elements of XΓ to elements of XΓ.
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Proposition 7.1 A vector-valued form L ∈ V p(TM) preserves the set XΓ if and only if

1. S L = S ◦ L, and

2. S ◦ LΓL = 0.

Proof: Let L be a vector valued p-form preserving XΓ. Then for X1, . . . , Xp ∈ XΓ and
F ∈ C∞(TM),

F ∗
(
L(X1, . . . , Xi, . . . , Xp)

)
− L(X1, . . . , F ∗Xi, . . . , Xp) =

(ΓF ){S ◦ L(X1, . . . , Xi, . . . , Xp)− L(X1, . . . , S(Xi), . . . , Xp)}

is an element of XΓ for all functions F . But this is impossible except if

S ◦ L(X1, . . . , Xi, . . . , Xp) = L(X1, . . . , S(Xi), . . . , Xp),

for all X1, . . . , Xp ∈ XΓ. Now, away from the zero section of TM , it is easy to see (e.g.
by straightening out Γ) that a local basis for X (TM) can be constructed out of elements
of XΓ. We thus conclude that S ◦ L = S L outside the zero section, and by continuity
also on the whole of TM .

Secondly, we have

(S ◦ LΓL)(X1, . . . , Xp)

= S[LΓ(L(X1, . . . , Xp))]−
p∑
i=1

S ◦ L(X1, . . . ,LΓXi, . . . , Xp)

= S[LΓ(L(X1, . . . , Xp))]−
p∑
i=1

L(X1, . . . , S(LΓXi), . . . , Xp) = 0,

for all X1, . . . , Xp ∈ XΓ. By the same reasoning as above, this implies S ◦ LΓL = 0.
The converse is a matter of re-arranging arguments. 2

The set of vector-valued forms preserving XΓ will be denoted by V p
Γ , and for p = 0 we

set V 0
Γ = XΓ. Clearly V 1

Γ = T
(1,1)
Γ . Defining the product by functions again as

F ∗ L = FL+ (ΓF )S ◦ L

the set V p
Γ is endowed with a C∞(TM)-module structure. Finally, we define a “wedge”

product by scalar forms in a way similar to the product on
∧

Γ:

ω
◦
∧ L = (S ω) ∧ L+ ω ∧ (S L)

for ω ∈ ∧Γ and L ∈ VΓ. Showing that ω
◦
∧ L is indeed an element of VΓ is an easy matter

with the help of the properties S ◦ L = S L, S ◦ LΓL = 0 and S ◦ LΓS = −S.

The rest of this section is devoted to re-obtaining and generalizing, in a much simpler
fashion, the results of [18], using the theory developed in the previous sections. This will
be achieved in two steps: first we will consider the sode as a section of τ21:T 2M → TM ,
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and subsequently we will establish, via the results of section 6, an isomorphism between∧
(τ), V (τ) and

∧
Γ, VΓ, respectively.

A sode can be considered as a section γ:TM → T 2M of the projection τ21:T 2M →
TM , see e.g. [8]. The relation between Γ and γ is given by Γ = T1 ◦ γ, or equivalently,
LΓ = γ∗ ◦ dT1 as operators on

∧
(TM), see [2]. In local coordinates, if Γ has the form

Γ = vi
∂

∂qi
+ f i

∂

∂vi
,

then the expression for γ reads

γ(qi, vi) = (qi, vi, f i(qj, vj)).

Integral curves of Γ are curves σ in M whose second extension σ2 lies in the image of γ.
Using this alternative description, we will associate to every element of

∧
(τ) an element

of
∧

Γ by restriction of its first prolongation to the image of γ. To be precise, consider
the map IΓ:

∧p(τ) → ∧p(TM) given by IΓ:α 7→ α1 ◦ γ for p > 0. For p = 0 we define IΓ

as the identity on C∞(TM), for reasons which will become clear later on. Similarly, we
consider the map JΓ:V p(τ)→ V p(TM) given by JΓ:L 7→ L1 ◦ γ. In [2] it was shown that
the image of a vector field X along τ by JΓ is a vector field in XΓ, and every vector field
in XΓ can be obtained in this way. Here, we will prove more generally that the image of
IΓ is

∧
Γ and the image of JΓ is VΓ. This could be done in a direct way, but it is easier to

make use of the isomorphism ı0 between the graded algebra
∧

(τ) of forms along τ and the
graded algebra

∧
0(TM) of semi-basic forms on TM , as introduced before. For a function

F ∈ C∞(TM), ı0F is defined to be F . Then, with a similar identification between forms
along τ21 and forms on T 2M which are semi-basic with respect to τ21, it is clear that for
any α ∈ ∧(τ), the prolongation α1 is essentially dT1ı0α, from which it follows that

α1 ◦ γ = LΓ(ı0α). (29)

Let us now further extend the action of ı0 to vector-valued forms along τ . First, for
α ∈ ∧1(τ), X ∈ X (τ), the relation

ı0
(
α(X)

)
= ı0α(ı0X)

defines an identification between X (τ) and the quotient module X (TM)/X V (TM). If
Y is a representative of an element of X (TM)/X V (TM), the inverse correspondence is
simply given by ı−1

0 [Y ] = τ∗◦Y ∈ X (τ). Combining the action of ı0 on
∧

(τ) and X (τ), we
obtain the extension to V (τ): L 7→ ı0L, where ı0L is an equivalence class of certain vector-
valued forms on TM . In order to make this correspondence clear, consider the subset of
vector-valued forms N on TM , with the property that S ◦ N vanishes when one of its
arguments is vertical. In coordinates, if we write N as N = λi ⊗ (∂/∂qi) + µi ⊗ (∂/∂vi),
with λi, µi ∈ ∧(TM), this requirement simply expresses the fact that the λi are semi-
basic. Then, for each such N , it makes sense to define τ∗ ◦N ∈ V (τ) via the requirement:
∀X1, . . . , Xp ∈ X (τ) (p > 0 being the degree of N),

τ∗ ◦N(X1, . . . , Xp) = τ∗ ◦
(
N(X1, . . . , Xp)

)
, (30)
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where the Xi ∈ X (TM) are such that τ∗ ◦Xi = Xi. Within this subset, we can obviously
pass to the quotient, modulo forms with values in X V (TM). Then, for L ∈ V (τ), ı0L is
one of these classes, for which a representative L is determined by: τ∗ ◦ L = L.

Under the isomorphism ı0, derivations of
∧

(τ) can be regarded as derivations D̃ of∧
0(TM), the correspondence being given by D̃ = ı0 ◦D ◦ ı−1

0 . It is clear that [D̃1, D̃2] =˜[D1, D2]. For instance, to iL corresponds iL, where L is any representative of ı0L; to
dV corresponds dS, and to dH corresponds dPH

, where PH is the horizontal projector

associated to the connection and defined by PH(X)(v) = ξH
v

(
τ∗(X(v))

)
, for all X ∈

X (TM). At this point, we want to repeat that the theory of derivations of
∧

0(TM) we
are constructing this way is not equivalent to the theory of derivations of

∧
(TM) which

preserve semi-basic forms.

In order to prove now that the image of IΓ is
∧

Γ we recall property (20), from which
it follows that

S IΓα = S (α1 ◦ γ) = ı0α ◦ τ21 ◦ γ = ı0α.

This expresses that S IΓα is a form and we further have (using (29))

LΓ(S IΓα) = LΓ(ı0α) = IΓα,

so that IΓα ∈
∧

Γ. In addition, for any ω ∈ ∧Γ, S ω is a semi-basic form and we have

IΓ

(
ı−1
0 (S ω)

)
= LΓ(S ω) = ω.

This shows that IΓ

(∧
(τ)
)

=
∧

Γ and that the inverse I−1
Γ :

∧
Γ →

∧
(τ) is given by

ω 7→ ı−1
0 (S ω) (injectivity of IΓ is obvious from the definition).

For the map JΓ on X (τ) and more generally on V (τ), we will proceed by duality and
make repeated use of the fact that, roughly speaking (see the argumentation in the proof
of proposition 7.1), a local basis of vector fields on TM can be constructed out of elements
of XΓ and similarly, a local basis of 1-forms can be built with elements of

∧1
Γ.

So let X ∈ X (τ) and note first that for all α ∈ ∧1(τ),

〈X1 ◦ γ, α1 ◦ γ〉 =
(
α(X)

)1
◦ γ = LΓ〈X, ı0α〉

with τ∗ ◦X = X. It follows that

〈S ◦ LΓ(X1 ◦ γ), α1 ◦ γ〉 = 〈LΓ(X1 ◦ γ), ı0α〉
= LΓ〈X1 ◦ γ, ı0α〉 − 〈X1 ◦ γ, α1 ◦ γ〉
= LΓ〈X1 ◦ γ −X, ı0α〉 = 0,

since X1◦γ−X is vertical. This implies S◦LΓ(X1◦γ) = 0 and thus JΓ(X) = X1◦γ ∈ XΓ.
To show that the map is onto, let now X be an element of XΓ and consider τ∗ ◦X ∈ X (τ).
Then, for all α ∈ ∧1(τ):

〈(τ∗ ◦X)1 ◦ γ, α1 ◦ γ〉 =
(
α(τ∗ ◦X)

)1
◦ γ

= LΓ

(
α(τ∗ ◦X)

)
= LΓ〈X, ı0α〉

= 〈[Γ, X], ı0α〉+ 〈X,α1 ◦ γ〉.
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The first term of the last line vanishes because [Γ, X] is vertical. Since every 1-form in∧1
Γ can be written as α1 ◦ γ for some α, we conclude that (τ∗ ◦ X)1 ◦ γ = X. This says

that JΓ(X (τ)) = XΓ and J−1
Γ (X) = τ∗ ◦X.

Let us finally turn to V p(τ) for p > 0 and note for a start that the property (25)
directly implies S (JΓL) = S ◦ (JΓL). Next we have L1 ◦ γ(X1

1 ◦ γ, . . . , X1
p ◦ γ) =

[L(X1, . . . , Xp)]
1 ◦ γ, which says that JΓL(JΓX1, . . . , JΓXp) = JΓ

(
L(X1, . . . , Xp)

)
∈ XΓ.

Taking the Lie derivative with respect to Γ of this relation and composing with S, the
right-hand side will vanish. Moreover, the property first mentioned allows us, for the term
involving S ◦ JΓL, to move S over to any of the arguments we like. The result can be
written as

S ◦ LΓJΓL(JΓX1, . . . , JΓXp) +
p∑
i=1

JΓL
(
JΓX1, . . . , S(LΓJΓXi), . . . , JΓXp

)
= 0

and ultimately reduces to the first term being zero. Knowing already that every element of
XΓ can be regarded as JΓX for some X, this implies S ◦LΓJΓL = 0 and thus JΓ(V p(τ)) ⊂
V p

Γ . For the converse, if R ∈ V p
Γ , the property S R = S ◦ R implies that S ◦ R vanishes

when one of its arguments is vertical. Therefore, the definition (30) applies and gives
τ∗ ◦R ∈ V (τ). We wish to prove that JΓ(τ∗ ◦R) = R. Now,(

(τ∗ ◦R)1 ◦ γ
)
(X1

1 ◦ γ, . . . , X1
p ◦ γ) =

(
τ∗ ◦R(X1, . . . , Xp)

)1
◦ γ

=
(
τ∗ ◦ (R(JΓX1, . . . , JΓXp))

)1
◦ γ ,

where we have used (30) and the fact that τ∗ ◦ JΓXi = Xi. By the result on vector fields,
the right-hand side is just R(JΓX1, . . . , JΓXp), which shows that JΓ indeed is onto again
and J−1

Γ (R) = τ∗ ◦R.

We have finally reached the point where we can easily transport all the structures
on

∧
(τ) and V (τ) to

∧
Γ and VΓ, respectively. It turns out that the maps IΓ and JΓ are

graded algebra homomorphisms and since the ring C∞(TM) plays the role of the set of
scalars for both algebra’s, it is now clear why we defined IΓ to be the identity on functions.

Proposition 7.2 For F ∈ C∞(TM), α, ω ∈ ∧(τ) and L ∈ V (τ) the following relations
hold

1. IΓ(Fα) = F ∗ IΓα

2. JΓ(FL) = F ∗ JΓL

3. IΓ(ω ∧ α) = (IΓω)
◦
∧ (IΓα)

4. JΓ(ω ∧ L) = (IΓω)
◦
∧ (JΓL)

Proof: They follow immediately from (22), (26), (23) and (27). 2

As indicated in the introduction, most of the effort in [18] went into discovering what
could be called the basic derivations of the algebra

∧
Γ: they were denoted respectively
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by ι̂X , d̂ and L̂X = [ι̂X , d̂], with X ∈ XΓ. It is obvious now that these derivations must
correspond to derivations of

∧
(τ). If D is a derivation of

∧
(τ) then D̂ = IΓ ◦ D ◦ I−1

Γ

is a derivation of
∧

Γ and we have IΓ ◦ [D1, D2] ◦ I−1
Γ = [D̂1, D̂2]. We wish to prove that

the derivations discussed in [18] come from the derivations iX and dV of
∧

(τ) and their
commutator. In addition, we will of course obtain this time a much more complete picture
of the derivations of

∧
Γ.

Note that, when IΓ ◦D◦I−1
Γ does not act on functions and the result is not a function,

the following relation holds:

IΓ ◦D ◦ I−1
Γ = IΓ ◦ ı−1

0 ◦ ı0 ◦D ◦ ı−1
0 ◦ ı0 ◦ I−1

Γ = LΓ ◦D0 ◦ (S ),

where D0 = ı0 ◦ D ◦ ı−1
0 . This expression will simplify some of the calculations which

follow.

Proposition 7.3 If X is any vector field along τ , we have

îX = IΓ ◦ iX ◦ I−1
Γ = ι̂JΓX .

Proof: We have to consider separately the cases where iX acts on functions, 1-forms or
p-forms with p > 1, because the meaning of IΓ and I−1

Γ is different in each of these cases.
For a function F ∈ C∞(TM) it is obvious that îXF = 0. For a 1-form α ∈ ∧1

Γ we find

îX α = iX ı
−1
0 (S α) = iJΓX(S α) = 〈S(JΓX), α〉.

For ω ∈ ∧pΓ, p > 1,

îXω = LΓ iJΓX(S ω)

= i[Γ,JΓX](S ω) + iJΓX LΓ(S ω)

= iJΓXω

because S ω is semibasic, [Γ, JΓX] is vertical and LΓ(S ω) = ω. These results precisely
correspond to the definition of ι̂JΓX in [18]. 2

Obviously, we now know of a more general type i∗ derivation of
∧

Γ: for any L ∈ V (τ)
we can consider îL = IΓ ◦ iL ◦ I−1

Γ . It turns out that îL coincides with iJΓL. The proof is
similar to the case of vector fields.

Proposition 7.4 d̂V = IΓ ◦ dV ◦ I−1
Γ = d̂

Proof: For a function F on TM

(IΓ ◦ dV ◦ I−1
Γ )F = LΓ(dSF ) = LΓ(S dF ),

and for a p-form ω, p > 0,

(IΓ ◦ dV ◦ I−1
Γ )ω = LΓ(dS(S ω))

= dLΓS(S ω) + dSLΓ(S ω)

= dLΓS(S ω) + dSω .
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Again, this is in agreement with the definition of d̂ in [18]. 2

An interesting completion of the theory which now trivially follows from proposi-
tion 3.4 is that the cohomology of d̂ is trivial.

Note also that, since dV
X = [iX , d

V ], we have

d̂V
X = IΓ ◦ dV

X ◦ I−1
Γ = L̂JΓX

and this further implies that the bracket [X, Y ] defined by (14) must transfer to the
bracket {JΓX, JΓY }Γ defined in [18]. One of the defining relations for the latter was of
the form

{JΓX, JΓY }Γ = RJΓY (JΓX)−RJΓX(JΓY ),

with RJΓX ∈ V 1
Γ . It is clear that this relation now directly follows from (14) and that

in fact RJΓX = JΓ(dVX) (compare also the coordinate formula (15) for dVX with the
formula for RJΓX in [18]).

Again, apart from rediscovering the operations introduced in [18], our present analysis
immediately produces certain generalizations. For example, we could consider for L ∈ V p

Γ

the derivation d̂L = [iL, d̂], which reduces to the L̂ derivative for the case p = 0. Also,
knowing now that the tensors of type RX , for X ∈ XΓ (as discussed first in [19]) essentially
come form dV (τ∗ ◦X), we could in the same way, for L ∈ V p

Γ define RL ∈ V p+1
Γ by

RL = JΓ

(
dV (τ∗ ◦ L)

)
.

It then follows that RL = 0 if and only if there exist a vector-valued form M ∈ VΓ, such
that L = RM .

Finally, the most important new feature which is added now to the theory devel-
oped in [18] is the constatation that the picture is not complete without considering a
connection. Moreover, there is no need here to introduce something extra, as a sode
naturally comes with an associated connection, whose horizontal projector is given by
PH = 1

2
(I − LΓS). The meaning of the corresponding derivation d̂H on

∧
Γ then is ob-

tained from the following relations

(IΓ ◦ dH ◦ I−1
Γ )F = LΓ(PH dF )

(IΓ ◦ dH ◦ I−1
Γ )ω = dLΓPH

(S ω) + dPH
ω

for F ∈ C∞(TM) and ω ∈ ∧pΓ, p > 0. They can be proved in a way similar to the proof
of proposition 7.4.

8 Concluding remarks

It is clear that the calculus of forms along τ which we just developed calls for some
applications. We can safely say, however, that a few applications are already available.
Indeed, the whole construction was motivated at the start by the interest of the sets XΓ

and
∧1

Γ and a nice application in which these sets play a key role concerns the interplay
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between symmetries and adjoint symmetries of a second-order equation (see [20] and time-
dependent generalizations in [5] and [21]). Another application, concerning the inverse
problem of Lagrangian mechanics can be found in [3].

The nice thing about calculations involving elements of XΓ,
∧

Γ or VΓ is that all the
objects one is dealing with live on the same space TM . At the same time, however, one
feels the need for economizing the calculations because, roughly speaking, only half of
the components of such objects are important. The answer to this need lies exactly in
the calculus of forms along τ . Note, by the way, that many of the relevant objects in
mechanics are indeed sections along τ . This is true for example for the Cartan 1-form
θL or the Euler-Lagrange form δL (which are semi-basic forms). Sections along τ were
recently shown to be of interest also for a better understanding of Noether’s theorem
(see [2], as well as a generalization to higher-order mechanics in [4]).

Now that we have a more economical machinary at our disposal, it is our belief that
further and perhaps more deep applications will follow. For that we will undoubtedly
have to supplement the calculus of sections along τ with operations which incorporate
more of the dynamics of the given system. We are thinking here in the first place of a
covariant derivative operator ∇, associated to the connection which comes with the given
second-order system Γ. This operator could for example, as a derivation of

∧
(τ), be

defined as follows :
∇F = Γ(F ), for F ∈ C∞(TM)

∇α = ı−1
0 (PH IΓα), for α ∈ ∧1(τ)

the covariant derivative of vector fields along τ then following by duality. With this
operation one can arrive at very elegant formulae for the equations for symmetries (a
generalization of the Jacobi equation) and for adjoint symmetries, but it would take us
too far to enter into this subject at the moment.
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