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† Departamento de F́ısica Teórica, Universidad de Zaragoza
E-50009 Zaragoza, Spain

‡ Instituut voor Theoretische Mechanica, Rijksuniversiteit Gent
Krijgslaan 281, B-9000 Gent, Belgium

Abstract. The study of the calculus of forms along the tangent bundle pro-
jection τ , initiated in a previous paper with the same title, is continued. The
idea is to complete the basic ingredients of the theory up to a point where
enough tools will be available for developing new applications in the study of
second-order dynamical systems. A list of commutators of important deriva-
tions is worked out and special attention is paid to degree zero derivations
having a Leibnitz-type duality property. Various ways of associating tensor
fields along τ to corresponding objects on TM are investigated. When the con-
nection coming from a given second-order system is used in this process, two
important concepts present themselves: one is a degree zero derivation called
the dynamical covariant derivative; the other one is a type (1, 1) tensor field
along τ , called the Jacobi endomorphism. It is illustrated how these concepts
play a crucial role in describing many of the interesting geometrical features
of a given dynamical system, which have been dealt with in the literature.

Keywords: derivations, forms along a map, second-order equations, nonlinear connec-
tions

MS classification: 58A10, 53C05, 70D05

Running head: Derivations of forms along τ . Part II

1



1 Introduction

In a previous paper [15] (in what follows referred to as part I), we have studied the algebra
of derivations of scalar and vector-valued forms along the tangent bundle projection τ :
TM →M . It is a truism to say that there are submodules of vector fields and differential
forms which will play a special role on a tangent bundle (or indeed on any vector bundle),
namely the vertical vector fields and the semi-basic forms. These can in a natural way
be identified with corresponding objects along the projection τ . More specifically related
to the structure of a tangent bundle is the canonical type (1,1) tensor field S: it has an
associated degree 1 derivation dS which also translates naturally to a derivation of forms
along τ . This in itself may be a sufficient motivation for the investigations we started
in part I. Additional impulses come from the study of second-order differential equations
in general and of Lagrangian systems in particular, where many important concepts are
somehow related to vertical fields and semi-basic forms. The systematic approach of
part I revealed that a satisfactory classification of derivations of forms along τ can only
be achieved with the help of a connection on the bundle τ : TM → M . This is a quite
appealing feature of the theory because every second-order vector field Γ on TM comes
naturally equipped with its own, generally non-linear connection. The relevance of the
calculus of forms along τ was already exhibited in part I: we showed indeed that this new
approach is capable to explain and complete the calculus (on TM) relative to a second-
order differential equation, introduced in [18], where, for example, the need of bringing a
connection into the picture was not recognized.

With the present paper we want to continue with the development of fundamental
ingredients of the theory initiated in part I. It is not our purpose to come up with an
exhaustive story of all possible relations between derivations one can think of. We rather
wish to complete part I with all concepts and tools which are thought to be essential
for bringing the theory on the verge of new applications in the study of second-order
equations. Such applications will be the subject of future publications.

In Section 2 we list a number of commutators of the basic derivations which entered
the classification and decomposition results of part I and are needed in later calculations.
Section 3 focuses on properties of derivations of degree 0 which satisfy a Leibnitz-type
rule with respect to the pairing between vector fields and 1-forms. Since the basic degree
0 derivations of part I do not have such a duality property, their extension by duality
leads to new important derivations, among which we find derivations of the type of a Lie
derivative and others of the type of a covariant derivative. In Section 4 we pay some
attention to various processes of lifting tensor fields along τ to corresponding fields on
TM . They are essential for the interplay between results obtained in the new formalism
and the more traditional calculus on TM .

The remaining sections enter the heart of the matter which has to do with the study
of second-order equations. There are two fundamental concepts in the calculus along
τ which, in our opinion, contain most of the information about the dynamics of a given
second-order vector field Γ. The first one is a degree 0 derivation with the above mentioned
duality property which will be called the dynamical covariant derivative. It is introduced
in Section 5. The second one, discussed in Section 6, is a vector-valued 1-form along τ ,
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which is called the Jacobi endomorphism and relates to the familiar concept with that
name in the case of a spray. The two together, for example, define equations which
determine symmetries and adjoint symmetries of the given Γ. In Section 7 we discuss
how other geometrical concepts of interest, such as tension and strong torsion, enter our
approach. The final section gives an illustration of the way in which known problems
and results, previously studied on the tangent bundle, acquire an elegant and transparent
reformulation within the new framework.

2 Complement on commutators of basic derivations

Throughout this paper, we will of course preserve most of the notations of part I. Some
simplifications will be made, however, where it is no longer felt to be necessary to keep
track of all subtleties of a first exposure. For example, vector fields and forms on M , when
thought of as fields along τ via their composition with τ , will no longer be indicated with
a tilde. Also, we will omit the notational distinction between the usual vertical lift of a
vector field on M to a vector field on TM and the similar operation for vector fields along
τ . In other words, for X ∈ X (τ), we will now write XV for what previously was denoted
as X↑. Similarly, assuming a connection has been selected, we will write XH instead of
the ξH(X) of part I.

Recall that a general degree r derivation D of V (τ) (the module of vector-valued
forms along τ) has a decomposition of the form

D = iL1 + dV

L2
+ dH

L3
+ aQ, (1)

with L1 ∈ V r+1(τ), L2, L3 ∈ V r(τ), Q ∈ ∧r(τ)⊗ V 1(τ). The Li are uniquely determined
by the corresponding action of D on the scalar forms

∧
(τ); iL1 and dV

L2
, by definition,

vanish on basic vector fields; dH on the other hand was extended from
∧

(τ) to V (τ) by
the following action on vector fields: for all X,Z ∈ X (τ),

(dHX(Z))V = PV ([ZH, XV ]), (2)

where PV is the vertical projector on TM . Eq. (2) is equivalent to the more elaborate
construction of dHX in part I. By construction, the difference between D and the first
three terms of the right-hand side of (1) vanishes on

∧
(τ) and so aQ is the last part of

D to be identified and acts on X (τ) only. Strictly speaking, one should keep different
notations for D, a derivation of V (τ), and D, its corresponding derivation of

∧
(τ), but

we will generally not do so and regard D loosely speaking as the restriction of D to
∧

(τ).
The different ingredients in the decomposition (1) are called respectively: derivations of
type i?, d

V
? , dH

? and a?. The derivations of type i?, d
V
? and a? each constitute a subalgebra

and as such can be used to define a bracket operation on V (τ) and on
∧

(τ)⊗ V 1(τ). To
avoid confusion, however, we do not wish to push this matter too far and, for the time
being, only consider the most fundamental bracket of these, namely the one induced by
dV
? operations. We write

[dV

L, d
V

M ] = dV

[L,M ]V
, (3)
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where [L,M ]
V

was computed in part I and reads

[L,M ]
V

= dV

LM − (−1)`mdV

ML. (4)

For the computation of other commutators which follows, two tools are very helpful. One
is, of course, the Jacobi identity; the other one is the property (see Lemma 5.2 of part I)
that for any D which vanishes on basic vector fields we have:

∀α ∈ ∧1(M) , L ∈ V (τ) : D(iLα) = iDLα. (5)

When it concerns a derivation of type i?, (5) remains valid for α ∈ ∧1(τ) or even for a
vector-valued 1-form along τ .

Using (5), it is easy to verify that

[iL, iM ] = iiLM − (−1)(`−1)(m−1)iiML. (6)

Next, concerning [iL, d
V
M ], we observe that this is a derivation vanishing on basic functions

(and basic vector fields) and thus decomposes into a part of type i? and a part of type dV
? .

The dV
? -part is most easily computed by looking at the action on fibre linear functions on

TM . For any α ∈ ∧1(M) and the corresponding functions α̂ on TM we find,

[iL, d
V

M ]α̂ = iLd
V

M α̂ = iLiMα = iiLMα = dV

iLM
α̂.

Putting [iL, d
V
M ]− dV

iLM
= iA, we next make use of the Jacobi identity to compute

dV

A = [iA, d
V ] = [[iL, d

V

M ], dV ]

= (−1)(m+`) [[dV , iL], dV

M ] = (−1)m[dV

L, d
V

M ].

It follows that
[iL, d

V

M ] = (−1)mi[L,M ]V
+ dV

iLM
. (7)

The commutators (3), (6) and (7) in fact could have been copied directly from the standard
results of Frölicher and Nijenhuis [9] with dV in the role of d. The situation becomes
different when dH comes into the picture. Note first that for any F ∈ C∞(TM) we have,

[iL, d
H

M ]F = iLd
H

MF = iLiMd
HF = iiLMd

HF = dH

iLM
F,

where we have used the remark following equation (5). For the same reason, in fact,
a relation of this type is still true for the action on any X ∈ X (τ). It follows that
[iL, d

H
M ]− dH

iLM
is of type i?. By analogy with (7), we therefore put

[iL, d
H

M ] = (−1)mi[L,M ]H
+ dH

iLM
, (8)

which defines [L,M ]
H

. If in coordinates, L is of the form Li ⊗ (∂/∂qi) with Li ∈ ∧`(τ)
(similar expression for M), then the coordinate expression of the “horizontal bracket”
[L,M ]

H
will result from the following computation:

i[L,M ]H
dqi = (−1)m

{
iLd

H

Mdq
i − (−1)(`−1)mdH

ML
i − dH

iLM
dqi
}

= iLd
HM i − (−1)`mdH

ML
i − (−1)`−1dHiLM

i

= dH

LM
i − (−1)`mdH

ML
i.
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Hence,

[L,M ]
H

=
(
dH

LM
i − (−1)`mdH

ML
i
)
⊗ ∂

∂qi
. (9)

Keep in mind, however, that this bracket will in general not satisfy a Jacobi identity. In
particular, for X, Y ∈ X (τ) we have

[X, Y ]
H

= (XkHk(Y
i)− Y kHk(X

i))
∂

∂qi
.

We now turn to some interesting commutators of dV
? and dH

? derivations. Recall from
part I that on

∧
(τ) we had

1

2
[dH, dH] = −idV R + dV

R,

where R is the curvature, a vector-valued 2-form which in coordinates has the expression:

R =
1

2
Ri
jk dq

j ∧ dqk ⊗ ∂

∂qi
, Ri

jk = Hk(Γ
i
j)−Hj(Γ

i
k),

Γij representing the connection coefficients. The more general decomposition on V (τ)
therefore will be of the form

1

2
[dH, dH] = −idV R + dV

R + aRie, (10)

for some element Rie ∈ ∧2(τ) ⊗ V 1(τ). For practical computations, it is useful to know
that for a general Q ∈ ∧r(τ) ⊗ V 1(τ) of the form ω ⊗ U (ω ∈ ∧r(τ), U ∈ V 1(τ)), the
definition of aQ in part I simply means:

∀X ∈ X (τ) , aω⊗U(X) = ω ⊗ U(X) ∈ V r(τ).

With this information, it is then easy to deduce the coordinate expression of Rie from the
action of dH ◦ dH on ∂/∂qj. One obtains,

Rie =
1

2
Ri
jk` dq

k ∧ dq` ⊗
(
∂

∂qi
⊗ dqj

)
,

(11)
Ri
jk` = Hk(Γ

i
`j)−H`(Γ

i
kj) + ΓikmΓm`j − Γi`mΓmkj,

where we have put Γikj = ∂Γik/∂v
j. The origin of the notation should now be clear: in the

case of a linear connection on M , the Γikj do not depend on the v` and Rie reduces to the
classical Riemann tensor.

The torsion tensor

T =
1

2
(Γkij − Γkji) dq

i ∧ dqj ⊗ ∂

∂qk
∈ V 2(τ)

was introduced in part I via the commutator of dH and dV on
∧

(τ). From the action of
this commutator on basic vector fields, it is easy to calculate the following more general
relation on V (τ):

[dH, dV ] = dV

T − aDV T . (12)
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Here, DVT ∈ ∧2(τ)⊗ V 1(τ) for the time being is a formal notation for the tensor field

DVT =
1

2
(Γkij` − Γkji`) dq

i ∧ dqj ⊗
(
∂

∂qk
⊗ dq`

)
. (13)

The meaning of the operator DV (not a derivation of vector-valued forms!) will become
clear in the next section. By Γkij` we of course mean ∂Γkij/∂v

` = ∂2Γki /∂v
j∂v`.

Commutators of dH
L with dV

M or dH
M give rise to rather messy expressions. We therefore

limit ourselves to the case of degree 0 derivations, which are the ones needed for what
follows. From the Jacobi identity, applied to iX , dH and dH, one gets

[dH

X , d
H] =

1

2
[iX , [d

H, dH]] .

Taking account of this in the Jacobi identity for iY , dH
X and dH and using also (8), there

results:

[dH

X , d
H

Y ] = dH

[X,Y ]H
+

1

2
[iY , [iX , [d

H, dH]]] . (14)

The commutators of iX with (10) can be computed with the help of (6),(7) and (4), plus
the fact that [iX , aQ] = aiXQ, whereby iXQ stands for contraction of the

∧
(τ)-part of Q

with X. We thus obtain,

1

2
[iX , [d

H, dH]] = −iiXdV R + dV

iXR
+ i[X,R]V

+ aiXRie

= idV iXR−iRdVX + dV

iXR
+ aiXRie,

and substitution into (14) ultimately leads to

[dH

X , d
H

Y ] = dH

[X,Y ]H
+ dV

R(X,Y ) + aRie(X,Y ) + iA, (15)

where A ∈ V 1(τ) is found (using also (5)) as follows:

A = iY d
V iXR− iY iRdVX − [Y, iXR]

V

= −dV iY iXR− iiY RdVX + dV

iXR
Y

= −dV (R(X, Y )) + dV

iXR
Y − dV

iY R
X.

Remark: We will observe in the next section that Rie = −DVR. The relations (10) and
(15) then show that R = 0 is the necessary and sufficient condition for having dH ◦dH = 0
and for the H-bracket of vector fields to satisfy the Jacobi identity. One can indeed, more
generally show that dH

? -derivations under those circumstances consitute a subalgebra of
the algebra of derivations of V (τ).

Replacing one dH by dV at the starting point of the preceding calculation and following
a similar procedure, one is led to the following relation:

[dH

X , d
V

Y ] + [dV

X , d
H

Y ] = dV

[X,Y ]H+T (X,Y ) + dH

[X,Y ]V

−aDV T (X,Y ) + idViXTY−d
V
iY TX−dV (T (X,Y )). (16)
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However, we also need an expression for a single term of the left-hand side and this
requires a separate calculation. Note first that we have

[dH, dV

X ] = idV dHX + dV

dHX − dH

dVX − aB. (17)

As a matter of fact, the action on
∧

(τ) of this commutator was mentioned in part I
(eq. (16)). A coordinate calculation for the action on ∂/∂qi reveals that the tensor B ∈∧1(τ)⊗ V 1(τ) is given by

B = Γkjm`X
` dqj ⊗

(
∂

∂qk
⊗ dqm

)
.

Subsequently, from the Jacobi identity for iY , dV
X and dH, one obtains

[dV

X , d
H

Y ] = dH

[X,Y ]V
− [iY , [d

H, dV

X ]].

The desired result then will follow from (17) and an appropriate use of (6),(7),(8) and
(4). It reads,

[dV

X , d
H

Y ] = dH

dVXY
− dV

dHY X
+ aθ(X,Y ) + iA,

(18)
A = dV dH

YX − dV

dHXY − [Y, dVX]
H
.

The tensor field θ (not in
∧

(τ) ⊗ V (τ)!) here is introduced in such a way that iYB =
θ(X, Y ) and has the following coordinate expression,

θ = Γkjm` dq
` ⊗ dqj ⊗

(
∂

∂qk
⊗ dqm

)
. (19)

It is instructive to interchange X and Y in (18) and subtract the resulting expression
from (18). Comparison with (16) then gives rise to the following interesting properties

[X, Y ]
H

+ T (X, Y ) = dH

XY − dH

YX, (20)

θ(X, Y )− θ(Y,X) = −DVT (X, Y ). (21)

A few remarks to conclude this section. We have occasionally used the property [iX , aQ] =
aiXQ. In fact, derivations of type a? constitute an ideal of the full algebra. This property
could be used to extend the action of the different types of derivations to tensor fields
Q ∈ ∧r(τ) ⊗ V 1(τ). It is at the moment, however, not very appropriate to discuss this
because for r = 0, this new action is different from the original one on vector-valued
1-forms. For practical purposes, it often suffices to know that for U1, U2 ∈ V 1(τ):

[aU1 , aU2 ] = a[U1,U2] with [U1, U2] = U1 ◦ U2 − U2 ◦ U1, (22)

while on the other hand
[iU1 , iU2 ] = −i[U1,U2]. (23)
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3 Extending derivations of degree zero by duality

Definition 3.1 A derivation D of V (τ) of degree 0 is said to be self-dual if ∀X ∈ X (τ),
∀α ∈ ∧1(τ):

D(α(X)) = Dα(X) + α(DX). (24)

Theorem 3.2 The following characterizations are equivalent:

(i) D is self-dual
(ii) [D, iX ] = iDX , ∀X ∈ X (τ)
(iii) [D, iL] = iDL , ∀L ∈ V (τ)
(iv) For ω ∈ ∧p(τ) (p > 0) and X1, . . . , Xp ∈ X (τ):

Dω(X1, . . . , Xp) = D(ω(X1, . . . , Xp))−
p∑
i=1

ω(X1, . . . , DXi, . . . , Xp) (25)

(v) For L ∈ V `(τ) (` > 0) and X1, . . . , X` ∈ X (τ):

DL(X1, . . . , X`) = D(L(X1, . . . , X`))−
∑̀
i=1

L(X1, . . . , DXi, . . . , X`). (26)

Proof:
1. It is obvious that (ii) implies (i). Conversely, [D, iX ] is a derivation of degree −1 and
therefore of type iX′ for some X ′ ∈ X (τ). The action on

∧1(τ) completely determines X ′

so that (i) implies X ′ = DX.

2. Property (iii) implies (ii). For the converse, [D, iL] is a derivation of degree ` − 1,
vanishing on functions and on basic vector fields, and therefore is of the form iL′ for some
L′ ∈ V `(τ), which will be completely determined by the action on

∧1(τ). It suffices to
look at the case where L is of the form ω ⊗X with ω ∈ ∧`(τ) and to remember that in
such a case: iLα = ω ∧ iXα for any α ∈ ∧(τ). We then have using (ii),

[D, iω⊗X ] = [D,ω ∧ iX ] = Dω ∧ iX + ω ∧ [D, iX ]

= Dω ∧ iX + ω ∧ iDX = iDω⊗X+ω⊗DX ,

which shows that L′ = DL.

3. We show that (ii) implies (iv) by induction. The property is obviously true for p = 1.
Assume that (25) is valid for a (p− 1)-form and let ω be a p-form. Then,

Dω(X1, . . . , Xp) = (iX1Dω)(X2, . . . , Xp)

= (DiX1ω − iDX1ω)(X2, . . . , Xp) (by (ii))

= D(ω(X1, . . . , Xp))−
p∑
i=2

ω(X1, X2, . . . , DXi, . . . , Xp)

− ω(DX1, X2, . . . , Xp) (induction hypothesis)

and the result now readily follows. The converse is obvious since (25) implies (24).
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4. Concerning (v) it suffices again to look at the case L = ω ⊗ X, for which DL =
Dω ⊗X + ω ⊗DX. Then,

DL(X1, . . . , X`) = Dω(X1, . . . , X`)X + ω(X1, . . . , X`)DX,

while the right-hand side of (26) becomes,

D(ω(X1, . . . , X`)X)−
∑̀
i=1

ω(X1, . . . , DXi, . . . , X`)X.

Comparison of both expressions clearly shows that (iv) implies (v) and vice versa. 2

One of the important features of self-dual degree 0 derivations is that they obviously
extend to tensor fields of arbitrary type by a Leibnitz-type of rule.

There are two different ways for obtaining a self-dual derivation by a proper extension.
Let D be a derivation of degree 0 on

∧
(τ). We define a derivation D? on V (τ) as follows:

D? = D on
∧

(τ) and for X ∈ X (τ),

〈D?X,α〉 = D(α(X))−Dα(X) , ∀α ∈ ∧1(τ). (27)

It easily follows from the defining relation that D?X is C∞(TM)-linear over
∧1(τ) and

therefore belongs to X (τ), and also that for F ∈ C∞(TM), D?(FX) = (DF )X +FD?X,
ensuring that the extension is compatible with D. The new D? is self-dual by construction.

Suppose on the other hand that a derivation D of X (τ) is given, i.e. D : X (τ)→ X (τ)
is an IR-linear map, satisfying D(FX) = (DF )X + F DX and D(FG) = F DG + GDF
for F,G ∈ C∞(TM). Then we define D† on V (τ) by: D† = D on C∞(TM) and on X (τ)
and for α ∈ ∧1(τ),

〈X,D†α〉 = D(α(X))− α(DX), ∀X ∈ X (τ). (28)

As above, D†α is a 1-form and D† has the right derivation properties for a degree 0
derivation. Its action thus extends to all of

∧
(τ) and subsequently also to V (τ) and D†

will be self-dual by construction.

If D is a given derivation of degree 0 on V (τ) which is not self-dual, then it should be
emphasized that the above two procedures will lead to different results, i.e. (D|∧(τ))

? 6=
(D|X (τ))

† and both are of course different from D. Obviously, if D was self-dual from the
outset, the above constructions will not change it. This implies, with a slight abuse of
notations, that we have

(D?)† = D? and (D†)? = D†. (29)

As an example, it readily follows from the defining relations (27) and (28) that for A ∈
V 1(τ):

i?A = iA − aA , a?A = 0, (30)

i†A = 0 , a†A = aA − iA. (31)
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More generally, for given D of degree 0, D−D? vanishes on
∧

(τ) and hence is of type a?,
while D −D† vanishes on functions and on vector fields and thus is of type i?. Putting
D − D? = aA, D − D† = iB and applying the ?-operation on the latter, it follows from
(29) and (30) that B = A. So, we generally have

D −D? = aA , D −D† = iA , D? −D† = iA − aA, (32)

for some A ∈ V 1(τ).

A case of special interest arises, when we start from an arbitrary derivation of degree 1,
say d(1), on V (τ) and consider for X ∈ X (τ), the degree 0 derivation d(1)

X = [iX , d
(1)]. Then,

the defining relation (27) for d(1)

X
?

can be written in the form: ∀Y ∈ X (τ), α ∈ ∧1(τ),〈
d(1)

X
?
Y, α

〉
= d(1)

X (α(Y ))− d(1)

Y (α(X))− d(1)α(X, Y ). (33)

This shows that d(1)

X
?
Y = −d(1)

Y
?
X, so we propose to introduce the notation [X, Y ](1) =

d(1)

X
?
Y . Moreover, since this situation is clearly reminiscent of the usual Lie derivative

operations, we will also write L(1)

X instead of d(1)

X
?
.

Proposition 3.3 Let σ be a scalar or vector-valued p-form along τ . Then,

d(1)σ(X0, . . . , Xp) =
p∑
i=0

(−1)i d(1)

Xi
(σ(X0, . . . , X̂i, . . . , Xp))

+
∑

0≤i<j≤p
(−1)i+jσ

(
[Xi, Xj](1), X0, . . . , X̂i, . . . , X̂j, . . . , Xp

)
. (34)

Proof:
1. Consider first the case σ ∈ ∧p(τ). The property is trivially true for p = 0 and also for
p = 1, where it reduces precisely to the definition (33) of [ , ](1). Assume then the validity
of (34) for p− 1. We have,

d(1)σ(X0, . . . , Xp) = [iX0 , d
(1)]σ(X1, . . . , Xp)− (d(1)iX0σ)(X1, . . . , Xp). (35)

Regarding the derivation in the first term of the right-hand side as being L(1)

X0
, we can

compute this first term via the property (25) of a self-dual derivation. For the second
term, we invoke the induction hypothesis applied to the (p−1)-form iX0σ. The calculation
then proceeds in exactly the same way as in the proof of the standard cocycle identity for
the Lie derivative on a manifold (keeping in mind, at the end, that L(1)

X and d(1)

Xi
coincide

on functions).

2. The situation is slightly more complicated for σ = L ∈ V p(τ). Again, the property
is true for p = 0 and for the induction process, we have to start from the identity (35).
Obviously, we would like to appeal to (26) now for the action of a self-dual derivation
on vector-valued forms, but this time d(1)

X0
L is not the same as L(1)

X0
L. Re-writing the

right-hand side of (35) as,(
L(1)

X0
L− d(1)iX0L+ (d(1)

X0
− L(1)

X0
)L
)

(X1, . . . , Xp),

10



we can use (26) for the first term and the induction hypothesis for the second and in the
end go back from L(1)

X0
to d(1)

X0
by adding and subtracting the appropriate expression. The

net result is the relation we want to prove, apart from the following extra terms:

(L(1)

X0
− d(1)

X0
)(L(X1, . . . , Xp)) + ((d(1)

X0
− L(1)

X0
)L)(X1, . . . , Xp).

But as argued before, d(1)

X0
−L(1)

X0
is a derivation of type a? and thus only acts on the vector

field part of L, which shows that the extra terms will vanish. 2

Remark: Although (34) is valid for scalar and vector-valued forms, it is worth empha-
sizing the difference between both situations again. In the former case, all derivations in
the right-hand side are the self-dual ones of Lie-derivative type, whereas this is not true
for the first term when it concerns a vector-valued form.

Next, we look at the extension d(1)

X
†

which has another interesting feature. We know
that d(1)

X , restricted to act on vector fields is C∞(TM)-linear in its dependence on X. The
defining relation (28) then shows that this property will be preserved by the extension

d(1)

X
†

on the whole of V (τ). In this way, d(1)

X
†

is a covariant-derivative type derivation and
we will also write it as D(1)

X . Using (33), it is easy to show that the expression

[X, Y ](1) −D(1)

X Y + D(1)

Y X

is C∞(TM)-linear in both X and Y . Therefore, there exists a vector-valued 2-form Td(1)

(which can be thought of as a torsion form), such that

[X, Y ](1) = D(1)

X Y −D(1)

Y X − Td(1)(X, Y ). (36)

There is no direct way of proving a relation like (34) involving the covariant derivative
extension. However, the d(1)

Xi
in the first term can be read as D(1)

Xi
and the bracket in the

second term can, if desired, be replaced by (36).

Let us finally look at the A ∈ V 1(τ) which, according to (32), will determine the
difference between d(1)

X and its extensions L(1)

X and D(1)

X . Acting with the first relation in
(32) on an arbitrary Y ∈ X (τ), we find

A(Y ) = d(1)

X Y − [X, Y ](1)

= d(1)

Y X + Td(1)(X, Y )

= (d(1)X + iXTd(1))(Y ).

We conclude that,

L(1)

X = d(1)

X − ad(1)X+iXTd(1)
, D(1)

X = d(1)

X − id(1)X+iXTd(1)
. (37)

Remark: Most of what precedes in this section is not really typical for the calculus
of forms along τ ; similar properties will be encountered in an entirely different context
(cfr. [16]). Our presentation may shed some new light on related theories.

We now turn our attention more specifically to the basic degree 0 derivations in our
theory. Naturally, the most important self-dual derivations will arise from extensions
of dV

X and dH
X . In agreement with the notations and terminology introduced above, we

11



distinguish the following self-dual derivations: LV
X and LH

X , the vertical and horizontal
Lie derivative; DV

X and DH
X , the vertical and horizontal covariant derivative. From the

characterization (iii) of a self-dual derivation in theorem 3.2 and comparison with (7) and
(8), it immediately follows that for all L ∈ V (τ),

LV

XL = [X,L]
V

, LH

XL = [X,L]
H
, (38)

and more specifically,

LV

XY = [X, Y ]
V

, LH

XY = [X, Y ]
H
. (39)

Since (4) further tells us that

[X, Y ]
V

= DV

XY −DV

YX, (40)

(36) indicates that the torsion related to the vertical covariant derivative is zero. Compar-
ison of (20) with (36) on the other hand shows that the torsion related to the horizontal
covariant derivative is just the torsion of the given connection on τ : TM →M ,

[X, Y ]
H

= DH

XY −DH

YX − T (X, Y ). (41)

The general relations (37) thus imply,

LV

X = dV

X − adVX , DV

X = dV

X − idVX , (42)

LH

X = dH

X − adHX+iXT , DH

X = dH

X − idHX+iXT . (43)

If D is an arbitrary derivation of degree 0 and its decomposition reads

D = iA + dV

X + dH

Y + aB, (44)

for some X, Y ∈ X (τ), A,B ∈ V 1(τ), then, putting µA = aA − iA, the extensions read

D? = LV

X + LH

Y − µA, (45)

D† = DV

X + DH

Y + µB. (46)

Proposition 3.3 tells us that for both scalar and vector-valued p-forms,

dV σ(X0, . . . , Xp) =
p∑
i=0

(−1)idV

Xi
(σ(X0, . . . , X̂i, . . . , Xp))

+
∑

0≤i<j≤p
(−1)i+jσ

(
[Xi, Xj]V , X0, . . . , X̂i, . . . , X̂j, . . . , Xp

)
, (47)

and a similar relation holds for dHσ.

For future applications, it is useful to have the following complete list of commutators
of all self-dual derivations entering (45) and (46). Knowing that the extension by duality
of a commutator is the commutator of the extensions (an easily verifyable property), they

12



follow trivially from results of the preceding section, except for the last two, which are
easy to check by direct calculation of the action on vector fields and 1-forms

[µA, µB] = µ[A,B] , [LV

X , µA] = µ[X,A]V
,

[LH

X , µA] = µ[X,A]H
, [LV

X ,LV

Y ] = LV

[X,Y ]V
,

[LV

X ,LH

Y ] = LH

dVXY
− LV

dHY X
− µdV dHY X−dVdHX

Y−[Y,dVX]H
,

[LH

X ,LH

Y ] = LH

[X,Y ]H
+ LV

R(X,Y ) + µdV (R(X,Y ))+dViY RX−d
V
iXRY,

[DV

X ,D
V

Y ] = DV

[X,Y ]V
, [DV

X ,D
H

Y ] = DH

dVXY
−DV

dHY X
+ µθ(X,Y ),

[DH

X ,D
H

Y ] = DH

[X,Y ]H
+ DV

R(X,Y ) + µRie(X,Y ),

[DV

X , µA] = µDV
XA

, [DH

X , µA] = µDH
XA
.

Another point of practical interest concerns coordinate expressions. As argued before,
the self-dual covariant and Lie-type derivations extend to arbitary tensor fields and since
they are of degree zero, it suffices to have a table for their action on functions and on
basic vector fields and 1-forms. Recalling that Hi = ∂/∂qi − Γik ∂/∂v

k and writing Vi for
∂/∂vi, we have

DV

XF = LV

XF = X iVi(F ) , DH

XF = LH

XF = X iHi(F ),

LV

X

(
∂

∂qi

)
= −Vi(Xk)

∂

∂qk
, LV

X dq
i = Vk(X

i) dqk,

LH

X

(
∂

∂qi

)
= −Hi(X

k)
∂

∂qk
, LH

X dq
i = Hk(X

i) dqk,

DV

X

(
∂

∂qi

)
= 0 , DV

X dq
i = 0,

DH

X

(
∂

∂qi

)
= XjΓkji

∂

∂qk
, DH

X dq
i = −XjΓijk dq

k.

We are also in a position now to explain the origin of the operator DV which was forced
upon us in computing the commutator [dH, dV ]. Since DV

X and DH
X depend linearly on X,

two operators DV and DH, mapping an arbitrary tensor field U ∈ T pq (τ) into an element
of T pq+1(τ), can be defined by the rule:

X DVU = DV

XU , X DHU = DH

XU. (48)

In particular, an element L = Li ⊗ ∂/∂qi ∈ V `(τ) is mapped under DV or DH into an
element of

∧`(τ) ⊗ V 1(τ). The coordinate expression for DHL is rather involved, but if
Li = aiI dq

I (where I is a multi-index), DVL simply reads

DVL = Vj(a
i
I) dq

I ⊗
(
∂

∂qi
⊗ dqj

)
. (49)

It is then clear that the tensor field in (13) is indeed DVT .

Proposition 3.4 The tensor fields R ∈ V 2(τ) and Rie ∈ ∧2(τ)⊗ V 1(τ) are related by

Rie = −DVR. (50)
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Proof: A coordinate calculation is by far the simplest way of proving this property. We
have

DVR =
1

2
V`(Hk(Γ

i
j)−Hj(Γ

i
k))dq

j ∧ dqk ⊗
(
∂

∂qi
⊗ dq`

)
.

Making use of the property [Hj, V`] = Γmj`Vm, comparison with (11) immediately produces
the desired result. 2

To finish this section, we would like to indicate briefly that there is a deeper reason
for calling DH

X and DV
X the horizontal and vertical covariant derivative. One can show

that a (non-linear) connection on the bundle τ : TM → M determines in a natural way
a linear connection on the pull-back bundle τ ?τ : τ ?(TM)→ TM in the following sense.
In terms of the given connection, every vector field on TM has a unique decomposition
in the form XH + Y V , with X, Y ∈ X (τ). Putting then

D̃XH+Y V = DH

X + DV

Y , (51)

D̃ is an operation which to each vector field on TM associates a derivation of the C∞(TM)-
module of sections of τ ?τ , satisfying the requirements of a covariant derivative. A full
study of this interrelationship will shed new light on the meaning of the tensor fields
Rie and θ in our present analysis and will be the subject of a separate paper by two of
us. It will moreover lead to an application to second-order equations of direct practical
relevance, which afterall remains the main motivation for the theory under development.

4 Horizontal and vertical lifts

It is important, for the interpretation of results, to have procedures by which tensor fields
along τ can be put into correspondence with fields on TM . Such procedures in fact exist
at three different levels. First, without appealing to extra tools, there is the natural
identification ı0 between

∧
(τ) and the semi-basic forms on TM and, dually, the natural

map V : X (τ) → X V (TM), whose inverse is denoted by ↓ and which also extends to the
whole of V (τ). Secondly, with the aid of the given connection, we have horizontal and
vertical lifts at our disposal. A third level, where the dynamics of a given sode gets
involved, was used in Section 7 of part I and comes back into the picture further on.

Concerning horizontal and vertical lifts, the difference between the present framework
and the more familiar process in the case of a linear connection on M is merely that
coefficient functions here are functions on TM . Recall that for X ∈ X (τ), XH and
XV ∈ X (TM) are given by XH = XjHj, X

V = XjVj and we have

XH(F ) = dH

XF , XV (F ) = dV

XF , F ∈ C∞(TM). (52)

Note that there is no conflict in notation between this XV and the one referred to above.

The set {Hj, Vj} constitutes for many purposes a handy basis of vector fields on TM .
The dual basis of 1-forms will be denoted as {H i, V i}, with

H i = dqi , V i = dvi + Γik dq
k.
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Other tensor fields on TM can often be characterized by their action on horizontal and
vertical lifts, so it is of some interest to know expressions for the brackets of such vector
fields.

Lemma 4.1 For X, Y ∈ X (τ), we have

[XV , Y V ] = ([X, Y ]
V
)V (53)

[XH, Y V ] = (dH

XY )V − (dV

YX)H (54)

[XH, Y H] = ([X, Y ]
H

)H +R(X, Y )V . (55)

Proof: Expressing the action of these brackets on arbitrary functions F via (52), the
desired relations follow immediately from the commutators in (3), (15) and (18). 2

For 1-forms α ∈ ∧1(τ), it seems natural to define the horizontal and vertical lifts as
follows:

αH(XH) = α(X) , αH(XV ) = 0, (56)

αV (XH) = 0 , αV (XV ) = α(X), (57)

which in coordinates means that αH = αjH
j, αV = αjV

j. Note, however, that our
definition is just the opposite of the one adopted by Yano and Ishihara [22]. We have
already used the fact that every Z ∈ X (τ) has a unique decomposition in the form

Z = XH + Y V , with X, Y ∈ X (τ).

To be precise, if Z is given, X and Y can be determined as follows:

X = S(Z)↓ , Y = (Z −XH)↓.

Similarly, every 1-form ρ ∈ ∧1(TM) has a unique decomposition in the form

ρ = αH + βV ,

whereby α, β ∈ ∧1(τ) are determined by

β = ı−1
0 S?(ρ) , α = ı−1

0 (ρ− βV ),

S? denoting the (transposed) action of the (1, 1)-tensor S on 1-forms. As an example, one
can easily verify that

dF = (dHF )H + (dVF )V . (58)

The story of lifting can easily be continued for other types of tensor fields, but for our
present needs we can limit ourselves to vector-valued 1-forms and symmetric (0, 2) tensor
fields. For U ∈ V 1(τ), we define UV , UH ∈ V 1(TM) by

UV (XV ) = 0 , UV (XH) = U(X)V (59)

UH(XV ) = U(X)V , UH(XH) = U(X)H. (60)
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This time we are in agreement with Yano and Ishihara. The notation UV is further
justified by the fact that this UV coincides with the natural identification of V 1(τ) with a
class of vertical vector-valued forms on TM , referred to at the beginning. From (56) and
(57) it follows that the transposed action on 1-forms is characterized by

UV ?(αV ) = U?(α)H , UV ?(αH) = 0, (61)

UH?(αH) = U?(α)H , UH?(αV ) = U?(α)V . (62)

As an example, if I is the identity in V 1(τ), we have

IV = S , IH = ITM . (63)

It is quite obvious, however, that elements of V 1(TM) do not generally decompose into
a horizontal plus a vertical lift: there are 4 (n× n)-blocks in the coefficient matrix (with
respect to the adapted basis), which individually can be related to an element of V 1(τ).
Explicitly, for U ∈ V 1(τ), we can define UH;H, UH;V , UV ;H, UV ;V ∈ V 1(TM) by

UH;H(XH) = U(X)H , UH;H(XV ) = 0,

UH;V (XH) = U(X)V , UH;V (XV ) = 0,

UV ;H(XH) = 0 , UV ;H(XV ) = U(X)H,

UV ;V (XH) = 0 , UV ;V (XV ) = U(X)V .

In a more visual form (with slight abuse of notation), these definitions amount to:

U1
H;H + U2

V ;H + U3
H;V + U4

V ;V =

(
U1 U2

U3 U4

)
,

the right-hand side representing the coefficient matrix of the tensor field on TM in ques-
tion. We have,

UV = UH;V , UH = UH;H + UV ;V ,

while the projectors determined by the connection can be interpreted as:

PH = IH;H , PV = IV ;V .

It is useful to know the following commutator properties (ordinary commutator of endo-
morphisms), which can easily be obtained from the action on horizontal and vertical lifts
with the aid of (59) and (60):

[PH, U
H] = 0 , [PH, U

V ] = −UV , (64)

[PV , U
H] = 0 , [PV , U

V ] = UV . (65)

Another interesting type (1, 1) tensor field on TM is the one defining an almost complex
structure. It can be written as

J = IH;V − IV ;H.

Finally, concerning covariant tensor fields, we limit ourselves to the following lifting pro-
cedures, which will be relevant for later discussions. Let g be a symmetric type (0, 2)
tensor field along τ .

16



Definition 4.2 The Sasaki lift of g, denoted by gS ∈ T 0
2 (TM) is the symmetric tensor

field determined by

gS(XH, Y H) = gS(XV , Y V ) = g(X, Y ),

gS(XV , Y H) = 0 , ∀X, Y ∈ X (τ).

It is easy to verify that gS is “Hermitian with respect to J”, by which we mean:

gS(JZ1, JZ2) = gS(Z1, Z2) ∀Z1, Z2 ∈ X (TM).

Definition 4.3 The Kähler lift of g, denoted by gK ∈ ∧2(TM) is the 2-form on TM ,
defined by

gK(Z1, Z2) = gS(Z1, JZ2) ∀Z1, Z2 ∈ X (TM).

Alternatively, gK is characterized by the properties

gK(XH, Y H) = gK(XV , Y V ) = 0,

gK(XV , Y H) = g(X, Y ) = −gK(XH, Y V ).

We also have:
gK(JZ1, JZ2) = gK(Z1, Z2).

The terminology adopted above is inspired by existing constructions in the theory of
linear connections: if in particular g is a Riemannian metric on M , then gS is known as
the Sasaki metric on TM (see e.g. [7]) and gives TM the structure of an almost Hermitian
manifold. The 2-form gK then is the corresponding fundamental or Kähler form. Note
that in our present generalized construction, gK need not be closed. For related material
we can refer to [11], [13], [17].

5 The dynamical covariant derivative associated to a

SODE

Let now Γ ∈ X (TM) be the vector field determining a sode q̈i = f i(q, q̇). It is well-known
that Γ defines a connection on τ : TM →M , such that

PV =
1

2
(ITM + LΓS) , PH =

1

2
(ITM − LΓS) (66)

(see e.g. [11],[12],[4]), the connection coefficients being given by

Γij = −1

2

∂f i

∂vj
. (67)

As described in part I, there is then another way of mapping forms and vector fields along
τ into corresponding objects on TM . We refer to part I for the definition and properties of
the maps JΓ : X (τ)→ XΓ and IΓ :

∧
(τ)→ ∧

Γ and here simply recall that in coordinates:

X = X i ∂

∂qi
JΓ−→ JΓX = X i ∂

∂qi
+ Γ(X i)

∂

∂vi
,

α = αj dq
j IΓ−→ IΓα = αj dv

j + Γ(αj) dq
j.
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In agreement with the previous section, JΓX and IΓα uniquely decompose into a horizontal
and vertical part; XH is the horizontal part of JΓX because S(JΓX)↓ = τ? ◦ JΓX = X;
αV is the vertical part of IΓα because IΓ

−1 = ı−1
0 S (see part I).

Definition 5.1 For X ∈ X (τ), α ∈ ∧1(τ), ∇X ∈ X (τ) and ∇α ∈ ∧1(τ) are implicitly
defined by

JΓX = XH + (∇X)V , (68)

IΓα = (∇α)H + αV . (69)

Explicitly, we have
∇X = PV (JΓX)↓ , ∇α = ı−1

0 PH
?(IΓα). (70)

From JΓ(FX) = F JΓX + Γ(F )S(JΓX) = (FX)H + (F ∇X + Γ(F )X)V , it follows that

∇(FX) = Γ(F )X + F ∇X. (71)

Hence, the operator ∇ : X (τ)→ X (τ) is a derivation of vector fields, provided we define
for F ∈ C∞(TM):

∇F = Γ(F ). (72)

On the one hand, we then have 〈JΓX, IΓα〉 = LΓ〈X,α〉 = ∇〈X,α〉, while on the other
hand, from (68) and (69): 〈JΓX, IΓα〉 = 〈X,∇α〉+ 〈∇X,α〉. We thus see that

∇〈X,α〉 = 〈∇X,α〉+ 〈X,∇α〉, (73)

showing, from the results of Section 3, that ∇ extends to a self-dual derivation on the
whole of V (τ) and further has a consistent action on tensor fields of arbitrary type. In
coordinates, we have

∇X =
(
Γ(X i) + ΓijX

j
) ∂

∂qi
, ∇α =

(
Γ(αj)− αkΓkj

)
dqj, (74)

which is clearly reminiscent of a covariant-derivative type derivation.

Definition 5.2 The self-dual degree 0 derivation ∇, associated to a given sode Γ is
called the dynamical covariant derivative.

Remark: This notion of covariant derivative was first introduced in [2]. It is of some
importance to understand how it differs from or generalizes other notions of covariant
derivative in the literature. There exists a concept of covariant derivative of a map
Y : N → TM with respect to a vector fieldX onN (see e.g. [11] or [10]). One might expect
our ∇ to correspond to this concept for the case that N = TM and X is the given sode
Γ. There is, however, a striking difference. Indeed, if ψ denotes the canonical involution
on T (TM), then one easily verifies (in coordinates for example) that for X ∈ X (τ),

JΓX = ψ ◦ TX ◦ Γ. (75)

Hence, ∇X = PV (ψ ◦ TX ◦ Γ)↓ and the interference of ψ is what makes the difference
with respect to the concept referred to above. There is another reason why this extra
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ψ-action is important: one can generalize the familiar notion of parallel transport to the
case of a non-linear connection and the involution on T (TM) is inevitably present in this
generalization. That subject, of interest in its own right, will be discussed elsewhere.

To conclude this section, we look at the (1, 1) tensors preserving XΓ, which are of the
form JΓU for some U ∈ V 1(τ). As repeatedly used in part I, such tensor fields are in fact
determined by their action on XΓ and we have JΓU(JΓX) = JΓ(U(X)). It follows from
(68),(59) and (60) that,

JΓU(JΓX) = U(X)H +∇(U(X))V

= UH(XH) + (∇U(X))V + (U(∇X))V

= UH(XH +∇XV ) + (∇U)V (XH +∇XV ),

which implies that
JΓU = UH + (∇U)V . (76)

If U has coefficients uij, the coefficient matrix of ∇U is given by

(∇U)jk = Γ(ujk) + Γj`u
`
k − u

j
`Γ

`
k. (77)

From (76) and (64) we obtain

[PH, JΓU ] = −(∇U)V .

This enables us to give an interpretation on TM of a vanishing covariant derivative:
∇U = 0 is equivalent to JΓU commuting with LΓS. For vector fields, ∇X = 0 obviously
means that JΓX belongs to the horizontal distribution, i.e. LΓS(JΓX) = −JΓX. In the
same way, for α ∈ ∧1(τ), ∇α = 0 is equivalent to (LΓS)?(IΓα) = IΓα. The dynamical
covariant derivative in itself, therefore, is insufficient to characterize more interesting
objects on TM such as invariant vector fields or 1-forms and recursion operators for
symmetries.

6 The Jacobi endomorphism, symmetries and adjoint

symmetries of a SODE

If we want to investigate how different objects on TM evolve under the flow of Γ, the
preceding section shows that we need the decomposition of the Lie derivative of all different
lifts with respect to Γ. This will be the central theme in this section.

Proposition 6.1 For X ∈ X (τ), we have

LΓX
V = −XH + (∇X)V (78)

and there exists an endomorphism Φ of X (τ) such that

LΓX
H = (∇X)H + Φ(X)V . (79)
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Proof: Recall that by definition Z ∈ XΓ iff S(LΓZ) = 0, which is equivalent to
LΓ(S(Z)) = LΓS(Z) or (using (LΓS)2 = ITM) LΓS ◦ LΓ(S(Z)) = Z. In particular,
for Z = JΓX = XH + (∇X)V , this becomes

LΓS(LΓX
V ) = XH + (∇X)V ,

from which (78) immediately follows. The same formula, taking into account that LΓX
V =

LΓ(S(XH)) = LΓS(XH) + S(LΓX
H) and using the property LΓS ◦ S = S, also shows us

that S(LΓX
H) = (∇X)V = S((∇X)H), which means that (∇X)H is the horizontal part

of LΓX
H. Consequently, there exists a map Φ : X (τ) → X (τ), implicitly defined by the

relation (79). Now for F ∈ C∞(TM) we have

LΓ(FXH) = Γ(F )XH + F (∇X)H + F (Φ(X))V

= (∇(FX))H + (FΦ(X))V ,

which shows that Φ ∈ V 1(τ). 2

Applying (79) to ∂/∂qj we find

[Γ, Hj]− ΓkjHk = Φi
jVi, (80)

from which it is easy to calculate the coordinate expression for Φ, which reads

Φi
j = −∂f

i

∂qj
− ΓkjΓ

i
k − Γ(Γij). (81)

Corollary 6.2 For α ∈ ∧1(τ), we have

LΓα
H = αV + (∇α)H (82)

LΓα
V = (∇α)V − (Φ?(α))H. (83)

Proof: The proof proceeds by duality from (78),(79),(56) and (57). We have,

〈XH,LΓα
H〉 = LΓ〈XH, αH〉 − 〈LΓX

H, αH〉
= ∇〈X,α〉 − 〈∇X,α〉
= 〈X,∇α〉 = 〈XH, (∇α)H〉;

〈XV ,LΓα
H〉 = −〈LΓX

V , αH〉
= 〈X,α〉 = 〈XV , αV 〉,

which proves (82). The proof of (83) is entirely similar. 2

In exactly the same way, from (78) and (79) and the defining relations of the various lifts
of a U ∈ V 1(τ), one obtains the following results.

Corollary 6.3 For U ∈ V 1(τ), the Lie derivative with respect to Γ of the different lifts
decomposes as follows:

LΓU
H;H = UV ;H + (∇U)H;H + (Φ ◦ U)H;V ,

LΓU
V ;H = (∇U)V ;H + (Φ ◦ U)V ;V − (U ◦ Φ)H;H,

LΓU
H;V = −UH;H + UV ;V + (∇U)H;V = LΓU

V , (84)

LΓU
V ;V = −UV ;H + (∇U)V ;V − (U ◦ Φ)H;V ,

LΓU
H = (∇U)H + [Φ, U ]V . (85)
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As an application of these results one easily computes, for example, the Lie derivative of
the almost complex structure:

LΓJ = (I − Φ)V ;V − (I − Φ)H;H.

Corollary 6.4 An explicit definition of the endomorphism Φ is given by

Φ = −1

2
(LΓLΓS ◦ PH)↓. (86)

Proof: From (84) with U = I we find LΓS = −IH;H + IV ;V and taking a second Lie
derivative, it follows that

LΓLΓS = −2(IV ;H + ΦH;V )

and composition with PH = IH;H subsequently gives

LΓLΓS ◦ PH = −2 ΦH;V ◦ IH;H = −2 ΦH;V = −2 ΦV ,

which is equivalent to (86). 2

Following the pattern of the preceding sections, we next move to the Lie derivative of
images under JΓ or IΓ and immediately hit an interesting characterization of symmetries
and adjoint symmetries (as defined in [20]) of Γ.

Proposition 6.5 For X ∈ X (τ), α ∈ ∧1(τ),
(i) JΓX is a symmetry of Γ if and only if

J (X) := ∇∇X + Φ(X) = 0. (87)

(ii) IΓα is an adjoint symmetry of Γ if and only if

J ?(α) := ∇∇α + Φ?(α) = 0. (88)

Proof: From (68) and (78), (79) we easily find LΓ(JΓ(X)) = (∇∇X + Φ(X))V , which
proves (87). Similarly, (69) plus (82),(83) leads to LΓ(LΓS(IΓα)) = (∇∇α + Φ?(α))H,
which implies (88). 2

Remarks: The notation J (X) for the operator defined in (87) is reminiscent of the
concept of a Jacobi field (see e.g. [5]). In the case of a linear connection, it is well known
(see [6]) that a Jacobi field can be obtained as the restriction to a geodesic of a symmetry
of the geodesic spray on TM . One can regard (87) as a generalized Jacobi equation,
which justifies the following terminology (compare in this respect also with the work of
Foulon [8]).

Definition 6.6 The element Φ ∈ V 1(τ) defined by (79) or (86) is called the Jacobi
endomorphism associated to the given vector field Γ.
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With a slight abuse of terminology, solutions of (87) will be called symmetries of Γ and
solutions of the adjoint equation (88) will be referred to as adjoint symmetries of Γ. That
J ? is truly the adjoint operator of J is seen from the following identity which is easily
obtained using the self-duality of the covariant derivative ∇:

〈J (X), α〉 − 〈X,J ?(α)〉 = ∇ (〈∇X,α〉 − 〈X,∇α〉) . (89)

Thinking about recursion-type operators for symmetries, the constructions which obvi-
ously first come into one’s mind are: type (1, 1) tensor fields mapping symmetries into
symmetries and type (0, 2) tensor fields mapping symmetries into adjoint symmetries.

Proposition 6.7 U ∈ V 1(τ) maps symmetries into symmetries if and only if ∇U = 0
and [U,Φ] = 0.

Proof: It is straightforward to check that

J (U(X))− U(J (X)) = (∇∇U + [Φ, U ])(X) + 2∇U(∇X).

Hence, U will have the desired property if and only if the right-hand side of this equal-
ity vanishes for all symmetries (i.e. solutions of (87)). Thinking for a moment of the
corresponding symmetries on TM , it has been argued before (see part I) that the set
of symmetries of Γ locally span the whole of XΓ. This in turn means, in view of the
decomposition (68) of JΓX, that X and ∇X in the present context can be regarded as
independent arguments. An alternative way for clarifying this point is to replace the
second-order PDE’s (87) by the equivalent first-order system ∇X = Y , ∇Y = −Φ(X)
and to appeal, for example, to existence theorems of Cauchy-Kowalewski type (first away
from the zero section of TM , then extended by continuity). The conclusion is that U will
have the desired property if and only if the right-hand side of the above expression van-
ishes for all X and all ∇X, treated as independent variables. The result then immediately
follows. 2

Proposition 6.8 A symmetric type (0, 2) tensor field (along τ) g maps symmetries into
adjoint symmetries, if and only if ∇g = 0 and Φ g is symmetric.

Proof: The method of proof is exactly the same as for the preceding result. 2

In the calculus on TM , recursion operators for symmetries are elements of V 1
Γ (see [17]

and references therein). Covariant tensor fields on TM mapping symmetries into adjoint
symmetries were discussed in [20] and more generally in [1]; they more naturally appear
there as 2-forms. The link with this existing literature is expected to come forward if
we complete the line of thought in this section by looking at LΓ(JΓU) and LΓg

K. This
involves computing the action on horizontal and vertical lifts again and thus connects
with the series of corollaries of Proposition 6.1.

Corollary 6.9 For U ∈ V 1(τ), the decompostion of LΓ(JΓU) is given by

LΓ(JΓU) = 2(∇U)V ;V + (∇∇U + [Φ, U ])V .
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We conclude, not unexpectedly, that the conditions ∇U = 0 and [U,Φ] = 0, identified
in Proposition 6.7 are equivalent to LΓ(JΓU) = 0. Observe from (85) that they are also
equivalent to LΓU

H = 0.

From the characterizing properties of gK and repeated use of Proposition 6.1, one
easily finds,

LΓg
K(XH, Y H) = g(X,Φ(Y ))− g(Φ(X), Y ),

LΓg
K(XV , Y V ) = 0 , LΓg

K(XV , Y H) = ∇g(X, Y ),

Corollary 6.10 LΓg
K = 0⇐⇒ ∇g = 0 and Φ g is symmetric.

7 Other tensorial quantities of interest

We return for a while to the case of an arbitrary non-linear connection, e.g. not necessarily
the one coming from a given sode. Recall that there exists a canonical vector field along
τ , namely T = vi ∂/∂qi. It is clear that TV is the dilation or Liouville vector field on
TM , while

TH = vi
∂

∂qi
− Γikv

k ∂

∂vi
,

is a second-order vector field on TM which, following Grifone, will be called the associated
semispray of the given connection.

Definition 7.1 The tension of the connection is the vector-valued 1-form −dHT.

In coordinates we have

−dHT =
(
Γji − vkΓ

j
ik

)
dqi ⊗ ∂

∂qj
,

from which one can see that −(dHT)V corresponds to the tension in [11] (see also [7]). A
different terminology which has been used for this concept is homogeneity torsion [21].
Concerning the relevance of this object, observe first that dHT = 0 expresses that the
connection coefficients are homogeneous of degree 1 in the fibre coordinates and since we
are assuming everything to be smooth on the zero section, dHT = 0 actually is equivalent
to the connection being linear. More generally, if dHT is basic, say dHT = U ∈ V 1(M),
then

Γji − vk
∂Γji
∂vk

= uji (q)

implies that the connection coefficients are of the form

Γji (q, v) = Γjij(q)v
k + uji (q),

for some functions Γjik(q), i.e. that the connection is affine. Note in passing that an
equivalent characterization of the connection being affine is the vanishing of the tensor
field θ introduced in Section 2 (see equation (19)).
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Definition 7.2 The strong torsion of the connection is the element T s ∈ V 1(τ) defined
by

T s = dHT + iTT. (90)

In coordinates,

T s =

(
vk
∂Γjk
∂vi
− Γji

)
dqi ⊗ ∂

∂qj
,

from which one can again see the analogy with the similar concept in the references cited
above.

Proposition 7.3 Torsion and strong torsion are related by the property

dVT s = 2T. (91)

Proof: Observe first that dV T = I, dHI = T (see Part I) and that (as for any vector-
valued 2-form): iT I = T , iIT = 2T . Using these relations and the commutator (12), we
obtain

dVT s = dV dHT + dV iTT

= [dV , dH]T− dHdV T + dV

TT

= dV

TT− aDV TT− T + dV

TT

= −DV

TT + dV

TT

= idV TT = 2T,

where the final step is based on (42). 2

The following statement is an immediate consequence of (90) and (91).

Corollary 7.4 T s = 0⇐⇒ T = 0 and dHT = 0.

Since T = 0 is the condition for the connection being defined by a sode and dHT = 0
means that the connection is linear, T s = 0 is equivalent to saying that the connection
comes from a (quadratic) spray.

Let us then go back to the case of a sode, for which the concepts of strong torsion
and tension coincide up to a sign. Since Γ = JΓT, we know from (68) that

Γ = TH + (∇T)V . (92)

Hence, ∇T can rightly be called the deviation, since it characterizes the difference between
the given sode and the associated semispray of the connection. We have learnt in the
preceding section that the dynamical covariant derivative∇ and the Jacobi endomorphism
Φ somehow contain all the information of the given dynamics. We are now able to
complete the picture by computing the decomposition of ∇ and will arrive at the same
time at another interesting characterization of Φ.
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Proposition 7.5 The decomposition (1) of the dynamical covariant derivative is given
by

∇ = −idHT + dV

∇T + dH

T − adHT. (93)

The Jacobi endomorphism Φ can be written as

Φ = iTR− dH∇T. (94)

Proof: From (79) and (92), using the results of Lemma 4.1 and (39), we get

(∇X)H + Φ(X)V = LΓX
H = [TH + (∇T)V , XH]

= ([T, X]
H

)H +R(T, X)V − (dH

X∇T)V + (dV

∇TX)H

= (dV

∇TX + LH

TX)H + ((iTR− dH∇T)(X))V .

The vertical part produces (94). From the horizontal part, we see that the action of ∇
on vector fields is given by

∇X = dV

∇TX + LH

TX.

This in turn implies that the dual action on 1-forms must read:

∇α = DV

∇Tα + dH

Tα.

Using (43) to replace LH
T and (42) to replace DV

∇T, the first expression reveals that the
a?-part of ∇ is −adHT (remember that T = 0); the second expression similarly reveals
that the i?-part is −idV∇T. However, if we do the same type of calculation starting from
the expression (78) for LΓX

V , we find that

∇X = dH

TX + LV

∇TX

and hence that the a?-part of ∇ is also −adV∇T. Therefore,

dV∇T = dHT (95)

and the decomposition (93) now directly follows. 2

Remarks: It is of some interest to write the self-dual ∇ also as a sum of self-dual
ingredients. We thus have,

∇ = DH

T + DV

∇T − µdHT = LH

T + LV

∇T + µdHT. (96)

Observe also that the expression (94) for Φ exhibits more clearly the relationship between
equation (87) and the classical equation for Jacobi fields.

Proposition 7.6 The curvature 2-form R and the Jacobi endomorphism Φ are related
by the properties

dV Φ = 3R, dHΦ = ∇R. (97)
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Proof: We start from (94) and in the calculations below make use of the following facts
and properties: T = 0 implies that dH and dV commute and that the Bianchi identities
read dVR = 0 and dHR = 0 (see part I); property (95), the expression (10) for dH ◦ dH

together with the property Rie = −DVR; the decomposition of ∇.

dV Φ = dV iTR− dV dH∇T

= dV

TR + dHdHT

= dV

TR + dV

RT + aRieT

= dV

TR + iRd
V T−DV

TR

= iRI + iIR = R + 2R = 3R.

dHΦ = dHiTR− dHdH∇T

= dH

TR− dV

R∇T− aRie(∇T)

= dH

TR− iRdHT + DV

∇TR

= dH

TR− adHTR + dV

∇TR− idHTR = ∇R.

In the last step, we have also used the general property that for L ∈ V (τ) and U ∈ V 1(τ)

iLU = aUL,

which is a direct consequence of the definitions in part I. 2

We finally list the following interesting commutators,

[dV ,∇] = dH , [dH,∇] = −2 iR − dV

Φ + aDV Φ−R, (98)

where R ∈ ∧1(τ)⊗ V 1(τ) is implicitly defined by aR(X) = iXR. They can be proved, for
example, by looking at the Jacobi identity for Γ, XH and Y V , or perhaps just as simply
by a coordinate calculation.

8 Applications and outlook for further study

It would take too much space to develop truly new applications at the end of this paper.
What we can do is pick out a couple of known results from the literature and illustrate
how these acquire a natural and elegant formulation within the framework of the calculus
of forms along τ . Generally speaking, the advantage of the present formulation is that
conditions and results are stated in their most economical form. For example, a symmetry
of Γ, being a vector field on TM , has 2n components, but only n of them are relevant
and have to satisfy the condition J (X) = 0, which has a natural place within the present
theory. Similarly, the usual geometrical formulation of the inverse problem of Lagrangian
mechanics is about the existence of a Cartan 2-form on TM with a (2n× 2n)-coefficient
matrix. The theorem below gives a geometrical version of the Helmholtz conditions, which
involves only the essential (n× n)-part of the Cartan 2-form.
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Theorem 8.1 A sode Γ is locally Lagrangian if and only if there exists a non-degenerate
symmetric (0, 2) tensor field g (along τ), such that

∇g = 0 , Φ g is symmetric

DV g is symmetric.

Proof: We know from Corollary 6.10 that the first two conditions are equivalent to
LΓg

K = 0. By definition of the Kähler lift of g, we further know that gK(XV , Y V ) = 0.
Following Crampin’s conditions in their weakest form [3], gK will therefore satisfy all
requirements for the local construction of a Cartan form, provided we have

iXH dgK(Y V , ZV ) = 0 ∀X, Y, Z ∈ X (τ).

Now, using the classical formula of type (34) for the computation of dgK(X0
H, X1

V , X2
V ),

the bracket relations (53),(54) and the defining equations of gK, we get

dgK(X0
H, X1

V , X2
V ) = LX1

V (g(X0, X2))− LX2
V (g(X0, X1)) + gK((DV

X1
X0)H, X2

V )

− gK((DV

X2
X0)H, X1

V )− gK(([X1, X2]
V
)V , X0

H)

= DV

X1
(g(X0, X2))−DV

X2
(g(X0, X1))− g(DV

X1
X0, X2)

+ g(DV

X2
X0, X1)− g(DV

X1
X2 −DV

X2
X1, X0)

= (DV

X1
g)(X0, X2)− (DV

X2
g)(X0, X1).

Hence, in view of the symmetry of g, the remaining condition of Crampin’s formulation
is equivalent to DV g being a symmetric tensor field. 2

Observe by the way that this last condition will automatically imply that gK is closed.
For a sketch of the way this theorem can be proved without recurring to the results on
TM , see [2]. Such a more direct proof requires of course a direct way of expressing when
a function L is a Lagrangian for the given sode Γ. With θL standing for dVL, we can
state the following characterization.

Proposition 8.2 A regular function L ∈ C∞(TM) is a Lagrangian for Γ if and only if

∇θL = dHL. (99)

Proof: Recalling from [19] that L is a Lagrangian iff LΓ(S?(dL)) = dL and using (58)
and (82), the result immediately follows. 2

REMARK: Using the first of equations (98), one easily verifies that (99) is equivalent
to dHL = 1

2
dV (Γ(L)). Translated to TM , this is a characterization of a Lagrangian sode

which is frequently used in the work of Klein (see [13] and [14]).

We finally reformulate a result from [20] about a class of adjoint symmetries which
produce a Lagrangian (not necessarily) for Γ.

Proposition 8.3 Let α be an adjoint symmetry of Γ which is dV -closed and therefore
dV -exact, say α = dVF , then L = Γ(F ) is a Lagrangian for Γ. Conversely, if L is a
Lagrangian of the form L = Γ(F ) for some function F , then α = dVF is an adjoint
symmetry.
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Proof: Making use of the commutators (98), we have

J ?(dVF ) = ∇∇dVF + Φ?(dVF )

= ∇(dV∇− dH)(F ) + dV

ΦF

= ∇(dV (∇F ))− dH(∇F ),

from which it follows that ∇F satisfies the criterion (99) if and only if J ?(dVF ) = 0. 2

The calculus of forms along τ has now sufficiently been developed. There is no doubt that
every result which can be obtained within this framework will have a translation in terms
of objects living on TM and vice versa. The tools for making such a translation have
also been established here (and in part I). Obviously, the relevance of the new theory will
become fully evident, when it leads to new results in the study of second-order equations,
which would have been very hard to detect or prove by staying within the framework
of forms and fields on TM . In a forthcoming paper, we will show that this is indeed
happening when we develop a theory for testing whether a given system of second-order
equations can be completely decoupled within a suitable set of coordinates.
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