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1. Introduction

In two recent papers [9] [10] we have developed the theory of derivations of
differential forms along the tangent bundle projection τ :TM → M . The aim
of the present work is to show that this theory, which may at first glance look
a bit esoteric and not directly amenable to practical applications, can most
certainly contribute to the solution of a problem of practical interest such as
the characterization of separable systems of second-order differential equations.
Our characterization of separability will lead to criteria which can be tested on
given second-order equations and will show the way to construct coordinates
in which the decoupling takes place.

Any result established in terms of vector fields and forms along τ has a
translation in terms of geometrical objects living on TM , and vice versa. The
advantage of the use of tensor fields along τ is that it allows to state results
in a more economical form, as was shown in [10], [12] and [1]. This is to some
extent due to the fact that a tensor field along τ can be lifted to a tensor field
on TM in many diferent ways, and in this process the number of components
is obviously increased. Fairly simple operations on the tensor field along τ
thus may correspond to complicated operations on one of its lifts. But the
main advantage of the formalism we are using is by far the existence of two
derivations similar to covariant derivatives, which are in fact components of a
linear connection on the pull-back bundle τ∗τ : τ∗(TM)→ TM .

A system of second-order differential equations (sode) defines two impor-
tant operators along τ : a derivation ∇ of degree zero, called the dynamical
covariant derivative, and a type (1,1) tensor field Φ, called the Jacobi endo-
morphism. These contain in a way most of the information about the dynamics,
and the decomposition of the evolution of various objects under the flow of the
sode in terms of these two operators has been shown to be very useful.

The Jacobi endomorphism plays an important role in the study of the prob-
lem we are going to deal with. A theorem giving sufficient conditions for the
separability of a sode was proved in [3] [4] and [11]. This theorem is related
to the complete integrability of the system and it is established in terms of an
invariant diagonalizable tensor field on TM whose eigenspaces are involutive
distributions. Such an invariant tensor, however, is associated to a tensor field
U along τ which commutes with the Jacobi endomorphism. It follows that the
eigenspaces of U are invariant under Φ, so that the separability of a sode is a
property which can be studied in terms of the Jacobi endomorphism.

The paper is organized as follows. In Section 2 we will present a résumé
of some important results of [9] and [10]. In order to make the present paper
self-contained, however, many operations will be re-defined here in a more
ad hoc manner, leading more directly to the formulae which are needed for
developing the present theory. In Section 3 we study distributions along τ ,
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the natural generalization of the concept of distribution on the base manifold,
and we give conditions for their integrability. Distributions defined by type
(1,1) tensor fields are studied in Section 4, where we will analyze interesting
properties of such tensors, such as the diagonalizability in coordinates or the
separability. Section 5 contains our main theorem, characterizing separable
sodes. In Section 6 we define two tensors similar to the Nijenhuis tensor on
a manifold, and we critically re-examine the separability theorem in [3]. The
paper concludes with some simple examples which illustrate the theory.

2. Preliminaries

Let π:E → M be a fibre bundle and φ:N → M a smooth map. A section
of E along φ is a map σ:N → E such that π ◦ σ = φ. If E is a vector bundle
then the set of sections along φ is a C∞(N)-module. The most interesting
cases are E = TM , (T ∗M)∧p or any other tensor bundle, and then a section
of E along φ is called a vector field along φ, a p-form along φ, or a tensor field
along φ (respectively). The set of vector fields along φ is denoted by X (φ), and
the set of p-forms along φ by

∧p(φ). In particular, we are interested in the
case in which φ is the projection of the tangent bundle τ :TM → M . Then, a
vector field along τ is a map X:TM → TM such that for v ∈ TqM , X(v) is a
tangent vector to M at q. Similarly, a 1-form along τ is a map α:TM → T ∗M
such that α(v) is a covector at q. The easiest example of vector field along τ
is X = Y ◦ τ for Y a vector field on the base manifold M . We will say that X
is a basic vector field and we will not distinguish in the notation between Y
and X. Similarly a basic tensor field is a tensor field on M thought of as a
tensor field along τ via composition with τ . In natural coordinates (xi, vi) in
TM the coordinate expresion of a vector field X along τ and a 1-form α along τ
is

X = Xi(x, v)
∂

∂xi
α = αi(x, v)dxi (2.1)

and the coordinate expresion of a (1,1) type tensor field U along τ is

U = U ij(x, v)
∂

∂xi
⊗ dxj . (2.2)

There exists a canonical vector field along τ denoted by T and defined by the
identity map on TM thought of as a section of TM along τ . Its coordinate
expression is

T = vi
∂

∂xi
. (2.3)

In two previous papers [9] [10] we have studied the algebra of derivations of
scalar and vector valued forms along τ . Special emphasis has been put in what
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we called self-dual derivations, that is, derivations D of degree zero satisfying
the rule

D〈X,α〉 = 〈DX,α〉+ 〈X,Dα〉. (2.4)

They have the property that they extend to derivations of tensor fields along τ
by means of the relation

[DW ](α1, . . . , αq, X1, . . . , Xp) = D[W (α1, . . . , αq, X1, . . . , Xp)]

−
q∑
i=1

W (α1, . . . , Dαi, . . . , αq, X1, . . . , Xp)

−
p∑
j=1

W (α1, . . . , αq, X1, . . . , DXj , . . . , Xp)

(2.5)
where W is a p-covariant q-contravariant tensor field along τ , Xj ∈ X (τ)
and αi ∈

∧1(τ). In coordinates, a self-dual derivation is determined by its
action on C∞(TM) and by functions Di

j , called the coefficients of D, defined
byD(∂/∂xj) = Di

j ∂/∂x
i. Then equation (2.4) implies thatD(dxi) = −Di

j dxj .
One way of constructing self-dual derivations is by extension of derivations of
X (τ), i.e. IR-linear maps from X (τ) into itself such that D(FX) = (DF )X +
F (DX) and D(FG) = (DF )G+ F (DG) for F , G ∈ C∞(TM) and X ∈ X (τ).
If D is a derivation of X (τ), then equation (2.4) implicitly defines Dα. We
will use this procedure in order to define the fundamental derivations that we
are going to use. In fact we will define them as derivations of X (τ), and the
extension to self-dual derivations should be understood.

In order to give a complete classification of the set of derivations of forms
along τ we need an Ehresmann connection in the tangent bundle, i.e. a hor-
izontal subbundle of T (TM). A connection defines an isomorphism between
the modules of vector fields along τ and horizontal vector fields on TM , which
is called the horizontal lift. Locally a connection is given by n2 functions
Γij ∈ C∞(TM), called the coefficients of the connection, which define the hor-
izontal lift Hi = ∂/∂xi − Γji∂/∂v

j of the coordinate vector field ∂/∂xi. In
the presence of a connection, any vector field Z ∈ X (TM) can be decomposed
into a sum Z = XH

1 + XV
2 for X1, X2 ∈ X (τ), where the indices H and V

refer to horizontal and vertical lift, respectively. In coordinates, if Z has the
expression Z = Xi∂/∂xi + Y i∂/∂vi then X1 and X2 are X1 = Xi∂/∂xi and
X2 = (Y i + ΓijX

j)∂/∂xi.
The necessity of a connection does not introduce any extra assumption,

since in the problems we are going to deal with a sode will always be present,
and every sode induces a connection on the tangent bundle. In coordinates,
if f i are the forces defined by a sode Γ, f i = Γ(vi), then the coefficients of
the connection are Γij = −(1/2)∂f i/∂vj . It follows that the functions Γijk =
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∂Γij/∂v
k are symmetric in j, k, that is, the torsion of the connection vanishes.

In fact, the vanishing of the torsion is the necessary and sufficient condition for
the connection to be defined by a sode. In what follows we will assume that
the connection is the one associated to a sode.

With the above decomposition in mind, we define two fundamental deriva-
tions DH

X and DV

X for every X ∈ X (τ), called respectively the horizontal and
vertical covariant derivative, by means of the equation

[XH , Y V ] = {DH

XY }V − {DV

YX}H . (2.6)

The word ‘covariant’ means that they are C∞(TM)-linear in the argument
noted as a subscript. It can be shown that a self-dual derivation D can be
uniquely decomposed as a sum

D = DH

X1
+ DV

X2
+ µU

for X1, X2 ∈ X (τ) and U a (1,1) tensor field along τ , and where the derivation
µU is defined by µU (X) = UX, for X ∈ X (τ). If X, Y are vector fields along τ
with local expression X = Xi∂/∂xi and Y = Y i∂/∂xi, then the coordinate
expressions of DH

XY and DV

XY are

DH

XY = Xi(HiY
j + Y kΓjik)

∂

∂xj

DV

XY = Xi(ViY j)
∂

∂xj
,

(2.7)

where Vi = ∂/∂vi and Γijk = Vk(Γij).
From the C∞(TM)-linearity of the covariant derivatives, it follows that we

can define operations DH and DV on tensor fields by

[DHW ](α1, . . . , αq, X1, . . . , Xp) = [DH

X1
W ](α1, . . . , αq, X2, . . . , Xp)

[DVW ](α1, . . . , αq, X1, . . . , Xp) = [DV

X1
W ](α1, . . . , αq, X2, . . . , Xp).

It can be easily shown that a vector field X along τ is basic if and only if DVX
vanishes. Similarly, a tensor field W along τ is basic iff DVW = 0.

The commutator of two horizontal lifts and two vertical lifts is given by

[XV , Y V ] = {[X,Y ]
V
}V

[XH , Y H ] = {[X,Y ]
H
}H + {R(X,Y )}V

(2.8)

where R is the curvature of the connection and where the horizontal and vertical
commutators, [·, ·]

H
and [·, ·]

V
, are given by

[X,Y ]
H

= DH

XY −DH

YX (2.9)
[X,Y ]

V
= DV

XY −DV

YX. (2.10)
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It is easy to see (e.g. in coordinates) that the horizontal bracket of two basic
vector fields coincides with the Lie bracket of such vector fields on M .

The vertical commutator defines a Lie algebra structure on X (τ), while the
horizontal one does not except if the curvature vanishes, as follows from the
equations

[DV

X ,D
V

Y ] = DV

[X,Y ]V

[DV

X ,D
H

Y ] = DH

DV
X
Y −DV

DH
Y
X + µθ(X,Y )

[DH

X ,D
H

Y ] = DH

[X,Y ]H
+ DV

R(X,Y ) + µRie(X,Y ).

(2.11)

These expressions define the tensor fields θ and Rie that should be considered
as 2-covariant tensor fields taking values in the set of (1,1) tensor fields. Their
coordinate expresions are

θ = Γkjmldx
l ⊗ dxj ⊗

(
dxm ⊗ ∂

∂xk

)
Rie =

1
2
(
Hk(Γilj)−Hl(Γikj) + ΓikrΓ

r
lj − ΓilrΓ

r
kj

)
dxk ∧ dxl ⊗

(
dxj ⊗ ∂

∂xi

)
(2.12)

Notice that Rie is a (1,1) tensor-valued 2-form while θ is completely symmetric.
From the coordinate expression of Rie it follows that Rie = −DVR, i.e. if X,
Y , Z are vector fields along τ , then Rie(X,Y )Z = −[DV

ZR](X,Y ).
Fundamental derivations of degree 1, dH and dV , can be defined as the skew-

symmetric part of DH and DV , respectively, and they are called the horizontal
and vertical exterior differentials. For instance, if X,Y ∈ X (τ), α ∈

∧1(τ) and
U is a (1,1) tensor field along τ then

(dVX)(Y ) = DV

YX, i.e. dVX = DVX

(dVα)(X,Y ) = DVα(X,Y )−DVα(Y,X) = [DV

Xα](Y )− [DV

Y α](X)
(dVU)(X,Y ) = DVU(X,Y )−DVU(Y,X) = [DV

XU ](Y )− [DV

Y U ](X),
(2.13)

and similar relations hold for dH . The vertical differential is nilpotent, dV ◦dV =
0, and commutes with the horizontal differential, i.e. dV ◦ dH + dH ◦ dV = 0.
The horizontal differential is nilpotent iff the curvature vanishes.

Another important tensor field associated to the connection is the tension.
It is the (1,1) tensor field t = −DHT. Its coordinate expression is

t = (Γij − Γijkv
k) dxj ⊗ ∂

∂xi
. (2.14)

As a consequence of the vanishing of the torsion we have dV t = 0. Notice that
t = 0 iff the connection is linear, i.e. the Γijk do not depend on vl. In this
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case the tensor Rie coincides with the Riemann curvature tensor of the linear
connection. Notice also that DVT = I.

More directly related to the sode, there is a self-dual derivation ∇ called
the dynamical covariant derivative and a (1,1) tensor field Φ called the Jacobi
endomorphism. They can be simultaneously defined by the equation

[Γ, XH ] = {∇X}H + {Φ(X)}V . (2.15)

∇ and Φ somehow contain most of the information about the sode. In fact,
on functions ∇ coincides with LΓ. We further have

[Γ, XV ] = −XH + {∇X}V . (2.16)

In coordinates, the coefficients of ∇ are equal to the coefficients of the connec-
tion:

∇
(

∂

∂xj

)
= Γij

∂

∂xi
, (2.17)

so that the dynamical covariant derivative of X = Xi∂/∂xi has the expression

∇X = (ΓXi + ΓijX
j)

∂

∂xi
. (2.18)

The coordinate expression of the Jacobi endomorphism is

Φ =
(
−∂f

i

∂xj
− ΓikΓkj − Γ(Γij)

)
dxj ⊗ ∂

∂xi
, (2.19)

and Φ satisfies the following relation

Φ(X) = R(T, X)−DH

X∇T. (2.20)

The exterior differentials of Φ are related to the curvature by means of

dV Φ = 3R dHΦ = ∇R. (2.21)

We further have the following commutators

[∇,DV

X ]Y = DV

∇XY −DH

XY (2.22)
[∇,DH

X ]Y = DH

∇XY + DV

Φ(X)Y − [DV

Y Φ](X)−R(X,Y ) (2.23)

for X and Y vector fields along τ .
Finally, we recall that a sode Γ is Lagrangian if there exists a function

L on TM such that Γ represents the Euler-Lagrange equations defined by L.
The conditions for a sode to be (locally) Lagrangian are known as Helmholtz
conditions and can be formulated within the present framework as follows: a
sode Γ is (locally) Lagrangian iff there exists a symmetric 2-covariant tensor
field g alond τ satisfying

(1) ∇g = 0
(2) DV g is symmetric
(3) Φ is symmetric with respect to g.

The Lagrangian L and the tensor g are related by g = DV DVL.
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3. Distributions along τ and integrability

One of the more important tools in Differential Geometry is the notion of
distribution (see e.g. [14]). The central result of the theory of distributions is
Frobenius theorem, which states that a distribution is integrable iff it is invo-
lutive. In such a case there exist coordinates (xα, yi) such that the distribution
is locally generated by the vector fields ∂/∂xα, i.e. the integral submanifolds
of the distribution are locally given by slices yi = constant. The concept of
distribution along τ generalizes the concept of distribution in the same way as
the concept of vector field along τ generalizes the concept of vector field on
the base manifold. In this section we will define that notion and we will study
conditions for the integrability of such distributions.

Definition 3.1. A d-dimensional distribution D along τ is a smooth choice
of a d-dimensional subspace D(v) of Tτ(v)M for every v ∈ TM . We say that a
vector field X along τ belongs to D, X ∈ D, if X(v) ∈ D(v) for each v ∈ TM .

By “smooth choice” we mean that in a neighbourhood of each v in TM there
exist d independent vector fields along τ which belong to D. Alternatively, we
can define a distribution along τ as a vector subbundle of the pull-back bundle
τ∗τ : τ∗(TM) → TM . A vector field belongs to D if it is a section of such
subbundle.

Definition 3.2. A distribution D along τ is said to be basic if there exists
a distribution E on the base manifold M such that D(v) = E(τ(v)) for each
v ∈ TM . We will say that D is involutive if it is basic and the distribution E
in the base is involutive. An integral submanifold of E is said to be an integral
submanifold of D.

It is clear that D is basic if and only if it is locally generated by basic vector
fields along τ with coefficients in C∞(TM). In this case, D is DV -invariant, i.e.
if Z belongs to the distribution and X is any vector field along τ then DV

XZ also
belongs toD. Indeed, if Z1, . . . , Zd are basic vector fields that spanD then every
vector field Z along τ in D can be written as a linear combination Z = ραZα,
where the coefficients ρα are functions on TM . Thus, DV

XZ = (DV

Xρ
α)Zα

belongs to D. That the converse also holds is shown by the following result.

Proposition 3.3. A distribution along τ is basic if and only if it is DV -
invariant.

Proof: Let D be a DV -invariant d-dimensional distribution along τ and choose
a local basis {Zα}α=1,...,d for D. If {Xi}i=1,...,n is a local basis of X (M), there
exist functions Λiα on TM such that Zα = ΛiαXi. Since the vector fields Zα are
linearly independent, the matrix Λiα contains a regular d × d submatrix. We
can assume that such submatrix is the upper left corner one Λβα. Denoting by
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θαβ the inverse of Λβα, {Yα = θβαZβ} is also a local basis for D. We claim that
the vector fields Yα are basic. Indeed, the expression of Yα in the basis {Xi} is
Yα = Xα +

∑n
i=d+1 σ

i
αXi, with σiα = θβαΛiβ . For every X ∈ X (τ) we have that

DV

XYα =
∑n
i=d+1(DV

Xσ
i
α)Xi belongs to D and therefore should be spanned by

the Yα. But this is impossible except if DV

Xσ
i
α = 0, that is DV

XYα = 0.

From a distribution D along τ we can find distributions on TM by lifting
every vector field of D to TM . Since there are many different lifts we will get
different lifted distributions, for instance with the vertical and the horizontal
lift. A very interesting lift associated to a sode is the following. Given a local
basis {Zα} for D we let JΓD be the distribution spanned by the vector fields
{ZV

α , JΓZα}, where JΓZα = {Zα}H + {∇Zα}V . Such kind of distributions has
been studied in [7]. As a matter of fact, in [7], an integrable distribution on
TM is said to be S-regular if it is regular and locally generated by vertical and
complete lifts of vector fields on the base. Since the complete lift of a basic
vector field X is just JΓX, it follows that S-regularity of JΓD is just a matter
of D being basic. Hence, DV -invariance of D is the criterion for JΓD to be
S-regular and every S-regular distribution on TM can be interpreted this way.

From the fact that the horizontal bracket of two basic vector fields is equal
to their Lie bracket we deduce that a basic distribution is involutive if and only
if it is closed under the horizontal bracket. It follows that a distribution along τ
is involutive if and only if it is DV -invariant and closed under the horizontal
bracket. Notice that this condition is independent of the sode connection.
The dual statement reads as follows: a co-distribution along τ , i.e. a vector
subbundle of τ∗(T ∗M), is basic iff it is DV -invariant, and it is integrable iff it
is DV -invariant and dH-closed (meaning that the ideal generated by 1-forms in
the codistribution is dH-closed). This easily follows from the general formula
dHα(X,Y ) = DH

X(α(Y ))−DH

Y (α(X))− α([X,Y ]
H

).

When dealing with integrable complementary distributions along τ , the
following result ensures the existence of systems of local coordinates for M
simultaneously adapted to every distribution.

Lemma 3.4. Let DA, A = 1, . . . , r, be complementary distributions along
τ , i.e. Tτ(v)M = ⊕rA=1DA(v) ∀v ∈ TM . Assume further that every DA is
DV - and [·, ·]

H
-closed and that also every sum of DA is [·, ·]

H
-closed. Then for

each point q ∈ M there exists an open neighbourhood U ⊂ M of q such that
U = U1×· · ·×Ur, where each UA is an open neighbourhood of q in the maximal
integral submanifold of DA through q.

Proof: Let D⊥A be the annihilator of DA and D∗A = ∩B 6=AD⊥B . Then D∗A are
complementary codistributions along τ . Since each DA (and each sum of DA’s)
is DV -invariant and [·, ·]

H
-closed, we have that each D∗ is DV -invariant and

dH-closed. It follows that D∗A is basic and that there exists a codistribution E∗A
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on M such that D∗A(v) = E∗A(τ(v)). Since D∗A is dH-closed, we have that E∗A
is d-closed (d being the exterior derivative on M). Frobenius theorem in such
a situation yields coordinates which integrate all distributions simultaneously.
To see this, it suffices to consider the case r = 2, i.e. to look at the case of
two complementary codistributions E∗A and E∗B on M (the more general case
following easily by induction). In coordinates (yi) = (yAα, yBβ) adapted to the
codistribution E∗A, the complementarity ensures that E∗B is spanned by 1-forms
of the form {dyBβ + ΛBβAαdyAα}β=1,...,dim E∗

B
. Integrability of E∗B subsequently

implies the existence of functions xBβ such that dxBβ generates the same codis-
tribution. Putting further xAα = yAα for α = 1, . . . ,dim E∗A completes the
construction of coordinates with the desired feature. In this way, for our gen-
eral situation, there exist functions {xAα}A=1,...,r;α=1,...,dimDA on a neighbour-
hood U of each point in M such that D∗A is generated by {dxAα}α=1,...,dimDA .
The slices xBβ = constant for B 6= A are the open sets UA, which are of course
integral submanifolds of DA.

It is worth to emphasize that a distribution along τ which is closed under
the vertical bracket is not necessarily basic. In fact, it can be shown that in
such a case the distribution is locally generated by vector fields which pairwise
commute with respect to the vertical bracket. This in turns implies that there
exist dV -exact 1-forms along τ generating the annihilator of the distribution.

4. Distributions defined by type (1,1) tensor fields

In the same way as distributions often appear as defined by invariant sub-
spaces of type (1,1) tensor fields on a manifold, distributions along τ appear as
defined by invariant subspaces of type (1,1) tensor fields along τ . In particular
we are interested in diagonalizable tensor fields and the distributions defined
by their eigenspaces.

A tensor field U along τ is said to be diagonalizable if for each v ∈ TM the
endomorphism U(v):Tτ(v)M → Tτ(v)M is diagonalizable, there exist (locally)
smooth functions µA (called eigenfunctions) such that µA(v) is an eigenvalue of
U(v) and the rank of µA−U is constant. In this case, the eigenspaces of U define
distributions along τ , called the eigendistributions of U and denoted by DA,
i.e. DA = ker(µA −U). An integral submanifold of an eigendistribution is said
to be an eigenmanifold of U . In what follows, U will denote a diagonalizable
tensor field along τ and the dimension of DA will be denoted dA.

Proposition 4.1. Let D be a self-dual derivation. The eigendistributions of
a diagonalizable U are invariant under D if and only if [DU,U ] = 0. In such a
case DU is diagonalizable and its eigenvalues are DµA.
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Proof: Since D is self-dual, if X ∈ DA we have

DU(X) = D(UX)− U(DX) = (µA − U)DX + (DµA)X, (4.1)

and thus

[DU,U ](X) = DU(µAX)− U(DU(X)) = (µA − U)DU(X) = (µA − U)2DX.

It follows that DX belongs to DA if and only if [DU,U ](X) = 0. Since U
is diagonalizable, a local basis of X (τ) can be made up of eigenvectors of U .
Equation (4.1) then reduces to DU(X) = (DµA)X and the proposition easily
follows.

The above result enables us to analyse whether the eigendistributions of
a tensor field U along τ are DV -invariant, and hence basic. This will happen
iff [DV

XU,U ] = 0 for each X ∈ X (τ). As a consequence of the linearity of
the vertical covariant derivative, the commutator [DV

XU,U ] defines a type (1,2)
tensor field CV

U along τ :

CV

U (X,Y ) = [DV

XU,U ](Y ). (4.2)

An equivalent definition of this tensor is

CV

U (X,Y ) = DVU(X,UY )− UDVU(X,Y ). (4.3)

Similar comments and expressions apply to the horizontal counterpart. The
coordinates expressions of these tensors are

CV

U =
{

(ViUkl )U lj − (ViU lj)U
k
l

}
dxi ⊗ dxj ⊗ ∂

∂xk

CH

U =
{

(HiU
k
l + Url Γkir − Ukr Γril)U

l
j

− (HiU
l
j + Urj Γlir − U lrΓrij)Ukl

}
dxi ⊗ dxj ⊗ ∂

∂xk

(4.4)

We also define tensor fields HV

U and HH

U along τ , whose skew-symmetric
parts bear resemblance to the Haantjes tensor in [5],

HV

U (X,Y ) = CV

U (U2X,Y )− 2UCV

U (UX, Y ) + U2CV

U (X,Y )
HH

U (X,Y ) = CH

U (U2X,Y )− 2UCH

U (UX, Y ) + U2CH

U (X,Y ).
(4.5)

They are important for the characterization of diagonalizable tensor fields
which can be put into diagonal form via a coordinate transformation. We
will say that a tensor field U along τ is diagonalizable in coordinates if for each
q in M there exist local coordinates in an open neighbourhood U ⊂ M of q
such that U is diagonal in these coordinates.
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Theorem 4.2. A diagonalizable tensor field U along τ is diagonalizable in
coordinates if and only if

(1) CV

U = 0, and

(2) HH

U is symmetric.

Proof: The first condition implies that each eigendistribution of U is DV -
invariant and hence basic. On the other hand, if X ∈ DA and Y ∈ DB , then

HH

U (X,Y ) = (µA − U)2CH

U (X,Y ) = (µA − U)2(µB − U)2DH

XY,

so that HH

U is symmetric iff DH

XY −DH

YX = [X,Y ]
H
∈ DA+DB . It follows from

Lemma 3.4 that the eigendistributions are simultaneously integrable. Thus, in a
neighbourhood of each point there exist coordinates (xAα)A=1,...,r;α=1,...,dA such
that {∂/∂xAα}α=1,...,dA span the eigendistribution DA. Hence, U(∂/∂xAα) =
µA ∂/∂x

Aα and U is diagonal in these coordinates. The proof of the converse
is a straighforward calculation.

Notice that the above characterization is independent of the choice of the
connection, provided that, as assumed throughout this paper, it is torsionless
(i.e. induced by a sode).

As a consequence of the relation (2.22) we have the following sufficient
conditions for the diagonalizability of a tensor field in coordinates.

Proposition 4.3. If a diagonalizable tensor field U satisfies

(1) CV

U = 0 and

(2) [∇U,U ] = 0,

then U is diagonalizable in coordinates. Moreover, in coordinates which diag-
onalize U the coefficients of the connection ΓAαBβ vanish for A 6= B.

Proof: Under the conditions of the Proposition, the eigendistributions of U
are DV - and ∇-invariant. From equation (2.22) we then see that they are also
DH-invariant. It follows that [X,Y ]

H
belongs to DA+DB for X ∈ DA, Y ∈ DB .

In view of Lemma 3.4, there exist coordinates (xAα)A=1,...,r;α=1,...,dA in which
U is diagonal. Moreover, since the eigendistributions are ∇-invariant, we have
∇(∂/∂xAα) = ΓBβAα ∂/∂x

Bβ ∈ DA, from which we deduce that ΓAαBβ = 0 for
A 6= B.

Incidentally, one can prove the general relation

[U,DH

XU ] = ∇[DV

XU,U ] + DV

X [U,∇U ]− [DV

∇XU,U ]− 2[DV

XU,∇U ]

from which it again follows that if U satisfies the hypotheses of the above
proposition then [U,DH

XU ] also vanishes.
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We now study whether a tensor field U along τ is separable, meaning that
U is diagonalizable in coordinates and that each eigenvalue µA depends only
on the coordinates (xAα, vAα)α=1,...,dA corresponding to the eigendistribution
DA. Such a U projects onto every eigenmanifold and is the direct sum of these
projections.

Theorem 4.4. Let U be a diagonalizable tensor field along τ satisfying

(1) CV

U = 0,

(2) [∇U,U ] = 0,

(3) dVU(UX, Y ) = dVU(X,UY ),
(4) dHU(UX, Y ) = dHU(X,UY ),

for every X, Y ∈ X (τ). Then U is separable. Conversely, if U is a separable
tensor field, then there exist sodes such that (1)–(4) hold.

Proof: From (1) and (2) we have that U is diagonalizable in coordinates.
Moreover, if X ∈ DA and Y ∈ DB , the DV -invariance of the eigenspaces yields,

dVU(X,Y ) = (DV

XU)Y − (DV

Y U)X
= (DV

XµB)Y − (DV

Y µA)X,
(4.6)

where we have used Proposition 4.1. Thus, from (3) we have

(µA − µB)
{

(DV

XµB)Y − (DV

Y µA)X
}

= 0. (4.7)

Hence, if A 6= B then X and Y are linearly independent, so that DV

XµB = 0 for
every X ∈ DA with A 6= B. It follows that µB depends only on the velocities
(vBβ)β=1,...,dB .

Similarly, from condition (4) we have that DH

XµB = 0 for everyX ∈ DA with
A 6= B. Since [∇U,U ] = 0 implies that the coefficients ΓAαBβ of the connection
vanish for A 6= B, it follows that µB ultimately depends on the coordinates
(xBβ , vBβ)β=1,...,dB only.

Conversely, if U is separable, for each point q ∈ M there exists an open
neighbourhood U ⊂ M of q such that U = U1 × · · · × Ur, where UA is an
open neighbourhood of q in the maximal integral submanifold of DA through q.
Choosing a sode ΓA ∈ X (TUA) on every UA and defining the sode Γ ∈ X (TU)
by Γ =

∑r
A=1 ΓA we have that U satisfies the above conditions with respect to

the connection associated to Γ. The global result follows by using a partition
of unity on the base manifold M .

It is not difficult to prove that conditions (1) and (3) in this theorem are
equivalent to

DVU(UX, Y ) = DVU(X,UY ) = UDVU(X,Y ),

provided, as we are assuming, that U is diagonalizable.
A particular case of a separable tensor field is the case in which the degen-

erate eigenvalues are constant.
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Theorem 4.5. Let U be a diagonalizable tensor field along τ satisfying

(1) CV

U = 0,

(2) [∇U,U ] = 0,

(3) dVU = 0,

(4) dHU = 0.

Then U is separable and the degenerate eigenvalues are constant.

Proof: From Theorem 4.4 we know that U is separable. If µB is a degenerate
eigenvalue, we have that for every pair of linearly independent vector fields X,
Y in DB , equation (4.6) for A = B implies also that DV

XµB = 0 for every
X ∈ DB , and hence DV

XµB = 0 ∀X ∈ X (τ). Similarly, from condition dHU = 0
we have that DH

XµB = 0 ∀X ∈ X (τ). It follows that µB is constant.

As we will see in the next section the case in which the degenerate eigen-
values are constant is important for our purposes.

5. Separability of second-order differential equations

In this section we will solve the following problem: Given a system of second-
order differential equations

ẍi = f i(x1, . . . , xn, ẋ1, . . . , ẋn), i = 1, . . . , n (5.1)

when does there exist a coordinate transformation

x̄i = φi(x1, . . . xn), i = 1, . . . , n (5.2)

such that in the coordinates x̄i the system (5.1) decouples into n independent
1-dimensional second-order equations

¨̄x1 = f̄1(x̄1, ˙̄x1)
...

¨̄xn = f̄n(x̄n, ˙̄xn).

(5.3)

If this is the case, we will say that the system of second-order equations is
separable. In more geometric terms:

Definition 5.1. A sode Γ is separable if for each point q ∈ M there exists
an open neighbourhood U ⊂ M of q of the form U = U1 × · · · × Un and n
sodes Γi ∈ X (TUi) such that Γ|TU = Γ1 + · · ·+ Γn. We say that Γ is globally
separable if U = M .

We will characterize such system in terms of geometric objects directly
related to the sode, namely the induced connection and the Jacobi endomor-
phism defined by Γ. First we prove that separability is a property depending
only on the (torsionless) connection and Φ, and not on the particular sode.
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Proposition 5.2. Let Γ1, Γ2 be two sodes on TM and X the vector field
along τ defined by Γ2 − Γ1 = XV . Then

(1) Γ1 and Γ2 define the same connection and the same Jacobi endomor-
phism if and only if DVX = 0 and DHX = 0.

(2) Under these circumstances, Γ1 is separable if and only if Γ2 is separable.

Proof: The connections defined by Γ1 and Γ2 coincide iff X is a basic vector
field (this is clear in coordinates). In this case the difference between the Jacobi
endomorphisms associated to Γ1 and Γ2 is

(Φ2 − Φ1)(Y ) = R(T, Y )−DH

Y∇2T−R(T, Y ) + DH

Y∇1T

= −DH

Y (∇2 −∇1)T
= −DH

YX.

Thus Φ1 = Φ2 iff DHX = 0.
Assume that Γ1 is separable in the coordinates (xi)i=1,...,n. Then the coeffi-

cients of the connection Γij = −(1/2)∂f i/∂vj vanish for i 6= j, and the functions
Γijk also vanish except for i = j = k. Thus 0 =

〈
dxi , DH

∂/∂xjX
〉

= Hj(Xi) =
∂Xi/∂xj for i 6= j and Xi therefore depends on xi only, which implies that Γ2

is also separable.

The procedure which we will follow in the study of separability is to con-
struct coordinates in which the Jacobi endomorphism and the matrix of the
coefficients of the connection are diagonal. We will first consider two simple
cases, to which the general case will subsequently be reduced.

As a preliminary remark, observe first that for affine connections, whose
coefficients are affine functions of the velocities, the tension is a basic tensor
field. Conversely, if the tension is basic and the connection coefficients are
assumed to be smooth on the zero section, they must be of the form

Γij(x, v) = tij(x) + Γijk(x)vk. (5.4)

The functions Γijk then define a linear connection (with coefficients Γijk(x)vk),
whose Riemann curvature is equal to the Rie tensor of the affine connection.
It follows that if the curvature R of the affine connection vanishes then the
curvature of the linear connection also vanishes.

Proposition 5.3. Let Γ be a sode such that Φ = µI and t = βI, with
µ, β ∈ IR. Then Γ is separable.

Proof: Since the tension is a basic tensor field the connection is affine. In
view of the relation dV Φ = 3R we have that the curvature vanishes, and the
associated linear connection is flat. It follows that there exist coordinates in
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which the coefficients of the linear connection vanish. In these coordinates the
matrix of the tension is tij = Γij , and from t = βI we find Γij = βδij , which
implies ∂f i/∂vj = 0 for i 6= j. Furthermore, since Φ is diagonal we have for
i 6= j,

0 = Φij = −∂f
i

∂xj
− ΓikΓkj − Γ(Γij) = −∂f

i

∂xj
.

We conclude that f i is a function of the corresponding xi and vi, and thus Γ
is separable.

Note that in the adapted coordinates of the proof, Φ = µI and t = βI
imply that the forces are of the form

f i = −(µ+ β2)xi − 2βvi + γi, γi ∈ IR (5.5)

which physically corresponds to an isotropic harmonic oscillator submerged in
an isotropic fluid.

Remark: Smoothness on the zero section of the sode Γ apparently plays a
key role in the above argumentation (and therefore also in the main theorem
which is to follow). In a global setting, this is of course not a supplementary
restriction. If, for a local application of the criteria of Theorem 5.6, Γ is not
required to be smooth on the zero section, the fact that the tension is basic
in principle would allow the connection coefficients to contain a part which is
merely homogeneous of degree 1 in the velocities (and not linear). In such
a case, however, we can never separate the system. Indeed, in coordinates
which would separate the equations, non-vanishing connection coefficients can
at most depend on one velocity coordinate and as such necessarily are linear.
But then they would also be linear in any other chart, contradicting the original
assumption.

We next consider the case Φ = µI and study the conditions which must be
imposed on the tension for ensuring separability of the sode.

Lemma 5.4. If Φ = µI, µ ∈ IR, then

(1) ∇t = 0
(2) dHt = 0.

Proof: Since the curvature vanishes we have Φ = −dH∇T and equation (2.23)
yields, taking into account that DVT = I and DV Φ = 0,

Φ(X) = −DH

X∇T

= −∇DH

XT + DH

∇XT + DV

Φ(X)T

= ∇t(X)− t(∇X) + Φ(X)
= (∇t)(X) + Φ(X).
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It follows that ∇t = 0. The property dHt = 0 follows from the fact that
dH ◦ dH = 0 as a result of of the vanishing of the curvature.

Proposition 5.5. Let Γ be a sode such that Φ = µI with µ ∈ IR. Then Γ is
separable if and only if t is diagonalizable and CV

t = 0.

Proof: From the preceding lemma, recalling further that dV t = 0, it follows
that the tension satisfies all hypotheses of Theorem 4.5. As observed in Theo-
rem 4.4, in the coordinates which diagonalize t, ΓAαBβ = 0 for A 6= B. Moreover,
since Φ is diagonal we find for A 6= B that 0 = ΦAαBβ = −∂fAα/∂xBβ . Thus fAα

depends only on (xAγ , vAγ)γ=1,...,dA and Γ projects onto every eigenmanifold.
If dA is greater than 1, we further know that the corresponding degenerate
eigenvalue of t is constant. Thus, for such a subsystem, Proposition 5.3 applies
and ensures the total separation of Γ. The proof of the converse is straightfor-
ward.

Theorem 5.6. A sode Γ is separable if and only if the following conditions
hold

(1) Φ is diagonalizable

(2) [∇Φ,Φ] = 0
(3) CV

Φ = 0
(4) R = 0
(5) t is diagonalizable

(6) CV
t = 0.

Proof: From dV Φ = 3R and dHΦ = ∇R it follows that Φ satisfies all the
assumptions of Theorem 4.5. Hence, in coordinates (xAα) which diagonalize
Φ we have for A 6= B that ΓAαBβ = 0 and ΦAαBβ = 0, implying again that Γ
projects onto every eigenmanifold. On each multidimensional eigenmanifold Φ
is a constant multiple of the identity and thus Proposition 5.5 applies. The
‘only if’ part is easy to verify.

Notice that conditions (1)–(3) already entail a form of partial separability
of the sode, each partial sode corresponding to each eigenspace of Φ. Indeed,
(1)–(3) imply, in accordance with Proposition 4.3, that there exist coordinates
in which Φ is diagonal and ΓAαBβ = 0 for A 6= B. As repeatedly argued above,
this is enough to conclude that the fAα depend only on (xAγ , vAγ).

In practice, the most difficult condition to analyze is the matter of diago-
nalizability. If the sode is defined by a Lagrangian such that the associated
symmetric tensor g is positive definite then Φ is automatically diagonalizable,
because Φ is symmetric with respect to g. Nevertheless, there is no general
argument that ensures the diagonalizability of t.



18 Mart́ınez, Cariñena and Sarlet

The above argumentation gives us the key for analyzing the separability of
the Lagrangian.

Proposition 5.7. Let Γ be a sode satisfying conditions (1)–(3) of Theo-
rem 5.6 and L a Lagrangian for Γ. For each point q ∈ M there exists a
neighbourhood U of q of the form U = U1 × · · · × Ur such that L is gauge
equivalent to a separated Lagrangian L1 + · · ·+ Lr, where LA ∈ C∞(TUA).

Proof: Conditions (1)–(3) imply the existence of coordinates (xAα) adapted to
the eigendistributions DA of Φ and that Γ is partially separable Γ =

∑r
A=1 ΓA,

with ΓA a local sode on the A-th eigenmanifold of Φ. Let g be the symmetric
tensor along τ associated to the Lagrangian, g = DV DVL. Then g satisfies
Helmholtz conditions: (a) Φ is g-symmetric, (b) DV g is symmetric, and (c)
∇g = 0. From (a) it follows that the eigendistributions of Φ are g-orthogonal.
Thus, g is a sum g =

∑r
A=1 gA, with gA the restriction of g to DA.

We now prove that gA depends only on the coordinates (xAα, vAα)α=1,...,dA .
From (b) and the block diagonal structure of g we have,

DV g(
∂

∂xAα
,

∂

∂xBβ
,

∂

∂xBγ
) = DV g(

∂

∂xBβ
,

∂

∂xAα
,

∂

∂xBγ
) = 0,

which is equivalent to

∂

∂vAα
g(

∂

∂xBβ
,

∂

∂xBγ
) = 0.

From equation (2.22), which by duality also holds for g, it is easy to show that
(b) and (c) imply that DHg is also symmetric. Using the preceding result and
the fact that in the coordinates under consideration ΓAαBβ = 0 except for A = B,
it then follows in the same way that

∂

∂xAα
g(

∂

∂xBβ
,

∂

∂xBγ
) = 0.

Thus, gB projects onto the B-th eigenmanifold.
It is easy to see that every gA satisfies Helmholtz conditions for the partial

sode ΓA, so that there exists a local Lagrangian LA for ΓA such that gA =
DV DVLA. Thus L′ =

∑r
A=1 LA is a local Lagrangian for Γ and g′ = DV DVL′ =∑r

A=1 gA = g. Hence, DV DV (L− L′) = 0 and L is gauge equivalent to L′.

As a final remark note that, in general, the partial Lagrangians LA need
not be further separable even if the sode is. This point is illustrated by the
non-standard Lagrangian L = v1v2 − q1q2 for the two-dimensional harmonic
oscillator.
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6. Horizontal and vertical covariant Nijenhuis tensors

Our analysis of the integrability of distributions along τ defined by tensor
fields was based on the vanishing of the tensors CV

U and CH

U . In the theory
of distributions on a manifold the integrability of the eigendistributions of a
tensor field is usually established in terms of the Nijenhuis tensor [8] [5]. In
this section we define two tensor fields with similar properties to the properties
satisfied by the Nijenhuis tensor. In order to do that we study the Nijenhuis
tensor of the horizontal lift UH of a tensor field along τ , defined by

UH(XH) = U(X)H UH(XV ) = U(X)V (6.1)

for every vector field X along τ , that is, UH is the diagonal sum of two iden-
tical blocks equal to U . More general liftings of tensor fields along τ can be
considered but the ensuing Nijenhuis tensors then become too complicated.

We recall that the Nijenhuis tensor of a type (1,1) tensor field T on a
manifold P is defined by

NT (V,W ) = [TV, TW ]− T [TV,W ]− T [V, TW ] + T 2[V,W ] (6.2)

for V , W ∈ X (P ), or equivalently by

NT (V,W ) = (LTV T )W − (T ◦ LV T )W. (6.3)

In the case P = TM and T = UH , using (2.6) and (2.8) it is easy to see
that for X, Y ∈ X (τ) we have the following values for the Nijenhuis tensor
of UH

NUH (XV , Y V ) = {NV

U (X,Y )−NV

U (Y,X)}V

NUH (XH , Y V ) = {NH

U (X,Y )}V − {NV

U (Y,X)}H

NUH (XH , Y H) = {NH

U (X,Y )−NH

U (Y,X)}H + {RU (X,Y )}V
(6.4)

where NH

U , NV

U and RU are defined by

NH

U (X,Y ) = DH

UX(UY )− UDH

UXY − UDH

X(UY ) + U2DH

XY

NV

U (X,Y ) = DV

UX(UY )− UDV

UXY − UDV

X(UY ) + U2DV

XY

RU (X,Y ) = R(UX,UY )− UR(UX, Y )− UR(X,UY ) + U2R(X,Y ).

(6.5)

We will call NH

U and NV

U the horizontal and vertical covariant Nijenhuis tensor
of U , respectively. Equivalent definitions of these tensors are

NH

U (X,Y ) = (DH

UXU)Y − (U ◦DH

XU)Y
NV

U (X,Y ) = (DV

UXU)Y − (U ◦DV

XU)Y,
(6.6)
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which resemble the definition of the Nijenhuis tensor on a manifold, or

NH

U (X,Y ) = DHU(UX, Y )− UDHU(X,Y )
NV

U (X,Y ) = DVU(UX, Y )− UDVU(X,Y ),
(6.7)

showing the similarities with the definition of the tensors CH

U and CV

U . Their
coordinate expressions are

NV

U =
{

(VlUkj )U li − (ViU lj)U
k
l

}
dxi ⊗ dxj ⊗ ∂

∂xk

NH

U =
{

(HlU
k
j + Urj Γklr − Ukr Γrlj)U

l
i

− (HiU
l
j + Urj Γlir − U lrΓrij)Ukl

}
dxi ⊗ dxj ⊗ ∂

∂xk
.

(6.8)

Note that NH

U and NV

U are not skew-symmetric. Their skew-symmetric part
NH

U (X,Y ) and N V

U (X,Y ), respectively, are defined in terms of the horizontal
and vertical brackets as follows

NH

U (X,Y ) = [UX,UY ]
H
− U [UX, Y ]

H
− U [X,UY ]

H
+ U2 [X,Y ]

H

N V

U (X,Y ) = [UX,UY ]
V
− U [UX, Y ]

V
− U [X,UY ]

V
+ U2 [X,Y ]

V
.

(6.9)

In terms of these tensors, the skew-symmetric part HH

U of the tensor field HH

U

defined in Section 4 can be expressed as

HH

U (X,Y ) = NH

U (UX,UY )− UNH

U (UX, Y )− UNH

U (X,UY ) + U2NH

U (X,Y ),
(6.10)

and a similar expression holds for the vertical counterpart.
A relation between the Nijenhuis tensor fields and the tensors CV

U and CH

U

is given by the next proposition.

Proposition 6.1. The following relations hold

NH

U (X,Y )− CH

U (Y,X) = dHU(UX, Y )− UdHU(X,Y )
NV

U (X,Y )− CV

U (Y,X) = dVU(UX, Y )− UdVU(X,Y ).
(6.11)

Proof: The proof is by direct computation; for X, Y ∈ X (τ) we have

dHU(UX, Y )− UdHU(X,Y ) = (DH

UXU)Y − (DH

Y U)UX
− (U ◦DH

XU)Y + (U ◦DH

Y U)X
= (DH

UXU)Y − (U ◦DH

XU)Y
− (DH

Y U ◦ U)X − U ◦DH

Y U)X
= NH

U (X,Y )− CH

U (Y,X).

The second relation is proved in a similar way.
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Corollary 6.2. Let U be a tensor field such that dHU = 0 (resp. dVU = 0).
Then NH

U = 0 (resp. NV

U = 0) if and only if CH

U = 0 (resp. CV

U = 0).

As a consequence, some of the theorems in Sections 4 and 5 can be reformu-
lated in terms of the covariant Nijenhuis tensors. For instance, in Theorem 4.5
condition (1) can be replaced by NV

U = 0, in Proposition 5.5 condition CV
t = 0

can be replaced by NV
t = 0, and in Theorem 5.6 conditions (3) and (6) can be

replaced by NV

Φ = 0 and NV
t = 0 (but notice that the remarks following this

last theorem are then no longer true). For two type (1,1) tensor fields U and
W along τ , we can introduce covariant Nijenhuis type tensor fields which (as
in the standard theory) reduce to the definitions (6.6) (up to a factor 2), when
U and W coincide. Explicitly we put

NV

U,W (X,Y ) =
(
DV

UXW + DV

WXU −W ◦DV

XU − U ◦DV

XW
)
(Y ), (6.12)

and similarly for NH

U,W .

Proposition 6.3. The following relations hold

∇NV

U = NV

U,∇U −NH

U (6.13)

3RU (X,Y ) = NV

U (X,ΦY )−NV

U (Y,ΦX)− ΦNV

U (X,Y ) + ΦNV

U (Y,X)
+ (DV

UX [Φ, U ])Y − (U ◦DV

X [Φ, U ])Y
− (DV

UY [Φ, U ])X − (U ◦DV

Y [Φ, U ])X − [Φ, U ]{dVU(X,Y )}.
(6.14)

Proof: The proof is by direct computation. For the first one use equation (2.22).
For the second one use dV Φ = 3R.

For a diagonalizable tensor field U , if X ∈ DA and Y ∈ DB we have the
following values of NV

U (X,Y ) and RU (X,Y ):

NV

U (X,Y ) = (µA − U)(µB − U)DV

XY + (µA − µB)(DV

XµB)Y
RU (X,Y ) = (µA − U)(µB − U)R(X,Y ).

(6.15)

It follows that NV

U vanishes if and only if

DV

XY ∈ DA +DB ∀X ∈ DA, ∀Y ∈ DB
DV

XµB = 0 ∀X ∈ DA, A 6= B,
(6.16)

and that RU = 0 iff R(X,Y ) ∈ DA +DB .
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In the light of our previous results we can now re-examine the characteriza-
tion of separable systems given by Ferrario et al in [3], which in fact inspired the
present work. An important difference between our main Theorem 5.6 and the
theorem proved by Ferrario et al is that the latter depends on the existence of
a tensor field T on TM with certain properties. As such it should be possible to
relate it to results discussed in Section 4. The question how to obtain a T with
the desired properties is a different matter and has only clearly been answered
for second-order systems with a multi-Lagrangian description. Theorem 5.6 on
the contrary does not a priori rely on the availability of a Lagrangian. The
theorem stated by Ferrario et al in fact was not quite correct. A corrected
version of it would read as follows:

Let Γ be a sode and T be a diagonalizable tensor field on TM with doubly
degenerate eigenvalues such that S ◦T = T ◦S. Assume further that LΓT = 0,
that the Nijenhuis tensor of T vanishes and that the Nijenhuis bracket of S
and T takes vertical values. Then Γ is separable.

Under the conditions stated in the theorem, the tensor T is of the form
T = UH for some tensor field U along τ which has n different eigenvalues and
satisfies ∇U = 0 and [Φ, U ] = 0, by virtue of the invariance of T . The vanishing
of the Nijenhuis tensor is equivalent to NH

U = 0, NV

U = 0 and RU = 0. But in
view of Proposition 6.3 the vanishing of NV

U implies NH

U = 0 and [Φ, U ] = 0
further yields RU = 0. The condition on the Nijenhuis bracket of S and T can
be shown to be equivalent to dVU = 0.

Summarizing, the assumptions in the theorem of Ferrario et al essentially
mean that U satisfies

(1) U has n different eigenvalues,
(2) ∇U = 0,
(3) NV

U = 0,
(4) dVU = 0,
(5) [Φ, U ] = 0.

Since as a consequence of (2.22) we have [dV ,∇] = dH , it follows that also dHU
vanishes, and thus U satisfies all conditions of Theorem 4.5. Therefore, U is
separable. Moreover, condition (5) implies that Φ is also diagonalizable and
the eigenspaces of Φ and U coincide. Thus Φ is diagonal in the coordinates in
which U is separated. Since in these coordinates the matrix of the coefficients
of the connection is diagonal, the separability of Γ follows.

With our present understanding of the results of Section 4, the preceding
theorem can in fact be generalized as follows:

Proposition 6.4. Let U be a diagonalizable tensor field along τ satisfying

(1) U has n different eigenvalues,
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(2) [∇U,U ] = 0,

(3) CV

U = 0, and

(4) [Φ, U ] = 0.

Then Γ is separable.

Proof: (2) and (3) imply that U is diagonalizable in coordinates. In the coor-
dinates in which U is diagonal, (1) and (4) imply that Φ is also diagonal and
Γij = 0 for i 6= j. Thus Γ is separable.

Notice that if U has r < n different eigenvalues, the result remains true for
a partial separability of the sode.

7. Examples

As a first example we consider the class of so called mechanical systems.
They are described by a Lagrangian L on T IRn of the form

L =
1
2
δijv

ivj − V (x1, . . . , xn).

The sode corresponding to the Euler-Lagrange equations is

Γ =
n∑
i=1

(
vi

∂

∂xi
− ∂V

∂xi
∂

∂vi

)
.

The induced connection is flat and the coefficients of the connection vanish so
that t = 0. The Jacobi endomorphism is given by

Φij =
∂2V

∂xi∂xj
.

It is a symmetric tensor and therefore is diagonalizable. Since DV Φ = 0 we
also have CV

Φ = 0. It follows that Γ is separable if and only if [∇Φ,Φ] = 0,
which in coordinates reads

n∑
l=1

∂3V

∂xi∂xk∂xl
∂2V

∂xl∂xj
=

n∑
l=1

∂3V

∂xj∂xk∂xl
∂2V

∂xl∂xi
.

The second example we consider is the second-order equation in IR2{
ẍ1 = −c1x1 + bx2

1 − ax2
2

ẍ2 = −c2x2 − 2mx1x2,

where a, b, m, c1 and c2 are real numbers. This system generalizes the Hénon-
Heiles model, to which it reduces if all parameters are equal to 1. Its complete
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integrability has been discussed recently in [13]. The coefficients of the connec-
tion vanish, and the Jacobi endomorphism is given by

Φ =
(
c1 − 2bx1 2ax2

2mx2 c2 + 2mx1

)
.

Since Φ is basic DV Φ = 0 and R = 0. Moreover [∇Φ,Φ] = 0 iff either a = m = 0
or c2 = c1 and m+b = 0. In the first case the system is already decoupled in the
coordinates (x1, x2). In the second case, one verifies that Φ is diagonalizable
iff ab < 0 and the system separates in coordinates (X1 = bx1 + sx2, X2 =
bx1 − sx2), where s2 = −ab.

As a third example we will analyze the separability of the system{
ẍ1 = f(ẋ2)
ẍ2 = 0,

that appears in Douglas’ paper on the inverse problem of Lagrangian mechan-
ics [2]. For this system Φ = 0, so that we only have to analyze the conditions
on t, which has the expression

t = −1
2

(
0 f ′(ẋ2)− f ′′(ẋ2)ẋ2

0 0

)
This tensor is diagonalizable iff it vanishes, i.e. if f ′ is homogeneous of degree 1.
It follows that the system is separable if and only if f is of the form f(ẋ2) =
aẋ2

2 + b for some constants a, b ∈ IR, and the sode is a spray plus a constant
vertical vector field. A pair of parallel 1-forms with respect to the induced
(linear) connection is easily found:

α1 = dx1 − ax2dx2 = d(x1 −
1
2
ax2

2)

α2 = dx2,

so that in coordinates (X1 = x1 − 1
2ax

2
2, X2 = x2) the system decouples.

As a final application we will indirectly prove a theorem by Hojman and
Ramos [6] which states that a two-dimensional mechanical system admits al-
ternative Lagrangians if and only if it is separable. Knowing that alternative
Lagrangians lead to a suitable type (1,1) tensor field on TM , which in turn
relates to a tensor field along τ , we will cover the theorem in [6] by showing that
a two-dimensional mechanical system admits a diagonalizable type (1,1) tensor
field along τ such that [U,Φ] = 0 and [∇U,U ] = 0 if and only if it is separable
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(of course, we exclude the case U = fI). We can distinguish two cases. If Φ is a
multiple of the identity then ∂2V/∂x1∂x2 = 0 and ∂2V/∂x1∂x1 = ∂2V/∂x2∂x2

from which it follows that the system is a harmonic oscillator (plus constant
forces). In the opposite case, i.e. Φ is not a multiple of the identity, there
are two 1-dimensional eigendistributions of Φ which are basic since Φ is basic.
Since [Φ, U ] = 0 we have that the eigendistributions of Φ are also the eigendis-
tributions of U . From [∇U,U ] = 0 it follows that they are integrable and hence
the system is separable.
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