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Abstract. Necessary and sufficient conditions are discussed, which characterize complete
separability of second-order ordinary differential equations via symmetry properties of the
system.

1. INTRODUCTION

When considering systems of second-order ordinary differential equations, it very rarely
happens that special coordinates can be found in which the system will decouple into
completely separate equations. Intuitively, one expects that the existence of such coor-
dinates may be related to symmetry properties of the given system. Clearly, however,
separability cannot be explained by a standard group action, originating from Lie point
symmetries of the system. As a matter of fact, one could easily compose an example by
mixing up a number of separate equations which do not have point symmetries. Also, the
mere availability of a sufficient number of more general symmetries will not be enough.
To illustrate this point, consider for example the well-known Hénon-Heiles equations

G = bQ12—GQQ2
Go = —2aqiq2

and let us agree that, for simplicity, all considerations of this paper will be restricted
to a strictly time-independent framework. This entails, in relation to standard works
on symmetries and differential equations such as [8, 2, 9], that generators of symmetries
will always appear in what is sometimes called their ‘evolutionary form’. In this sense,
insisting that a and b should not be zero, the above system has no point symmetries.
As a next step in an algorithmic process, one can look for generators whose leading
coefficients depend linearly on the first derivatives. Then, there always is the trivial
symmetry X; = ¢; (0/0q1) + ¢2 (0/0q2) (equivalent to time translation invariance). A
second generator is detected only for two special parameter combinations: for b = —a we



have Xy = 42 (0/0q1) + ¢1 (0/0q2), whereas for b = —6a one finds Xy = ¢od2 (0/0q1) +
(G241 — 2q1G2) (0/0qz). The system turns out to decouple only in case 1.

Our objective is to prove necessary and sufficient criteria about symmetries, which will
characterize complete separability of a second-order system. Two recent contributions
which are relevant for this matter will briefly be reviewed in the next two sections.

2. CALCULUS ON T'M AND SUBMERSIVE SYSTEMS

The standard differential geometric framework for studying second-order equations is a
tangent bundle 7'M, which has a natural type (1,1) tensor field S (called the ‘vertical
endomorphism’) (see e.g. [1]). In local coordinates (q,v), we have S = dq' ® (9/0v"),
whereas a general second-order system ¢* = f%(q, ) is represented by the vector field
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Important in the calculus on T'M is the tensor field Lr.S, which through its eigenspaces
defines a splitting of the tangent space at each point of T'M, i.e. determines a (non-linear)
connection (see also [3]).

Kossowski and Thompson [4] recently studied so-called submersive systems. Submersive-
ness roughly refers to the existence of coordinates in which part of the system separates
from the rest. Their main theorem states that submersive systems are characterized by
the existence of an integrable distribution £ on T'M, which is S-reqular and invariant
under LrS and LS. Here, S-regularity means that E is obtained from complete and
vertical lifts of a distribution on M.

The authors also investigate the influence of symmetries and find as sufficient condition
for submersiveness the existence of an algebra G of Lie point symmetries of I', such that for
each X € G, the vector field [XV,T'| — X on T'M is tangent to G*. A further result which
will give us a clue for an even more restrictive situation states: if the system is Lagrangian
and X € X (M) determines a Noether (point) symmetry, then there is a corresponding
submersion iff [ XV, T] — X¢ = pX" for some pe€ C=(TM).

It may be worthwhile to recall the following coordinate expressions: for any X € X' (M)
of the form X = X'(q) (0/9q"), we have XV = X*(q) (0/0v') € X(T M) and the complete
lift (or prolongation) is given by

0 ;0X 0

Observe further that the coordinate expression of a non-point symmetry of I'" bears some
ressemblance to the latter:
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JrX = X'(q, v)i + (XY
aq"
At present, it suffices to regard the notation Jr X as a way of indicating that such a sym-
metry is entirely determined by the object X = X'(¢,v) (0/d¢"). The correct geometrical
interpretation of this object is that X is a vector field along the tangent bundle projection
7 :TM — M, for which we use the notation: X € X(7).



3. CALCULUS ALONG 7 AND SEPARABILITY

There are many more concepts of interest on T'M, whose essential part is a corresponding
object along 7. In [5] and [6], we have extensively studied the theory and classification
of derivations of scalar and vector-valued forms along 7. An essential ingredient for this
theory is a connection on 7 : TM — M. With such a connection, one can horizontally
lift vector fields along 7. In coordinates, for X € X (7):
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X" =X'H;, € X(TM), H;=
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where the functions IY(g,v) are the connection coefficients. The vertical lift construction
extends to X(7) and every Z € X(TM) has a unique decomposition Z = X" + YV,
with X, Y € X(7). Important derivations in our theory are the horizontal and vertical
covariant derivative. They appear, for example, in the formula

(X7, VY] = (DRY)" — (DyX)",
and their action extends to forms along 7 by duality.

As indicated before, each given I' comes with its own connection, with coefficients F; =
—3 (0f?/0v7). Specifically for this case, two operations are most important: the dynamical
covariant deriwative V and the Jacobi endomorphism ®. They can be defined e.g. by the
decomposition Lr X = (VX)" + (®(X))" and are determined in coordinates by

VF =T(F), for functions F € C=(TM)

V(0/0¢’) = T4 (9/0¢'), V(dg") = ~T} dg’
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To see the importance of these operations, observe e.g. that the determining equations of
a (generalized) symmetry X = X'(q,v)0/0q" € X(7) of I read VVX + ®(X) = 0. Also,
the curvature of the connection

1 . , 0 , A A
R= 5 Riy dg’ Adg" @ g Ry, = Hy () — Hy(I),

is obtained from ® via a kind of vertical exterior derivative: d® = 3 R. For a link with
the preceding section, note that ® is related to the tensor field £L2S on T'M.

An interesting decomposition of V is given by
V = D% + Dy + ¢

Here T = v*9/0q" is the canonical vector field along 7, u refers to some well defined
derivation of algebraic type, and
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is the so-called tension of the connection.



We have used this calculus for a comprehensive study of complete separability of second-
order equations [7]. In order to formulate the main theorem of that paper, we need one
more definition: for each (1,1) tensor field U along 7,

Cy(X,Y) = [DYU,U](Y) VXY € X(7).

When CY; is zero for a diagonalizable tensor U, it means that all eigendistributions can
be spanned by vector fields on M.
Theorem. There exist coordinates in which a given I' separates into n decoupled single
second-order equations iff

® is diagonalizable, R=0

Vo, ®] =0, Cy =0

t is diagonalizable, Y =0.

It is important to observe that all conditions of this theorem are algebraic and can (with
computer algebra assistance) in principle be checked.

4. SYMMETRY PROPERTIES CHARACTERIZING FULL DECOUPLING

Let us first try to understand the meaning of the conditions of Kossowski and Thompson
in terms of the calculus along 7. Observe that for X € X(M), we have X¢ = X7+ (VX)",
LrS(X¢) = —-X"+(VX)" and LES(X") = —2(®(X))". Tt follows that the content of
their main theorem essentially says that we have an integrable distribution on M which,
regarded as distribution along 7 is invariant under V and .

Still for basic X, we have the identity [XV,I] — X¢ = —2(VX)", so that the condition
for the Noether symmetry in [4] expresses that VX should be proportional to X.

As explained before, point symmetries cannot be sufficient for our purposes and a natural
generalization of an S-regular distribution on 7'M consists of a distribution spanned by
{XV, JrX = X" + (VX)"}, for some distribution span{X} along 7. Next, since we
want an extreme case of ‘submersiveness’, the natural extension of the condition in the
Noether case seems appropriate and a strong form of integrability will have to be imposed,
in which e.g. all symmetries commute. It will now be clear that the formulation of the
theorem below is directly inspired by the results in [4]. The proof, on the other hand, will
be a matter of showing that all conditions of our separability theorem are verified and
will thus heavily rely on the techniques developed in [7].

Theorem. A I' with n degrees of freedom is completely separable iff there exist n inde-
pendent vector fields X; along T, such that:

1. VX, = p; X; for some p; € C=(TM)
2. JrX; is a symmetry of T' for all
3. [JrXi, JrXj] =0 and [JrX;, X]] =0, i#j

4. S([JrX;, X)) is proportional to X .



PROOF. From 1 and 2, it follows that ®(X;) = \X;, with \; = —Vu; — p;2. Hence
® is diagonalizable and condition 1 further implies that the eigendistributions are V-
invariant, so that [V®, ®] = 0. To proceed further, we need the following relations for
general X, Y € X(1):

[JrX,YY] = —(DyX)" + (DYY + DY — Dy VX)”
[JrX,JrY] = (DY —DEX + DYy Y — DEy X)”
+(R(X,Y) +DEVY —DEVX + DY VY — DG, VX)),

They are easy to obtain from general bracket relations in [7]. It follows from the first of
these and condition 3 that D X; = 0 (j # 7) and

DY X, — (D)X =0 ()

It will be clear by now that the summation convention is being used only where appro-
priate.

The second relation and condition 3 next imply two further properties: the horizontal
part, using (x), gives rise to D&j w; = 0 and DﬁjXZ- = 0; the vertical part subsequently
results in

R(X;, X;) + (DX, 1) X; — (DX, 1) Xs = 0 ().

We next wish to exploit the relationship between the Jacobi endomorphism and the cur-
vature. First of all, we have

d"®(X;, X;) = (DX, ®)(X;) — (D, ®)(X;) = (DX, A;)X; — (DX, ) X; .

Now D‘)”(j A = —Dﬁj ;. This follows from the relation between the \; and pu;, using the
property D‘)/(j i = 0 and the general commutator relation

[Dx, V] =Dk = Dyx  (xx %)
established in [7]. We thus obtain:
3R(X;, X;) =d"®(X;, Xj) = — (DX, p)X; + (D, i) Xs = R(X;, Xj),

where the last equality follows from (xx). Since the X; form a local basis of X (7), we
conclude that R = 0.

We finally turn to condition 4. It implies, from the horizontal part of [JrX;, X)] that
DY, X; is proportional to X;, which together with DY X; = 0 (i # j) means that each
eigendistribution is basic, i.e. Cy = 0. The commutator relation (* * %) subsequently
shows that also D X; is proportional to X;. Using the decomposition of the operator V
and knowing that t(X) = p¢(X), one fairly easily obtains that the tension is also diagonal
with respect to the basis X; and since we already know that this is a basic distribution,
it follows that Cf" = 0. All conditions of the separability theorem thus turn out to be
satisfied.

The converse is trivial: if the system is separable, it suffices to think of each of the X;
as coming from a (generalized) symmetry of each separate equation. This completes the
proof. a



5. CONCLUDING REMARKS

Our goal was to characterize separability by symmetry properties of the equations. It
may look a bit unsatisfactory that the conditions of the preceding theorem are so strong,
particularly since, in the separating coordinates, the symmetries under consideration will
be symmetries of each of the individual equations. One can formulate conditions which
look much milder, but given the fact that differential equations locally always have (gen-
eralized) symmetries, translating the milder conditions to those symmetries will make the
stronger conditions hold true anyway. To be specific, a milder looking theorem, which
contains the minimal requirements for separability, says the following.

Theorem. For complete separability of a second-order system, it is necessary and suffi-
cient that n independent X; € X (1) exist, such that:

For a sketch of the proof, observe first that conditions 1 and 3, using (x * %), imply that
also DZX; is proportional to X; for all Z € X(7). As a result (see the argumentation
in [7]), the basic vector fields which span the eigendistributions of ® constitute a number
of distributions on M which are simultaneously integrable. Therefore, there exist new
coordinates with respect to which each of the X is in fact a multiple of 9/9¢". Condition
1 then implies F; = 0 for i # j and condition 2 subsequently tells us that also 9f*/9¢’ = 0
for ¢ # j. The complete separation of I" follows. a

With conditions 1 and 2 of this result, JrX; need not necessarily be a symmetry, but
we can always pass to one via multiplication by a suitable function. Having done this,
condition 3 again looks milder, because it does not impose that these symmetries must in
the end be the ones corresponding to separate equations. One can easily show, however,
that they can at most differ from those by a factor which is then necessarily a first
integral. Hence, if multiplicative first integrals are factored out, the stronger integrability
conditions of the former theorem will hold true.

Concerning examples where one happens to know a sufficient number of independent
symmetries, a strategy for checking separability could start by looking for a suitable set
of linear combinations which will make the V.X; proportional to X;. Applying this idea
to the Hénon-Heiles example, it turns out that for b = —a, X; + X5 and X; — X5 are
the only such combinations. The subsequent conditions appear to be satisfied. For the

case b = —6a on the other hand, no combination can be obtained which verifies the first
requirement.
Recall, finally, that the Hénon-Heiles system, for b = —6a, is known to be separable in

the sense of Hamilton-Jacobi. For future developments, it is therefore hoped that our
approach may provide new insight, at the level of symmetry properties of the equations,
concerning the difference between equations which completely decouple, are separable in
the sense of Hamilton-Jacobi or are completely integrable.
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