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Abstract

We describe a novel approach to the study of the inverse problem of the calculus
of variations, which gives new insights into Douglas’s solution of the two degree of
freedom case.

1 Introduction

In the Introduction to his paper ‘Solution of the inverse problem of the calculus of vari-
ations’ [2], published in 1941, Jesse Douglas said that the ‘problem indicated in the title
is one of the most important hitherto unsolved problems of the calculus of variations’.
The problem is to determine whether a given system of second-order ordinary differential
equations is derivable from a Lagrangian; that is to say, given a system of equations

ẍi = f i(t, xk, ẋk) (i, k = 1, 2, . . . , n),

to determine whether there is a function L(t, xk, ẋk) such that these equations are equiv-
alent to the Euler-Lagrange equations derived from L as Lagrangian. In general the
Euler-Lagrange equations do not directly take the form above, since they will not be
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solved for the highest derivatives; the problem is therefore to find a so-called multiplier
matrix gij(t, x

k, ẋk) such that

gij(ẍ
j − f j) ≡ d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
.

Douglas gave the solution to this problem for the case n = 2 only. His solution involves a
detailed case-by-case examination of four main cases, some of which are further divided
into several subcases, the cases being distinguished by whether or not certain quantities
calculated from the functions f i and their derivatives vanish. His approach is analytical:
it consists of expressing the conditions which the multiplier must satisfy as a system of
partial differential equations, and then applying the Riquier theory to determine whether
these equations admit a solution. In most of the cases he is able to state whether or
not a Lagrangian exists, and if so to specify the degree of arbitrariness in the solution;
in the remaining cases the problem is reduced to a question of the closure of a certain
1-form.

Despite the importance of the problem, it has not been solved, in the sense that Douglas
solved it, for any n greater than 2, either in general, or even in any particular subcase.
This is not to say that no progress has been made in the intervening 50 years. Much
effort has gone into the development of appropriate differential geometric machinery,
with the result that the conditions which the multiplier has to satisfy are now well
understood (see [1] and [7] for recent reviews). The fundamental point is to recognise
that a system of second-order differential equations may be represented as a vector field Γ
on the tangent bundle TM of a differentiable manifold M , or in the time dependent case,
on IR× TM . Several solutions to the inverse problem have been presented, which give
algorithms for determining whether or not any specific system of equations is derivable
from a Lagrangian. What these solutions lack, which Douglas provides for n = 2, is a
general analysis based on quantities calculated from the functions f i appearing in the
differential equations – or in other words, in terms of quantities defined by the second-
order differential equation field Γ. What Douglas’s solution lacks, on the other hand,
is any insight into what these quantities might represent, for instance in geometrical
terms.

We believe that further progress in the solution of the inverse problem can be made with
the use of the correct calculus. As a first basic principle of our approach to the inverse
problem, we claim that the correct calculus is provided by a restricted version of the
theory of derivations of geometric objects defined along the projection π: IR × TM →
IR×M , a restriction which makes it identifiable with a calculus along τ : IR×TM →M .
The corresponding calculus for the autonomous case, that is for geometric objects defined
along the projection τ :TM →M , has been developed by Mart́ınez, Cariñena and Sarlet
[4, 5] and applied successfully by these authors in [6] to the solution of a related problem,
namely the determination of necessary and sufficient conditions for a system of second-
order differential equations to be separable into independent one-dimensional equations.
No essential modifications are required to adapt that calculus for use in the present
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discussion. In [6], and elsewhere, the importance of a certain type (1,1) tensor field
along τ , the so-called Jacobi endomorphism Φ associated with a second-order differential
equation field Γ, for the analysis of the properties of Γ, was emphasised. The Jacobi
endomorphism is also central to the discussion of the inverse problem. Indeed, our
second basic principle is that the discussion of different subcases of the inverse problem
should be related in one way or another to the different possible algebraic normal forms
of Φ, and that it is helpful to express the unknown multiplier g (which is a symmetric
type (0,2) tensor field along τ) in terms of a basis of 1-forms along the projection τ dual
to a basis of vector fields adapted to Φ – a basis of eigenvectors of Φ, for example.

Using the calculus of derivations of geometric objects defined along τ , we think we now
have large parts of the Douglas paper well under control. This approach confers the
following benefits.

• Douglas’s explicit calculations make more sense when interpreted in these terms:
for example, we can explain how the classification into cases and subcases works,
and we can show where expressions which play key roles in his analysis, but which
are otherwise quite mysterious, come from.

• We can derive some general results which are implicit in Douglas, but not remarked
by him: for example, we can show that certain ‘alternants’ between the partial
differential equations for the multiplier will always lead to conditions which are
automatically satisfied. Furthermore, we could complete some of the unfinished
details of Douglas’s analysis, for example by finding the conditions under which
the 1-form with which he ends his account of Case III is closed.

• By using a frame adapted to the algebraic structure of Φ, with respect to which Φ
is in Jordan canonical form, we can write down the most general form of the mul-
tiplier which satisfies the algebraic conditions, and derive the detailed differential
equations for the free components of the multiplier resulting from the invariance
and closure conditions, in terms of certain ‘structure functions’ of the frame.

• We believe that we could work out a general approach to the integrability condi-
tions, which would establish general results valid in any number of degrees of free-
dom, and answer the question of whether there are additional, so far unrecognised,
algebraic conditions that the multiplier must satisfy (other than those introduced
by the choice of a frame). It will further become clear from such an approach
which, if any,

of Douglas’s results are merely ‘accidents of dimension’, i.e. are true for n = 2
only.

• We feel confident that we could make progress in analysing the three degree of
freedom case; and also that we could analyse some special cases for an arbitrary
number of degrees of freedom, in particular that for which Φ is diagonalizable
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with distinct eigenvalues, and ∇Φ is a linear combination of Φ and the identity
(corresponding to Case IIa in Douglas).

In this preliminary announcement, we shall describe our methods and results in the
context of two of Douglas’s cases, and indicate how we think they can be used both to
give a complete reinterpretation of Douglas’s paper, and to tackle some of the broader
issues raised above.

It has not been possible to make this paper completely self-contained. Part of its purpose
is to serve as an exegesis of Douglas’s paper, so reference to that paper will be necessary
in order to understand this one fully. Furthermore, it is impossible to repeat in a short
space all of the results from the calculus of derivations of objects along τ which might
be relevant to the inverse problem. However, we have tried to make the paper as self-
explanatory as is consistent with reasonable length, by giving a brief resumé of the
calculus in the next section, and summarising Douglas’s results as they are needed in
the following two sections.

2 The calculus of derivations of objects defined along τ : IR×
TM →M

It is helpful to think of geometric objects, such as vector fields and forms, defined along
τ as being objects on the base manifold M , but with coefficients depending on the coor-
dinates of IR×TM . In order to study such objects it is necessary to adapt the properties
of derivations of geometric objects defined along the tangent bundle projection. A com-
prehensive theory of such operators has been developed in [4] and [5]. However, very
little of the detail of this theory is needed to support the calculations

of the present paper. In fact, most of the formulae of interest can be found in the
preliminary section of the application to separable second-order equations [6], to which
we therefore refer the reader for more background to the brief survey of concepts below.

Consider for the time being a system of autonomous second-order ordinary differential
equations, represented by the vector field

Γ = vi ∂/∂xi + f i(x, v) ∂/∂vi

on TM . It is well known that Γ defines a connection on TM , in general non-linear, for
which the local basis of horizontal vector fields is given by

Hi =
∂

∂xi
− Γji

∂

∂vj
, with Γji = −1

2

∂f j

∂vi
.

Every vector field on TM has a unique expression as the sum of the horizontal lift of
one vector field along τ and the vertical lift of
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another. In this way we have, for arbitrary vector fields X and Y along τ , the expressions

[XH , Y V ] = (DH
XY )V − (DV

YX)H ,

[Γ, XH ] = (∇X)H + (Φ(X))V .

The right hand sides of these relations identify the operations which are

essential for our subsequent analysis. First of all, Φ is a type (1,1) tensor field along τ ,
called the Jacobi endomorphism, with components

Φi
j = −∂f

i

∂xj
− ΓkjΓ

i
k − Γ(Γij).

The dynamical covariant derivative ∇ is a degree 0 derivation, which extends by duality
to tensor fields of arbitrary type. Its action (in coordinates) is completely determined
by

∇F = Γ(F ), ∀F ∈ C∞(TM),

∇
(
∂

∂xj

)
= Γij

∂

∂xi
, ∇(dxi) = −Γijdx

j .

The vertical and horizontal covariant derivatives DV
X and DH

X are also derivations of
degree 0. Their coordinate action is given by

DV
XF = Xi ∂F

∂vi
, DH

XF = XiHi(F ), ∀F ∈ C∞(TM),

DV
X

(
∂

∂xj

)
= 0, DH

X

(
∂

∂xj

)
=

(
Xk

∂Γij
∂vk

)
∂

∂xi
,

DV
X(dxi) = 0, DH

X(dxi) = −
(
Xk

∂Γij
∂vk

)
dxj .

Finally, we introduce an operation DV , whose action on an arbitrary tensor field U is
given by

DVU(X, . . .) = DV
XU(. . .).

In this framework, the inverse problem is the search for a non-singular, symmetric, type
(0,2) tensor field g along τ , such that Φ g (= g(Φ(·), ·)) is symmetric; ∇g = 0; and
DV g is symmetric. The first two of these conditions immediately give rise to a further
hierarchy of algebraic relations, namely that ∇Φ g, ∇2Φ g, and so on, must all be
symmetric. The second condition may be called the invariance condition, since it says
that the multiplier must be dynamically invariant. The third condition is commonly
referred to as the closure condition: it implies that a certain 2-form on TM (the ‘Kähler
lift of g’) must be closed.

In practice, when investigating the existence of a multiplier g, one first extracts as much
information as possible from the purely algebraic conditions. This is in agreement with
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the primary classification of subcases in Douglas, as summarised in the next section.
When it comes to imposing the differential conditions, one will ultimately have to study
integrability conditions. The first hierarchy of these, in our approach, will follow from
commutator identities derived in the above cited work. So far as the action of the
operators on vector fields is concerned, these commutator identities read:

[DV
X ,D

V
Y ] = DV

[X,Y ]V

[DV
X ,D

H
Y ] = DH

DV
XY
−DV

DH
Y X

+ µθ(X,Y )

[DH
X ,D

H
Y ] = DH

[X,Y ]H
+ DV

R(X,Y ) + µRie(X,Y )

[∇,DV
X ] = DV

∇X −DH
X

[∇,DH
X ] = DH

∇X + DV

Φ(X) − (DV Φ)(X)−R(X, ·).

Here, R is the curvature of the connection (a vector-valued 2-form along τ), Rie = −DVR
and θ(X,Y ) is a type (1,1) tensor field along τ with components(

θ(X,Y )
)
i
j =

(
DV
XDV

Y −DV

DV
XY

)
(Γij).

The other ingredients of these formulae are defined as follows:

[X,Y ]
V

= DV
XY −DV

YX, [X,Y ]
H

= DH
XY −DH

YX

and
µU (X) = U(X) for any (1,1) tensor U along τ .

From the general properties of derivations on the C∞(TM)-module of vector fields along
τ , it is easy to deduce corresponding commutator formulae for the action on functions.
Finally, using the duality rule D〈X,α〉 = 〈DX,α〉 + 〈X,Dα〉, which is satisfied by all
derivations involved, one easily obtains related results for the action on covariant tensors.
They will be given when needed.

It remains to explain how this calculus, which, strictly speaking, applies to autonomous
situations only, can be used in the present context, in which we want to consider differen-
tial equations which may be time-dependent. Such a system of equations is represented
by a vector field Γ = ∂/∂t + vi ∂/∂xi + f i(t, x, v) ∂/∂vi on IR × TM . For general con-
siderations, the role of the projection τ : TM → M will normally be taken over in the
time-dependent case by π : IR× TM → IR×M . A corresponding theory of derivations
has been developed and will soon be presented for publication (see [9] for some ideas
about it). Roughly speaking, geometrical objects such as torsion or curvature may pick
up an extra term in this calculus (a ‘time-component’), but leaving this term apart, the
coordinate expression of such an object will be similar to the one in the autonomous
context, but with contact forms dxi−vidt replacing the dxi we had before. A particular
case of interest emerges when all relevant tensors are restricted to act only on vector
fields along π which have no time-component, which could be thought of as vector fields
along the projection τ : IR× TM → M . The tensors Φ and g have a non-trivial action
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only on such vector fields. If the vector fields entering the derivation operators are also
taken to be of that type, then all the formulae listed above formally remain unaltered.
This is the version of the calculus required for the investigation of the inverse problem.

3 A general description of Douglas’s classification

Douglas writes the system of second-order differential equations he is dealing with in
the form

y′′ = F (x, y, z, y′, z′), z′′ = G(x, y, z, y′, z′).

Note his use of x for the independent variable, instead of the more usual t, which we
have adopted except when referring directly to Douglas’s paper. His division of the
problem into cases is based on the properties of the matrix A B C

A1 B1 C1

A2 B2 C2

 ,
whose entries depend on F and G and their derivatives: for example,

A =
d

dx
Fz′ − 2Fz − 1

2Fz′(Fy′ +Gz′),

the subscripts denoting partial derivatives. In fact Douglas’s A, B and C are related to
the components of Φ (with respect to the coordinate basis), as follows:

A = Φ1
2, B = Φ2

2 − Φ1
1, C = −Φ2

1.

Note that Φ is not completely determined by A, B, and C – its trace is undetermined.
But this is not surprising, certainly so far as the algebraic conditions on the multiplier are
concerned, since we could write Φ as the sum of its trace-free part (which is determined
by A, B and C) and a multiple of the identity, and the latter does not affect the algebraic
conditions. Furthermore, the operations which lead from A to A1, and from A1 to A2,
etc., correspond exactly to the action of the operator ∇ on type (1,1) tensor fields along
the projection. Thus, for example, Douglas’s condition

A1 = rA, B1 = rB, C1 = rC,

which defines Case II, may equivalently be expressed by saying that ∇Φ is a linear
combination of Φ and the identity. In fact, the first broad classification is by the linear
dependence or independence of Φ and its ∇ derivatives, as follows.

Case I: Φ is a multiple of the identity tensor I.
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Case II: ∇Φ is a linear combination of Φ and I.

Case III: ∇2Φ is a linear combination of ∇Φ, Φ and I.

Case IV: ∇2Φ, ∇Φ, Φ and I are linearly independent.

Case II is further subdivided into two subcases IIa and IIb according to the diagonaliz-
ability of Φ.

Case IIa: Φ has distinct eigenvalues (real or complex).

Case IIb: The eigenvalues of Φ coincide.

The further subdivision of Cases IIa and IIb may be defined in terms of a certain type
(1,2) tensor field HΦ along τ , defined as follows:

HΦ(X,Y ) = DV Φ(ΦX,ΦY )− ΦDV Φ(ΦX,Y )− ΦDV Φ(X,ΦY ) + Φ2DV Φ(X,Y ).

(This tensor appears to be related to one introduced by Frölicher and Nijenhuis, in [3],
in the discussion of a result of Haantjes on the integrability of distributions defined by
eigenvectorfields of a type (1,1) tensor field.) It turns out that in Case IIa, HΦ has at
most two independent components; the subcases are determined by whether both, one
or none of these components vanishes:

Case IIa1: HΦ = 0.

Case IIa2: HΦ has one independent component.

Case IIa3: HΦ has two independent components.

Case IIb is also subdivided according to the vanishing of HΦ:

Case IIb1: HΦ = 0.

Case IIb2: HΦ 6= 0.

In Case III the commutator [Φ,∇Φ] is non-zero. The further subdivision of this case is
determined by whether or not [Φ,∇Φ] is singular.

Case III1: det[Φ,∇Φ] 6= 0.

Case III2: det[Φ,∇Φ] = 0.

Thus Douglas’s classification of the cases and subcases of the inverse problem for n = 2
may be expressed entirely in terms of the properties of Φ and its covariant derivatives,
in a manner that may clearly be extended to higher dimensions.
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4 Case IIa

We shall next give a sketch of the way we approach the Douglas paper. To fix ideas, let
us talk first about Case II, which Douglas after all calls the most interesting case. We
shall also consider Case III, in the following section.

Case II is characterised for us by the fact that ∇Φ is a combination of Φ and the
identity. Case IIa is distinguished by the requirement that Φ is diagonalizable with
different eigenvalues, while in Case IIb, Φ has coincident eigenvalues with just a one
dimensional corresponding eigenspace, so here one must deal with a non-diagonal Jordan
form. Incidentally, in Case III, where ∇2Φ is a combination of ∇Φ, Φ and the identity,
one can have a non-singular multiplier only when Φ is diagonalizable, as we show in the
next section.

We shall concentrate on Case IIa. We shall first outline our approach, and then show
how to obtain Douglas’s results from it.

Let Xi, i = 1, 2, be two vector fields along τ which are independent eigenvectors of Φ;
and consider the dual basis {θi} of 1-forms along τ . Then the only immediate algebraic
condition, namely that Φ g is symmetric, simply means that g must be of the form

ρ1θ
1 ⊗ θ1 + ρ2θ

2 ⊗ θ2.

With the appropriate choice for X1 and X2, we can explicitly reproduce all the relevant
formulae in Douglas (leaving the integrability

conditions aside for a moment), as we shall show briefly below. But first, we describe
some more general considerations.

It follows from the dependence of ∇Φ on Φ and the identity that ∇Xi is proportional
to Xi. We can in principle, without loss of generality, scale the Xi in such a way
that ∇Xi = 0. (This is not the scaling chosen by Douglas, but is natural for theoretical
work once one has recognised the geometrical structure.) Then the differential condition
∇g = 0 is equivalent to saying that the ρi actually have to be first integrals.

Next come the closure conditions. To express them in terms of our basis, we note that
for each i and j we may write DV

Xi
Xj as a linear combination of the Xk. We therefore

introduce ‘structure functions’ τkij which characterise the vertical covaraiant derivatives
of the Xj :

DV
Xi
Xj = τkijXk, or equivalently DV

Xi
θj = −τ jikθ

k.

In principle, these functions can be computed for every choice of the eigenvectors; but
it is preferable to treat them as ‘known’ quantities, which are however unspecified. The
further classification of subcases may be expressed in terms of these structure functions.
The closure condition gives rise to two equations which express vertical derivatives of
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the ρi as certain linear combinations of the ρi with coefficients given in terms of the
τkij . Explicitly, these equations, which are the analogues of Equations (10.8) in Douglas,
read

DV
X2
ρ1 = (2τ1

21 − τ1
12)ρ1 − τ2

11ρ2,

DV
X1
ρ2 = (2τ2

12 − τ2
21)ρ2 − τ1

22ρ1.

In our analysis, therefore, the separated Case IIa1 (the case where these equations
decouple) is defined by τ1

22 = τ2
11 = 0 (which is the analogue of Equation (10.11) of

Douglas).

The vanishing of these components has a tensorial meaning (although the τ functions of
course are not tensor components). There is a relation between the quantities τ1

22 and
τ2

11 and the ‘generalised Haantjes tensor’ HΦ, which is derived as follows. The vector
fields Xi are eigenvectors of Φ, with eigenvalues ξi say. It follows from the formula for
HΦ given earlier that

HΦ(X1, X1) = (ξ1I − Φ)2DV Φ(X1, X1)

= (ξ1I − Φ)2(DV
X1

Φ)(X1)

= (ξ1I − Φ)2(DV
X1

(Φ(X1))− Φ(DV
X1
X1))

= (ξ1I − Φ)3DV
X1
X1

= (ξ1 − ξ2)3τ2
11,

since ξ1I − Φ annihilates multiples of X1. Similarly

HΦ(X2, X2) = (ξ2 − ξ1)3τ1
22.

A similar calculation for HΦ(X1, X2) shows that this vector may be expressed as (ξ1I −
Φ)(ξ2I − Φ) operating on something, and is therefore zero.

This result is particularly interesting because, being tensorial, it will have the same
significance in arbitrary higher dimension. In fact the vanishing of HΦ will not only
ensure that the equations for the vertical derivatives of the components of the multiplier
decouple, but at the same time it will prevent certain extra algebraic conditions (which
are void in dimension 2) from turning up.

Before pushing this line of reasoning a bit further, let us show that by making the
appropriate choice for the eigenvectors of Φ we obtain exactly the analytical expressions
of Douglas.

We can represent Φ as a matrix (with respect to the coordinate basis) as follows:

Φ =

[
1
2(T −B) A
−C 1

2(T +B)

]
,
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with T = tr Φ. The eigenvalue equation for Φ is

ξ2 − Tξ + 1
4(T 2 − (B2 − 4AC)) = 0,

and its eigenvalues are 1
2(T ±

√
B2 − 4AC). Now Douglas’s subdivision into Cases IIa

and IIb depends on whether B2−4AC is non- zero or zero; and this corresponds exactly
to whether the eigenvalues of Φ are distinct or coincident. Note that the eigenvalues of
Φ are not directly related to the quantities λ and µ occuring in Douglas’s analysis: in
fact these quantities, the roots of the quadratic equation Aξ2 +Bξ+C = 0, are related
instead to the eigenvectors of Φ.

In Case IIa, B2−4AC 6= 0, and Φ has distinct eigenvalues. Douglas does not distinguish
between the cases of real and complex eigenvalues, and the following discussion has been
based on the real case (rather as Douglas’s seems to have been). It may easily be checked
that

X =
1

(λ− µ)

[
1
−µ

]
and Y =

1

(µ− λ)

[
1
−λ

]
are eigenvectors of Φ; these eigenvectors are scaled so that the dual basis of row vectors
is

θ = [λ 1] and φ = [µ 1].

With this choice the corresponding symmetric bilinear forms θ⊗ θ and φ⊗ φ are repre-
sented by the matrices

θθT =

[
λ2 λ
λ 1

]
and φφT =

[
µ2 µ
µ 1

]
.

These are the expressions for the singular symmetric bilinear forms which Douglas de-
rives as the intersection of the plane AL + BM + CN = 0 with the ‘critical cone’
LM − N2 = 0, when the latter is parametrised in the peculiar way he chooses. The
general solution of the equation gΦ = ΦT g, which is the matrix

form of the symmetry condition for the multiplier, may therefore be written in this case

g = ρθθT + σφφT =

[
ρλ2 + σµ2 ρλ+ σµ
ρλ+ σµ 1

]
,

where ρ and σ have the same meanings as in Douglas’s paper. Douglas does not choose
to scale X and Y so that ∇X = ∇Y = 0. However, it remains true that ∇X is
proportional to X and ∇Y to Y ; or equivalently that ∇θ is proportional to θ and ∇φ
to φ. In fact it is easy to compute ∇θ and ∇φ, using the definition of ∇; expressing the
results in Douglas’s notation, we find that

∇θ = 1
2(Fz′λ+Gz′)θ, ∇φ = 1

2(Fz′µ+Gz′)φ.
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Now consider the condition ∇g = 0. In terms of ρ and σ this condition becomes(
dρ

dx

)
θ ⊗ θ + ρ(∇θ ⊗ θ + θ ⊗∇θ) +

(
dσ

dx

)
φ⊗ φ+ σ(∇φ⊗ φ+ φ⊗∇φ) = 0.

(Remember that on functions ∇ = Γ = d/dt, and that in Douglas’s notation the inde-
pendent variable is not t but x.) It follows that(

dρ

dx
+ (Fz′λ+Gz′)

)
θ ⊗ θ +

(
dσ

dx
+ (Fz′µ+Gz′)

)
φ⊗ φ = 0.

Since θ ⊗ θ and φ⊗ φ are linearly independent,

dρ

dx
+ (Fz′λ+Gz′)ρ = 0 and

dσ

dx
+ (Fz′µ+Gz′)σ = 0;

these are precisely the equations found by Douglas (Equations (10.7) of his paper).

Using the explicit expressions for X, Y , θ and φ given earlier we find that, for example,

DV
Y θ =

1

(µ− λ)
[λy′ − λλz′ 0].

Indeed, we can now recognise that expressions of the form (·)y′−λ(·)z′ and (·)y′−µ(·)z′ ,
which occur so frequently in Douglas’s analysis, arise as vertical covariant derivatives
along Y and X respectively. The components of the vertical covariant derivatives of the
basis 1-forms are given by

〈X,DV
Xθ〉 = −〈Y,DV

Xθ〉 =
λy′ − µλz′
(λ− µ)2

〈X,DV
Xφ〉 = −〈Y,DV

Xφ〉 =
µy′ − µµz′
(λ− µ)2

= − β

λ− µ

〈X,DV
Y θ〉 = −〈Y,DV

Y θ〉 = −
λy′ − λλz′
(λ− µ)2

=
α

λ− µ

〈X,DV
Y φ〉 = −〈Y,DV

Y φ〉 = −
µy′ − λµz′
(λ− µ)2

;

here α and β are the functions defined by Douglas in Equations (10.9). In effect, we have
found here explicit expressions for the structure functions τkij . The equation satisfied by
ρ (i.e. the equation for DV

X2
ρ1 in our notation) may therefore be written

ρy′ − λρz′ =

(
λy′ − µλz′ − 2(λy′ − λλz′)

λ− µ

)
ρ+ βσ

=

(
(λ− µ)λz′ + λλz′ − λy′

λ− µ

)
ρ+ βσ

= (λz′ + α)ρ+ βσ.
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The equation
σy′ − µσz′ = (µz′ − β)σ − αρ

follows similarly. These are Douglas’s Equations (10.8).

The next stage in Douglas’s considerations is the computation of ‘alternants’. To give a
rudimentary idea of how this works in our approach, let us take the separated Case IIa1
and look at the set of equations so far to be satisfied by ρ1, namely (in our notation)

∇ρ1 = 0, DV
X2
ρ1 = (2τ1

21 − τ1
12)ρ1.

¿From the [∇,DV
X ]–commutator relation (applied to functions), it follows that ρ1 must

satisfy the new equation
DH
X2
ρ1 = −∇(2τ1

21 − τ1
12)ρ1.

Again, with the choice of eigenvectors made by Douglas, we would discover in the left
hand side the origin of an expression like ρy − λρz. The commutators [∇,DH

X ] and
[DV

X ,D
H
X ] subsequently produce algebraic conditions, namely homogeneous linear equa-

tions for ρ1. Thus, integrability in this case means that the coefficients in these equations
must vanish. Verifying that they do should follow from ‘structure equations’; these are
identities satisfied by the functions τkij which, for example, can be obtained from the
same commutator relations, this time applied to the eigenvectors Xi themselves. It is
obvious that this is a tedious job and that one does not want to go through such an
analysis for every separate subcase (as Douglas does). We defer further considerations
on this problem to Section 5. The general results which are derived there will constitute
one of the major points of progress with respect to Douglas. At this stage, however,
it is already worth observing another interesting difference. In computing alternants,

Douglas makes a point of working with the independent operators
{
d
dx ,

∂
∂y ,

∂
∂z ,

∂
∂y′ ,

∂
∂z′

}
instead of the five coordinate derivatives

{
∂
∂x ,

∂
∂y ,

∂
∂z ,

∂
∂y′ ,

∂
∂z′

}
. What our more geomet-

rical approach indicates is that in fact it is still more advantageous to go further and

replace
{
∂
∂y ,

∂
∂z ,

∂
∂y′ ,

∂
∂z′

}
by the combinations which constitute {DH

X1
,DH

X2
,DV

X1
,DV

X2
}.

Note in passing: the fact that the [∇,DH
X2

]–integrability condition for ρ1 is satisfied has
a nice geometrical interpretation – it means that (2τ1

21 − τ1
12)X2 generates a symmetry

of Γ. Likewise, in the similar analysis for the separate equations for ρ2, one discovers
that (2τ2

12 − τ2
21)X1 generates a symmetry.

5 Case III

First, note that if R and S are any two matrices which are symmetric with respect to a
scalar product g, then the commutator [R,S] is skew-symmetric with respect to g:

g(u, [R,S]v) = g(Ru, Sv)− g(Su,Rv) = −g([R,S]u, v).
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It follows that g([Φ,∇Φ]·, ·) is a 2-form, and therefore in dimension 2 is a multiple of a
fixed non-zero 2-form. If, following Douglas, we set

∆1 = BC1 − CB1, ∆2 = CA1 −AC1, ∆3 = AB1 −BA1,

then

[Φ,∇Φ] =

[
∆2 ∆3

−∆1 −∆2

]
= ∆, say.

We can therefore write

g∆ = ρ̂

[
0 1
−1 0

]
,

where ρ̂ is a scalar. Thus provided that det ∆ = ∆1∆3 −∆2
2 6= 0, we have

g =
ρ̂

det ∆

[
0 1
−1 0

] [
−∆2 −∆3

∆1 ∆2

]
= ρ

[
∆1 ∆2

∆2 ∆3

]
,

where ρ = ρ̂/ det ∆. This is the form of the multiplier given by Douglas in Equa-
tion (17.3).

Having sufficiently established the link with Douglas in the previous paragraph, we shall
now follow independently our own line of approach, much as we did for Case IIa above.
We shall show for a start that in Case III, Φ must be diagonalizable. Assume otherwise,
that Φ is not diagonalizable, and let X1, X2 be a basis for its Jordan canonical form:
Φ(X1) = ξX1, Φ(X2) = AX1 + ξX2, with A any non-zero function. The first algebraic
condition – that Φ g is symmetric – implies that g(X1, X1) = 0. So, with respect to a
1-form basis θi dual to the Xi, g must take the form

g = σ(θ1 ⊗ θ2 + θ2 ⊗ θ1) + µθ2 ⊗ θ2,

where σ 6= 0 since g must be nonsingular. It follows that the next algebraic condition
– that ∇Φ g is symmetric – is equivalent to g(∇X1, X1) = 0. If we put ∇Xi = νjiXj ,
then this second requirement says that ν2

1 σ = 0, i.e. ν2
1 = 0. We can therefore rescale

X1 to have ∇X1 = 0. Using the fact that the dimension is 2, it is easy to show that it
follows that one can find functions a and b such that ∇Φ = aΦ + bI. We conclude from
this that if Φ is not diagonalizable, we are necessarily in Case II (or I).

Assume therefore that Φ is diagonalizable, so that the first algebraic condition implies
that g is of the form g = ρθ1 ⊗ θ1 + σθ2 ⊗ θ2. The second algebraic condition is now
equivalent to g(∇X1, X2) + g(X1,∇X2) = 0. This tells us that ν2

1σ + ν1
2ρ = 0, or in

other words that g is of the form

g = µ(ν2
1θ

1 ⊗ θ1 − ν1
2θ

2 ⊗ θ2),

for some unknown µ, where none of the functions in this expression can be zero if g
is to be nonsingular. We have again derived the result that in this case there is just

14



one independent coefficient in g, namely µ. One further simplification which we can
certainly achieve in this case is to rescale the Xi in such a way that ∇X1 = ν2

1X2 and
∇X2 = ν1

2X1.

The next thing to observe is the distinction between Case III and Case IV. Case III
is the case where ∇2Φ is a linear combination of ∇Φ, Φ and the identity, so that the
third algebraic condition should be void. But this condition, which is equivalent to
g(∇2X1, X2) + 2 g(∇X1,∇X2) + g(X1,∇2X2) = 0, implies that

µ(ν2
1∇ν1

2 − ν1
2∇ν2

1) = 0,

which is void only if the quantity in brackets is zero. In the opposite case, Case IV, we
get µ = 0 and there is clearly no solution to the inverse problem. The Case III situation
allows us a final simplification: it actually means that ν1

2/ν
2
1 is a first integral (which

is in principle known). Setting ν1
2 = ν2

1 α, and putting the common factor in front and
absorbing it into the unknown µ, we may finally regard g as being of the form:

g = µ(θ1 ⊗ θ1 − α θ2 ⊗ θ2).

where α is a first integral.

Next, let us move on to the differential conditions. Firstly, ∇g = 0 is equivalent to
∇µ = 0. The closure conditions,

DV
X1
g(X1, X2) = DV

X2
g(X1, X1), DV

X1
g(X2, X2) = DV

X2
g(X2, X1),

explicitly become
DV
X1
µ = a1 µ, DV

X2
µ = a2 µ,

where in terms of the structure functions τkij , defined as before, we have

a1 = α−1
(
α(2 τ2

12 − τ2
21) + τ1

22 −DV
X1
α
)
,

a2 = (2 τ1
21 − τ1

12 + ατ2
11).

As in the previous section, the commutator identity [∇,DV
X ] = DV

∇X−DH
X produces new

equations for the DH
Xi
µ, say

DH
X1
µ = b1 µ, DH

X2
µ = b2 µ,

where the bi are known functions.

At this point, we can already produce a statement about the existence of a Lagrangian,
which is equivalent to the one in Douglas. For this purpose we must interpret our
calculations in the full time-dependent formalism. We will choose the forms dual to the
Xi to satisfy 〈T, θi〉 = 0, where T = ∂/∂t+ vi ∂/∂xi is the canonical vector field along
π : IR× TM → IR×M . In this way, with appropriately defined vertical and horizontal
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lifts, {dt, θiV , θiH} will be a basis of 1-forms on IR × TM dual to {Γ, Xi
V , Xi

H}. With
respect to such a basis, for any function ϕ on IR× TM

dϕ = (∇ϕ)dt+ (DV
Xi
ϕ)θi

V
+ (DH

Xi
ϕ)θi

H
.

The overall integrability condition can now be stated, as follows: a Lagrangian will exist
provided that the form aiθ

iV + biθ
iH is closed.

The question is whether we could actually do better than Douglas here, which would be
the case if we could pin down more precisely the obstructions to this 1-form being closed.
To do so would involve considering the integrability conditions which would arise, as in
the other cases, from calculating alternants (to use Douglas’s terminology) between the
various differential conditions which must be satisfied by the multiplier. We turn to this
issue in the following, final, section of the paper.

6 The first hierarchy of integrability conditions

Remembering the tedious calculations referred to in Section 4, it should be clear that a
better way of approaching the integrability problem will be to go back to the original
conditions on g and use the commutator identities on them directly. We have carried
out this procedure completely for the first set of commutators, that is to say, for all the
commutators [D1, D2] where D1 and D2 are chosen from ∇, DV

Xi
and DH

Xj
. The results

are summarised below. This analysis is valid for arbitrary dimension. Furthermore, it
is independent of the eigenspace structure of Φ; in other words, the Xi represent any
local basis of vector fields along τ .

We start with the invariance condition

∇g = 0

and the closure condition

DV
Xi
g(Xj , Xk) = DV

Xk
g(Xj , Xi).

Using the comutator relation

[∇,DV
Xi

]g = DV
∇Xi

g −DH
Xi
g,

it follows easily that g must satisfy

DH
Xi
g(Xj , Xk) = DH

Xk
g(Xj , Xi).

We next proceed in the same way by applying ∇ to this relation, using the identity

[∇,DH
Xi

]g = DH
∇Xi

g + DV

Φ(Xi)
g − 2iiXi

Rg + iDV
Xi

Φg,
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where for any (1,1) tensor A, iAg(X,Y ) = g(AX,Y ) + g(X,AY ). In the calculations
which result one has to make use of the closure conditions, the fact that DV

X(Φ g) will
be symmetric for any X and the property 3R(X,Y ) = DV

XΦ(Y )−DV
Y Φ(X) (see [5]). It

then follows that we must have

g(R(Xk, Xi), Xj) + g(R(Xi, Xj), Xk) + g(R(Xj , Xk), Xi) = 0.

These are extra algebraic relations which must be satisfied by a multiplier (in addition
to those involving Φ and its ∇ derivatives). They were first derived in coordinate form
in [8] and are also mentioned in [1]. They are void in dimension 2.

We next apply DV
Xl

to the original closure conditions and use the commutator identity

[DV
Xk
,DV

Xl
] = DV

[Xk,Xl]V
.

All terms in the resulting expression cancel by virtue of the closure conditions and the
commutation relation, so no new condition arises.

The computation resulting from acting on DH
Xi
g(Xj , Xk) = DH

Xk
g(Xj , Xi) with DH

Xl

proceeds along much the same lines, but there are of course more terms involved, because
on g

[DH
Xi
,DH

Xj
] = DH

[Xi,Xj ]H
+ DV

R(Xi,Xj) − iRie(Xi,Xj).

We obtain first a relation of the form

0 = g(Rie(Xl, Xi)Xj , Xk) + g(Rie(Xl, Xi)Xk, Xj)−DV
Xk
g(Xj , R(Xl, Xi))

+ DH
Xl

DH
Xk
g(Xj , Xi)−DH

DH
Xl
Xk
g(Xj , Xi)

−DH
Xi

DH
Xk
g(Xj , Xl) + DH

DH
Xi
Xk
g(Xj , Xl).

We now make use of the property Rie = −DVR. After some obvious cancellations the
condition reduces to the following form:

0 = DV
Xj
g(R(Xi, Xl), Xk) + DV

Xj
g(R(Xl, Xk), Xi) + DV

Xj
g(R(Xk, Xi), Xl)

+ g(DV
Xj
R(Xi, Xl), Xk) + g(DV

Xj
R(Xl, Xk), Xi) + g(DV

Xj
R(Xk, Xi), Xl)

+ g(DV
Xk
R(Xi, Xl), Xj) + g(DV

Xi
R(Xl, Xk), Xj) + g(DV

Xl
R(Xk, Xi), Xj).

The last three terms cancel out in view of the relation between R and Φ. It is then
easy to verify that the remaining terms consist precisely of those that are left when the
extra algebraic conditions involving R obtained earlier are acted upon by DV

Xj
. Surpris-

ingly, therefore, the conditions coming from the commutator of two horizontal covariant
derivatives are also always satisfied, by virtue of the previously derived conditions.

The final alternant between the closure conditions arises from applying DV
Xl

to the equa-
tion DH

Xi
g(Xj , Xk) = DH

Xk
g(Xj , Xi), or equivalently DH

Xl
to the equation DV

Xi
g(Xj , Xk) =
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DV
Xk
g(Xj , Xi). In this case it is not possible to eliminate the second derivatives; however,

by using the commutator

[DV
Xi
,DH

Xj
] = DH

DV
Xi
Xj
−DV

DH
Xj
Xi
− iθ(Xi,Xj)

we can derive an integrability condition involving the second derivatives of the multiplier,
which may be described conveniently in terms of a certain differential operator A(Xi, Xj)
defined as follows:

A(Xi, Xj) = DV
Xi

DH
Xj
−DV

Xj
DH
Xi
−DH

[Xi,Xj ]V
.

Note that the second derivative terms in A(Xi, Xj) do not form a commutator, though
the operator is clearly skew-symmetric in Xi and Xj . However, A(Xi, Xj) is C∞(IR ×
TM)-linear in both Xi and Xj , though it is not a tensor because it is not C∞(IR×TM)-
linear in its operation on vector fields along τ . Using the commutation relation for DV

Xi

and DH
Xj

we can express A(Xi, Xj) in a couple of different ways:

A(Xi, Xj) = −{DH
Xi

DV
Xj
−DH

Xj
DV
Xi
−DV

[Xi,Xj ]H
}

= DV
Xi

DH
Xj
−DH

Xi
DV
Xj
−DH

DV
Xi
Xj

+ DV

DH
Xi
Xj

+ iθ(Xi,Xj).

We can establish the identity

(A(Xi, Xj)g)(Xk, Xl) + g(θ(Xk, Xl)Xi, Xj)− g(Xi, θ(Xk, Xl)Xj)

≡ −{(A(Xk, Xl)g)(Xi, Xj) + g(θ(Xi, Xj)Xk, Xl)− g(Xk, θ(Xi, Xj)Xl)},

modulo derivatives of the closure conditions. The left hand side is skew-symmetric in Xi

and Xj but symmetric in Xk and Xl, while the right hand side is symmetric in Xi and
Xj but skew-symmetric in Xk and Xl; it follows from this that each must separately be
zero, modulo derivatives of the closure conditions: thus if g is to satisfy the conditions
for being a multiplier we must have

(A(Xi, Xj)g)(Xk, Xl) + g(θ(Xk, Xl)Xi, Xj)− g(Xi, θ(Xk, Xl)Xj) = 0.

Note that this condition is vacuous if either Xi = Xj or Xk = Xl; in the two degree of
freedom case, therefore, there is only one non-trivial component, namely

(A(X1, X2)g)(X1, X2) + g(θ(X1, X2)X1, X2)− g(X1, θ(X1, X2)X2) = 0.

It will be seen from this analysis that most of the integrability conditions are always
satisfied in dimension 2. As a matter of fact, in each case Douglas constructs the
alternants in the same order as we have given them above, but of course considering
only those that are relevant to the case in hand. In every case he finds, first, that
taking the alternant corresponding to [∇,DV

X ] has the effect of turning derivatives of
the components of the multiplier with respect to y′ and z′ (vertical derivatives) into
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similar derivatives with respect to y and z (horizontal derivatives). Next, he finds that
the alternant of these new equations with the invariance equations, which corresponds
to [∇,DH

X ], disappears identically. In fact all

of Douglas’s integrability conditions, which he obtained by arduous calculations on a
case-by-case basis, are covered by the results described above, with the exception of the
final alternant required in Case I, which actually belongs to the second hierarchy and is
therefore not included in the above discussion. The efficiency of our approach, compared
with his, should be apparent; as should be the possibilities that it gives for analysing
cases in higher dimensions.
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