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1 Introduction

Consider a class of mechanical systems with non-holonomic constraints. For a
system with n degrees of freedom (coordinates qA), subject to m (linear) non-
holonomic constraints, the general description of these constraints is of the form:

AaA(t, q)q̇A + ba(t, q) = 0, a = 1, . . . ,m,

whereby the regularity condition which is normally assumed is that the matrix
(AaA) has maximal rank. As a result, one can in principle solve the constraint
relations for m of the velocity coordinates in terms of the k = n − m remaining
ones, yielding say

q̇a = Ba
α(t, q)q̇α +Ba(t, q), a = 1, . . . ,m,

where the summation over α runs from 1 to k. We henceforth assume that such an
operation has been carried out prior to setting up the dynamical equations. If the
unconstrained physical system is derivable from a Lagrangian L, the classical pro-
cedure for arriving at the equations of motion is to introduce Lagrange-multipliers
λa and to consider the system of n + m differential equations for the dynamical
variables qA and the m multipliers λa, which consists of the m constraint equations,
together with:

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= −λaBa

α, α = 1, . . . , k,

d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa
= λa, a = 1, . . . ,m.

Due to the special way in which the constraints are written, it is obvious here that
the unknown multipliers can be eliminated from the picture. Solution curves qA(t)
will have to satisfy the equations

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
+

[
d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa

]
Ba
α = 0,

together with the constraint equations. Substitution of the constraints and their
derivatives in the above displayed equations will produce second-order differential
equations for the qα. To see what they are, it is convenient to introduce the function

L(t, qA, q̇α) ≡ L(t, qA, q̇α, Ba
β q̇

β +Ba).

We then have the identities,

∂L

∂qα
=

∂L

∂qα
+
∂L

∂q̇a

(
∂Ba

β

∂qα
q̇β +

∂Ba

∂qα

)
,

∂L

∂q̇α
=

∂L

∂q̇α
+
∂L

∂q̇a
Ba
α,
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from which it follows, taking the preceding result into account, that along solution
curves qA(t), we will have

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= Ba

α

∂L

∂qa
+
∂L

∂q̇a

(
Ḃa
α −

∂

∂qα
(Ba

β q̇
β +Ba)

)
.

With the understanding that the derivatives of L appearing in the right-hand side
are expressed, via the constraints, as functions of t, qA, q̇α, these are effectively
second-order equations for the qα, which are generally coupled with the first-order
constraint equations. Using the identity,

∂L

∂qa
=
∂L

∂qa
+
∂L

∂q̇b

(
∂Bb

β

∂qa
q̇β +

∂Bb

∂qa

)
,

they can finally be recast into the form:

d

dt

(
∂L

∂q̇α

)
= Xα(L) + Ca

α

∂L

∂q̇a
,

where we have introduced, for shorthand, the notations

Xα =
∂

∂qα
+Ba

α

∂

∂qa
,

Ca
α = Ḃa

α −Xα(Ba
β q̇

β +Ba).

Assuming that the reduced Lagrangian L is regular, the equations for the qα can
be put in normal form, arriving this way at a coupled system of second and first
order differential equations of the form

q̈α = fα(t, qA, q̇β), α = 1, . . . , k (= n−m),

q̇a = Ba
α(t, qA) q̇α +Ba(t, qA), a = 1, . . . ,m.

Recently, the study of non-holonomic mechanics has again become a field of in-
tensive research. Among the many interesting contributions which focus on the
Lagrangian description, we mention papers by Vershik [18], Giachetta [5], Massa
and Pagani [11], Koiller [8], Yang [20], Yang et al [21], Cariñena and Rañada [3]
and refer in particular to [8, 11] for a long list of references to relevant classical
and modern treatments of the subject.

Motivated by this renewed interest, the purpose of the present paper is to describe
some geometrical aspects of general systems of mixed differential equations of the
above type. Irrespective of their origin, the first order equations in such a system
can somehow be regarded as imposing constraints on the accompanying second-
order equations. One of the main features we thereby wish to emphasize is that
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these constraints have a natural interpretation in terms of an Ehresmann connec-
tion on an appropriate bundle. This idea is to a certain extent also present in a few
of the above cited papers. In fact, while finalising this manuscript, we have become
aware of a preprint by Bloch et al [1], where this connection is also at the heart
of the matter, but the discussion is restricted to time-independent, non-holonomic
Lagrangian dynamics and the emphasis is on topics which are rather different from
the ones under investigation here.

In Section 2, we introduce the geometrical framework for the kind of mixed systems
of differential equations presented above. It is shown that there are two connections
which are naturally associated with such systems: one is needed to define the kind
of constraint manifold where the dynamics is supposed to live, the other one comes
for free whenever a second-order system on this manifold is being considered. In
Section 3, some features of the curvature of both connections are discussed and
we introduce the dynamical covariant derivative and Jacobi endomorphism. These
two concepts play a fundamental role in the characterisation of symmetries and
adjoint symmetries of the given dynamical system in Section 4. In Section 5,
we go back to the special case of non-holonomic Lagrangian systems and succeed
in defining intrinsically the dynamics associated to such a system, directly on the
constraint manifold and without recourse to the celebrated principle of d’Alembert.
An illustrative example in the next section is finally followed by some concluding
remarks and an outlook for future studies in preparation.

2 A geometrical framework

The structure of the above described types of differential equations strongly sug-
gests that for an intrinsic description, we ought to look at a space where there are
two lots of coordinates, qα and qa, and that admissible coordinate transformations
should respect this distinction, meaning that new Qa coordinates can possibly de-
pend on all qA, but the Qα can be functions of the qβ only. This means that we are
thinking of a fibration or, more precisely, of a bundle (i.e. a locally trivial fibred
manifold).

Disregarding for a while the special role which is accorded to the variable t, consider
a bundle π : E → M ; let xα denote coordinates on M and (xα, ya) corresponding
coordinates on E. A connection on π is a section of J1π over E (see e.g. [17, 10, 19])

σ̃ : E → J1π, (xα, ya) 7→ (xα, ya, yaα = Ba
α(x, y)).

Alternatively, such a connection can be thought of as a splitting of the sequence
(see e.g. [6])

0→ V E → TE → π∗TM → 0,
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i.e. as a map

σ : π∗TM → TE, (xα, ya, vα) 7→ (xα, ya, vα, wa = Ba
αv

α).

The image of σ defines a vector subbundle of TE, which is isomorphic to π∗TM .
Starting from a curve t 7→ (xα(t), ya(t)) in E, there is an associated curve t 7→
(xα(t), ya(t), ẋα(t)) in π∗TM and a lifted curve t 7→ (xα(t), ya(t), ẋα(t), ẏa(t)) in
TE. It makes perfectly sense to consider dynamical systems, which are constrained
by the condition that solution curves must be curves in E, whose lift to TE coin-
cides with the image under σ of the corresponding curve in π∗TM . Such a system
will thus be defined by some vector field on σ(π∗TM) and its solutions will satisfy,
apart from some dynamical equations, the differential equations ẏa = Ba

α(x, y)ẋα.

Assume now, in addition, that both E and M are fibred over IR, with projections,
say, τ1 : E → IR and τ0 : M → IR, satisfying τ1 = τ0 ◦ π. J1τ1 and J1τ0 can
be naturally identified with submanifolds of TE and TM , respectively, and the
restriction of the tangent map Tπ provides (the essential part of) a projection of
J1τ1 onto π∗J1τ0. Starting from a connection σ̃ as before, the restriction to π∗J1τ0

of what was called precedingly the corresponding map σ, defines a section of J1τ1

over π∗J1τ0. The image of σ is what we call the constraint manifold J1
σ ; it is an

affine subbundle of J1τ1, which is isomorphic to π∗J1τ0:

J1
σ =

{
j1
t φ ∈ J1τ1 | j1

t φ = σ
(
φ(t), Tπ(φ̇(t))

)}
.

For a schematic view of the situation, see the diagram in Section 3.

In this special situation, we write the xα coordinates as (t, qα) and, to make the link
with the previous section, qa instead of ya. With regard to the above discussion
of special curves in E, it is obvious in the present case that they will have to
be sections of τ1. The different fibrations involved in this picture impose certain
‘naturality conditions’ on atlases which are appropriate to define the differentiable
stucture on each of the manifolds under consideration. In other words, admissible
coordinate transformations on E will have to be of the form:

T = t,

Qα = Qα(t, qβ),

Qa = Qa(t, qα, qb).

For the induced transformations on π∗J1τ0 and J1τ1, they are supplemented by,
respectively

Q̇α =
∂Qα

∂qβ
q̇β +

∂Qα

∂t
,

and

Q̇a =
∂Qa

∂qb
q̇b +

∂Qa

∂qα
q̇α +

∂Qa

∂t
.
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The connection σ gives rise to the following local basis of vector fields, which at
each point span the horizontal subspace of TE,

Xt =
∂

∂t
+Ba ∂

∂qa
, Xα =

∂

∂qα
+Ba

α

∂

∂qa
.

Together with ∂/∂qa, they form a local basis for X (E), the dual basis of which is
given by

dt, dqα, ηa = dqa −Ba
α dq

α −Ba dt.

The transformation rule for the connection coefficients (under admissible coordi-
nate transformations) reads,

Baα =
∂qβ

∂Qα
Xβ(Qa), Ba = Xt(Q

a) +
∂qα

∂t
Xα(Qa).

These, together with the natural coordinate transformations on π∗J1τ0, are the
relations one needs when it comes to check whether certain objects living on J1

σ

are tensorial.

Let i denote the injection of J1
σ into J1τ1 and ρ the projection of J1

σ onto E. A
local basis of 1-forms on J1τ1 consists of course of dt, the contact forms θα =
dqα− q̇αdt, θa = dqa− q̇adt and dq̇α, dq̇a. Unlike the restricted contact forms i∗θα,
the 1-forms i∗θa = dqa− (Ba

αq̇
α+Ba)dt do not properly behave with respect to the

natural coordinate transformations on J1
σ . A more suitable local basis of 1-forms

on J1
σ therefore is given by,

dt, i∗θα, ρ∗ηa, and dq̇α.

Note that the ρ∗ηa, which do have proper tensorial behaviour, are related to the
restricted contact forms by: ρ∗ηa = i∗θa−Ba

α(i∗θα). For simplicity of notation, we
will also write θα and ηa for the corresponding forms on J1

σ .

A second-order differential equation field (Sode) on J1
σ , which by the nature of

the present formalism will in fact partly correspond to first-order equations (the
constraints), is defined here as follows.

Definition. A Sode on J1
σ is a vector field Γ ∈ X (J1

σ), satisfying the requirements

〈Γ, dt〉 = 1, 〈Γ, θα〉 = 0, , 〈Γ, ηa〉 = 0.

In coordinates, Γ is of the form

Γ =
∂

∂t
+ q̇α

∂

∂qα
+ (Ba

β q̇
β +Ba)

∂

∂qa
+ fα(t, qA, q̇β)

∂

∂q̇α
.

Note in passing that a more general system, with constraint equations of the form
q̇a = ga(t, qA, q̇α), would be obtained if we would replace the map σ : π∗J1τ0 → J1τ1

by an arbitrary section of this fibration (not coming from a connection on π).
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As soon as a Sode Γ is given, it looks advantageous to let it be part of an adapted
local basis, so for the time being we choose

dt, i∗θα, ρ∗ηa, ωα = dq̇α − fαdt

as basis of 1-forms on J1
σ , with dual basis

Γ, Xα,
∂

∂qa
,

∂

∂q̇α
.

The canonical vertical endomorphism

S =
∂

∂q̇α
⊗ θα

of J1τ0 is inherited by π∗J1τ0 and also carries over to J1
σ through the isomorphism

σ. Computing LΓS, we find

LΓS = −Xα ⊗ θα −
∂fβ

∂q̇α
∂

∂q̇β
⊗ θα +

∂

∂q̇α
⊗ ωα,

form which it follows that

(LΓS)2 = I − Γ⊗ dt−N,

where I is the identity tensor on J1
σ and

N =
∂

∂qa
⊗ ηa

is another canonically defined tensor field on J1
σ . As a matter of fact, N is essen-

tially the vertical projector on E, determined by the connection σ, but appears to
behave tensorially also on J1

σ . We will elaborate on this point in the next section.

Introducing the tensor fields

PH =
1

2
(I − LΓS + Γ⊗ dt+N),

PV =
1

2
(I + LΓS − Γ⊗ dt−N),

it is easy to verify that P 2
H = PH, P

2
V = PV and PH ◦ PV = PV ◦ PH = 0. This

means, of course, that we have identified for each given Sode Γ a corresponding
connection on the bundle ρ : J1

σ → E. The connection coefficients are easily
identified by looking at PH in the coordinate basis; we find

PH = dt⊗
(
∂

∂t
+ (fα + q̇βΓαβ)

∂

∂q̇α

)
+ dqα ⊗

(
∂

∂qα
− Γβα

∂

∂q̇β

)
+ dqa ⊗ ∂

∂qa
,
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where, as is the convention in the standard theory of second-order systems, we
have put Γαβ = −(1/2)(∂fα/∂q̇β).

Since we have two tensors S and N at our disposal, it is of interest to investigate
some of their further properties. First of all, we know that S2 = 0, N2 = N , and
is is easy to see that

S ◦N = N ◦ S = 0, and LΓS ◦N = N ◦ LΓS = 0,

from which it further follows that also S ◦ LΓN = LΓN ◦ S = 0. We have,

LΓN = −Ca
α

∂

∂qa
⊗ θα − ∂fα

∂qa
∂

∂q̇α
⊗ ηa,

where, in principle, the first term of Ca
α, as defined in the introduction, should be

read here as Γ(Ba
α), but does clearly not depend on the choice of the Sode Γ. One

can further verify that

LΓS ◦ LΓN = LΓN ◦N, and LΓN ◦ LΓS = −N ◦ LΓN.

Remark. Consider the tensor

U = LΓS + LΓN ◦N = LΓS ◦ (I + LΓN).

Using the above properties, one easily obtains the identity

U2 = I − Γ⊗ dt−N + LΓN ◦N.

It follows that we can define two other, mutually orthogonal projectors, namely

PHU
= PH −

1

2
LΓN ◦N, PVU

= PV +
1

2
LΓN ◦N.

In the coordinate basis we have,

PHU
= dt⊗

(
∂

∂t
+
(
fα + q̇βΓαβ −

1

2

∂fα

∂qa
Ba
)
∂

∂q̇α

)

+ dqα ⊗
(
∂

∂qα
−
(

Γβα +
1

2

∂fβ

∂qa
Ba
α

)
∂

∂q̇β

)
+ dqa ⊗

(
∂

∂qa
+

1

2

∂fα

∂qa
∂

∂q̇α

)
,

which exhibits the alternative connection coefficients. We will not make use of this
alternative Sode connection in what follows.
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3 Curvature, the dynamical covariant derivative

and the Jacobi endomorphism

Two essentially different Ehresmann connections have entered our discussion by
now: the first one, σ̃ or σ, is needed to define the constraint manifold J1

σ , the
second one comes along with any second-order dynamics living on J1

σ . As usual
the curvature of these connections will play a decisive role somewhere and one of
the features we want to highlight in this section is the way these two different
curvatures jointly appear in the ‘calculus along the projection ρ : J1

σ → E’. It
is not our intention here to develop such a calculus in its full extent, the way
it has been done for ordinary second-order dynamics in [12, 13, 15]. Experience
with interesting applications of such a calculus (see e.g. [14, 4, 2]) has shown that
the most important operations related to second-order dynamics are a dynamical
covariant derivative and a type (1,1) tensor field, called the Jacobi endomorphism.
We will limit ourselves in the present context to precisely these two aspects.

For a start, there is a canonical vector field T along ρ, defined in coordinates by

T =
∂

∂t
+ q̇α

∂

∂qα
+ (Ba

αq̇
α +Ba)

∂

∂qa
.

As usual, the horizontal lift operation corresponding to some connection on ρ
extends to X (ρ), the set of vector fields along ρ, and we have here

TH = Γ, Xα
H = Xα − Γβα

∂

∂q̇β
,

∂

∂qa

H

=
∂

∂qa
.

In addition, there is a vertical lift operation from X (ρ) to X (J1
σ), which is roughly

determined by the tensor field S and can be characterized by the properties:

TV = 0, Xα
V = ∂/∂q̇α, (∂/∂qa)V = 0.

It will be appropriate to introduce the following submodules of X (ρ):

X (ρ) = {X ∈ X (ρ)| 〈X, dt〉 = 0, N(X) = 0}
X̃ (ρ) = {X̃ ∈ X (ρ)| N(X̃) = X̃}.

Observe hereby that, as can be done for every tensor field living on E, the vertical
projector N is here regarded as a tensor field along the projection ρ.

Every vector field Z ∈ X (J1
σ) has a unique decomposition in the form

Z = XH + Y
V
.
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Indeed, starting from a given Z, X is defined by X = Tρ◦Z, while Y subsequently
is the unique element of X (ρ) such that Z − XH = Y

V
. The element X ∈ X (ρ)

itself can be further decomposed as

X = 〈X, dt〉T +X + X̃.

Dually, we can write every 1-form along ρ as a sum of three terms:

α = 〈T, α〉dt+ α + α̃,

with α = 〈Xβ, α〉θβ, α̃ = 〈∂/∂qa, α〉ηa. There are dual horizontal and vertical lift
operations from

∧
(ρ) to

∧
(J1
σ).

Turning now to aspects of curvature, let us first look at the connection σ̃ (see
the diagram below) and recall that one way of defining its curvature is via the
Nijenhuis tensor of the horizontal projector on E [9]. One easily verifies, however,
that this vector-valued 2-form on E is in fact identical to the Nijenhuis tensor of
the vertical projector N . Since N will be shown to be well-defined on J1

σ as well,
we will base our considerations on its Nijenhuis tensor and write N0, respectively
N1, if we want to make a notational distinction between the N living on E and
the N living on J1

σ .

For the Nijenhuis tensor of N0, we have computed its various components with re-
spect to the local basis of vector fields {Xt, Xα, ∂/∂q

a}, adapted to the connection.
The result reads:

NN0
=
[
1

2

(
Xα(Ba

β)−Xβ(Ba
α)
)
dqα ∧ dqβ +

(
Xt(B

a
β)−Xβ(Ba)

)
dt ∧ dqβ

]
⊗ ∂

∂qa
.

Now, as said before, every tensor field on E can be regarded also as a tensor field
along the projection ρ and, in this interpretation, its coordinate expression can
more appropriately be written with contact forms θα replacing the coordinate 1-
forms dqα in the formula above. Computing then the contraction of the Nijenhuis
tensor with the canonical vector field along ρ, we define the type (1,1) tensor field
Ψ along ρ:

Ψ = iTNN0
=
[
T(Ba

β)−Xβ(Ba
αq̇

α +Ba)
]
θβ ⊗ ∂

∂qa
= Ca

βθ
β ⊗ ∂

∂qa
.

This way, we effectively have an intrinsic characterization of the tensor components
Ca
α, depending solely on the connection σ on π : E →M .

We could proceed in the same way for the Sode connection on ρ : J1
σ → E, leading

to a curvature tensor which is a vertical-vector-valued 2-form on J1
σ . Alternatively

(cf. [15]) the curvature here can be regarded as a vector-valued 2-form along ρ,
which is determined by the vertical part of the Lie bracket of two horizontal lifts.
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To be more precise, for any X, Y ∈ X (ρ), computing the decomposition of the
vector field [XH, Y H], one can verify that its vertical part depends tensorially on
X and Y and thus can be written in the form R(X, Y )V , where R is a tensor field
along ρ. We define the tensor field Φ along ρ by:

Φ = iTR = −
[
Xα(fβ) + ΓγαΓβγ + Γ(Γβα)

]
Xβ ⊗ θα −

∂fβ

∂qa
Xβ ⊗ ηa.

For reasons which will become clear in the next section, we introduce the following
concept.

Definition. The tensor field Φ + Ψ is called the Jacobi endomorphism associated
to the given vector field Γ.

Before closing the discussion on curvature components, it is of interest here to
make a digression on the reason why N1 is well-defined as a tensor field on J1

σ .
To this end, observe that there is a natural process of lifting the connection σ̃ on
π : E → M to a connection σ̃1 on π1 : π∗J1τ0 → J1τ0, which is obtained via the
following argumentation. First note that given an arbitrary section h : M → E of
π one can define a lifted section h1 : J1τ0 → π∗J1τ0 = E ×M J1τ0 by

h1(j1
t0
γ) = (h(γ(t0)), j1

t0
γ),

where γ : IR → M is a section of τ0. It is clear that the definition of h1 is
independent of the choice of γ within the equivalence class of sections determining
the point j1

t0
γ ∈ J1τ0, and that h1 takes its values in π∗J1τ0. Now, given σ̃, for

any (m0, j
1
t0
γ) ∈ π∗J1τ0, we can choose a section h of π such that j1

γ(t0)h = σ̃(m0).

In particular, we then have h(γ(t0)) = m0 and hence h1(j1
t0
γ) = (m0, j

1
t0
γ). Define

then:
σ̃1(m0, j

1
t0
γ) = j1

j1t0
γh1.

Using a coordinate representation one easily verifies that this definition is indepen-
dent of the choice of γ and h.

The full picture of all spaces of interest is schematically visualized in the diagram
below.
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6

E MJ1π

IR IR

π∗J1τ0 J1τ0J1π1

J1τ1

id

π

π1

τ1 τ0

σ

σ̃

σ̃1

⊃ J1
σ

In coordinates, the section σ̃1 is given by

qat = Ba(t, qA), qaα = Ba
α(t, qA), qaα̇ = 0,

from which one can see that the corresponding vertical projector on π∗J1τ0 reads
N1 = (∂/∂qa) ⊗ ηa again. Via the isomorphism with J1

σ , N1 is also well defined
on the constraint manifold. Its Nijenhuis tensor NN1

formally coincides with the
expression of NN0

, regarded as tensor field along ρ, i.e.

NN1
=
[
1

2

(
Xα(Ba

β)−Xβ(Ba
α)
)
θα ∧ θβ + Ca

α dt ∧ θβ
]
⊗ ∂

∂qa
.

Hence, the type (1,1) tensor field Ψ, related to the curvature of σ can also be
regarded as a tensor field on J1

σ , namely as

Ψ = iΓNN1
= Ca

α θ
α ⊗ ∂

∂qa
,

with the additional remark that this construction turns out to be independent of
the choice of a Sode Γ.

There are certainly different paths along which one could arrive at the construction
of a suitable dynamical covariant derivative ∇ for the present context. Inspired by
previous work, we expect to be able to gather what it should be by calculating the
Lie derivative with respect to Γ of horizontal and vertical lifts. For

X = τT + ξαXα + ξa
∂

∂qa
,
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we find:

LΓX
V =

(
Γ(ξα) + Γαβξ

β
)
∂

∂q̇α
− ξαXα

H.

This leads us to define the derivation ∇ of degree 0 in part by

∇F = Γ(F ) for F ∈ C∞(J1
σ), ∇Xα = ΓβαXβ.

Furthermore, we will require as in [15] that i∇Xdt = Γ(iXdt) and expect this to tell
us that ∇T = 0. The assumption for this to be true is that ∇(∂/∂qa) will not have
a T-component. In fact, it is natural to expect that it will have no Xα-components
either, so that we will recover the same property as in [15]:

LΓX
V = −XH

+ (∇X)V .

The completion of the definition of ∇ now should follow from computing the de-
composition of LΓX

H. One easily verifies that

LΓX
H = Γ(τ)Γ +

(
Γ(ξα) + Γβαξ

α
)
Xα

H +

(
Γ(ξa)− ξb ∂

∂qb
(Ba

β q̇
β +Ba)

)
∂

∂qa

H

+ Ψ(X)H + Φ(X)V .

This imposes the final defining relation

∇ ∂

∂qa
= − ∂

∂qa
(Bb

β q̇
β +Bb)

∂

∂qb
,

so that,
LΓX

H = (∇X)H + Ψ(X)H + Φ(X)V .

For completeness, one can check that all defining relations of ∇ thus obtained
behave consistently under admissible coordinate transformations on E and on J1

σ .

Definition. The derivation ∇ is called the dynamical covariant derivative associ-
ated to Γ.

The dual action of ∇ on 1-forms along ρ is given by,

∇(dt) = 0, ∇θα = −Γαβ θ
β, ∇ηa =

∂

∂qb
(Ba

β q̇
β +Ba) ηb.

Observe finally that we have ∇N = 0.
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4 Symmetries and adjoint symmetries

A (dynamical) symmetry of Γ, as usual, is a vector field Z ∈ X (J1
σ) for which

[Z,Γ] = hΓ for some function h. As always, we can regard symmetries as being
equivalent if they differ by a multiple of Γ and therefore, without loss of generality,
restrict our attention to vector fields Z which have no Γ-component and thus satisfy
[Z,Γ] = 0. Writing such a vector field in coordinates as

Z = µαXα + µa
∂

∂qa
+ να

∂

∂q̇α
,

the symmetry requirement tells us that να = Γ(µα) is a first condition, whereas
µα and µa must further satisfy the following coupled system of partial differential
equations:

Γ2(µα) = −2Γαβ Γ(µβ) + µβXβ(fα) + µa
∂fα

∂qa
,

Γ(µa) = −Ca
αµ

α + µb
∂

∂qb
(Ba

αq̇
α +Ba).

A symmetry Z is clearly completely determined by a vector field along ρ, say of
the form X = X+ X̃, whose horizontal lift produces the horizontal part of Z. It is
straightforward to verify, using the results of the preceding section, that the above
equations have the following coordinate free formulation:

∇2X + Φ(X) = 0,

∇X̃ + Ψ(X) = 0.

For reasons which will become clear in a moment, we can define a symmetry of Γ
from now on to be a vector field X ∈ X (ρ), which satisfies:

∇2X +∇X̃ + (Φ + Ψ)(X) = 0.

This single Jacobi-type equation indeed is equivalent to the preceding system of
two equations.

Adjoint symmetries of Γ, as known from earlier work [16], can essentially be re-
garded as so called Γ-basic 1-forms, i.e. forms φ ∈ ∧1(J1

σ) which satisfy 〈Γ, φ〉 = 0
and LΓφ = 0. If we write such a form as

φ = aαω
α + bαθ

α + caη
a,

it will be invariant under Γ, provided that bα = −Γ(aα)+2aβΓβα and the coefficients
aα and ca satisfy the equations:

Γ2(aα) = 2Γ(aβΓβα) + aβXα(fβ)− caCa
α,

Γ(ca) = −aα
∂fα

∂qa
− cb

∂

∂qa
(Bb

αq̇
α +Bb).
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This time, φ is clearly determined by some element α = aαθ
α + caη

a ∈ ∧1(ρ), and
all pieces now fit together if we observe that the above partial differential equations
in fact express that α satisfies:

∇2α−∇α̃ + (Φ + Ψ)(α) = 0.

Needless to say, we refer to this as the adjoint equation of the equation for sym-
metries. Contrary to the latter, it does not split into equations involving only one
of the tensors Φ or Ψ.

5 Non-holonomic Lagrangian systems

The idea now is to arrive at a direct geometrical construction of the kind of Sode’s
Γ, which describe non-holonomic Lagrangian systems, as discussed in the introduc-
tion. The point to observe first is that there exists a kind of vertical lift procedure
which turns the tensor field Ψ along ρ into a vertical-vector-valued tensor field
on J1τ1. To see this in a pedestrian way, note first that according to the preced-
ing considerations, the transformation rule for the functions Ca

α, under admissible
coordinate transformations, is as follows:

C ′
b
β = Ca

α

∂qα

∂Qβ

∂Qb

∂qa
.

On J1τ1 on the other hand, under the induced coordinate transformations, contact
forms such as θα pick up a Jacobian ∂qα/∂Qβ and ∂/∂q̇a transforms into ∂/∂Q̇b,
multiplied by the Jacobian ∂Qb/∂qa. It follows that

Ψ̇ = Ca
α θ

α ⊗ ∂

∂q̇a

is well defined as tensor field on J1τ1.

A non-holonomic Lagrangian system, in our approach, is determined by a couple
(L, σ), with L ∈ C∞(J1τ1) and σ a connection on π. Putting L = i∗L and assuming
the Hessian of L with respect to the q̇α to be a regular matrix, we construct the
following 1-forms on J1

σ ,

θL = Ldt+ S(dL),

ψ(L,σ) = i∗
(

Ψ̇(dL)
)
−N(dL).

Definition. The fundamental 2-form of a non-holonomic Lagrangian system is
the 2-form Ω on J1

σ , defined by

Ω = dθL + ψ(L,σ) ∧ dt.
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Definition. The dynamics of a non-holonomic Lagrangian system is governed by
the Sode Γ on J1

σ , which is uniquely determined by the requirement: iΓΩ = 0.

In coordinates, we have

ψ(L,σ) = − ∂L
∂qa

ηa +

(
i∗
∂L

∂q̇a

)
Ca
α θ

α,

and with respect to the frame adapted to Γ, where Γ is to be understood here
in the sense that the functions fα are as yet to be determined, the fundamental
2-form becomes:

Ω =

[
Γ

(
∂L

∂q̇α

)
−Xα(L)− Ca

α

(
i∗
∂L

∂q̇a

)]
dt ∧ θα

+

[
Xβ

(
∂L

∂q̇α

)
θβ +

∂2L

∂qa∂q̇α
ηa +

∂2L

∂q̇β∂q̇α
ωβ
]
∧ θα.

It is clear from this expression that the Sode Γ in the kernel of Ω indeed gives rise
to the differential equations for non-holonomic Lagrangian systems, as described
in the introduction.

In the classical study of adjoint symmetries of general second-order equations (see
[16]), there is a very simple theorem, which encompasses things like Noether’s the-
orem for Lagrangian systems, its generalisation for systems with non-conservative
forces and all known statements in the literature about certain symmetries (or
‘pseudo-symmetries’) which produce so-called alternative Lagrangians. In the most
economical picture, where an adjoint symmetry is regarded as a 1-form along the
tangent bundle projection (or 1st jet bundle for the time-dependent case) (see
[13, 15]), this theorem arises from the case that such a 1-form happens to be the
‘vertical exterior derivative’ of some function F . In the present situation, where
an adjoint symmetry is a 1-form α ∈ ∧1(ρ) of the form α = aαθ

α + caη
a, we may

expect that something special will occur if the coefficients of α happen to be of the
form

aα =
∂F

∂q̇α
, ca =

∂F

∂qa
for some function F.

Definition. A Sode Γ on J1
σ is said to be Lagrangian, if the second-order equations

for qα can be recast into the form of genuine Euler-Lagrange equations with a
Lagrangian not depending on the coordinates qa.

Theorem. Let α = aαθ
α + caη

a ∈ ∧1(ρ) be an adjoint symmetry of Γ, with
coefficients satisfying the above displayed conditions. Then, the function L∗ =
Γ(F ), provided it is regular, produces a Lagrangian for the given system.

Proof. A straightforward calculation shows that, under the given assumptions,
the relation for Γ2(aα) tells us that we have

Γ

(
∂L∗

∂q̇α

)
= Xα(L∗),
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while the relation for Γ(ca) reduces to ∂L∗/∂qa = 0. The result readily follows. 2

Needless to say, under certain further restrictions, we will actually have L∗ =
Γ(F ) = 0 and this then will cover a generalised Noether theorem for non-holonomic
systems.

6 Illustrative example

The paradigm of non-holonomic mechanics is the problem of a vertically rolling
disc. Appropriate generalised coordinates are: the coordinates (x, y) of the centre
of mass of the disc, the azimuthal angle ψ which determines the position of the
plane of the disc and the angle φ which describes its internal rotation. If R is
the radius of the disc, the condition of rolling without slipping gives rise to non-
holonomic constraints of the form

ẋ = (R cosψ)φ̇,

ẏ = (R sinψ)φ̇.

Clearly, we are in a situation here where the dimension of the manifolds M and E
is, respectively, 2 and 4 and we can make the following notational identifications:
(qα1 , qα2 , qa1 , qa2) = (φ, ψ, x, y).

Let us now first follow the procedure for setting up directly the dynamical equations
on the constraint manifold. Putting for simplicity the mass of the disc equal to 1,
the Lagrangian L on J1τ1 is given by (with moments of inertia I1 and I2 which
need not be specified)

L =
1

2
(ẋ2 + ẏ2) +

1

2
I1φ̇

2 +
1

2
I2ψ̇

2,

and its pull-back to J1
σ reads,

L =
1

2
(R2 + I1)φ̇2 +

1

2
I2ψ̇

2.

The terms Xα(L) in the equations of motion here give 0, whereas the components
of the tensor Ψ are given by

Ca1
α1

= −R sinψ ψ̇, Ca1
α2

= R sinψ φ̇,

Ca2
α1

= R cosψ ψ̇, Ca2
α2

= −R cosψ φ̇.

It is then straightforward to compute that the second-order equations on J1
σ simply

read
(R2 + I1)φ̈ = 0, I2ψ̈ = 0,
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i.e. the functions fα and the connection coefficients Γβα are all zero.

We next try to find an illustration of the theorem on adjoint symmetries. It is easy
to verify that the partial differential equations for adjoint symmetries here reduce
to

Γ2(aα) = −caCa
α, Γ(ca) = 0.

As usual with determining equations for symmetries or adjoint symmetries, one can
in principle proceed in a systematic way to construct particular solutions, by grad-
ually allowing polynomials of higher degree in the derivatives. It will be sufficient
for our purposes here to discuss just a couple of obvious particular solutions.

Two simple first integrals of the system under consideration are φ̇ and ψ̇. This
leads to four different combinations of particular solutions for the coefficients ca,
but only one of these gives rise to a situation where one subsequently can find
by inspection a particular solution for the other coefficients aα. The favourable
case is ca1 = ca2 = ψ̇, with corresponding solution of the second-order conditions:
aα1 = R(cosψ − sinψ), aα2 = x + y. The resulting adjoint symmetry happens to
satisfy the requirements of the theorem at the end of the preceding section, with

F = R(cosψ − sinψ) φ̇+ (x+ y) ψ̇.

It turns out that this F is a first integral. In fact, one can see that it is actually
the sum of two first integrals which would be obtained along the same lines if we
would choose only one of the ca to be ψ̇ and the other one zero.

The simplest way to satisfy the requirements for the ca is of course to take them
both equal to zero. The other requirements will then be satisfied, for example, if
we take the aα to be first integrals. More interesting particular solutions, however,
will be such that Γ2(aα) = 0, but Γ(aα) 6= 0. Such a solution is given by aα1 =
1
2
φ, aα2 = 1

2
ψ. Again, it gives rise to an adjoint symmetry which satisfies the

assumptions of the theorem, with

F =
1

2
(φφ̇+ ψψ̇).

This time, we find L∗ = Γ(F ) = 1
2
(φ̇2 + ψ̇2) and since L∗ satisfies the regular-

ity condition, the theorem tells us (not surprisingly here) that L∗ is effectively a
Lagrangian for the reduced dynamics on J1

σ .

7 Concluding remarks

The direct construction of the dynamics of a non-holonomic Lagrangian system,
which we described in Section 5, is afterall quite remarkable. All other treat-
ments, to the best of our knowledge, construct the dynamics one way or another
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via a vector field on the full space J1τ1, which is subsequently shown to be tan-
gent to the constraint submanifold. This way, these modern treatments stay close
to the classical analysis, which starts from the often misunderstood principle of
d’Alembert and involves things like ‘virtual velocities’. It is true, of course, that
the only justification for our formalism is that it produces differential equations
which are known to be the right ones from the other treatments. Nevertheless,
turning the arguments around, it looks like an interesting topic for future study to
explore more deeply the interrelationship between these different approaches, with
the possibility that our present construction may shed new light on the nature of
d’Alembert’s principle. In the same context, we have to be aware of the fact that
our construction depends on the selection of a fibration in the configuration space
E. For some physical problems, there is no preferential or ‘most natural’ choice of
such a fibration. It would therefore be of interest to understand whether there is
a mechanism by which one can make the transition, at the level of J1τ1, from one
construction to another.

A second point to be emphasized here is that a large part of our analysis is about a
certain class of coupled first and second-order equations and need not have anything
to do with non-holonomic Lagrangian mechanics. From this point of view, there is
an obvious question for a generalisation to the case where the first-order equations
are not restricted in their dependence on the variables q̇α. That such mixed systems
of equations may originate from an entirely different context can be seen e.g. in [7].
We have already given a hint about the way such a generalisation can be captured
in the present framework in Section 2. Work is in progress along these lines. Since
the main motivation for studying such systems need not come from Lagrangian
mechanics, we will in this forthcoming contribution pay more attention to various
other aspects of the construction of the dynamical covariant derivative and Jacobi
endomorphism. Nevertheless, it is worthwhile to add that also in this more general
set-up there will be an impact on Lagrangian mechanics: we have indeed good
indications that it will again be possible to develop a direct construction of the
dynamics of Lagrangian systems with non-linear non-holonomic constraints.
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