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1 Introduction

In a recent paper [9] Martinez et al have established necessary and sufficient conditions for
complete separability of a system of autonomous second-order ordinary differential equa-
tions. These conditions, which are of an algebraic and algorithmic nature, are expressed in
terms of geometric objects that are directly related to the system under consideration and,
therefore, in principle can be tested on any given second-order system (cf. [12] for a com-
prehensive application). This certainly yields an advantage upon some other approaches
to the separability problem, where the characterization of partial or complete separabil-
ity of second-order systems relies on the existence of an additional structure (see e.g.
[4, 5, 8]). The separability analysis presented in [9] originated from the theory of deriva-
tions of scalar and vector-valued forms along a tangent bundle projection 7 : TM — M,
which was developed in [10, 11] for its potential application to the geometrical study of
second-order differential equations fields (SODE’s).

In [13] we have extended this calculus to a time-dependent framework, where the role
of the tangent bundle projection 7 is taken over by the projection 7 : R x TM — R x M
of an “evolution space” IR x T'M onto the underlying “space-time manifold” IR x M.
The product manifold IR x T'M is frequently used for treating time-dependent classical
mechanical systems (see e.g. [2, 3]). In developing the theory of derivations of forms along
7, however, we have carefully avoided to rely on the product structure, in order to make
the theory compatible with time-dependent coordinate transformations. Therefore, all
results and formulas from [13] remain valid in the more general situation where R x M
is replaced by an arbitrary fibre bundle E over IR, and 7 is the projection 7 : J'E — E.

The purpose of the present paper is to extend the separability analysis of SODE’s to
the time-dependent case. More precisely, we will be dealing with the following problem.
Given a system of time-dependent second-order differential equations

under what conditions for the given f* does there exist a regular time- dependent co-
ordinate transformation @’ = Q’(t, q), such that in the new coordinates the system (1)
decouples into n independent second-order equations

Qj:Fj(thj7Qj) .j:la"'7n7

and if such coordinates exist, how can we construct them? Since we explicitly allow
for time-dependent transformations, the problem under consideration is not merely a
parametrized version of the autonomous case.

The paper is organized as follows. In Section 2 we recall some of the basic concepts and
results from [13], presented in the more general setup of a jet bundle projection 7 : J'E —
E. Section 3 is devoted to the notion of distribution along 7 and the characterization
of diagonalizability and separability of a particular class of vector-valued 1-forms along
7. The separability problem for time-dependent second-order systems is then treated in
Section 4 and two illustrative examples are discussed in Section 5.



2 Preliminaries

Let my : E — IR be a fibre bundle with fibre dimension n, and let 7, : J'E — R be its
first jet bundle. For a detailed treatment of jet bundle theory we refer to [14]. Natural
bundle coordinates on E will be denoted by (¢, '), and the induced coordinates on J'FE
by (t,¢%,¢"). The coordinate transformations we will consider on E are of the form

E:ta ql:ql(LQ)u i:1,~~,n <2>
with the corresponding transformations on J!'E obtained via prolongation:

oq’ ot

t=t, ¢ =7q(tq), (3)
(Throughout this paper, the summation convention is used where appropriate). The
vertical bundle to my is denoted by VE, ie. VE = {{ € TE | Tmy(§) = 0}, whereas
V(J'E) will denote the vertical bundle to 7 : J'E — E. Recall that, when E is the
trivial bundle IR x M, J'E can be identified with the extended tangent bundle IR x T'M.

In order to make the present paper reasonably self-contained, we now summarize
those elements of the calculus of forms along 7 [13], which will be relevant for our present
purposes.

Vector fields along 7 are sections of the pull-back bundle 7*(T'E) over J'E. A canon-
ically defined vector field along 7 (see e.g. [14]) is the “total time-derivative operator”

9 0
T =— y— 4
o o (4)

The C*(J' E)-module of vector fields along  is denoted by X (7). Of special interest is the
submodule X () of sections of 7*(V E). Every X € X(m) has a canonical decomposition
of the form

X=X"T+X, with X € X(n), (5)

which indicates that {T,d/0q'} is the better choice for a local basis of X (7). There is
a natural vertical lift operation from X(m) to X'V (J'E), which induces an isomorphism
between X () and XV(J'E). In coordinates, if X% X' € C<(J'FE) are the components
of X, with respect to the local basis just selected, we have XV = X?9/9¢". Obviously,
TV =0.

Sections of other appropriate pull-back bundles over J'E give rise to the graded alge-
bra A(7) = @y A'(7) of scalar forms along 7 and the A (7)-module V (1) = @y V()
of vector-valued forms along 7. Clearly, A°(7) = C=(J'E) and V°(7) = X(r). There is
an isomorphism between A (7) and the module of semi-basic forms on J'E (which includes
the submodule of contact forms). The appropriate local basis for A'(7), dual to the basis
{T,0/0q"}, is given by {dt, '}, where the ' = dq' — ¢'dt are the contact 1-forms.

Derivations of type i, on A(7m) are defined in the usual way (see e.g. [6]) and, in a
way similar to (5), every L € V(7) has a unique decomposition

L=L"@T+L, L°=i.dt. (6)
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The submodule of vector-valued forms for which L = 0 is denoted by V(7). In particular,
for the identity tensor field I € V!(r), we have

_ — .0
q’L
REMARK: Elements of A(m) and V() are said to be basic if they actually come from
corresponding objects on F, regarded as forms along 7 through composition with 7.

For the survey of other derivations of interest, it is sufficient to know that derivations
of \(m) are completely determined by their action on functions and on basic 1-forms; they
can further be extended to derivations of V (7) by specifying an action on basic vector
fields in a consistent way. Type i, derivations, for example, are taken to be zero on basic
vector fields. The same is true for the vertical exterior derivative d", as introduced in
[13]. This canonically defined derivation of degree 1 is fully characterized by the following
rules (with F' € C=(J'E)),

PF =G0 ) =0, 40 = deno ®)

d’ ( 0 ) =0, d'T=T1. (9)

aq’

Recall that the commutator of two derivations Dy and D,, of degree r; and ry respec-
tively, is a derivation of degree r; + ry, defined by [Dy, Dy = Dy o Dy — (—1)""2Dy 0 D;.
For L € V(x), we put df = [iy,d"] and have in particular that df = d". Using the
decomposition (7) of I, we come across another kind of vertical exterior derivative, which
will be important for the application we have in mind. Indeed, we find

d" =dy +dt Nig, (10)

from which it follows that, in comparison with the defining relations (8) and (9), d¥f
coincides with d* on functions and on T, but is zero otherwise. As a consequence, we
have df o df = 0, a property which is not true for the full d".

For a complete classification of derivations of A(m) and V (), one needs a connection
(in the sense of Ehresmann) on the bundle 7 : J'E — E (see [13]). Such a connection
provides us with a horizontal lift operation from X (7) to X' (J'E), linear over C*(J'E)
and thus determined (locally) by the horizontal lifts of the coordinate vector fields on F.

Setting,
(0 H_ 0 ; 0 (0 " e ; 0
Hi= <8qi> - oq¢ X oql’ Ho= (E)t) ot FO@CF’ (11)

the functions I/ and T% are called connection coefficients. Given an arbitrary vector field
Z on J'E, we now have a unique decomposition

Z=X"+X,", (12)

with X; = TrnoZ € X(r) and X, € X (7). The other important point about a connection
is that it enables us to define a horizontal exterior derivative d”, whose action on A ()
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and V (m) is completely determined by

d"F = Hy(F)0" + T"(F)dt, d"(dt)=0, d"0"=T5iL0"AdL, (13)
0 . 0 0

dr | =TF + ¢ Tt — +TE¢ @ —, d"T =0 14

<aql> ( Ol+q ]z) ® aqk + Jt ® 8qk’ ) ( )

with Tk = o'k /04", Ffi = 8F§/8qi.
Let us now pin down the case of interest for our present purposes. Second-order
differential equations such as (1) are governed by a vector field

o .0 .. .0

living on J'E, and intrinsically characterized by the properties (I', dt) = 1 and (T', §%) = 0.
Any such vector field (SODE) comes equipped with a connection on the bundle 7, with
connection coefficients ,
i Lof i i i
The given vector field then itself is horizontal, in fact we have
T =T. (17)

Furthermore, the connection is torsionless, which in the present formalism means that
[dV,d"] = 0.

A special class of derivations of degree 0 are the self-dual ones, which are characterized
by the property,

D(a(X)) = Da(X) +a(DX),  Vae A(r), X € X(n). (18)

Important examples of such derivations are the vertical and horizontal covariant deriva-
tives DY and D%. They depend in a C*(J'E)-linear way on the argument X and can be
defined, for example, by

DY =d% —igvx, D% =d% —igux. (19)
Associated bracket operations on X () are given by (thanks to the zero torsion),
[X,Y], =D%Y —DVX, [X,Y], =D%Y — DIX. (20)

The horizontal bracket of basic vector fields coincides with the ordinary Lie bracket on
E. Other relations of interest (proved in [13]) are, for L € V() and X,Y € X(r):

d"L(X,Y) = DLL(Y) — DVL(X), d"L(X,Y)=DZL(Y)—DEL(X).  (21)

Finally, the linearity of D% and D% enables us to define operators DV and D” (not
derivations), which increase the covariant order of an arbitrary tensor field U along m by
one. The defining relations of DV and D" read:

D'U(X,...)=D%U(...), D*U(X,...)=D1U(...). (22)



For coordinate calculations, it suffices that we list formulas for the action of D% and D%

on functions and on X(7); corresponding formulas for the action on A\'(7) easily follow
by duality. We have, with X = X°T + X*9/0¢’,

DYLF = XV(F), D% (a?y) =0, DYT=X, (23)
H H H 9 iTk ok 0 H
DLF = X"(F), DX ) = (XT% + X FZ’)(qu’ DAT = 0. (24)

It follows that, in particular, DY, = 0. On the other hand, D is an important derivation
for the dynamics of the given SODE; we call it the dynamical covariant derivative and
denote it by V. Observe in particular, in view of (17), that VF = I'(F). Also, as
d"T = 0, we see from (19) that D# coincides with d¥; using the decomposition (7) of I,
the analogue of (10) for the horizontal exterior derivative here becomes:

d"=d} +dt NV. 25
T

As we already learned from the autonomous theory, another important concept in the
study of second-order dynamical systems, is a type (1,1) tensor field called the Jacobi
endomorphism. We have seen in [13] that, for the time-dependent framework, it is actually
a component of the curvature tensor. For a general connection, the curvature is defined as
a tensor field R € V2(7T) and comes into the picture when one looks at the decomposition of
the commutator [d”, d"]. In the case of a time-dependent SODE, the Jacobi endomorphism
oV (m) can be defined as ® = iR and has the coordinate expression,

0 . af

P = Lo’ Pl == —
J ® aqz’ J 8q]

I — (). (26)
In fact, it even turns out that the curvature then is entirely determined by ®, as we have
R=R+dtND®, 3R=d\o. (27)

Other relations of interest are,
d"® =VR, d?®=VER, (28)

which are equivalent in view of (25).

Concerning the commutator table of the different types of covariant derivatives we
have discussed, we limit ourselves here to the formula

[V,Dx] = Dyx — D%, (29)

and refer to [13] for the full story.

To close this section, we want to come back to one of the statements in (14), namely
the fact that d”T = 0. This is typically a feature of the time-dependent framework and
should be of some worry for the separability analysis we are about to discuss. Indeed,
in the autonomous setup, where the canonical vector field along 7 : TM — M reads
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T = v'9/dq', d"T is not zero and plays a significant role in the characterization of
complete separability [9]. In fact, the tensor t = —d” (v’ 9/dq') = (T — 0T, )dg? ® 8/dq'
is known as the tension of the connection on 7 : TM — M and, apparently, there is no
similar concept available in the calculus along 7 : J'E — E. To overcome this difficulty,
we will now provide an intrinsic construction of a tension-like tensor, associated to every
basic vector field with time- component equal to 1.

Let Y be a vector field on E, satisfying: (Y,dt) = 1. Its natural prolongation Y,
being a vector field on J'E, has a unique decomposition as in (12),

Yy = yvi7 4 Y5V, with Yo € X(r) and Y, =Y o .

We put
ty =d"Y, € V(7).
In coordinates, if Y = 9/dt + u' 9/dq", using the fact that for a SODE-connection, (16)

implies that T, = I, T, = I'; — ¢*T"%,, we find

0
oq'

o (30)

The inspiration which led to the introduction of this concept will become more transparent
later on. For the time being, it suffices to make the following observations. In the
neighbourhood of an arbitrary point on £, there exists a coordinate transformation of the
form (2), which will straighten out Y to the form 9/dt. In those new coordinates (¢, ¢*),
ty will read

ty = (I — §'T%)0 @ o (31)

Y g4 Lk a3

and so will resemble the tension from the autonomous theory. Note that if £ were taken
to be the Cartesian product R x M, a tensor of the form (31) would be well defined,
e.g. as —d"(¢'0/9q"). Tt would not have proper behaviour, however, when coordinate
transformations of the form (2) are allowed, which do not respect the product structure
of R x M.

3 Diagonalizable and separable type (1,1) tensor fields

From the treatment of the autonomous case [9], we recall that complete separability
of a system of second-order differential equations depends, among other things, on the
properties of the eigendistributions of its Jacobi endomorphism ®. In particular, diago-
nalizability of ® was the first prerequisite and will again be a necessary condition in the
time-dependent case. As a matter of fact, if a time-dependent second-order system like
(1) is completely separated, it is easily seen from (16) and (26) that the matrix (®%) is
diagonal.

Guided by the analogy with the autonomous case, this section will be devoted to the
study of such concepts as (integrable) distributions along 7 and diagonalizability of (a
class of ) vector-valued 1-forms along 7. The general setup is that of the previous section,
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with my : £ — R a fibre bundle with n-dimensional fibres, and whereby the affine bundle
7 : J'E — E is supposed to be equipped with a torsionless connection (i.e. a SODE
connection).

Definition 3.1 A d-dimensional distribution D along m is a smooth assignment of a d-
dimensional subspace D(m) of Trm)E for every m € J'E. A distribution D along T is
called vertical if D(m) is a subspace of Vo) E (the vertical tangent space to my at w(m)).

Alternatively, a distribution (resp. vertical distribution) along 7 can be seen as a
vector subbundle of the pull-back bundle 7*(TE) (resp. 7*(V E)) over J'E. In the above
definition, ‘smooth’ means that in a neighbourhood U of each point m € J'E, one can
find d independent vector fields X; along 7 such that D(m/) is spanned by {X;(m’) : i =
1,---,d} forevery m’ € U. A vector field X along 7 is said to belong to D if X (m) € D(m)
at each point, and we then simply write X € D.

Definition 3.2 A (vertical) distribution D along m is called basic if there exists a (ver-
tical) distribution & on E such that D(m) = E(m(m)) for each m € J'E. D is called
integrable if it is basic and if the associated (vertical) distribution on & is integrable in
the sense of Frobenius.

The distributions which will play a role in the separability analysis are vertical ones.
We will therefore confine ourselves here to vertical distributions along 7, although many
of the subsequent considerations also apply (or trivially extend) to the more general
distributions.

From definition 3.2 it readily follows that a vertical distribution D along 7 is basic
if and only if it is locally spanned by basic vector fields belonging to X (7). Now, we
know from (23) that the operator DY vanishes on basic vector fields. Hence, if a vertical
distribution D along 7 is basic, we will have D% (D) C D for all X € X (7), or equivalently,
since Dy = 0, D¥(D) C D for all X € X(m). The converse is equally true and can
be proved in exactly the same way as in the autonomous case. Next, since on basic
vector fields the horizontal bracket (20) coincides with the ordinary Lie bracket on E
and involutivity is the necessary and sufficient condition for integrability of an ordinary
distribution, one can easily see that a basic vertical distribution along 7 is integrable if
and only if it is [, | ,-invariant. Summarizing, we have shown that the following result
holds.

Proposition 3.3 Let D be a vertical distribution along w. Then: (i) D is basic if and
only if it is D% -invariant for every X € X(r); (ii) D is integrable if and only if it is basic
and [, ], -invariant. O

A co-distribution D* along 7 is a smooth assignment of a subspace D*(m) of T;‘(m)E ,
of fixed dimension, for each m € J'E. A co-distribution along 7 is called basic if it is
spanned by a co-distribution £* on E, and it is called integrable if it is basic and the
associated co-distribution £* on E is integrable in the sense of Frobenius. Similar to the
autonomous case it is rather straightforward to check (using local representations) that a
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co-distribution D* along 7 is basic if and only if it is D%-invariant for every X € X(r).
Next, assume D* is basic. Then, D* is locally spanned by some independent basic 1-forms
B¢ along w. Now, d" was constructed in such a way that, for basic forms along m, it
coincides with the exterior derivative d on A(E). So, for a = a,(t,q,¢)" € D*, we have
d?a = d%a; A\ B' + a; dB'. From the definition of integrability it then easily follows that
a basic co-distribution D* is integrable if and only if it is d”-closed, in the sense that
for any a € D*, d”« belongs to the ideal generated by D*. Finally, we observe that,
given any vertical distribution D along 7, its annihilator D+ = {a € A'(7) | a(X) =0
for all X € D} determines a co-distribution D* along 7 which contains the basic 1-form
dt. Taking all this into account, the proof of the following proposition merely requires
some minor modifications with respect to the proof of lemma 3.4 in [9], and we therefore
omit it. It is to be emphasized, however, that the coordinate transformations involved
in obtaining the desired result are all of type (2), i.e. they are time-dependent without
changing the time-coordinate itself.

Proposition 3.4 Let Dy (A=1,---,1) be r complementary vertical distributions along
7, i.e. VaemyE = @%_y Da(m) for allm € J'E, such that each Dy is integrable. Assume
furthermore that every sum of Da’s is [, ],,- closed. Then, for each m € J'E there exist
local coordinates (t,q**)a=1.. ra=1..dimp, defined on an open neighbourhood of m(m),
such that each Da is spanned by {0/0¢**}a=1.... dimD, - a

The distributions we are interested in for the purpose of studying separability of
second-order systems, are those determined by the eigenspaces of a certain class of vector-
valued 1-forms along 7. More precisely, we define the set

Vi) ={U € V¥(x) | ixU = 0 and U(X (7)) C X(7)}.

Clearly, V1(r) is a C=(J'E)-submodule of V() and its elements are locally of the form
o0

U=U¢ -,

J ® aqz

Note, in particular, that the Jacobi endomorphism ® of a SODE belongs to ‘71(71'). A
tensor field U € V!(r) determines, at each point m € J'E, a linear endomorphism of
the vertical tangent space Vi, L. This linear map is represented by the (n x n)-matrix

Wi(m).

Definition 3.5 A type (1,1) tensor field U € V(r) is said to be diagonalizable if: (i) for
each m € J'E, the linear map U(m)|vﬂ(m)E : Vam)E — Ve E is diagonalizable, in the

(32)

sense that the real Jordan normal form of (Ui(m)) is diagonal; (ii) there (locally) exist
smooth functions pa such that pa(m) is an eigenvalue of U(m)lv, . e; (ii) the rank of
pal — U is constant.

The functions pu4 are called eigenfunctions of U. The eigendistribution associated
with 14 is the distribution D4 along 7, determined by Da(m) = ker(U — pal)(m)|v, . &-
D, is a vertical distribution and at each m, Vi, £ is the direct sum of all D4(m).

In what follows, we will use r to denote the number of eigenfunctions of a diagonal-
izable U € V1(7) and d to denote the dimension of D .
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Proposition 3.6 Let D be a self-dual derivation such that D(X(w)) C X(m). Then, the
eigendistributions D4 of a diagonalizable U € V(r) are invariant under D if and only if
the commutator [DU, Ul|z ) = 0.

Proof: D being a self-dual derivation, we obtain for every X € Dy:

DU(X) = D(U(X))—U(DX)
= (Dpa)X + pa(DX) - U(DX).
Since X € X () it follows that also DX € X (7). Therefore, the previous relation can be

rewritten as

DU(X) = (pal = U)(DX) + (Dpa)(X), (33)

from which one can deduce that

showing that DX € Dy if and only if [DU, U](X) = 0. Since this holds for every X € Dy
and for all eigendistributions D4, the result readily follows. a

Corollary 3.7 The eigendistributions Da of U are basic if and only if [DX U, U]|§(W) =0
for all X € X(m).

Proof: From (23) we learn that D% (X (7)) C X(r) for any X € X(7), and a combination

of propositions 3.3 and 3.6 then immediately leads to the desired result. O

Under the assumptions of proposition 3.6, equation (33) implies
DU(X) = (Dua)X

for every X € Da. However, a stronger requirement on D is needed to make sure that
also DU belongs to V(7).

Lemma 3.8 Let D be a self-dual derivation such that DT is proportional to T (i.e.
DT = 0) and D(X(r)) C X(n), then D(V'(m)) C V(). Moreover, in such a case we
also have: for L € V(r), [DL, L[z = 0 if and only if [DL, L] = 0.

Proof: Using the properties of D and the definition of f/l(w), we immediately see that
for every L € V(m)
ir(DL) = —iptL =0

and
DL(X) = D(L(X))— L(DX) € X(r)

for all X € X(m). Hence, DL € V!(r). The second part follows from [DL, L](T) = 0. O

Assuming D verifies the conditions of the lemma, D leaves the eigendistributions of
a diagonalizable U € V!(r) invariant, if and only if [DU, U] = 0. It then follows that DU
is also diagonalizable, with eigenfunctions Dy 4.
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Definition 3.9 A diagonalizable U € Vl(ﬂ) is said to be diagonalizable in coordinates if
for each m € J'E there exist local bundle coordinates (t,q") in a neighbourhood of w(m),
such that (the local representation (32) of) U is diagonal with respect to the induced
coordinates (t,q',q") on J'E.

In order to establish criteria for diagonalizability in coordinates, we first introduce
some new tensorial objects along 7, in full analogy with the autonomous case. For general
L € V!(r) we define an object C} as follows

C/(X,Y) = [DY%L,L|(Y) for all X,Y € X(m),
Cl(Z,T)=C[(T,Z) =0 for all Z € X(m).

It is straightforward to check that C} is a type (1,2) tensor field along 7 and C} (X,Y) €
X(m) for all X,Y € X(n). In coordinates, with L = L6 ® 0/9q¢", C} reads

oLk oL™ . 4 )
Y = mrm _ Z I ke @ —.
L ( aq'z J aqz m) ® ® aqk

Replacing DY by DY, we obtain a similar type (1,2) tensor field C}" along 7. Next, for
L € VY(r) and arbitrary X,Y € X () we put

This determines another type (1,2) tensor field along 7 and we also have
H}/(T,X) = H} (X, T) =0, (34)

for all X € X (7). (A similar construction, using C} instead of C}, produces a tensor
field H} which, however, will not be used in the sequel).

Returning now to a diagonalizable U € V(7)) we note first of all that CY = 0 is
equivalent to [DYU, Ul|z., = 0 for every X € X(m). Next, taking into account (34),
we see that H{f is symmetric if and only if its restriction to X (m) x X (7) is symmetric.
Then, following exactly the same reasoning as in the proof of theorem 4.2 in [9], it can be
shown that H{} is symmetric if and only if each D4 and every sum of D’s is [, ],,-closed.
By virtue of propositions 3.3, 3.4 and 3.6, we may already conclude that C}; = 0 and
H{ symmetric imply the existence of local coordinates (t,¢*), with A = 1,---,r and
a=1,--,dya, such that D, is spanned by {9/9¢"*}. In terms of these coordinates, U is
of the form (with summation over A)

— : < Aa 0
U= NA(ta q, Q) Z 07 ® 8qAa (35)

a=1

and, thus, is diagonal. Conversely, if U is diagonalizable in coordinates it is readily
verified, using (35), that C}; = 0 and H{ is symmetric. Summarizing, we may draw the
following conclusion.
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Proposition 3.10 A diagonalizable U € f/l(w) is diagonalizable in coordinates if and
only if Cp; = 0 and H{fj is symmetric. O

From (24) it follows that the dynamical covariant derivative V = DX satisfies the
conditions of lemma 3.8. Moreover, the relation (29) implies that whenever a distribution
along 7 is both V- and D¥-invariant for some X € X(7), then it is also D%-invariant.
We can now state the following important result.

Theorem 3.11 If a diagonalizable U € V'(7) satisfies the conditions

Cy=0 and [VUU]=0.

then U diagonalizes in coordinates (t,q**) such that the connection coefficients F‘];‘,% vanish

for A # B. The converse is also true.

Proof: Using proposition 3.10, and taking into account the previous considerations,
the proof of the ‘if’-part of the theorem is completely analogous to the one given for the
corresponding property in the autonomous case (cf. [9], proposition 4.3). Conversely,
assume U is diagonalizable in coordinates (t,¢**) such that I's% = 0 for A # B. That
Cy; = 0 already follows from proposition 3.10. The additional statement about the con-
nection coefficients moreover shows that the eigendistributions of U are V-invariant. It
then follows from proposition 3.6 and lemma 3.8 that [VU, U] = 0. O

A diagonalizable U € V'(r) is called separable if it is diagonalizable in coordinates
and if in such coordinates, each eigenfunction p4 depends on ¢ and on the corresponding
coordinates (g%, q'Aa)a:L...d , only. Before establishing sufficient conditions for separabil-
ity, we first prove a useful intermediate result.

Lemma 3.12 For each L € V() and arbitrary X,Y € X(r), we have

Y L(X,Y) =d"L(X,Y); diL(X,Y)=d"L(X,Y). (36)

Proof: Knowing that i acts as the identity on V'(7), we have
di L = [iz,d"|L = i7d" L — d" L.
Using the decomposition (5) for X and Y, it follows that

dyL(X,)Y) = d"L(I(X),Y)+d"L(X,1(Y)) —d"L(X,Y)
= d"L(X,Y)+d"L(X,Y)—d"L(X,Y)
— X%V L(T,Y) - Y% L(X,T)
— I'LX,Y).
The same computation applies to d7. O

We now arrive at the main result of this section.
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Theorem 3.13 If U € V(x) is diagonalizable and satisfies the following conditions: (i)
Cy =0, (i) [VU, U] =0, (iii) dyU = 0, (iv) d¥U = 0, then U is separable and, moreover,

its degenerate eigenfunctions are functions of t only.

Proof: In view of theorem 3.11, the conditions (i) and (ii) imply that U is diagonalizable
in coordinates. Consider now two eigenfunctions ps and pug of U and take X € Dy,
Y € Dp. We know that X and Y belong to X(m). Applying (36) and (21), and taking
into account assumptions (iii) and (iv) we obtain

DLU(Y)—DVU(X)=0, DLUY)-DIU(X)=0. (37)

As argued before, (i) and (ii) imply that the eigendistributions are D% - and V-invariant
and therefore, from (29), also DZ-invariant. It then easily follows from (37) that

(Dxup)Y — (Dypa)X = 0, (38)
(DXpp)Y — (DYpa)X = 0. (39)

First, assume A # B. Then, X and Y are necessarily independent and (38) implies
DVua = 0 for every Y € Dg and for all B, with B # A. Hence, in coordinates which
diagonalize U, 4 is independent of all velocity coordinates ¢%° (B # A; 3 =1,---,dp).
Similarily, (39) implies that D{fu4 = 0 for every Y € Dp (B # A). Taking into account
that I'3% = 0 for A # B (cf. theorem 3.11), we conclude that ju4 is also independent of
all coordinates ¢%# (B # A;3 = 1,---,dp). Consequently, for each eigenfunction j4 of
U we have that s = pa(t, ¢, ¢4%).

Next, assume py4 is a degenerate eigenfunction. Choosing independent elements X
and Y of Dy, it follows from (38) and (39), with A = B, that D% us = D% pua = 0 for all
X € Dy. Hence, py depends on ¢ only. a
REMARK: As in the autonomous case, one can prove that separability of a diagonalizable
U is already satisfied under the weaker assumptions: (i) Cf; = 0, (i) [VU, U] = 0, (iii)
d"UUX,Y)=d"U(X,UY), (iv) d"U(UX,Y) = d"U(X,UY) for all X,Y € X(x). Un-
der these conditions, however, one does not have the additional property that degenerate
eigenfunctions only depend on ¢.

4 Separability of time-dependent second-order dif-
ferential equations

Let T’ be a SODE defined on J'E, with local representation (15) and associated connection

(16).

Definition 4.1 T is said to be separable at a point m € J'E if there exist local bundle
coordinates (t,q'), defined on an open neighbourhood of m(m), such that in the induced

coordinates (t,c]",cjl)? the functions f' = (I',dq) depend on t and on the corresponding
coordinates §* and éjz only. T is called separable if it is separable at each point m € J'E.
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Stated otherwise, a SODE is separable if locally the associated system of (time-
dependent) second-order ordinary differential equations admits a full decoupling into n
separate one-dimensional second-order equations.

In order to appreciate the privileged role which will be attributed to the Jacobi en-
domorphism ® in what follows, we mention the following property which is fairly easy to
prove. If two different SODE’s give rise to the same I' (not the same I'y) and the same
Jacobi endomorphism @, then separability of one implies separability of the other.

As observed before, the Jacobi endomorphism @ of a SODE I is an element of V().
Consequently, the results from the previous section can be applied to it. We now first
present some conditions which already guarantee a form of ‘partial separability’ of a SODE.

Proposition 4.2 Let I’ be a SODE on J'E and assume the following conditions are ver-
ified: (i) ® is diagonalizable, (ii) Cy = 0, (iii) [V®,®] = 0, (iv) R = 0. Then, in a
neighbourhood of each point there exist local bundle coordinates in terms of which the sys-
tem separates into single equations, one for each 1-dimensional eigenspace of ®, and into
individual subsystems, one for each degenerate eigenvalue of ®, which is then necessarily
a function of time only.

Proof: By virtue of (27) and (28) we see that the condition R = 0 implies d7® =0 and
d7 ® = 0. Theorem 3.13 then tells us that ® is separable and its degenerate eigenfunctions
depend on t only. In local coordinates (¢, g%, ¢*) which realize the separation of ®, we
know that IVB}% = 0 for A # B and @ is of the form (35). Using the local expressions
(16) and (26) it is then straightforward to verify that the second-order system indeed
decouples in the way described above. O

REMARK: A converse to this proposition is true in the following sense: if a second-order
system decouples into separate blocks and for each subsystem of dimension greater than
one, the corresponding Jacobi endomorphism is of the form 4 ()1, then the conditions (i)
to (iv) are satisfied.

Corollary 4.3 If the conditions of proposition 4.2 are verified and all eigenvalues of ®
are nondegenerate, then I' is separable. O

Now, in case ® has degenerate eigenvalues, further conditions will have to be invoked
in order to assure (complete) separability of I'. To fix the ideas, assume pa(t) is a
degenerate eigenfunction of ® with a d4-dimensional eigendistribution D4. Recall that
D, is a vertical integrable distribution along 7, and let £4 denote the underlying vertical
distribution on FE (cf. Section 3, definition 3.2). Through each point of E then passes a
(da + 1)-dimensional submanifold ¢4 which is fibred over (a connected subset of) IR. The
fibres of U, are integral manifolds of £4 and coordinates on U4 are given by (¢, qu‘)a:L...d n
The subsystem corresponding to z14 then determines a SODE on J'U/,4 and, by construction,
its Jacobi endomorphism reads 4 (t) X%, 64% ® 9/0¢** (no summation over A). As a
result we see that the problem we have to tackle consists in finding conditions for the
separability of a SODE whose Jacobi-endomorphism is a (time-dependent) multiple of the
‘identity’ I. It is precisely at this point that, in the autonomous case, the notion of
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tension enters the picture. As pointed out at the end of Section 2, in the time-dependent
framework there is no natural analogue of the tension available and the closest we can
get to a tension-like object is by looking at the tensor field ty (30), associated to a vector
field Y on E of the form Y = 9/0t + u'(t,q) 9/9q'. Observe, by the way, that ty belongs
to V().

We now first explain the general idea behind the subsequent analysis. Suppose the
given I' is completely separable. Then, in coordinates which realize the separation, the
matrix with components I'; — ¢"T", will be diagonal (with eigenvalues depending on ¢
and at most separate coordinates). In the coordinates under consideration, this matrix
can be thought of as being the coefficient matrix of the tensor ty for Y = 9/0t. The
idea is to express this intrinsically by the existence of a ty which satisfies at least the
criteria of theorem 3.11, and which perhaps will be such that a coordinate transformation
which diagonalizes ty will at the same time straighten out the vector field Y. Now, the
conditions of theorem 3.11 are not strong enough to ensure that, in diagonalizing ty, all
T; for ¢ # j will become zero. To make sure that this happens we will assume in addition
that all eigenfunctions of ty are different. The point is that this can somehow be done
without loss of generality, because, if I' is separable and if the original matrix we thought
of would have degenerate eigenvalues, a suitable scale transformation can bring us to a
situation where the system is still totally decoupled and the corresponding matrix has all
different eigenfunctions. This is the content of the lemma we prove first.

Lemma 4.4 Let T’ be a SODE on J'E with ® = pu(t)I and assume T is separable. Then
one can always find local bundle coordinates (t,q') on E such that in terms of the in-

duced coordinates (t,q',q'), the matriz (I, — ¢*T'%, ) is diagonal, with all diagonal elements
different.

Proof: Let (¢,q%, ¢') be local coordinates which realize the separation of T, so that the
corresponding second-order system reads

In these coordinates we see that I, = —39f/8¢’ = 0 for i # j and each T} is a function
of t,q" and ¢’ only. Hence, the matrix (I — ¢"T'%,) is already diagonal, with diagonal
elements ¢(;) say. Whenever two of the diagonal elements are equal, they can depend at
most on t. Assume, for instance, k of the ¢;)’s are equal. Without loss of generality we
may take ¢q)y = @) = -+ = dx) = ¢(t). Consider then a coordinate transformation
(t,q*) — (t,q") of the form

qa:l)a(t)(ja (a:L...,k)’ q5:q~5 (ﬁ=k+1,~~~,n)

with p® arbitrary but non-vanishing smooth functions of ¢. This is a regular transforma-
tion of type (2) which, moreover, preserves the decoupled structure of the second-order
system (40). In fact, in the new coordinates, the system reads

pe’

o = ey o =B -3 B
¢ =ftqq), ¢ =rdq)
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with

ro ~a SO poc ~a pa ~Q 1 @ a~a oo o ~%
fUq%q ) = —=q" — —q + —f*(t, p°q" P+ p°q ).
p p p
Clearly, the matrix (f; — qkfzk), with f; = —%8 fi/ 8(?, is still diagonal and its diagonal
elements are given by

~ [ N7) By o o~ ‘o
D) = O(t) + — + P " == (8, p*G%, PG + p*q
@ =0+ 3 a0\ )
fora=1,---,k and gg(lg) = ¢(5)(t,(jﬂ,ijﬁ) for 8 =k+1,---,n. From this it is easily seen
that an appropriate choice of the functions p®(t) will make all the ¢()’s (o = 1,--- k)
differ from each other. a

We can now establish necessary and sufficient conditions for the separability of a SODE
whose Jacobi endomorphism is a multiple of I.

Theorem 4.5 LetT' be a SODE on J'E for which ® = u(t)I. Then, T is separable if and
only if there exists in a neighbourhood of each point of E, a vector field Y, with (Y, dt) = 1,
such that the associated tensor field ty has the following properties: ty is diagonalizable
with all eigenvalues different, CY, = 0 and [Vty, ty] = 0.

Proof: Consider an arbitrary point m € J'E and suppose there exists a vector field Y,
defined on a neighbourhood of m(m), for which the conditions of the theorem hold. In
view of theorem 3.11, ty is then diagonalizable in coordinates and in coordinates which
diagonalize ty, we have Fé = 0 for ¢« # j. From the assumption on & and its general
coordinate expression (26), it readily follows that, in the coordinates under consideration,
the second-order system corresponding to I' completely decouples. Hence, I' is separable
at m and since this holds for each point m € J'E, T is separable.

Conversely, assume I' is separable. From lemma 4.4 we then know there exist local
coordinates (t,¢’,¢") in terms of which the matrix (I, — ¢*T";) is diagonal with all its
diagonal entries different. A vector field Y with the desired properties clearly is given
by 0/0t. Indeed, in agreement with (31), ty is represented, in the coordinates under
consideration, by the above diagonal matrix and the vanishing of C{’ and [Vty,ty] then
follows from theorem 3.11. O

We finally recast the preceding analysis into the following overall statement.

Theorem 4.6 A SODE I' on J'E is separable if and only if the following conditions hold:
(i) ® is diagonalizable,
(i) Cg =0,

(iii) [V, P] =0,

() R=0,
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(v) for each degenerate eigenvalue pa of ® there locally ezists a submanifold Ua of E,
fibred over (a connected subset of) R, and a vector field Y on Ua with (Y, dt) =1,
such that the corresponding ty is diagonalizable, with all eigenvalues nondegenerate,
and satisfies Cf, =0, [Vty, ty] = 0. 0

Before elaborating in some more detail on the practical implementation of this theory
in the next section, a further remark is in order, to clarify that the final stage of the
separability analysis is indeed fully compatible with the general idea behind the use of
tension-like tensors ty, as explained before lemma 4.4.

In situations where theorem 4.5 comes in, any coordinate transformation which di-
agonalizes ty will take care of the ultimate decoupling of I', though it will generally not
at the same time straighten out Y. However, if we now write 9/t + u’9/dq" for the
representation of Y in the new coordinates and take into account that ty is diagonal
while I, = 0 for i # j, we see from the coordinate expression (30) that du’/d¢’ will be
zero for i # j. Hence, the vector field Y itself gives rise to decoupled first-order equations
and therefore, it is possible to introduce a further coordinate transformation which will
straighten out Y, while not affecting the state of decoupling of T.

5 Applications

Although theorem 4.6 yields a global characterization of separability, in practical applica-
tions one will mainly be concerned with the purely local problem of investigating whether
or not a given system of second-order differential equations completely decouples. In
the autonomous case, the conditions for separability are of a purely algebraic nature, ex-
pressed entirely in terms of objects which can directly be computed from the second-order
system under consideration (cf. [9, 12]). In the time-dependent case, however, this is only
true as far as conditions (i) to (iv) of theorem 4.6 are concerned. Condition (v) is of a
different nature and will be more difficult to implement in any practical procedure for
testing separability.

If for a given SODE I', conditions (i) to (iv) of theorem 4.6 are verified, we know
from proposition 4.1 that I' at least partially separates. Moreover, the theory provides
us with a way of constructing local coordinates (t,¢'%) in terms of which the partial
decoupling of the second-order system takes places. Indeed, such coordinates can be
obtained through the ‘simultaneous’ integration of the integrable vertical distributions
on E which generate the complementary eigendistribution of ®. If all eigenvalues of ®
happen to be nondegenerate, we are done, and the system is completely decoupled in
those coordinates. In case, however, ® has some degenerate eigenvalues, condition (v)
has to be invoked for every subsystem which is still internally coupled. It will give rise to
a system of non-linear partial differential equations for the functions u‘(¢, ¢) which define
the vector field Y. In a favourable situation, all we need is a particular solution of these
equations which gives rise to a tensor of type (30) with non-degenerate eigenvalues. The
hard case is the one where the conclusion about separability is bound to be negative. For
example, if a particular solution for the u’ is found, which happens to produce a ty with
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degenerate eigenvalues, it may be hard to prove that no other solution exists which will
yield a ty with non-degenerate eigenvalues.

Before embarking on some examples now, it is worth noting that, although diagonal-
izability of ® is the first condition in the theoretical discussion, it will be one of the last
to impose in practice. The reason is that computing the Jordan normal form of ® may be
quite laborious, so that all restrictions ensuing from the other algebraic conditions may
help to alleviate this task. The general procedure in practical applications is to impose
the conditions R = 0, C¥ = 0 and [V®, ®] = 0 in that order and, if there is still some
freedom left, then investigate the diagonalizability of ®. With ® as in (26), a coordinate

expression for R, according to (27) is given by

. 1[0n, 0%
jk—g(aq.j —aq) (a1)

For convenience, we also list coordinate expressions for the components of C§ and [V®, @],

. P 0Dt
(C3)in 5 q.f o, — <I>zﬁf, (42)
Ve, @) = D[(0})®F — @I (DF) + I}, 0f D! (43)

+ ) OyT — 20, I} PL.

Finally, in case ® has degenerate eigenvalues one has to deal with condition (v) of theorem
4.6, which is not an entirely algebraic matter.

Example 1.

Consider the following system of two coupled second-order ordinary differential equations
(for notational convenience, coordinate indices are henceforth denoted as subscripts):

i = k)i +6(0d + at)g —b(t)gs — c(t)q,

Go = Co(t)qy + k(t)Go + 2a(t)q1q2 — c(t)ge, (4

where a,b,c,k,l; and {5 are as yet arbitrary functions of time. The purpose now is
to identify the conditions one has to impose on these functions in order that (44) be

completely separable. For the system under consideration we easily find (see (16)) I'] =
[3=—k/2, T} =—4,/2, T3 = —{5/2 and the components of ® read:

1. 1 1
(I)% = (I)% = —266(]1 +c+ ik — ZkQ — Zglgg,

1.
CD% = QbQQ + 5(61 - ]{Jfl),
1.
o} = —2ag+ 5(62 — ki)

Since the ®%’s are independent of the velocities, it is readily seen from (41) and (42) that
R and CY identically vanish. We next consider the condition [V®, ®] = 0. Its components
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(43) here become polynomials in the coordinates and velocities, so the coefficients of the
various independent monomials must separately be put equal to zero. In principle, this
is a straightforward, but rather tedious job. The type of calculations and manipulations
involved, lends itself perfectly well, however, to the use of computer algebra. We have
made use of procedures in REDUCE to assist us in the present (and subsequent) compu-
tations. The vanishing of (43) eventually leads to the following set of restrictions on the
functions a, b, k, {1 and /5:

ally — k) + b(ls — hts) = 0, (45
ab — ab = 0, (46
b(aly + bly) = (47

0,
a aEl + bgg) = 0,

—~
e~ =~
Nej oo
S~— S~— S— S~— S— N N N

b(ly — kls) — bjt% ko) + a(ly — kby) — ai(él — k) =0

( . . . dt
b(2€1€2 — €1€2 - ]{35162) + aﬁl (61 - kfl) O (50
a(2€1£2 — élgg - ]{3€1€2> + bgg(gg - kfg) = O (51
d . d
(br — k‘fz)dt (6 — kty) — (1 — kél)dtw? —kty) = (52
(6261 — 6162)(62 — kly) =0, (53
(Ualy — l1ls) (01 — kL) = 0. (54
For the further analysis we start by distinguishing the following four cases: (1) ab # 0,
(2) a#0,b=0,3)a=0,b#0, (4) a=b=0.
(1) ab # 0.
Conditions (46-48) then yield
b(t) = pa(t), b (t) = —pla(2), (55)

for some nonzero real constant p, and it turns out then that all relations (45-54) are
satisfied. We now have to investigate diagonalizability of ®. Computing its eigenvalues
14;, We obtain

pa = 5 |O1+ 03+ /(0] - 03)2 + 40303

[ = Do =

= 3 [ 8aqy + 2k — k2 + pla + 4c £ 2/—p(dagy — o+ k:EQ)]

Since diagonalizability here refers to the real Jordan normal form, we must require p < 0.
® then has two distinct real eigenvalues and, hence, is diagonalizable.

Summarizing, if (55) holds for some p < 0 and a(t) # 0, the conditions (i)-(iv) of the
separability theorem 4.6 are verified and since the eigenvalues of ® are nondegenerate,
the given SODE (44) decouples. A regular transformation which diagonalizes ® and,
simultaneously, establishes the decoupling of (44), is given by

Q1= q +V—pq, Q2 =q —V—pga.
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The transformed system (44) becomes
[

C?l k(t) + \/—_P&(t)]c?l +a(t)QF — c(t)Qn,
Q2 = [k(t) = V=pLa(t)]Q2 + a(t)Q3 — c(t)Q2.

Note that the functions a, ¢, k and /5 are still competely arbitrary.

(2) a#0,b=0.
From (48) it follows that ¢; = 0 and then all other relations (45-54) are automatically
verified. ® now is of the form

po 0 . 2
P = , with & 0,
and hence is not diagonalizable. Therefore, in this case (44) can not be decoupled.
(3) a=0,b#0.

This case is similar to the previous one. We now have ¢, = 0 and again it turns out that
® is not diagonalizable and, hence, (44) is not separable.

(4) a=b=0.
Conditions (45-51) are trivially satisfied. The eigenvalues of ¢ now read

17 ; -
=7 % — k2 — 10y + dc £ \/ (6 — k) (by — ki)

and for these to be real we must have (¢, — kly) (5 — kly) > 0.

Assume first (51 — k‘fl)(ég — kty) > 0. Then & is diagonalizable with two distinct
real eigenvalues. From (53) (or (54)) we further deduce that £10y = 10y, ie. (1(t) =
vly(t) for some real constant v which, in view of the above assumption, must be strictly
positive. Note that relation (52) is then also fulfilled and we are thus again in a situation
where the conditions (i)—(iv) of theorem 4.6 are verified. Since, moreover, ® has two
distinct eigenvalues, the system (44) must be competely separable. A transformation
which diagonalizes ® is of the same form as in case (1), with v = —p, and we find
ourselves in fact in the corresponding subcase of decoupled equations for ()1 and @)s.

Assume on the contrary that (£, —ké;)(f,—kfy) = 0. Taking into account the relations
(53),(54) and the requirement that ® be diagonalizable, it follows that ¢; —k¢; and o — k(s
both have to be zero, which implies

6L(t) = exp(/ kdt), l5(t) = g exp(/kdt),

for some real constants ay,as. Condition (52) is then also satisfied and thus [V®, @]
identically vanishes. In this case, ® is already diagonal in the given coordinates, with
equal diagonal elements. The given second-order system (44) now takes the form

G = k(t)g + arl(t)ga — c(t)q,

G2 = l(t)gr + k(t)g2 — c(t)ge, (56)
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with £(t) = exp([ kdt), and so is not yet decoupled, unless ay = ay = 0. Hence, in case
at least one of the a;’s is nonzero, we are in a situation where condition (v) of theorem
4.6 has to be invoked. More precisely, assuming o + a3 # 0, (56) will be separable if and
only if functions wu;(¢,q) and wus(t,q) can be found, regarded as components of a vector
field Y = 0/0t 4+ u;0/dq;, such that the tensor field

ty = <&” 1@0ﬂ8é)+<&”—1m09w8£9+<&Q—1%oﬁu869

87(]1 B 2 8q1 TQQ 2 8q1 87(]1 2 8(]2
8’&2 1 0

tlam =2k @ =,
(8(12 2 ) 27 gy

is diagonalizable, with distinct eigenvalues and satisfies C{,, = 0 and [Vty, ty] = 0. It is
easily seen that the condition C} = 0 is always verified here. The commutator condition,
however, yields a set of non-linear partial differental equations for the u;’s. The most
obvious particular solution which can be surmised simply from the expression for ty, is
given by u; = %alﬁqg, Uy = %agﬁql. Unfortunately, this choice gives rise to a ty with a
degenerate eigenvalue —%k. A more interesting particular solution is found to be,

1 1
U = Ekql + aq (26 —+ 1) qa2,
1 1 (57)
uy = 5@2 + <2€ + 1> q,
producing a ty of the form
0 0
ty = a0 ® — 0 ® —.
y = Q1 2®3q1 + s 1®3q2

In case ajas > 0, this ty has two distinct real eigenvalues, namely +,/ajas. A transfor-
mation which diagonalizes ty is given by

Q1 = JVoogq + asge,
Q2 Va1 g1 + Q1qs.

The transformed system (56) reads
Ql = l:k(t) -+ VA 51e%) exp(/kdt)} Ql — C(t)Ql,
Oy — {k(t) ~ Vam esp( [ kdt)} 05 — c()Qs

and is completely decoupled.

In case ayag < 0 (but o2 + a3 # 0), the solution (57) for the u;’s is no longer suitable
for then ty has either complex eigenvalues or a degenerate (zero) eigenvalue. For the
sake of brevity, we will not pursue the full analysis of this subcase, but conclude instead
by pointing out one special case with ayay = 0, for which (56) is separable. Assume,
for instance, oy = 0, g # 0 and k # 0 but constant. Then, a suitable solution for the
w;’s is provided by uy = (k/2)q1, u2 = kga + (a2f(t)/4)q1, where ((t) = exp(kt). The
corresponding ty is then diagonalizable with eigenvalues 0 and k/2. Hence, (56) can
again be decoupled.

Another special case of (56), with ajas < 0, will be treated in the next example.
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Example 2.

Consider the following autonomous second-order system, depending on one real parameter
A,
g1 = — A, G2 = A1, (58)

with A # 0. This is a special case of (56), with k = ¢ =0 and ag = —a3 = \. The
reason for taking this simple system is that it exhibits the following interesting feature:
when treated entirely within the autonomous framework, i.e. applying the results of [9],
it turns out that (58) is not separable, whereas, as we will show, it can be decoupled when
allowing for time-dependent transformations.

The connection coefficients Fé- and the components of the Jacobi endomorphism, cor-
responding to (58), are given by I'} =15 =0, '} = A/2, T2 = —)\/2 and ®] = ®3 = \?/4,
P! = &2 = 0. Obviously, these expressions are the same, regardless of whether (58) is
treated within the autonomous or within the time-dependent framework. It is straight-
forward to check that, in both cases, the algebraic conditions on ® are satisfied. However,
® has a degenerate eigenvalue. The tension t, corresponding to (58) in the autonomous
framework, has no real eigenvalues. Consequently, according to the theory in [9], (58)
cannot be decoupled by means of a time-independent transformation.

In the time-dependent framework, on the other hand, we are led to investigate the
tension-like object

8U1 0 8u1 >\> 0 <8u2 )\) 0 8u2 0
ty=—0® —+|—+=-]0bR—4+|=——=|00 — + —0,X®
v oq ! oq (3(]2 2 ? oq oq 2 ! q 2

It manifestly satisfies the condition C¢, = 0. The partial differential equations for the u;’s,
resulting from the commutator condition [Vty,ty| = 0, admit the following particular
solution

A A

With this choice, ty turns out to be diagonalizable and has two distinct eigenvalues. A
transformation which does the job is given by

Q1 = [1—cos(At)|q1 — sin(At)qa,
Q2 = sin(At)g1 + [1 — cos(At)]ge.

(This transformation is regular for all £ € R\{2kw/\;k € Z}). In the new coordinates
the system (58) reads

. A\ .
Q1 = W[Sin(/\t)Ql — Q1
. A\ .
Q2 = m[sm()\t)Qz + Q-]

which indeed proves the point that the given autonomous system can be decoupled by
means of a time-dependent transformation.
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Example 3.

As a final example, consider the autonomous system
=0 G=0bg (59)

with b a nonzero real constant. One easily verifies that for this system ® = 0, and so
conditions (i) to (iv) of theorem 4.6 are automatically satisfied. Since ® has a degenerate
(zero) eigenvalue, we are again forced to look for a suitable ty. The condition Cf =0
here leads to the following relations for the u;’s:

ou Ouy  Ou

—1 0, oo T2 (60)

gy 91 Ogo
Taking these into account, it turns out that [Vty, ty] identically vanishes. The general
solution of (60) reads:

uy = P(t, q1), uy = (0 /0q1)q2 + v(t, q1),

where ¢ and v are arbitrary functions, and ty then becomes

f — 8w/5ql 0
Y H 3¢/3q1

with = 3/2(b¢3) — 3bygy + (0% /q3)qa + 2(0v/Dq1). Tt is clear that ty can never have
two different eigenvalues; moreover, with b # 0, it is not even diagonalizable. We thus
encounter a situation here where no vector field Y exists, satisfying the requirements of
theorem 4.5. The system (59) is not separable.

As can be seen already on the above examples, the conditions of theorem 4.6 impose
some very severe restrictions on a SODE. This, of course, should not come as a surprise
since complete separability remains, generically speaking, a rather exceptional feature. In
that respect it would certainly be interesting to investigate whether the above formalism
can also be used to derive necessary and sufficient conditions for some form of partial
separability (or “submersiveness” in the sense of [4, 8]). Finally, in case of a Lagrangian
system, it may be of interest to study the interrelationship between complete separability
of the Euler-Lagrange equations and separability in the sense of Hamilton-Jacobi (see e.g.
[1, 7]) for the corresponding Hamiltonian system.
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