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tWe des
ribe the 
onstru
tion of a linear 
onne
tion asso
iated with a se
ond-orderdi�erential equation �eld, 
al
ulate its 
urvature, and dis
uss some appli
ations.1 Introdu
tionSystems of se
ond-order ordinary di�erential equations of the form �xi = f i(t; xj ; _xj)arise naturally in a number of 
ontexts: geodesi
s (auto-parallel 
urves), the 
al
ulus ofvariations, and 
lassi
al me
hani
s spring readily to mind. Su
h a system of equationsmay be represented as a 
ertain type of ve
tor �eld (a se
ond-order di�erential equation�eld) on a di�erentiable manifold of the form IR � TM , where M is a manifold, ofdimension m, on whi
h the xi, i = 1; 2; : : : ;m are lo
al 
oordinates, and TM is itstangent bundle. By using a representation like this, one 
an take a geometri
al approa
hto ta
kling many problems en
ountered in the study of systems of se
ond-order ordinarydi�erential equations: for example, problems 
on
erning 
onditions for the existen
e of
oordinates with respe
t to whi
h the equations take a spe
ial form { in whi
h the right-hand sides vanish, or are linear, or in whi
h the equations de
ouple; the inverse problemof the 
al
ulus of variations; analysis of symmetries; and problems 
on
erned with thequalitative behaviour of families of solutions.1



In this paper, we shall des
ribe the 
onstru
tion, given any se
ond-order di�erentialequation �eld, of an asso
iated linear 
onne
tion in a 
ertain ve
tor bundle. This linear
onne
tion is a very e�e
tive tool for the investigation of problems of the kind des
ribedabove. In parti
ular, the vanishing of the 
urvature of the 
onne
tion is the ne
essaryand suÆ
ient 
ondition for the existen
e of 
oordinates with respe
t to whi
h the solution
urves of the equations are straight lines. Our 
onstru
tion may therefore be regardedas providing a generalization of ordinary 
onne
tion theory to 
over types of di�erentialequations more general than those satis�ed by geodesi
s.A
tually, the representation of the underlying manifold as IR� TM is not ideal for ourpurposes. The reason for this is that we wish to allow t-dependent 
oordinate transfor-mations (where t is the standard 
oordinate on IR): that is, 
oordinate transformationson IR �M of the form (t; xi) 7! (t; yi) with yi = yi(t; xj), together with the indu
ed
oordinate transformations on IR�TM . Su
h 
oordinate transformations do not respe
tthe produ
t stru
ture whi
h, by impli
ation, has been pi
ked out on
e for all. So in-stead we shall develop the theory for an (m+1)-dimensional manifold E whi
h is a �brebundle over IR, with standard �bre M . Although E will be trivial, no one trivializationof it is to be preferred to any other, and the notation will re
e
t this. Furthermore, byworking in this way we shall ensure that all our formulas are tensorial with respe
t tot-dependent 
oordinate transformations.So we suppose given a �bre bundle E with proje
tion �:E ! IR, and we 
onsiderits �rst-order jet bundle, whi
h we denote by �01 :J1� ! E. (Our notation followsthat of Saunders [26℄, more or less.) The �bre of J1� over any point p 2 E is anaÆne spa
e modelled on Vp�, the ve
tor subspa
e of TpE 
onsisting of those ve
torsverti
al with respe
t to �, that is, tangent to the �bre of E. Given any trivializationE � IR�M , we may identify J1� with IR� TM , with �01 
orresponding to the tangentbundle proje
tion �M :TM ! M . A se
ond-order di�erential equation �eld is a ve
tor�eld on J1� with the property that its integral 
urves are jets of se
tions of �. Using theproje
tion �01 :J1� ! E, we may pull ba
k the tangent bundle �E :TE ! E to obtaina ve
tor bundle �01�(�E) over J1�. We shall show how to 
onstru
t a linear 
onne
tionon �01�(�E) whenever we are given a se
ond-order di�erential equation �eld on J1�.The 
onstru
tion depends on the fa
t that the se
ond-order di�erential equation �elddetermines a horizontal distribution, or non-linear 
onne
tion, on J1�. As a matterof fa
t the same 
onstru
tion will work for any horizontal distribution on J1�, but inthis paper we shall dis
uss only the 
ase of a horizontal distribution 
oming from ase
ond-order di�erential equation �eld.The data, therefore, 
onsist of the bundle �:E ! IR, a se
ond-order di�erential equation�eld de�ned on J1�, and the 
orresponding non-linear 
onne
tion on J1�; from thesewe shall 
onstru
t a linear 
onne
tion in the form of a 
ovariant derivative operator onse
tions of �01�(�E). In order to prevent 
onfusion we shall use the term `
onne
tion'to refer only to the linear 
onne
tion whi
h we shall 
onstru
t, and refer to the given2



non-linear 
onne
tion always in terms of the horizontal distribution whi
h de�nes it.This paper has its origins in the work of Mart��nez, Cari~nena and Sarlet on derivationsof the algebra of forms along a proje
tion map. Initially these authors 
on
entrated onforms along a tangent bundle proje
tion �M :TM ! M [20, 21℄; their methods havere
ently been extended to the `time-dependent' 
ase, whi
h is the 
ase 
onsidered here[25℄. Though the analysis of the properties of se
ond-order di�erential equation �eldswas one of the motives for this work, the theory developed is very 
omprehensive, and byno means all of its results are required for an immediate understanding of the geometri
alapproa
h to the study of se
ond-order di�erential equations. The situation is analogousto that found in ordinary di�erential geometry, where the full theory of derivations ofexterior forms developed by Fr�oli
her and Nijenhuis is not required for the study ofgeodesi
s. The present paper 
ontains (among other things) an exposition, in a newguise, of those of the results of Mart��nez et al. whi
h are of most relevan
e to the studyof se
ond-order di�erential equation �elds. As a 
onsequen
e, the paper should serve asa relatively short introdu
tion to the more general theory developed by these authors.The 
onne
tion des
ribed in this paper is related to several 
onne
tions whi
h have pre-viously been de�ned in various di�erent 
ontexts. One type of 
onne
tion, to whi
h oursis 
losely related, is the Berwald 
onne
tion of Finsler geometry and its generalizations,whi
h is des
ribed e.g. by Grifone [15℄ and by Bejan
u [5℄. However, the use of thiskind of 
onne
tion to study geometri
al properties of general se
ond-order di�erentialequation �elds does not seem to have been re
ognised by workers in the �eld of Finslergeometry, though Grifone has 
ontributed extensively to the study of the horizontalstru
ture whi
h is asso
iated with a general se
ond-order di�erential equation �eld. Onthe other hand, 
onne
tion theory has been used to analyse the properties of a parti
ular
lass of solution 
urves of se
ond-order di�erential equations, namely the geodesi
s ofFinsler spa
es, that is, the extremals of a Lagrangian whi
h is positively homogeneousof degree 1 in the derivative variables. Authors in this �eld, su
h as Auslander [3℄ and,more re
ently, Bao and Chern [4℄, have been 
on
erned mostly with extending results ofRiemannian geometry, su
h as the theorems of Myers and Synge, to the more generalsetting of Finsler geometry. One other author who has done important work in this�eld is P. Foulon. Foulon's work, in a way, is more 
losely related to ours as, apartfrom appli
ations to the study of extremals of Lagrangians [13, 14℄, his theory of generalse
ond-order equations [12℄ 
ontains elements of the idea of a linear 
onne
tion whi
h weshall develop in Se
tion 3. In fa
t, his notions of Ja
obi endomorphism and dynami
alderivation were among the sour
es of inspiration for the work by Mart��nez, Cari~nenaand Sarlet referred to above.There is an alternative approa
h to the 
onstru
tion of linear 
onne
tions asso
iatedwith se
ond-order di�erential equation �elds, whi
h has been developed by Massa andPagani in the 
ontext of the formulation of 
lassi
al me
hani
s [23℄, and also in a purelygeometri
al setting by Byrnes [6℄. These authors obtain an ordinary linear 
onne
tion on3



T (J1�) rather than a ve
tor bundle 
onne
tion on �01�(�E). We 
laim that our approa
his the better one sin
e it avoids an almost literal dupli
ation of e�ort. We shall explainhow the two approa
hes are related in Se
tion 3 below.We 
an 
laim, therefore, to provide a synthesis of several approa
hes to the study anduse of 
onne
tion theory and related topi
s in the 
ontext of se
ond-order di�erentialequation �elds. We 
laim also that our work is distin
tive in several ways. In the�rst pla
e, we adopt a distin
tive geometri
 setting, namely that of the �rst-order jetbundle of a manifold �bred over IR, whi
h seems to us to be the most appropriate onefor the study of time-dependent se
ond-order di�erential equations. General Berwald
onne
tions are de�ned in [5℄ as 
onne
tions in the verti
al sub-bundle of the tangentbundle of a manifold. The 
onne
tions adapted to Finsler geodesi
s are de�ned on thesphere bundle [3℄ or the proje
tivised tangent bundle [4℄ of a manifold. Foulon [12, 13, 14℄also works always in the homogeneous formalism, and his basi
 geometri
al entity is asphere bundle. Se
ondly, we give a 
oordinate free de�nition of our 
onne
tion, usingthe Koszul 
onditions for 
ovariant di�erentiation, where other authors use tensorialmethods [5℄, or 
onne
tion forms and stru
tural equations [3, 4℄. Thirdly, we developthe properties of our 
onne
tion further than most other authors have done, and inparti
ular we give the full Bian
hi identities for its 
urvature. Fourthly, we demonstratethe usefulness of the 
onne
tion by taking the �rst steps to showing how its 
urvaturedetermines the intrinsi
 properties of the se
ond-order di�erential equations on whi
h itis based.2 PreliminariesIn this se
tion we shall assemble the basi
 fa
ts of the geometry of E and J1� whi
h areneeded for our 
onstru
tion.We 
onsider �rst the question of trivializing E. Any trivialization determines a ve
tor�eld T on E, namely the 
oordinate �eld along the IR fa
tor, whi
h has the propertythat ��T = �=�t. Conversely, any ve
tor �eld T on E with this property determineslo
al trivializations, in the sense that any point of E has a neighbourhood whi
h 
an bemade di�eomorphi
 to I �U , where I is an open interval of IR and U is an open subsetof M , in su
h a way that the integral 
urves of T 
orrespond to the 
urves t 7! (t; u) forsome �xed u 2 U .This observation is related to the e�e
ts of (t-dependent) 
oordinate transformations onE, as follows. Any 
oordinate transformation (xi; t) ! (yi; u), where yi = yi(xj ; t) andu = t, leads to the following formulas for the new 
oordinate ve
tor �elds on E:��yi = �xj�yi ��xj ; ��u = ��t +Xi ��xi ;4



where the fun
tions Xi = Xi(t; xj) are determined by�yi�t +Xj �yi�xj = 0:We 
an 
onsider �=�t+Xj�=�xj as the lo
al 
oordinate representation of a ve
tor �eldT on E, whi
h proje
ts onto the ve
tor �eld �=�t on IR. As we have noted, everytrivialization of E 
orresponds to su
h a ve
tor �eld; the equations for yi amount toTyi = 0, and 
an be solved to �nd the 
oordinate transformation with respe
t to whi
hT be
omes the t-
oordinate �eld on E.Turning now to J1�, we note that a jet of a se
tion of � may be regarded as a tangentve
tor to E whi
h proje
ts onto the ve
tor �=�t. Thus a trivializing ve
tor �eld T onE may also be regarded as a se
tion of �01 . In terms of lo
al 
oordinates (t; xi; vi), theve
tor �eld T = �=�t +Xi(t; xj)�=�xi 
orresponds to the se
tion vi = Xi(t; xj). The
oordinate transformation (t; xi; vi) 7! (t; yi; wi) on J1� indu
ed by the transformationyi = yi(t; xj) of E is given by wi = �yi=�t+(�yi=�xj)vj . Thus 
hoosing 
oordinates onE so that T = �=�t is equivalent to taking the 
orresponding se
tion of J1� as wi = 0,that is, using the se
tion to de�ne the origin in ea
h (aÆne) �bre.The �bration �01 :J1� ! E determines a ve
tor sub-bundle V �01 of T (J1�), the verti
alsub-bundle; the quotient of ea
h �bre by its verti
al subspa
e 
an be identi�ed with atangent spa
e to E, so we have the exa
t sequen
e of ve
tor bundles over J1�0 �! V �01 �! T (J1�) �! �01�(�E) �! 0:Corresponding to this is the exa
t sequen
e of modules of se
tions0 �! V(�01) �! X (J1�) �! X (�01) �! 0;here X (J1�) denotes the module of ve
tor �elds on J1�, V(�01) the sub-module of ve
-tor �elds verti
al with respe
t to �01 , and X (�01) the module of ve
tor �elds along theproje
tion �01 , all of these spa
es being modules over C1(J1�).Any se
tion of �E may be pulled ba
k to a se
tion of �01�(�E); that is to say, any ve
tor�eld on E gives rise to an element of X (�01). The elements of X (�01) whi
h arise in thisway are 
alled basi
.We observed above that ea
h point of J1� may be 
onsidered as a tangent ve
tor toE whi
h proje
ts onto �=�t. This identi�
ation may be regarded as de�ning a mapJ1� ! TE, and therefore determines in a natural way a ve
tor �eld along �01, whi
h is5




alled the total derivative and denoted by T; in 
oordinates we haveT = ��t + vi ��xi :The restri
tion of any element of X (�01) to a se
tion of �01 determines an element ofX (E); this remark, applied to T, leads ba
k to the two ways of de�ning a trivializationof E dis
ussed above.A se
ond-order di�erential equation �eld is an element � of X (J1�) whi
h proje
ts ontoT. We have� = ��t + vi ��xi + f i ��viwhere f i = f i(t; xj ; vj). After a (t-dependent) 
oordinate transformation the new f ibe
omef 0i = �yi�xj f j + �2yi�xj�xk vjvk + 2 �2yi�xj�tvj + �2yi�t2 :Note that the se
ond derivatives of f i with respe
t to the �bre 
oordinates vj transformformally like the 
onne
tion 
oeÆ
ients of an ordinary symmetri
 linear 
onne
tion(though they may depend on t).Any se
ond-order di�erential equation �eld determines a splitting of the ve
tor bundleexa
t sequen
e, or in other words a ve
tor sub-bundle of T (J1�) whi
h is 
omplementaryto the verti
al sub-bundle V �01. The 
orresponding distribution (ve
tor �eld system) onJ1� is 
alled the horizontal distribution determined by �. The details of the 
onstru
tionof this horizontal distribution have been published frequently, so will not be repeatedhere (see for example [9, 25℄, and also [26, Se
tion 5.4℄ for a more general formulationwhen the base manifold is not ne
essarily 1-dimensional). We 
ontent ourselves withgiving the 
oordinate expressions for a basis fHag, a = 0; 1; 2; : : : ;m, of horizontal ve
tor�elds, whi
h are H0 = �, and Hi = �=�xi � �ji�=�vj where �ji = �12�f j=�vi. Notein parti
ular that the se
ond-order di�erential equation �eld � is itself horizontal. Thehorizontal distribution will not in general be integrable.The 
onstru
tion of the linear 
onne
tion depends on 
ertain features of the stru
tureof �01�(�E) whi
h we now des
ribe.In the �rst pla
e, �01�(�E) is a dire
t sum of ve
tor bundles. This is be
ause the sub-bundle �01�(V �) (determined by ve
tors on E verti
al with respe
t to �) has a naturallyde�ned 
omplement, spanned at ea
h point by the total derivative T; this is a spe
ial6



property of �01�(�E) { it is not in general the 
ase that there is a distinguished 
om-plement to V � in TE, of 
ourse. The 
orresponding dire
t sum de
omposition of themodule of se
tions of �01�(�E) is writtenX (�01) � X (�01)� hTi:Se
tions in X (�01) are annihilated by dt, while the annihilators of T are spanned byfdxi � vidtg, the 
onta
t 1-forms, these forms being regarded as lo
al se
tions of thebundle dual to �01�(�E). For any � 2 X (�01) we write � = �+h�; dtiT, where � 2 X (�01).If F is any ve
tor bundle over J1�, and 	:T (J1�) ! F is a linear bundle map (overthe identity) whi
h vanishes on V �01, then 	 passes to the quotient, that is, it indu
esa linear bundle map �01�(�E)! F .As a �rst appli
ation of this remark, we note that the verti
al endomorphism S =(dxi � vidt) 
 �=�vi of J1� vanishes on V �01 . Thus S passes to the quotient, and ifwe regard it as de�ning a linear bundle map T (J1�) ! V �01, then S indu
es a linearbundle map �01�(�E)! V �01. The indu
ed map has the same 
oordinate representation,so its kernel is just the one-dimensional sub-bundle of �01�(�E) spanned by T. For anyse
tion � of �01�(�E) we write �V for the 
orresponding verti
al ve
tor �eld on J1�. ThenTV = 0, and �V = �V = (� � h�; dtiT)V . Alternatively, we 
an regard S as de�ning amodule isomorphism, � 7! �V , of X (�01) with V(�01).Se
ondly, suppose that we have a horizontal distribution on J1�. We shall denote by PHthe horizontal proje
tor 
orresponding to the horizontal distribution: PH is the linearbundle map (or type (1; 1) tensor �eld, or ve
tor-valued 1-form, on J1�) whi
h is theproje
tion of T (J1�) onto the horizontal sub-bundle along V �01 . Sin
e PH vanishes onV �01 by de�nition, it passes to the quotient to de�ne a linear bundle map �01�(�E) !T (J1�), whi
h is a bundle isomorphism of �01�(�E) with the horizontal sub-bundle ofT (J1�). We denote the 
orresponding map of se
tions by � 7! �H .Thus the splitting of the bundle exa
t sequen
e determined by a se
ond-order di�erentialequation �eld � 
arries over the dire
t sum de
omposition of �01�(�E), to give a three-waysplit: at the level of se
tions we may writeX (J1�) � X (�01)V �X (�01)H � X (�01)V �X (�01)H � h�i;sin
e TH = �. Thus every ve
tor �eld � on J1� may be written � = (�V )V + (�H)Hwith �V 2 X (�01) and �H 2 X (�01). Further, we may write �H = �H + h�; dtiT, with�H 2 X (�01). Furthermore, for any � 2 X (�01) we have (�V )V = � � h�; dtiT, while(�H)H = �.For any �; � 2 X (�01), we have [�V ; �V ℄H = 0, sin
e the verti
al distribution on J1�7



is of 
ourse integrable. But [�H ; �H ℄V will not be zero in general. We de�ne a mapR:X (�01)�X (�01)! X (�01) byR(�; �) = [�H; �H ℄V :Then R is C1(J1�)-bilinear and skew-symmetri
. It measures the departure of thehorizontal distribution from integrability. Bearing in mind the dire
t sum de
ompositionof �01�(�E), it is 
onvenient also to de�ne a map �:X (�01)! X (�01) by�(X) = R(T;X) = [�;XH ℄V ; X 2 X (�01);for reasons whi
h will be
ome apparent later, � is 
alled the Ja
obi endomorphism of�. It is C1(J1�)-linear. We shall denote the restri
tion of R to X (�01)�X (�01) by ~R.The obje
ts R, � and ~R may also be regarded as tensor �elds. In the 
ase of R we 
ouldsimply say that it is a type (1; 2) tensor �eld along �01; but this would not be stri
tly
orre
t for the others. So we shall adopt the following terminology. For any ve
torbundle F , we shall 
all a se
tion of any tensor bundle 
onstru
ted from F a tensor (ofthe appropriate type) on F . Then R is a type (1; 2) tensor on �01�(�E), while � and ~Rare tensors on �01�(V �), of types (1; 1) and (1; 2) respe
tively.We 
an give a more expli
it formula for R when its arguments are basi
. Noti
e that ifA is a ve
tor �eld on E, and we form AH (regarding A as an element of X (�01)), thenA is �01-related to AH . It follows that for any two ve
tor �elds A and B on E, [A;B℄ is�01-related to [AH ; BH ℄, and therefore that [AH ; BH ℄� [A;B℄H is verti
al with respe
t to�01 . Thus[AH ; BH ℄� [A;B℄H = R(A;B)V :One further result, involving the bra
ket of � with a verti
al ve
tor �eld, will be neededin the next se
tion: it follows dire
tly from the formulas for the horizontal distributiongiven earlier (see [9℄) that for any X 2 X (�01),[�; XV ℄H = �X:3 The linear 
onne
tion de�nedWe now de�ne the linear 
onne
tion on �01�(�E), by spe
ifying the asso
iated 
ovariantderivative operator on X (�01). 8



Theorem 1 The operator D�:X (�01)! X (�01) de�ned as followsD�� = [PH(�); �V ℄V + [PV (�); �H ℄H + PH(�)h�; dtiT;where PV = I � PH is the verti
al proje
tor, is a 
ovariant derivative.Proof To show that this operator is indeed a 
ovariant derivative, we have merely toestablish that it obeys the 
orre
t rules when its arguments are multiplied by fun
tions.Note �rst that for any f 2 C1(J1�),Df�� = [fPH(�); �V ℄V + [fPV (�); �H ℄H + fPH(�)h�; dtiT= fD�� � (�V f)(PH�)V � (�Hf)(PV �)H = fD��;sin
e the terms involving derivatives of f also involve (PH�)V and (PV �)H, both of whi
hare zero. On the other hand,D�(f�) = [PH(�); f�V ℄V + [PV (�); f�H℄H + PH(�)hf�; dtiT= fD�� + (PH(�)f)(�V )V + (PV (�)f)(�H)H + (PH(�)f)h�; dtiT= fD�� + (�f)�;where we have used the fa
t that (�V )V = � � h�; dtiT.So, given a horizontal distribution on J1�, we 
an de�ne a linear 
onne
tion on �01�(�E).In parti
ular,D�T = [(�V )V ;�℄H + PH(�)hT; dtiT = �V :Furthermore, for any X 2 X (�01) we haveD�X = [PH(�);XV ℄V + [PV (�);XH ℄H:It is important to note that D�X has no T 
omponent. In fa
t, for any se
tion � of�01�(�E) we havehD��; dti = �h�; dti:To see this, observe �rst that for any verti
al ve
tor �eld � on J1�, L�(dt) = 0. Thush[PV (�); �H ℄; dti = PV (�)h�H ; dti = PV (�)h�; dti, when
e it follows that hD��; dti =9



PV (�)h�; dti+PH(�)h�; dti = �h�; dti. So in parti
ular, if �h�; dti = 0, then hD��; dti = 0also. Thus X (�01) is mapped to itself by 
ovariant di�erentiation; or in other words, the
onne
tion indu
es a linear 
onne
tion on the sub-bundle �01�(V �) of �01�(�E).Furthermore, it follows from this 
al
ulation that we may express the 
ovariant derivativeas D�� = [PH(�); �V ℄V + [PV (�); �H ℄H + �h�; dtiT:Using the expression for Hi given earlier, we �nd that the 
ovariant derivatives are givenin terms of lo
al bases f�=�vi;Hi;�g of X (J1�) and f�=�xi;Tg of X (�01) as follows.D�=�vi � ��xj� = 0; DHi � ��xj� = ��ki�vj ��xk ; D� � ��xj� = �kj ��xk ;D�=�viT = ��xi ; DHiT = 0; D�T = 0:If we write these entirely in terms of 
oordinate ve
tor �elds we obtain the followingformulas.D�=�vi � ��xj� = 0D�=�xi � ��xj� = ��ki�vj ��xk ;D�=�t � ��xj� =  �kj � vl ��kl�vj ! ��xkD�=�vi � ��t� = 0D�=�xi � ��t� =  �ki � vj ��ki�vj ! ��xkD�=�t � ��t� = � fk + 2vj�kj � vjvl ��kj�vl ! ��xk :Noti
e that the 
ovariant derivatives of both �=�xj and �=�t with respe
t to �=�vivanish. It follows that a ne
essary and suÆ
ient 
ondition for � 2 X (�01) to be basi
(that is, to be a ve
tor �eld on E) is that D�� = 0 whenever � is verti
al with respe
tto �01 .The 
ovariant derivative has been de�ned in terms of the bra
ket operation on ve
tor�elds on J1�. It so happens that be
ause of the spe
ial relationships between se
tionsof �01�(�E) and ve
tor �elds on J1�, it is possible to turn this round so as to express thebra
ket in terms of 
ovariant derivatives. We shall explain next how this is done.10



It is easy to verify that for any �; � 2 X (�01), ea
h of the three di�erent expressionsobtained by substituting V or H for the asterisks in [��; ���℄� ((D���)�� � (D����)�) istensorial with respe
t to the arguments � and �. To evaluate them in general, therefore,it is suÆ
ient to do so when � and � are 
hosen from a lo
al basis of se
tions of �01�(�E).Using the expli
it expressions for the 
ovariant derivatives given above, and expressing� and � in terms of their 
omponents with respe
t to the dire
t sum de
omposition ofX (�01), we obtain the following results; here X;Y 2 X (�01).[XV ; Y V ℄ = (DXV Y )V � (DY VX)V[XH ; Y V ℄ = (DXHY )V � (DY VX)H[XH ; Y H ℄ = (DXHY )H � (DY HX)H + ( ~R(X;Y ))V[�; Y V ℄ = (D�Y )V � (DY VT)H = (D�Y )V � Y H[�; Y H℄ = (D�Y )H � (DY HT)H + (�(Y ))V = (D�Y )H + (�(Y ))V :Any reader who is familiar with the work originated by Mart��nez, Cari~nena and Sarletwill have noti
ed that these equations are formally similar to equations satis�ed by thederivations DVX , DHX and r whi
h appear in their papers (see [21, 22℄, and [25℄ for thetime-dependent 
ase at hand). In fa
t there is a dire
t 
orresponden
e between theseoperators and the various 
omponents of the 
ovariant derivative that we have de�ned,whi
h our notation is intended to re
e
t. The operators de�ned in [25℄ are derivations ofthe tensor algebra of �01�(�E). The 
orresponden
e between the derivations of 
ovarianttype in [25℄ and our 
ovariant derivative is given byDVX = DXV ; DHX = DXH ; r = D�:To put this another way, we 
an express the 
ovariant derivative in terms of the deriva-tions in [25℄ in the formD� = DV�V +DH�H + h�; dtir:We shall sti
k to our initial notation on the whole; but it will be 
onvenient o

asionallyto take advantage of this 
orresponden
e with the operators �rst introdu
ed by Mart��nezet al. to make use of their verti
al and horizontal 
ovariant di�erentials DV and DH . Forexample, the 
ondition for � 2 X (�01) to be basi
 may be written DV � = 0.It follows from the formula above for [XH ; Y H ℄, and the observations made earlier aboutthe 
orresponding bra
ket when X and Y are basi
, that for any ve
tor �elds A and Bon E, [A;B℄ = DAHB �DBHA. 11



Note one important 
onsequen
e of the formulas relating bra
kets and 
ovariant deriva-tives: all bra
kets of ve
tor �elds on J1� 
an be expressed in terms of 
ovariant deriva-tives and the `
urvature' R of the non-linear 
onne
tion de�ned by the given horizontaldistribution. The formulas 
an be 
ombined together to make this more apparent, asfollows. For any ve
tor �elds �, � on J1� we have[�; �℄ = �(�V )V + (�H)H ; (�V )V + (�H)H�= fD��V �D��V +R(�H; �H)gV + fD��H �D��HgH :We may express this result in the following alternative form.D��V �D��V � [�; �℄V = �R(�H; �H)D��H �D��H � [�; �℄H = 0:These equations are reminis
ent of those whi
h de�ne the torsion of an ordinary lin-ear 
onne
tion; it seems natural, therefore, to regard the tensor �R asso
iated withthe horizontal distribution as being the verti
al 
omponent of the torsion of the linear
onne
tion on �01�(�E). The horizontal 
omponent of the torsion vanishes be
ause thehorizontal distribution is de�ned by a se
ond-order di�erential equation �eld.Covariant di�erentiation 
an be extended to tensors on �01�(�E), and on �01�(V �), inthe usual way. Note that there are two kinds of 
ovariant di�erentials, DV and DH . Inparti
ular, if K is a type (1; k) tensor on �01�(V �), then we 
an de�ne type (1; k + 1)tensors DVK and DHK on �01�(V �) byD�K(X1;X2; : : : Xk;X) = (D�XK)(X1;X2; : : : Xk);the asterisk stands for either V or H. The rule for determining when an element ofX (�01) is basi
 applies to tensors on �01�(V �) too: the ne
essary and suÆ
ient 
onditionfor su
h a tensor K to be basi
 (that is, to 
ome from a tensor �eld on E) is thatDVK = 0.Our linear 
onne
tion on �01�(�E) 
an easily be lifted to a 
orresponding linear 
onne
tionon J1� by using the de
omposition of a ve
tor �eld on J1� in terms of se
tions of �01�(�E)to de�ne its 
ovariant derivative, as follows. Let � and � be ve
tor �elds on J1�; write� as (�V )V + (�H)H and put r�� = (D��V )V + (D��H)H . It is easy to see that r isthe 
ovariant derivative operator of a 
onne
tion on J1�. What we obtain this way isessentially equivalent to the linear 
onne
tion involved in the work of Massa and Pagani[23℄ and Byrnes [6℄. There is, however, one minor di�eren
e, whi
h is that our 
onne
tionwill not make all 
omponents of r�� equal to zero. This is due to the fa
t that we have12



DV� T = �V , a property whi
h arises naturally in our formalism (see also [25℄). All theother 
onne
tion 
oeÆ
ients will be found to 
oin
ide on the full spa
e J1�. Needless tosay, there is a big advantage in our approa
h in terms of the e
onomy of the number offormulas and 
al
ulations, be
ause the e�e
t of lifting the 
onstru
tion to J1� is merelyto reprodu
e ea
h of our formulas twi
e, on
e with a supers
ript V and on
e with asupers
ript H. We are 
onvin
ed also that our 
onstru
tion is the more elegant andfundamental.4 CurvatureWe now turn our attention to the 
urvature of the linear 
onne
tion whi
h we have 
on-stru
ted. The 
urvature is a C1(J1�)-trilinear map 
urv:X (J1�)�X (J1�)�X (�01)!X (�01) whi
h is skew-symmetri
 in its �rst two arguments. It is de�ned by
urv(�; �) = [D� ;D�℄�D[�;�℄;in the usual way.It is easy to 
al
ulate how the 
urvature a
ts on T dire
tly from the de�nition, usingthe formulas DXV T = X, DXHT = D�T = 0, and the expressions for [�; �℄. The onlynon-zero 
omponents of 
urv(� ; �)T are
urv(XH ; Y H)T = �D[XH ;YH ℄T = � ~R(X;Y );
urv(�;XH)T = �D[�;XH ℄T = ��(X):It is not immediately obvious how to 
al
ulate the other 
omponents of the 
urvature;however, there is mu
h that 
an be found out about them indire
tly, as we now show.The Ja
obi identity for ve
tor �elds on J1�, that is, P[�; [�; �℄℄ = 0 (where, here andbelow,P means 
y
li
 sum), imposes identities on the 
urvature 
omponents, whi
h aree�e
tively �rst Bian
hi identities for the 
onne
tion.Theorem 2 The 
urvature satis�es the �rst Bian
hi identitiesP (
urv(�; �)�V + (D�R)(�H ; �H)) = 0;P 
urv(�; �)�H = 0: 13



Proof Using the formulas whi
h give the verti
al and horizontal 
omponents of thebra
ket of two ve
tor �elds on J1� in terms of 
ovariant derivatives, we see that[�; [�; �℄℄V = D� fD��V �D��V +R(�H ; �H)g �D[�;�℄�V +R(�H ;D��H)�R(�H;D��H)= D�D��V �D�D��V �D[�;�℄�V + (D�R)(�H ; �H)+R(D��H ; �H) +R(�H ;D��H) +R(�H;D��H)�R(�H ;D��H);and that[�; [�; �℄℄H = D� fD��H �D��Hg �D[�;�℄�H:Taking the 
y
li
 sum and using these two formulas gives the identities quoted above.By making the various possible substitutions for �, �, �, 
orresponding to the dire
tsum de
omposition of X (J1�), in these �rst Bian
hi identities, and using the results for
urv(� ; �)T, we obtain the following information about the 
urvature. First, a numberof the 
urvature 
omponents automati
ally vanish:
urv(XV ; Y V ) = 
urv(�;XV ) = 0; 
urv(XV ; Y H)T = 0:Next, we see that two 
omponents of the 
urvature are simply 
ovariant derivatives of R:
urv(Y H ; ZH)X = �(DXV R)(Y;Z);
urv(Y H ;�)X = (DXV R)(T; Y ):But R(T;X) = �(X), from whi
h it follows that (DXV R)(T; Y ) = (DXV �)(Y ) �R(X;Y ); we may therefore write the se
ond of these as
urv(Y H ;�)X = (DXV �)(Y )�R(X;Y ):From the Bian
hi identities we next obtain some identities for R and � and their 
o-variant derivatives:P(DXHR)(Y;Z) = 0;(D�R)(X;Y ) = (DXHR)(T; Y )� (DY HR)(T;X) = (DXH�)(Y )� (DY H�)(X);3R(X;Y ) = (DXV �)(Y )� (DY V �)(X):14



The only remaining Bian
hi identities are those involving terms like 
urv(XH ; Y H)Zor 
urv(XV ; Y H)Z. There is one identity for the former, P 
urv(Y H; ZH)X = 0. Thetwo identities involving the latter taken together state that this quantity is 
ompletelysymmetri
 in its arguments X, Y and Z.We may regard both 
urv(XV ; Y H)Z and 
urv(XH ; Y H)Z as de�ning type (1,3) tensorson �01�(V �) (or, preferably, type (1,1) tensor valued 2-
ovariant tensors on �01�(V �)).When 
onsidering them in this guise we write
urv(XV ; Y H)Z = �(X;Y )Z;
urv(XH ; Y H)Z = Rie(X;Y )Z:Then � is 
ompletely symmetri
, while Rie(X;Y ) is skew-symmetri
 in X and Y and isgiven in terms of R byRie(X;Y )Z = �(DZV R)(X;Y ) = �(DZV ~R)(X;Y ):The notation � and Rie is taken from the papers of Mart��nez et al.; the results obtainedhere are derived in their work also, but by di�erent means. However, it is of interestto observe exa
tly how these results are related, through the Bian
hi identities. (Infa
t, our use of this notation di�ers in detail from that adopted by Mart��nez et al. intheir a

ount of the time-dependent 
ase, in [25℄. Our tensor � is the same as the onein [25℄. On the other hand, Rie in [25℄ is a type (1,3) tensor on �01�(�E), given byRie(�; �) = 
urv(�H ; �H); our Rie is the restri
tion of this to �01�(V �).)All 
omponents of 
urv have now been expressed in terms of �01�(V �) tensors. Wesummarize our results as follows.Theorem 3 The 
urvature 
omponents are given by
urv(XV ; Y V )Z = 0 
urv(XV ; Y V )T = 0
urv(XV ; Y H)Z = �(X;Y )Z 
urv(XV ; Y H)T = 0
urv(XH ; Y H)Z = Rie(X;Y )Z 
urv(XH ; Y H)T = � ~R(X;Y )
urv(�; Y V )Z = 0 
urv(�; Y V )T = 0
urv(�; Y H)Z = �(DZV �)(Y )� ~R(Y;Z) 
urv(�; Y H)T = ��(Y ):
15



The following identities are satis�ed�(X;Y )Z = �(Y;X)Z = �(X;Z)Y ;Rie(X;Y )Z = �(DZV ~R)(X;Y );3 ~R(X;Y ) = (DXV �)(Y )� (DY V �)(X);PRie(X;Y )Z = 0;P(DXH ~R)(Y;Z) = 0;(D� ~R)(X;Y ) = (DXH�)(Y )� (DY H�)(X):The fourth of these is a
tually a 
onsequen
e of the se
ond and the third.Note that on
e � and � are known, the other 
omponents of the 
urvature are deter-mined. In parti
ular, the ne
essary and suÆ
ient 
onditions for the 
urvature to beidenti
ally zero are that � = 0 and � = 0.The o

urren
e of �(X) as the 
omponent 
urv(XH ;�)T may help to explain why � is
alled the Ja
obi endomorphism { if the reader is reminded thereby of the equation ofgeodesi
 deviation.Theorem 4 Suppose that � is a ve
tor �eld de�ned along an integral 
urve of � by Lietransport, so that L�� = 0. ThenD2��H +�(�H) = 0:Proof We have� = (�V )V + (�H)H + h�; dti�;and thereforeL�� = (D��V )V � �V H + (D��H)H +�(�H)V + (�h�; dti)�:Setting this equal to zero and equating like 
omponents gives�h�; dti = 0�V = D��HD��V +�(�H) = 0; 16



whi
h leads dire
tly to the desired result.Thus the equation D2�X + �(X) = 0 is a generalization of the Ja
obi equation forgeodesi
s (the equation of geodesi
 deviation). This formula is equivalent to the onederived by Foulon [12, 14℄.5 The se
ond Bian
hi identityThe fa
t that there is a �rst Bian
hi identity is a spe
ial feature of this parti
ularstru
ture. But every linear 
onne
tion on a ve
tor bundle leads to a Bian
hi identity,here 
alled the se
ond Bian
hi identity, whi
h 
omes from the Ja
obi identity for the
ovariant derivative operators. It may be writtenX ([D�; 
urv(�; �)℄ + 
urv(�; [�; �℄)) = 0:This 
an be broken down into 
omponents by making various substitutions for �, �, � asbefore; we have to 
onsider what happens when the 
urvature terms a
t on T, as well ason a se
tion of �01�(V �), and so for ea
h 
hoi
e of �, �, � we obtain two identities. Theseexpress relations between the tensors �, Rie, ~R, and �, and their 
ovariant derivatives,whi
h are likely to be important for appli
ations; we therefore derive them below. Inthe following list we indi
ate the 
hoi
e of �, �, � and the argument as follows: �, �, �;�. We have omitted all those 
ases in whi
h the identity is va
uous be
ause all termsvanish identi
ally.1. XV , Y V , ZH; W :(DY V �)(X;Z)W = (DXV �)(Y;Z)W:2. XV , Y V , �; Z: the identity is automati
ally satis�ed by virtue of the symmetryof �.3. XV , Y H, ZH; W :(DXV Rie)(Y;Z)W = (DY H�)(X;Z)W � (DZH�)(X;Y )W:4. XV , Y H, ZH; T: we obtain the known identity Rie(Y;Z)X = �(DXV ~R)(Y;Z).5. XV , Y H, �; Z:(D��)(X;Y )Z + (DXV DZV �)(Y )� �D(DXV Z)V �� (Y )+ (DXV ~R)(Y;Z) +Rie(X;Y )Z = 0:17



6. XV , Y H, �; T: the identity is automati
ally satis�ed as a 
onsequen
e of theformula for 
urv(�;XH)Y .7. XH , Y H , ZH; W :X�(DXHRie)(Y;Z)W � �(X; ~R(Y;Z))W� = 0(the 
y
li
 sum being taken over X, Y and Z).8. XH , Y H , ZH; T: we get the 
y
li
 identity P(DXH ~R)(Y;Z) = 0.9. XH , Y H , �; Z:(D�Rie)(X;Y )Z � (DY HDZV �)(X) + �D(DY HZ)V �� (X)+ (DXHDZV �)(Y )� �D(DXHZ)V �� (Y )� �(�(X); Y )Z + �(X;�(Y ))Z � (DZH ~R)(X;Y ) = 0:10. XH , Y H , �; T: the identity redu
es to the known formula for D� ~R.The rather formidable looking identities obtained at numbers 5 and 9 of this list may besimpli�ed 
onsiderably if it is re
ognised that the di�erential operators a
ting on the �terms are se
ond 
ovariant di�erentials (see, for example, [17, Chapter III, Se
tion 2℄).For any type (1; k) tensor K on �01�(V �) we de�ne type (1; k + 2) tensors D�D��K on�01�(V �) (where the asterisks stand for V or H) by(D�D��K)(: : : ;X;Y ) = (DY �(D��K))(: : : ;X):It is easy to see that(D�D��K)(: : : ;X;Y ) = (DY �(DX��K))(: : :)� (D(DY �X)��K))(: : :):In order to simplify the identity involving (D��)(X;Y )Z (number 5) we do not justapply this result in the obvious way; we also express ~R and Rie in terms of 
ovariantdi�erentials of �. We have(DZV ~R)(X;Y ) = �Rie(X;Y )Z = 13f(DVDV�)(Y ;X;Z)� (DVDV�)(X;Y;Z)g;from whi
h it follows that(D��)(X;Y )Z + 13 X(DVDV�)(X;Y;Z) = 0:18



Note that sin
e 
urv(XV ; Y V ) = 0, for any tensor K, (DVDVK)(: : : ;X;Y ) is symmetri
in X and Y . The 
y
li
 sum is therefore 
ompletely symmetri
, as is (D��)(X;Y )Z.The identity involving (D�Rie)(X;Y )Z (number 9) may be simpli�ed in a somewhatsimilar way. First of all, it may be written(D�Rie)(X;Y )Z � (DHDV�)(X;Z; Y ) + (DHDV�)(Y ;Z;X)� �(�(X); Y )Z + �(X;�(Y ))Z � (DZH ~R)(X;Y ) = 0:A further simpli�
ation arises if we reverse the order of the se
ond 
ovariant di�erentials;this introdu
es 
urvature terms, the relevant 
omponent of the 
urvature being the oneinvolving �. It so happens that the new terms in � and � whi
h are introdu
ed 
an
elwith those already present, when the symmetries of � are taken into a

ount. The �nalform of the identity is therefore(D�Rie)(X;Y )Z � (DZH ~R)(X;Y ) = (DVDH�)(X;Y;Z)� (DVDH�)(Y ;X;Z):However, this identity is not really new: it may be derived dire
tly from one of the�rst Bian
hi identities by 
ovariant di�erentiation. The tensor Rie satis�es the identityRie(X;Y )Z = �(DZV ~R)(X;Y ). If this is 
ovariantly di�erentiated with respe
t to �;the order of the derivatives on the right hand side reversed using the formula for the
urvature; and the resulting terms involving (D� ~R)(X;Y ) repla
ed with terms in �by means of the identity (D� ~R)(X;Y ) = (DXH�)(Y ) � (DY H�)(X), then the se
ondBian
hi identity above is obtained.Similarly, the identity P ((DXHRie)(Y;Z)W � �(X;R(Y;Z))W ) = 0 (number 7 above)may be obtained by di�erentiating Rie(X;Y )W = �(DWV ~R)(X;Y ) 
ovariantly withrespe
t to ZH , inter
hanging the order of di�erentiation, and using the 
y
li
 identityP(DXH ~R)(Y;Z) = 0.Finally, identity 3, (DY H�)(X;Z)W � (DZH�)(X;Y )W = (DXV Rie)(Y;Z)W , may beobtained by 
ovariantly di�erentiating with respe
t to � the identity (DY V �)(X;Z)W �(DZV �)(X;Y )W = 0 (whi
h is equivalent to the �rst identity by virtue of the symmetryof �), inter
hanging the order of di�erentiation, and using the formula for D�� fromidentity 5.There remain, therefore, only two essentially new independent results, as follows.Theorem 5 The se
ond Bian
hi identity for the 
urvature is equivalent to the following
19



two identities relating the tensors � and �:(DY V �)(X;Z)W = (DXV �)(Y;Z)W(D��)(X;Y )Z + 13 P(DVDV�)(X;Y;Z) = 0:6 Vanishing 
urvatureWe now derive some results 
on
erned with the 
onsequen
es of the vanishing of the 
ur-vature, or of 
ertain 
omponents of it, whi
h illustrate the signi�
an
e of the 
onne
tionin the study of se
ond-order di�erential equations.Theorem 6 The linear 
onne
tion has zero 
urvature (is 
at) if and only if about everypoint of E there is a lo
al trivialization, and adapted 
oordinates (t; xi), su
h that withrespe
t to these 
oordinates� = ��t + vi ��xi ;so that the 
orresponding system of di�erential equations takes the form �xi = 0.Proof If 
urv = 0 then there is a parallel �eld of frames of �01�(�E), say f�ag, where a =0; 1; 2; : : : ;m. That is to say, the �a 2 X (�01) are everywhere linearly independent andsatisfy D��a = 0 for all ve
tor �elds � on J1�. They are determined up to repla
ementby linear 
ombinations with 
onstant 
oeÆ
ients. Now0 = hD��a; dti = �h�a; dti;so that h�a; dti is 
onstant for ea
h a; taking advantage of the freedom of 
hoi
e of the �awe may ensure that h�0; dti = 1, while h�i; dti = 0 for i = 1; 2; : : : ;m. Thus in parti
ular�i = Xi 2 X (�01). Sin
e DV �a = 0, the �a are basi
, that is, they de�ne ve
tor �elds onE; and in parti
ular, �0 proje
ts onto �=�t and therefore de�nes a lo
al trivializationof E about any point. We may therefore introdu
e lo
al 
oordinates on E, adapted tothe lo
al trivialization, su
h that �0 = �=�t. Now for any ve
tor �elds A and B on E,we have [A;B℄ = DAHB � DBHA; and therefore if A and B (
onsidered as elementsof X (�01)) are parallel, then [A;B℄ = 0. We 
on
lude that the Xi are independent oft, and therefore de�ne lo
al ve
tor �elds on M . Furthermore, [Xi;Xj ℄ = 0 for every iand j, so there are lo
al 
oordinates xi on M su
h that Xi = �=�xi. By inspe
ting the
oordinate formulas for the 
ovariant derivative given earlier, we see that with respe
t20



to the 
oordinates (t; xi) (whose 
orresponding 
oordinate ve
tor �elds, 
onsidered aselements of X (�01), are parallel) the fun
tions f i(t; xj ; _xj) in the de�nition of � all vanish.Thus if 
urv = 0 the 
orresponding system of se
ond-order di�erential equations is just�xi = 0.The 
onverse is obvious.In pra
ti
al terms, the test 
onditions whi
h have to be 
he
ked in order to apply thistheorem are just � = 0 and � = 0.A slightly less restri
tive 
ondition on the 
urvature also leads to an interesting result.As we have already noted, 
ovariant derivatives of se
tions of �01�(V �) (that is, se
tionsof �01�(�E) whi
h are verti
al with respe
t to �) remain so; we may therefore de�ne alinear 
onne
tion on �01�(V �) by restri
tion. The 
urvature of this 
onne
tion is simplythe restri
tion of 
urv(�; �) to the verti
al sub-bundle; in other words, it is given by the
omponents of 
urv of the form 
urv(�; �)Z where Z 2 X (�01). The vanishing of justthese 
omponents is thus a well-de�ned 
ondition.Theorem 7 The linear 
onne
tion restri
ted to �01�(V �) has zero 
urvature (is 
at) ifand only if about every point of E there is a lo
al trivialization, and adapted 
oordinates(t; xi), su
h that with respe
t to these 
oordinates� = ��t + vi ��xi + f i(t; xj) ��vi ;so that the 
orresponding system of equations takes the form �xi = f i(t; xj) (the right-hand sides being independent of _xj).Proof The argument pro
eeds in spirit as before, ex
ept that now we are assuredmerely of a 
ovariant 
onstant �eld of frames of �01�(V �). But this still ensures that,with respe
t to any lo
al trivialization of E, for ea
h t there is a lo
al �eld of framesfXi(t)g on the standard �bre M for whi
h the ve
tor �elds Xi(t) pairwise 
ommute(where the t is treated as a parameter). We may therefore 
hoose lo
al 
oordinates xion ea
h �bre so that the 
oordinate ve
tor �elds, 
onsidered as elements of X (�01), areparallel, as before; this 
hoi
e of 
oordinates de�nes the required trivialization. Note,however, it is no longer the 
ase that �=�t is parallel, or that any trivialization 
onsistentwith the 
hoi
e of these aÆne 
oordinates will make it so. From the expressions for the
ovariant derivatives of the �=�xi we see that �ij = 0, whi
h is to say that �f i=�vj = 0,as required.The 
onditions of this theorem may be expressed as follows: � = 0, Rie = 0 and(DXV �)(Y ) = ~R(X;Y ). From the last of these, and from the identity 3 ~R(X;Y ) =(DXV �)(Y )� (DY V �)(X), it follows that ~R(X;Y ) = 0; all 
omponents of the 
urvature21



therefore vanish, ex
ept 
urv(XH ;�)T = �(X). Furthermore, DXV �(Y ) = 0 for allX and Y , so that � is basi
. In order to test whether a system of equations 
an be
onverted to the form �xi = f i(t; xj) by a 
hange of 
oordinates, therefore, it is ne
esaryto 
he
k only whether � = 0 and � is basi
.Further progress in this general dire
tion has been made by Mart��nez and Cari~nena [19℄,in the autonomous 
ase, where the theory is developed on a tangent bundle �M :TM !M . Their results, so far as the identi�
ation of the 
omponents of the 
urvature, andthe Bian
hi identities, are 
on
erned, 
omprise the subset of our results whi
h wouldbe obtained by restri
ting all arguments to X (�01). The results of the present papertherefore 
onstitute a signi�
ant generalization of those of [19℄. However, Mart��nez andCari~nena show further that the ne
essary and suÆ
ient 
ondition for the existen
e oflo
al 
oordinates on M with respe
t to whi
h a given system of se
ond-order di�erentialequations �xi = f i(xj; _xj) is linear in the _xj , so that f i takes the form f i(xj ; vj) =Aij(xk)vj + bi(xk), is that the linear 
onne
tion indu
ed by the 
orresponding se
ond-order di�erential equation �eld is 
at; and that the equations are linearizable in bothvariables if and only if, in addition, the Ja
obi endomorphism is parallel (its 
ovariantderivatives all vanish). Now linearity in the vj 
orresponds to the vanishing of ��ij=�vk,and as we pointed out earlier, the transformation rule for this obje
t is formally thesame in the time-dependent and time-independent 
ases. It follows that the same resultshold, mutatis mutandis, in the time-dependent 
ase. Thus the ne
essary and suÆ
ient
onditions for the linearizability of a given system of se
ond-order di�erential equations,that is, for the existen
e of 
oordinates with respe
t to whi
h the system takes the form�xi = Aij(t) _xj +Bij(t)xj + ai(t), are that � = 0 and DX��(Y ) = 0 for all X and Y .It is not easy to make dire
t 
omparisons between our results and those on similartopi
s whi
h have been obtained previously. First of all, most of the existing literaturedealing with linearization or other forms of simpli�
ation of se
ond-order di�erentialequations is 
on
erned with single equations, not systems (see, for example, [2, 16, 27℄).Se
ondly, the 
oordinate transformations whi
h have previously been used in the pro
essof simpli�
ation are of a type whi
h makes no distin
tion between the 
oordinates t andx, and thus requires a proje
tivized spa
e for its geometri
al des
ription. Our results aremore restri
tive than these in the sense that we allow only 
oordinate transformationswhi
h preserve the distin
tion between dependent and independent variables; but on theother hand they are mu
h more general in the sense that they are valid for systems ofdi�erential equations.Clearly, if we spe
ialize our results to the 
ase m = 1, we should obtain statementswhi
h, interpreted analyti
ally, are sub
ases of those in the aforementioned literature.It will be instru
tive to explore a 
ouple of these instan
es.Arnold [2℄, in his brief dis
ussion of normal forms of se
ond-order di�erential equations,mentions the general rule by whi
h su
h an equation transforms under a transforma-tion of the dependent variable (Chapter 1, x6 B.3). The 
orresponding analysis in our22



notation of the 
onditions for an equation to be transformable into the free parti
leequation �x = 0, goes as follows. Consider a single se
ond-order di�erential equation�y = f(t; y; _y), with 
orresponding ve
tor �eld �). Suppose that this equation trans-forms into �x = 0 under a transformation of the form x = G(t; y). The fun
tion Gmust be su
h that Gy = �G=�y 6= 0, and it must satisfy �2(G) = 0, or equivalentlyf(t; y; _y) = �(�(Gt) + _y �(Gy))=Gy. Thus f will ne
essarily be quadrati
 in _y, so thatthe tensor � will be zero. Starting from a general quadrati
 expressionf(t; y; _y) = A(t; y) +B(t; y) _y + C(t; y) _y2;one 
an ask dire
tly for the 
onditions that there should exist a fun
tion G(t; y) su
hthat f has the required form. A standard analysis of the integrability 
onditions for thepartial di�erential equations to whi
h this question gives rise shows that the 
onditionsare that 2Ct = By and 2(Bt � 2Ay) = B2 � 4AC. On the other hand, it is easy to
ompute the single 
omponent of the tensor �eld � for this situation: we �nd that4�11 = 2(Bt � 2Ay) + 4AC �B2 + 2(2Ct �By) _y:Thus the results of the analysis in this spe
ial 
ase are in perfe
t agreement with ourgeneral Theorem 6.For a se
ond 
omparison of our results with those in the literature, we 
onsider theproblem of linearizability in the 
ase of a single equation. Grissom et al [16℄, whouse Cartan's method of equivalen
e to study the problem, 
laim that �y = f(t; y; _y) islinearizable if and only if f is 
ubi
 in _y,f(t; y; _y) = A(t; y) +B(t; y) _y + C(t; y) _y2 +D(t; y) _y3;and its 
oeÆ
ients satisfy the following two 
onditions:2Cty �Byy � 3Dtt + 3ADy + 6AyD � 3BtD � 3BDt �ByC + 2CCt = 0;Bty � Ctt � 3AtD � 3ADt + 3AyC + 3ACy +BCt � 2BBy = 0:A

ording to our Theorem 7 the ne
essary and suÆ
ient 
onditions for linearizabilityare that � = 0, DXV �(Y ) = 0 and DXH�(Y ) = 0 for all X;Y 2 X (�01). The �rst ofthese again implies that f must be quadrati
 in _y; but this is not in 
on
i
t with [16℄as the 
ubi
 dependen
e on _y is an extra freedom 
oming from their permitted freedomto transform the independent variable t. The other two 
onditions, in this 
ase of onedegree of freedom, mean simply that the single 
omponent of � 
annot depend on _y or ony, respe
tively. In the 
ase in whi
h D = 0 we 
an read these 
onditions o� dire
tly from23



the formula above for �11; they are By = 2Ct and Bty�2Ayy+2AyC+2ACy�BBy = 0.Using the �rst, the se
ond may be writtenCtt �Ayy +AyC +ACy �BCt = 0:Now, with D = 0 and By = 2Ct, the �rst 
ondition of Grissom et al is satis�ed; but these
ond one redu
es to Bty � Ctt + 3AyC + 3ACy +BCt � 2BBy = 0, or equivalentlyCtt + 3AyC + 3ACy � 3BCt = 0:This is evidently in
ompatible with our 
ondition, so one or the other must be wrong.But the latter would be satis�ed for C = 0 and would therefore imply that every equationof the form �y = A(t; y)+ 3B(t) _y is linearizable in y and _y. Clearly, for arbitrary A(t; y),this 
annot be true.7 Dis
ussionThe results dis
ussed in this paper represent the 
oming together of two strands of anal-ysis of se
ond-order di�erential equation �elds, one using non-linear 
onne
tion theory[8, 18, 28℄, the other being the adaptation of the Fr�oli
her-Nijenhuis theory of deriva-tions of forms to take a

ount of the additional stru
ture that arises when one is dealingwith a tangent bundle or similar manifold [20, 21, 25℄. The overall e�e
t of all thesedevelopments is that we now have ready to hand a 
olle
tion of very e�e
tive tools forthe study of se
ond-order di�erential equations and related matters. To end the paperwe shall brie
y mention some of the work that has been, and is being, done to applythese tools to the solution of spe
i�
 problems in this �eld.In addition to the results 
on
erning the existen
e of spe
ial 
oordinates noted above,the methods des
ribed in this paper have been used to good e�e
t in the study of atleast two other problems. One is the sear
h for 
onditions under whi
h the se
ond-orderdi�erential equations are 
ompletely separable. This problem is again 
on
erned with
onditions for the existen
e of 
oordinates with respe
t to whi
h the equations take aspe
ial form, namely that they de
ouple into m independent equations ea
h involvingone dependent variable only. This problem has been solved 
ompletely, in [22℄ for theautonomous 
ase, and quite re
ently in [7℄ for the time-dependent 
ase. The 
onditionsare somewhat more 
ompli
ated than those dis
ussed in this paper, but they may beexpressed in terms of the linear 
onne
tion and its 
urvature also.The se
ond problem in question is the inverse problem of the 
al
ulus of variations, whi
hseeks the 
onditions for a system of se
ond-order di�erential equations to be equivalent24



to the Euler-Lagrange equations of some Lagrangian fun
tion. This is a long standingproblem (see [1, 24℄ for re
ent reviews), whose 
omplete solution remains elusive; butthe use of the methods des
ribed in this paper gives promise of new and illuminatingresults. As an example of the possibilities we 
ite re
ent work [10℄ on the re-evaluationof one of the 
lassi
 papers in the �eld. In 1941 Douglas [11℄ gave a 
omplete solution ofthe inverse problem with m = 2. His results appear to be exhaustive, but his methodsare entirely analyti
al in nature, so until re
ently it has been very diÆ
ult to form anyintuitive understanding of his work. In [10℄, however, almost all of Douglas's paper isshown to be readily interpretable in terms of the linear 
onne
tion and its asso
iatedtensors and operators. Thus 
ertain algebrai
 
onditions that arise in Douglas's 
lassi-�
ation of types of equations turn out to be expressible dire
tly in terms of the Jordannormal form of the Ja
obi endomorphism; 
ertain unexplained but re
urring 
ombina-tions of �rst derivatives are merely 
ovariant di�erentiations; and, most striking of all,
ertain 
ompli
ated expressions whi
h arise in the analysis of integrability 
onditionsare nothing else than the se
ond 
ovariant di�erentials whi
h appeared in our se
ondBian
hi identities.No 
omparable solution to Douglas's for any 
ase m > 2 has ever appeared in print {or even been attempted, so far as we know. This is due no doubt to the deterrent e�e
tof the 
omplexity of Douglas's paper. But our su

ess in interpreting Douglas's workgeometri
ally emboldens us to hope that progress 
an be made with this problem infuture.A
knowledgementsWe thank the referee for 
onstru
tive remarks and for bringing referen
es [3℄ and [4℄ toour attention. The resear
h reported on in this paper is part of a programme whi
h issupported by a NATO Collaborative Resear
h Grant (CRG.940195) and by the BelgianNational Fund for S
ienti�
 Resear
h.Referen
es[1℄ I. Anderson and G.Thompson. The Inverse Problem of the Cal
ulus of Varia-tions for Ordinary Di�erential Equations (Memoirs of the Ameri
an Mathemati
alSo
iety 98, 1992).[2℄ V. I.Arnold. Geometri
al Methods in the Theory of Ordinary Di�erential Equa-tions (Springer Verlag, 1983).[3℄ L.Auslander. On 
urvature in Finsler geometry. Trans. Amer. Math. So
. 79(1954), 378{388. 25



[4℄ D.Bao and S. S.Chern. On a notable 
onne
tion in Finsler geometry. HoustonJ. Math. 19 (1993), 135{180.[5℄ A.Bejan
u. Finsler Geometry and Appli
ations (Ellis Horwood, 1990).[6℄ G.Byrnes. A 
omplete set of Bian
hi identities for tensor �elds along the tangentbundle proje
tion. J. Phys. A: Math. Gen. 27 (1994), 6617{6632.[7℄ F.Cantrijn, W. Sarlet, A.Vande
asteele and E.Mart��nez. Complete sep-arability of time-dependent se
ond-order equations. A
ta Appl. Math., in press.[8℄ M.Crampin. Generalized Bian
hi identities for horizontal distributions. Math.Pro
. Camb. Phil. So
. 94 (1983), 125{132.[9℄ M.Crampin, G. E. Prin
e and G.Thompson. A geometri
al version of theHelmholtz 
onditions in time-dependent Lagrangian dynami
s. J. Phys. A: Math.Gen. 17 (1984), 1437{1447.[10℄ M.Crampin, W. Sarlet, E.Mart��nez, G.Byrnes and G.E. Prin
e. To-wards a geometri
al understanding of Douglas's solution of the inverse problemof the 
al
ulus of variations. Inverse Problems 10 (1994), 245{260.[11℄ J.Douglas. Solution of the inverse problem of the 
al
ulus of variations. Trans.Amer. Math. So
. 50 (1941), 71{128.[12℄ P. Foulon. G�eometrie des �equations di�erentielles du se
ond ordre. Ann. Inst. H.Poin
ar�e Phys. Th�eor. 45 (1986), 1{28.[13℄ P. Foulon. R�edu
tibilit�e de syst�emes dynamiques variationnels. Ann. Inst. H.Poin
ar�e Phys. Th�eor. 45 (1986), 359{388.[14℄ P. Foulon. Estimation de l'entropie des syst�emes Lagrangiens sans points 
on-jugu�es. Ann. Inst. H. Poin
ar�e Phys. Th�eor. 55 (1991), 117{146.[15℄ J.Grifone. Stru
ture presque tangente et 
onne
tions { II. Ann. Inst. Fourier(Grenoble) 22 (1972), 291{338.[16℄ C.Grissom, G.Thompson and G.Wilkens. Linearization of se
ond order ordi-nary di�erential equations via Cartan's equivalen
e method. J. Di�. Equations 77(1989), 1{15.[17℄ S.Kobayashi and K.Nomizu. Foundations of Di�erential Geometry (Inter-s
ien
e, 1963).[18℄ E.Mart��nez. Geometr��a de E
ua
iones Diferen
iales Apli
ada a la Me
�ani
a(Thesis, University of Zaragoza, Spain; Publi
a
iones del Seminario Gar
��aGaldeano 36, 1991). 26



[19℄ E.Mart��nez, J. F. Cari~nena. Geometri
 
hara
terization of linearizable se
ond-order di�erential equations. Math. Pro
. Camb. Phil. So
, in press.[20℄ E.Mart��nez, J. F.Cari~nena and W.Sarlet. Derivations of di�erential formsalong the tangent bundle proje
tion. Di�. Geom. Appl. 2 (1992), 17{43.[21℄ E.Mart��nez, J. F.Cari~nena and W.Sarlet. Derivations of di�erential formsalong the tangent bundle proje
tion II. Di�. Geom. Appl. 3 (1993), 1{29.[22℄ E.Mart��nez, J. F. Cari~nena and W.Sarlet. Geometri
 
hara
terization ofseparable se
ond-order equations. Math. Pro
. Camb. Phil. So
. 113 (1993), 205{224.[23℄ E.Massa and E. Pagani. Jet bundle geometry, dynami
al 
onne
tions, and theinverse problem of Lagrangian me
hani
s. Ann. Inst. H.Poin
ar�e Phys. Th�eor. 61(1994), 17{62.[24℄ G.Morandi, C. Ferrario, G, Lo Ve

hio, G.Marmo and C.Rubano. Theinverse problem in the 
al
ulus of variations and the geometry of the tangent bundle.Phys. Rep. 188 (1990), 147{284.[25℄ W.Sarlet, A.Vande
asteele, F. Cantrijn and E.Mart��nez. Derivations offorms along a map: the framework for time-dependent se
ond-order equations. Di�.Geom. Appl. 5 (1995), 171{203.[26℄ D. J. Saunders. The Geometry of Jet Bundles (London Mathemati
al So
iety Le
-ture Note Series 142, Cambridge University Press, 1989).[27℄ Y.R.Romanovsky. On di�erential equations and Cartan's proje
tive 
onne
tions.In: Geometry in Partial Di�erential Equations, ed A. Pr�astaro and T.M.Rassias(World S
ienti�
, 1994), 329{344.[28℄ A.Vondra. Sprays and homogeneous 
onne
tions on R � TM . Ar
hiv. Math.(Brno) 28 (1992), 163{173.

27


