
A diret geometrial onstrution of the dynamis ofnon-holonomi Lagrangian systemsW SarletTheoretial Mehanis Division, University of Ghent,Krijgslaan 281-S9, B-9000 Ghent, BelgiumAbstrat. A geometrial framework is disussed for the treatment of a lassof Lagrangian systems with non-holonomi onstraints. The starting pointfor the model is a bundle � : E ! M , where both E and M are �bred overIR, with projetions �1 and �0. Linear onstraint equations orrespond to aonnetion on �, whih an be viewed as de�ning a setion � of J1�1 over thepull-bak bundle ��J1�0. The dynamial system of interest is governed by avetor �eld � on J1� , the image of �, and de�nes in itself a onnetion on thebundle � : J1� ! E. We present an intrinsi proedure by whih the orretredued dynamis on J1� an be onstruted out of a given Lagrangian on J1�1and the onstraint onnetion �. We further disuss how the sheme an begeneralized to the ase of non-linear non-holonomi onstraints.1 Introdution: the lassial approah to non-holo-nomi onstraintsConsider a mehanial system desribed by a Lagrangian L(t; qA; _qA) (where the index Aruns from 1 to n = k+m), whih is subjet to linear non-holonomi onstraints, expressedin a solved form with respet to m of the veloities _qa in terms of the k remaining _q�:_qa = Ba�(t; qA) _q� +Ba(t; qA); a = 1; : : : ; m:Combining ideas oming from the notion of virtual veloities and d'Alembert's priniple,with tehniques borrowed from the alulus of variations, the lassial way of arrivingat what are believed to be the right equations of motion (see e.g. [10℄) onsists in intro-duing Lagrange multipliers for expressing the non-independene of the variations ÆqA inHamilton's integral priniple. For the type of onstraints under onsideration | whihmight be desribed as haraterizing \generalized �Caplygin systems" in the terminology1



of [7℄ | one obtains the following equations for the unknown qA(t) and multipliers �a(t):ddt  �L� _q�!� �L�q� = ��aBa�; � = 1; : : : ; k;ddt  �L� _qa!� �L�qa = �a; a = 1; : : : ; m:Elimination of the multipliers is very easy here, and results in seond-order equations forthe q�, whih an be written in the following form:ddt  �L� _q�! = X�(L) + Ca� �L� _qa ;where L(t; qA; _q�) � L(t; qA; _q�; Ba� _q� +Ba)X� = ��q� +Ba� ��qaCa� = _Ba� �X�(Ba� _q� +Ba):Assuming regularity in the sense that det ��2L=� _q�� _q�� 6= 0, the ultimate result is amixed system of the form�q� = f�(t; qA; _q�); � = 1; : : : ; k_qa = Ba�(t; qA) _q� +Ba(t; qA); a = 1; : : : ; m:The question we want to address here is: \How an we model these equations geometri-ally?", or more preisely \Can one give a diret geometrial (oordinate free) onstru-tion of this redued system, without needing the intermediate proess of introduing andeliminating multipliers?"The answer to this question is ontained in joint work with Frans Cantrijn and DavidSaunders, reently reported in [8℄. We will briey outline this onstrution and give asketh of the generalization to the ase of non-linear non-holonomi onstraints.2 The onstraint submanifold and its intrinsi stru-turesThe immediate suggestion oming from the way the onstraints are expressed is that theon�guration spae should be regarded as a bundle � : E ! M , with both E and M�bred over IR:
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Coordinates on the �rst jet extension J1� ould then be denoted as (t; q�; qa; qat ; qa�). AnEhresmann onnetion on � : E ! M is a setion ~� of J1� ! E, i.e. an assignment ofthe form qat = Ba(t; qA); qa� = Ba�(t; qA). Alternatively, it an be interpreted as a splitting� of the sequene below,- - - -�0 V �1 J1�1 ��J1�0 0�(t; qA; _qa) (t; qA; _q�; _qa) (t; qA; _q�)so that � has a oordinate representation of the form:� : (t; qA; _q�) 7�! (t; qA; _q�; _qa = Ba� _q� +Ba):Solution urves of our redued system will be urves qA(t) in E satisfying the onstraints,i.e. whose prolongation to J1�1 lies in the image of �. We are thus led to de�ne theonstraint manifold as being J1� = �(��J1�0), and our problem is redued to onstrutingthe redued dynamis as an appropriate vetor �eld on J1� .The manifold J1� is equipped with two interesting type (1,1) tensor �elds. One is inheritedfrom the so-alled anonial \vertial endomorphism" on J1�0:S = �� 
 �� _q� ; with �� = dq� � _q�dt:The other one omes from the onnetion and has oordinate expressionN = �a 
 ��qa ; with �a = dqa �Ba� dq� � Ba dt:Originally, N is the \vertial projetor" of the onnetion on � and as suh lives onthe spae E. It is, however, well de�ned also on ��J1�0 (and therefore also on J1�),beause ~� : E ! J1� has a anonial lift to a onnetion ~�1 : ��J1�0 ! J1�1 (where�1 : ��J1�0 ! J1�0), de�ned, in the oordinates (t; q�; _q�; qa; qat ; qa�; qa_�) of J1�1, as follows:qat = Ba; qa� = Ba�; qa_� = 0:A diagram of all spaes and maps involved in this disussion is presented below:3
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Remark: the geometry of non-holonomi mehanis is a rather popular subjet nowadays(see e.g. [6℄ and referenes therein); the idea of modelling non-holonomi onstraints viaa onnetion an be found also in other approahes, see e.g. [2, 1℄. We wish, however, toarrive in addition at a model for the dynamial vetor �eld diretly living on J1�. To thatend, we now �rst introdue the lass of vetor �elds to whih our model will belong anddisuss the additional struture whih is entailed by suh vetor �elds.3 Seond-order vetor �elds on J1�A seond-order vetor �eld � (Sode for shorthand) on J1� is a vetor �eld haraterizedby the following properties:h�; dti = 1; h�; ��i = 0; h�; �ai = 0:In oordinates, suh a � is of the form� = ��t + _q� ��q� + (Ba� _q� +Ba) ��qa + f�(t; qA; _q�) �� _q� ;for some f� 2 C1(J1�), so that the orresponding di�erential equations do indeed onsti-tute a system of the mixed form introdued before.� 2 X (J1�) omes with its own onnetion on the bundle � : J1� ! E. One way to disoverit, is to observe that (L�S)2 = I � �
 dt�N;from whih it follows that PH = 12(I � L�S + �
 dt+N);4



PV = 12(I + L�S � �
 dt�N);are two omplementary projetors. The assoiated \horizontal lift" operation, whihdisplays the orresponding onnetion oeÆients, reads��t 7�! ��t + (f� + _q����) �� _q���q� 7�! ��q� � ��� �� _q� ; with ��� = �12 �f�� _q���qa 7�! ��qa :An interesting tensor �eld assoiated to a onnetion is its urvature tensor. The twoonnetions whih are at our disposal now will eah give rise to an important type (1,1)tensor �eld along � : J1� ! E, oming from a omponent of their urvature. In order tointrodue these tensors, let us �rst observe that there exists a anonial vetor �eld along�, given by T = ��t + _q� ��q� + (Ba� _q� +Ba) ��qa :Consider then the Nijenhuis tensor NN of the projetor N on E, whih is preisely theurvature of ~�. It is a vetor-valued 2-form on E, and as suh an be regarded also as avetor-valued 2-form along �. The urvature tensor R of the Sode onnetion on the otherhand, an diretly be de�ned as being a vetor-valued 2-form along �. For bakgroundon tensor �elds along a projetion, in the ontext of standard seond-order equations, see[4, 5, 9℄. De�ne now: 	 = iTNN = Ca� �� 
 ��qa� = iTR = ������ 
X� � �f��qa �a 
X�whereby, Ca� = T(Ba�)�X�(Ba� _q� +Ba);��� = X�(f�) + ���� + �(���):We will in fat not need the tensor � in this survey, but it is an important tool, to nameonly one of its appliations, in the study of symmetry properties of the system (see [8℄).Conerning the tensor 	, we need one further manipulation before we an proeed toonstrut the vetor �eld we want. The point is that 	 has a \lift" to a tensor �eld _	 onJ1� , given by _	 = Ca� �� 
 �� _qa :5



4 Diret onstrution of the redued non-holonomidynamisFor a Lagrangian system with given non-holonomi onstraints, we have seen that the dataare: a funtion L 2 C1(J1�1) and a onnetion � on �. From these data, we introduenew objets, aording to the following steps:� Put L = i�L; with i : J1� ! J1�1 (injetion).� De�ne two 1-forms on J1�: �L = Ldt+ S(dL); (L;�) = i�( _	(dL))�N(dL):� De�ne the \fundamental 2-form of non-holonomi Lagrangian mehanis" to be:
 = d�L +  (L;�) ^ dt:Finally then, de�ne the dynamis of the redued non-holonomi Lagrangian system to begoverned by the unique Sode �, for whihi�
 = 0:It is lear that suh a onstrution may look like playing a game of magi, whih isjusti�ed only by the fat that it produes the orret equations! The bene�t is, however,that this game has revealed interesting tensorial objets, whih may well turn out toadd substantially to our knowledge and understanding of non-holonomi mehanis inthe future. For example, a topi whih looks worthwhile being investigated now is thestudy of the role of symmetries of the fundamental 2-form 
. Also, having obtaineda geometrial model for the basi situation of non-holonomi Lagrangian systems, thismodel may well be fruitful for exploring possible generalizations. As a matter of fat,there is still some ontroversy in the lassial literature about the way the theory shouldbe generalized for the ase of non-linear onstraints. Needless to say, the ultimate testfor the validity of a more general model will always ome from physis, more spei�allyfrom experiments. But the struture of the geometry behind the model an be a veryuseful guide for deteting appropriate andidates for the generalization. This is exatlywhat we propose to do in the next setion. More preisely, assuming for a moment thatattempts to generalize the theory to non-linear onstraints would never have been madebefore, we will simply explore where a diret imitation of the simple model will bring us.5 Generalization: non-linear onstraintsSuppose now that we are thinking of a Lagrangian system subjet to non-linear non-holonomi onstraints, still in a solved form with respet to m of the veloities. Assume6



that it will again be possible, under some regularity ondition as yet to be deteted, toobtain a redued dynamis on some onstraint submanifold. This will then lead to amixed system of �rst- and seond-order equations of the form�q� = f�(t; qA; _q�); � = 1; : : : ; k_qa = ga(t; qA; _q�); a = 1; : : : ; m:Geometrially, the �rst-order equations learly orrespond to a general setion � of J1�1 !��J1�0.This time, the setion � is not oming from a onnetion on � : E ! M . It does de�ne,however, a onnetion ~�1 on �1 : ��J1�0 ! J1�0, determined by the following horizontallift onstrution from X (J1�0) to X (��J1�0):��t 7�! ��t +  ga � _q� �ga� _q�! ��qa��q� 7�! ��q� + �ga� _q� ��qa ;�� _q� 7�! �� _q� :As before, we set J1� = �(��J1�0). It turns out that, puttingBb� = �gb� _q� ; Ba = ga � _q�Ba�;many of the previous onstrutions formally remain unaltered. For example, with �a =dqa � Ba�dq� �Badt, a Sode � 2 X (J1�) is de�ned, as before, to satisfy:h�; dti = 1; h�; ��i = 0; h�; �ai = 0;whih in oordinates means that � will be of the form� = ��t + _q� ��q� + ga(t; qA; _q�) ��qa + f�(t; qA; _q�) �� _q� :Formulas suh as those whih determine the projetors PH and PV of the Sode onnetionremain the same. Note, however, that N is now a tensor �eld living on ��J1�0 or J1� (viathe di�eomorphism �) and so is the urvature of ~�1, namely NN . We annot ontratsuh a tensor �eld with the anonial vetor �eld T along � : J1� ! E. Therefore, for anygiven Sode �, we are led to introdue the following �-dependent type (1,1) tensor �eldon J1� : 	� = i�NN = Ca� �� 
 ��qawith Ca� = �(Ba�)�X�(ga):7



As before, there is a orresponding lifted tensor �eld on J1�1:_	� = Ca� �� 
 �� _qa :These are onstrutions whih very losely resemble the ones we had in Setion 3. So, wedare push the analogy further by imitating as follows the diret onstrution of Setion 4.Let there be given a funtion L 2 C1(J1�1) and a setion � of J1�1 ! ��J1�0, the imageof whih determines the onstraint submanifold J1� � J1�1.� Put L = i�L; with i : J1� ! J1�1.� De�ne two 1-forms on J1�: �L = Ldt+ S(dL); (�;L;�) = i�( _	�(dL))�N(dL):where � 2 X (J1�) is, for the time being, any Sode, to be determined later.� De�ne for eah suh � the 2-form
� = d�L +  (�;L;�) ^ dt;whih of ourse (as in the previous setion) also depends on L and �.Under some appropriate regularity assumption, to be disovered in a moment, our gameof magi now gives rise to the following predition.De�nition: The redued dynamis on J1� of the non-holonomi Lagrangian system isgoverned by the unique Sode �, determined by: i�
� = 0.Fixing a Sode � on J1� boils down, in oordinates, to give a presription for �xing thefuntions f�(t; qA; _q�). A oordinate alulation reveals that the ondition i�
� = 0requires that we have� �L� _q�! � X�(L) +  i� �L� _qa! [�(Ba�)�X�(ga)℄:The idea that our presription should �x � learly means that we should be able to solvethe above relations unequivoally for the funtions f�. This will be the ase, if and onlyif the following regularity ondition holds:det �2L� _q�� _q� �  i� �L� _qa! �2ga� _q�� _q�! 6= 0:Let us �nally see how our onlusions relate to whatever di�erential equations mightbe obtained from lassial proedures after elimination of auxiliary funtions suh asLagrange multipliers. To that end, we �rst make the following observation: the fat that8



the above identities (under the indiated regularity assumption) uniquely de�ne the f� isthe same as saying that the redued di�erential equations �q� = f�(t; qA; _q�) are equivalentto the equations ddt  �L� _q�! = X�(L) +  i� �L� _qa!" ddt(Ba�)�X�(ga)# :These are exatly the equations whih would follow from the lassial proedure (intro-duing and subsequently eliminating Lagrangian multipliers), provided one adopts thegenerally aepted point of view that the `variations' (or `virtual veloities') ÆqA mustsatisfy Æqa = �ga� _q� Æq� ;whih are often referred to as �Cetaev's onditions.Details and proofs of the statements of this setion will be published elsewhere, in theontext of a general approah to the geometrial desription of mixed systems of �rst-and seond-order di�erential equations. As a �nal remark, an interesting topi for furtherresearh would be to investigate the possibility of transition to a redued Hamiltoniandynamis under the regularity ondition whih our approah has revealed. Usually, thetransition to a Hamiltonian piture is disussed at the level of the original desription ofthe system on J1�1 and requires the regularity of the free Lagrangian L (see e.g. [3℄).Aknowledgements. This researh was partially supported by a NATO Collaborative Re-searh Grant (CRG 940195). We further thank the Belgian National Fund for Sienti� Researhfor ontinuing support.Referenes[1℄ A.M. Bloh, P.S. Krishnaprasad, J.E. Marsden and R.M. Murray, Nonholonomi mehanialsystems with symmetry, (1994) Preprint, University of California, Berkeley.[2℄ J. Koiller, Redution of some lassial non-holonomi systems with symmetry, Arh. Ra-tional Meh. Anal. 118 (1992) 113{148.[3℄ C.-M. Marle, Redution of onstrained mehanial systems and stability of relative equilib-ria, (1995) Preprint, Inst. de Math. de Jussieu.[4℄ E. Mart��nez, J.F. Cari~nena andW. Sarlet, Derivations of di�erential forms along the tangentbundle projetion, Di�. Geometry and its Appliations 2 (1992) 17{43.[5℄ E. Mart��nez, J.F. Cari~nena andW. Sarlet, Derivations of di�erential forms along the tangentbundle projetion II, Di�. Geometry and its Appliations 3 (1993) 1{29.[6℄ E. Massa and E. Pagani, Classial dynamis of non-holonomi systems: a geometri ap-proah, Ann. Inst. Henri Poinar�e 55 (1991) 511{544.[7℄ Ju.I. Neimark and N.A. Fufaev, Dynamis of non-holonomi systems, Translations of Math-ematial Monographs 33, Am. Math. Soiety (1972).9
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