
A dire
t geometri
al 
onstru
tion of the dynami
s ofnon-holonomi
 Lagrangian systemsW SarletTheoreti
al Me
hani
s Division, University of Ghent,Krijgslaan 281-S9, B-9000 Ghent, BelgiumAbstra
t. A geometri
al framework is dis
ussed for the treatment of a 
lassof Lagrangian systems with non-holonomi
 
onstraints. The starting pointfor the model is a bundle � : E ! M , where both E and M are �bred overIR, with proje
tions �1 and �0. Linear 
onstraint equations 
orrespond to a
onne
tion on �, whi
h 
an be viewed as de�ning a se
tion � of J1�1 over thepull-ba
k bundle ��J1�0. The dynami
al system of interest is governed by ave
tor �eld � on J1� , the image of �, and de�nes in itself a 
onne
tion on thebundle � : J1� ! E. We present an intrinsi
 pro
edure by whi
h the 
orre
tredu
ed dynami
s on J1� 
an be 
onstru
ted out of a given Lagrangian on J1�1and the 
onstraint 
onne
tion �. We further dis
uss how the s
heme 
an begeneralized to the 
ase of non-linear non-holonomi
 
onstraints.1 Introdu
tion: the 
lassi
al approa
h to non-holo-nomi
 
onstraintsConsider a me
hani
al system des
ribed by a Lagrangian L(t; qA; _qA) (where the index Aruns from 1 to n = k+m), whi
h is subje
t to linear non-holonomi
 
onstraints, expressedin a solved form with respe
t to m of the velo
ities _qa in terms of the k remaining _q�:_qa = Ba�(t; qA) _q� +Ba(t; qA); a = 1; : : : ; m:Combining ideas 
oming from the notion of virtual velo
ities and d'Alembert's prin
iple,with te
hniques borrowed from the 
al
ulus of variations, the 
lassi
al way of arrivingat what are believed to be the right equations of motion (see e.g. [10℄) 
onsists in intro-du
ing Lagrange multipliers for expressing the non-independen
e of the variations ÆqA inHamilton's integral prin
iple. For the type of 
onstraints under 
onsideration | whi
hmight be des
ribed as 
hara
terizing \generalized �Caplygin systems" in the terminology1



of [7℄ | one obtains the following equations for the unknown qA(t) and multipliers �a(t):ddt  �L� _q�!� �L�q� = ��aBa�; � = 1; : : : ; k;ddt  �L� _qa!� �L�qa = �a; a = 1; : : : ; m:Elimination of the multipliers is very easy here, and results in se
ond-order equations forthe q�, whi
h 
an be written in the following form:ddt  �L� _q�! = X�(L) + Ca� �L� _qa ;where L(t; qA; _q�) � L(t; qA; _q�; Ba� _q� +Ba)X� = ��q� +Ba� ��qaCa� = _Ba� �X�(Ba� _q� +Ba):Assuming regularity in the sense that det ��2L=� _q�� _q�� 6= 0, the ultimate result is amixed system of the form�q� = f�(t; qA; _q�); � = 1; : : : ; k_qa = Ba�(t; qA) _q� +Ba(t; qA); a = 1; : : : ; m:The question we want to address here is: \How 
an we model these equations geometri-
ally?", or more pre
isely \Can one give a dire
t geometri
al (
oordinate free) 
onstru
-tion of this redu
ed system, without needing the intermediate pro
ess of introdu
ing andeliminating multipliers?"The answer to this question is 
ontained in joint work with Frans Cantrijn and DavidSaunders, re
ently reported in [8℄. We will brie
y outline this 
onstru
tion and give asket
h of the generalization to the 
ase of non-linear non-holonomi
 
onstraints.2 The 
onstraint submanifold and its intrinsi
 stru
-turesThe immediate suggestion 
oming from the way the 
onstraints are expressed is that the
on�guration spa
e should be regarded as a bundle � : E ! M , with both E and M�bred over IR:
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Coordinates on the �rst jet extension J1� 
ould then be denoted as (t; q�; qa; qat ; qa�). AnEhresmann 
onne
tion on � : E ! M is a se
tion ~� of J1� ! E, i.e. an assignment ofthe form qat = Ba(t; qA); qa� = Ba�(t; qA). Alternatively, it 
an be interpreted as a splitting� of the sequen
e below,- - - -�0 V �1 J1�1 ��J1�0 0�(t; qA; _qa) (t; qA; _q�; _qa) (t; qA; _q�)so that � has a 
oordinate representation of the form:� : (t; qA; _q�) 7�! (t; qA; _q�; _qa = Ba� _q� +Ba):Solution 
urves of our redu
ed system will be 
urves qA(t) in E satisfying the 
onstraints,i.e. whose prolongation to J1�1 lies in the image of �. We are thus led to de�ne the
onstraint manifold as being J1� = �(��J1�0), and our problem is redu
ed to 
onstru
tingthe redu
ed dynami
s as an appropriate ve
tor �eld on J1� .The manifold J1� is equipped with two interesting type (1,1) tensor �elds. One is inheritedfrom the so-
alled 
anoni
al \verti
al endomorphism" on J1�0:S = �� 
 �� _q� ; with �� = dq� � _q�dt:The other one 
omes from the 
onne
tion and has 
oordinate expressionN = �a 
 ��qa ; with �a = dqa �Ba� dq� � Ba dt:Originally, N is the \verti
al proje
tor" of the 
onne
tion on � and as su
h lives onthe spa
e E. It is, however, well de�ned also on ��J1�0 (and therefore also on J1�),be
ause ~� : E ! J1� has a 
anoni
al lift to a 
onne
tion ~�1 : ��J1�0 ! J1�1 (where�1 : ��J1�0 ! J1�0), de�ned, in the 
oordinates (t; q�; _q�; qa; qat ; qa�; qa_�) of J1�1, as follows:qat = Ba; qa� = Ba�; qa_� = 0:A diagram of all spa
es and maps involved in this dis
ussion is presented below:3
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Remark: the geometry of non-holonomi
 me
hani
s is a rather popular subje
t nowadays(see e.g. [6℄ and referen
es therein); the idea of modelling non-holonomi
 
onstraints viaa 
onne
tion 
an be found also in other approa
hes, see e.g. [2, 1℄. We wish, however, toarrive in addition at a model for the dynami
al ve
tor �eld dire
tly living on J1�. To thatend, we now �rst introdu
e the 
lass of ve
tor �elds to whi
h our model will belong anddis
uss the additional stru
ture whi
h is entailed by su
h ve
tor �elds.3 Se
ond-order ve
tor �elds on J1�A se
ond-order ve
tor �eld � (Sode for shorthand) on J1� is a ve
tor �eld 
hara
terizedby the following properties:h�; dti = 1; h�; ��i = 0; h�; �ai = 0:In 
oordinates, su
h a � is of the form� = ��t + _q� ��q� + (Ba� _q� +Ba) ��qa + f�(t; qA; _q�) �� _q� ;for some f� 2 C1(J1�), so that the 
orresponding di�erential equations do indeed 
onsti-tute a system of the mixed form introdu
ed before.� 2 X (J1�) 
omes with its own 
onne
tion on the bundle � : J1� ! E. One way to dis
overit, is to observe that (L�S)2 = I � �
 dt�N;from whi
h it follows that PH = 12(I � L�S + �
 dt+N);4



PV = 12(I + L�S � �
 dt�N);are two 
omplementary proje
tors. The asso
iated \horizontal lift" operation, whi
hdisplays the 
orresponding 
onne
tion 
oeÆ
ients, reads��t 7�! ��t + (f� + _q����) �� _q���q� 7�! ��q� � ��� �� _q� ; with ��� = �12 �f�� _q���qa 7�! ��qa :An interesting tensor �eld asso
iated to a 
onne
tion is its 
urvature tensor. The two
onne
tions whi
h are at our disposal now will ea
h give rise to an important type (1,1)tensor �eld along � : J1� ! E, 
oming from a 
omponent of their 
urvature. In order tointrodu
e these tensors, let us �rst observe that there exists a 
anoni
al ve
tor �eld along�, given by T = ��t + _q� ��q� + (Ba� _q� +Ba) ��qa :Consider then the Nijenhuis tensor NN of the proje
tor N on E, whi
h is pre
isely the
urvature of ~�. It is a ve
tor-valued 2-form on E, and as su
h 
an be regarded also as ave
tor-valued 2-form along �. The 
urvature tensor R of the Sode 
onne
tion on the otherhand, 
an dire
tly be de�ned as being a ve
tor-valued 2-form along �. For ba
kgroundon tensor �elds along a proje
tion, in the 
ontext of standard se
ond-order equations, see[4, 5, 9℄. De�ne now: 	 = iTNN = Ca� �� 
 ��qa� = iTR = ������ 
X� � �f��qa �a 
X�whereby, Ca� = T(Ba�)�X�(Ba� _q� +Ba);��� = X�(f�) + �
���
 + �(���):We will in fa
t not need the tensor � in this survey, but it is an important tool, to nameonly one of its appli
ations, in the study of symmetry properties of the system (see [8℄).Con
erning the tensor 	, we need one further manipulation before we 
an pro
eed to
onstru
t the ve
tor �eld we want. The point is that 	 has a \lift" to a tensor �eld _	 onJ1� , given by _	 = Ca� �� 
 �� _qa :5



4 Dire
t 
onstru
tion of the redu
ed non-holonomi
dynami
sFor a Lagrangian system with given non-holonomi
 
onstraints, we have seen that the dataare: a fun
tion L 2 C1(J1�1) and a 
onne
tion � on �. From these data, we introdu
enew obje
ts, a

ording to the following steps:� Put L = i�L; with i : J1� ! J1�1 (inje
tion).� De�ne two 1-forms on J1�: �L = Ldt+ S(dL); (L;�) = i�( _	(dL))�N(dL):� De�ne the \fundamental 2-form of non-holonomi
 Lagrangian me
hani
s" to be:
 = d�L +  (L;�) ^ dt:Finally then, de�ne the dynami
s of the redu
ed non-holonomi
 Lagrangian system to begoverned by the unique Sode �, for whi
hi�
 = 0:It is 
lear that su
h a 
onstru
tion may look like playing a game of magi
, whi
h isjusti�ed only by the fa
t that it produ
es the 
orre
t equations! The bene�t is, however,that this game has revealed interesting tensorial obje
ts, whi
h may well turn out toadd substantially to our knowledge and understanding of non-holonomi
 me
hani
s inthe future. For example, a topi
 whi
h looks worthwhile being investigated now is thestudy of the role of symmetries of the fundamental 2-form 
. Also, having obtaineda geometri
al model for the basi
 situation of non-holonomi
 Lagrangian systems, thismodel may well be fruitful for exploring possible generalizations. As a matter of fa
t,there is still some 
ontroversy in the 
lassi
al literature about the way the theory shouldbe generalized for the 
ase of non-linear 
onstraints. Needless to say, the ultimate testfor the validity of a more general model will always 
ome from physi
s, more spe
i�
allyfrom experiments. But the stru
ture of the geometry behind the model 
an be a veryuseful guide for dete
ting appropriate 
andidates for the generalization. This is exa
tlywhat we propose to do in the next se
tion. More pre
isely, assuming for a moment thatattempts to generalize the theory to non-linear 
onstraints would never have been madebefore, we will simply explore where a dire
t imitation of the simple model will bring us.5 Generalization: non-linear 
onstraintsSuppose now that we are thinking of a Lagrangian system subje
t to non-linear non-holonomi
 
onstraints, still in a solved form with respe
t to m of the velo
ities. Assume6



that it will again be possible, under some regularity 
ondition as yet to be dete
ted, toobtain a redu
ed dynami
s on some 
onstraint submanifold. This will then lead to amixed system of �rst- and se
ond-order equations of the form�q� = f�(t; qA; _q�); � = 1; : : : ; k_qa = ga(t; qA; _q�); a = 1; : : : ; m:Geometri
ally, the �rst-order equations 
learly 
orrespond to a general se
tion � of J1�1 !��J1�0.This time, the se
tion � is not 
oming from a 
onne
tion on � : E ! M . It does de�ne,however, a 
onne
tion ~�1 on �1 : ��J1�0 ! J1�0, determined by the following horizontallift 
onstru
tion from X (J1�0) to X (��J1�0):��t 7�! ��t +  ga � _q� �ga� _q�! ��qa��q� 7�! ��q� + �ga� _q� ��qa ;�� _q� 7�! �� _q� :As before, we set J1� = �(��J1�0). It turns out that, puttingBb� = �gb� _q� ; Ba = ga � _q�Ba�;many of the previous 
onstru
tions formally remain unaltered. For example, with �a =dqa � Ba�dq� �Badt, a Sode � 2 X (J1�) is de�ned, as before, to satisfy:h�; dti = 1; h�; ��i = 0; h�; �ai = 0;whi
h in 
oordinates means that � will be of the form� = ��t + _q� ��q� + ga(t; qA; _q�) ��qa + f�(t; qA; _q�) �� _q� :Formulas su
h as those whi
h determine the proje
tors PH and PV of the Sode 
onne
tionremain the same. Note, however, that N is now a tensor �eld living on ��J1�0 or J1� (viathe di�eomorphism �) and so is the 
urvature of ~�1, namely NN . We 
annot 
ontra
tsu
h a tensor �eld with the 
anoni
al ve
tor �eld T along � : J1� ! E. Therefore, for anygiven Sode �, we are led to introdu
e the following �-dependent type (1,1) tensor �eldon J1� : 	� = i�NN = Ca� �� 
 ��qawith Ca� = �(Ba�)�X�(ga):7



As before, there is a 
orresponding lifted tensor �eld on J1�1:_	� = Ca� �� 
 �� _qa :These are 
onstru
tions whi
h very 
losely resemble the ones we had in Se
tion 3. So, wedare push the analogy further by imitating as follows the dire
t 
onstru
tion of Se
tion 4.Let there be given a fun
tion L 2 C1(J1�1) and a se
tion � of J1�1 ! ��J1�0, the imageof whi
h determines the 
onstraint submanifold J1� � J1�1.� Put L = i�L; with i : J1� ! J1�1.� De�ne two 1-forms on J1�: �L = Ldt+ S(dL); (�;L;�) = i�( _	�(dL))�N(dL):where � 2 X (J1�) is, for the time being, any Sode, to be determined later.� De�ne for ea
h su
h � the 2-form
� = d�L +  (�;L;�) ^ dt;whi
h of 
ourse (as in the previous se
tion) also depends on L and �.Under some appropriate regularity assumption, to be dis
overed in a moment, our gameof magi
 now gives rise to the following predi
tion.De�nition: The redu
ed dynami
s on J1� of the non-holonomi
 Lagrangian system isgoverned by the unique Sode �, determined by: i�
� = 0.Fixing a Sode � on J1� boils down, in 
oordinates, to give a pres
ription for �xing thefun
tions f�(t; qA; _q�). A 
oordinate 
al
ulation reveals that the 
ondition i�
� = 0requires that we have� �L� _q�! � X�(L) +  i� �L� _qa! [�(Ba�)�X�(ga)℄:The idea that our pres
ription should �x � 
learly means that we should be able to solvethe above relations unequivo
ally for the fun
tions f�. This will be the 
ase, if and onlyif the following regularity 
ondition holds:det �2L� _q�� _q� �  i� �L� _qa! �2ga� _q�� _q�! 6= 0:Let us �nally see how our 
on
lusions relate to whatever di�erential equations mightbe obtained from 
lassi
al pro
edures after elimination of auxiliary fun
tions su
h asLagrange multipliers. To that end, we �rst make the following observation: the fa
t that8



the above identities (under the indi
ated regularity assumption) uniquely de�ne the f� isthe same as saying that the redu
ed di�erential equations �q� = f�(t; qA; _q�) are equivalentto the equations ddt  �L� _q�! = X�(L) +  i� �L� _qa!" ddt(Ba�)�X�(ga)# :These are exa
tly the equations whi
h would follow from the 
lassi
al pro
edure (intro-du
ing and subsequently eliminating Lagrangian multipliers), provided one adopts thegenerally a

epted point of view that the `variations' (or `virtual velo
ities') ÆqA mustsatisfy Æqa = �ga� _q� Æq� ;whi
h are often referred to as �Cetaev's 
onditions.Details and proofs of the statements of this se
tion will be published elsewhere, in the
ontext of a general approa
h to the geometri
al des
ription of mixed systems of �rst-and se
ond-order di�erential equations. As a �nal remark, an interesting topi
 for furtherresear
h would be to investigate the possibility of transition to a redu
ed Hamiltoniandynami
s under the regularity 
ondition whi
h our approa
h has revealed. Usually, thetransition to a Hamiltonian pi
ture is dis
ussed at the level of the original des
ription ofthe system on J1�1 and requires the regularity of the free Lagrangian L (see e.g. [3℄).A
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