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Abstract. A Lagrangian system subject to linear non-holonomic con-
straints may be represented in several different geometrical frameworks.
We describe one such framework, involving the addition of an extra
term to the Cartan 2-form Ω of the unconstrained system, which is
dual to the traditional approach of adding a reaction force to the un-
constrained dynamical vector field Γ. We show how this framework
is closely related to the method of constructing a 2-form ΩM when
the constraints are given by a connection on an auxiliary bundle, as
described in our earlier work.

1 Introduction

Consider a mechanical system with non-holonomic constraints. In an earlier work
[10] we described a geometrical framework for such a system, where the bundle
τ1 : E → IR represented the usual fibration of a configuration space, and where
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a connection σ̃ on an auxiliary bundle π : E → M was used to construct the
constraint manifold J1

σ as an affine sub-bundle of J1τ1 → E. Many of the objects
familiar from the geometrical study of unconstrained systems had their analogues
in this new framework: when the system was derived from a Lagrangian L we
were able to use these objects to construct a fundamental 2-form ΩM and, at the
same time, give an intrinsic description of the dynamics of the system in terms
of a second-order differential equation field (Sode) Γ defined on the constraint
manifold.

The purpose of the present work is to look at two questions which arise naturally
from the construction we have described. The first concerns the choice of the
auxiliary bundle π : E → M . If coordinates on E are (t, qA) where A = 1, . . . , n,
and the constraints are given by the m equations

AaA(t, q)q̇A + ba(t, q) = 0

where the matrix AaA has maximal rank, we may solve these equations to give m
of the velocity coordinates (denoted q̇a) in terms of the other k = n−m (denoted
q̇α):

q̇a = Ba
α(t, q)q̇α +Ba(t, q).

We would then denote the coordinates on E by (t, qα, qa) and select M to have
coordinates (t, qα). The point of our previous work was to consider the bundle
structure π : E →M as part of the data, as is done also for example in the work of
Bloch et al. [1]. Different choices of M , corresponding to different choices of the free
and constrained velocity coordinates, will give a different fundamental 2-form ΩM

satisfying Γ ΩM = 0. It is therefore of interest to show that we may mimic some
aspects of this construction to define a connection σ and a fundamental 2-form Ω
without making a particular choice of auxiliary bundle.

A second question arises when our approach is compared with the more traditional
one of constructing the Sode for the unconstrained problem on J1τ1, restricting
it to the constraint manifold J1

σ , and then adding an additional vector field (rep-
resenting the reaction force) so that the result is tangent to J1

σ ; see, for example,
[5, 6, 7] for descriptions of this approach, and [2, 11] for similar constructions in
the autonomous case. When the additional reaction force is expressed in terms
of a basis constructed from the constraints and the Lagrangian, its components
are just the Lagrange multipliers used in the formulation of the Euler-Lagrange
equations. Again, we shall see that the fundamental 2-form Ω incorporates just
these Lagrange multipliers in a natural way. In a significant sense, therefore, our
approach is dual to the traditional one.
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2 Results

Let J1(E, k+ 1) denote the manifold of (k+ 1)-dimensional contact elements over
E. The elements of J1(E, k + 1) are equivalence classes of immersions of IRk+1

in E near a given point, with equivalence when the immersions are tangent to
one another at that point. The bundle J1(E, k + 1)→ E is therefore the (k + 1)-
dimensional Grassmannian bundle over E, and an element of J1(E, k+1) projecting
to a ∈ E may be considered as a (k + 1)-dimensional subspace of TaE. In fact,
J1(E, k + 1) is slightly too large for our purposes: if τ : E → IR is the fibration of
the configuration space E (this is the map denoted τ1 in our earlier work [10]) we
are interested in the open submanifold J1

τ (E, k + 1) constructed from immersions
transversal to the fibres of τ .

Each section σ : E → J1
τ (E, k + 1) defines a (k + 1)-dimensional distribution on

E. Let J1
σ be the set of jets j1t γ ∈ J1τ where the tangent vector to the curve γ at

γ(t) ∈ E lies in the (k + 1)-dimensional subspace σ(γ(t)) of Tγ(t)E; this definition
does not depend on the particular representative γ of the jet j1t γ, as it involves
only first-order contact. With this definition, J1

σ becomes a submanifold of J1τ ,
the constraint submanifold. Furthermore, for each point of J1

σ the annihilator of the
corresponding (k + 1)-dimensional subspace of TaE is an m-dimensional subspace
of T ∗aE; pulling this back to J1

σ defines an m-dimensional co-distribution H on J1
σ

(this is called the Chetaev bundle in [6], where a somewhat different construction
is used for constraints which are not necessarily linear). A 1-form on J1

σ taking its
values in H will be called a constraint form. Finally, a vector field Γ on J1

σ will
be called a Sode field if it satisfies the conditions 〈Γ, dt〉 = 1 and 〈Γ, i∗(θ)〉 = 0,
where θ is any contact form on J1τ and i : J1

σ → J1τ is the inclusion.

Our first result is given by the following theorem.

Theorem 1

Let L be a positive-definite Lagrangian on J1τ with Cartan 1-form θL, and let σ be
a (k + 1)-dimensional distribution on E over τ . There is then a unique constraint
form η on J1

σ with the property that the 2-form Ω defined by

Ω = i∗(dθL)− dt ∧ η

contains exactly one Sode field Γ in its kernel.

(The proofs of this and the following two theorems will be given in Section 3.)

To see the relationship of this result to our previous work, let M be a (k + 1)-
dimensional manifold and π : E → M a bundle: then J1π is an open-dense
submanifold of J1(E, k + 1) (see, for example, [9] Theorem 3.28). The bundle
J1(E, k + 1) → E may be thought of as the “projective completion” of the affine
bundle J1π → E. If we also require M to be fibred over IR in such a way that
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the composite map E → M → IR is identical to τ , then we always have J1π ⊂
J1
τ (E, k + 1).

A connection on π is a section σ̃ : E → J1π and is, a fortiori, also a section
σ̃ : E → J1

τ (E, k + 1). There are, however, some sections σ : E → J1
τ (E, k + 1)

which do not take their values entirely within J1π, and so do not arise from (global)
connections on the particular bundle π : E → M : in coordinates adapted to this
fibration, such sections yield “infinite derivatives” at certain points. To emphasize
the link with connections on π, we could also call any section σ : E → J1

τ (E, k+ 1)
a (k + 1)-dimensional connection on E over τ .

Let (t, qα, qa) be coordinates on E, chosen so that σ (restricted to this coordinate
patch) takes its values in the coordinate patch on J1

τ (E, k + 1) represented by
(t, qα, qa, qat , q

a
α): this situation arises automatically if we have a bundle π : E →M

such that σ(E) ⊂ J1π, and if the corresponding coordinates on M are (t, qα). The
corresponding coordinates on J1τ are (t, qα, qa, q̇α, q̇a), and J1

σ may be described as
in [10] by

q̇a = Ba
αq̇

α +Ba.

The 1-forms
ηa = dqa −Ba

αdq
α −Badt

defined locally on J1
σ span the co-distribution H. In these coordinates, the result

stated in Theorem 1 is that there is a unique set of multiplier functions λa such
that the 2-form Ω defined locally by

Ω = i∗(dθL)− dt ∧ (λaη
a)

contains exactly one Sode field Γ in its kernel.

In [10], we defined another 2-form ΩM by

ΩM = dθL − dt ∧ (i∗Ψ̇(dL)−N(dL))

where L = i∗L and, in coordinates,

N =
∂

∂qa
⊗ ηa

and

Ψ̇ = Ca
αθ

α ⊗ ∂

∂q̇a
with Ca

α =
dBa

α

dt
−
(
∂

∂qα
+Bb

α

∂

∂qb

)
(Ba

β q̇
β +Ba).

Theorem 2

If there exists a fibration π : E → M such that σ(E) ⊂ J1π, then the Sode field
Γ (from Theorem 1) also satisfies Γ ΩM = 0.
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Corollary The Sode field Γ constructed in [10] is independent of the chosen
fibration.

We shall now compare this approach with the more traditional one of finding the
constrained Sode field by starting with the unconstrained Sode field and adding
a “reaction” force. This uses the construction of a distinguished sub-bundle of the
vertical bundle V J1τ to represent the possible reaction forces (see, for example, [5],
Theorem 16; a similar approach is taken in [3] using almost-product structures).
Each constraint form ηa then gives rise to a reaction vector field V a according to
the following rules.

First, the Lagrangian L is used to define a “fibre metric along J1τ → E” in the
usual way, so that if X, Y are vertical vector fields on E then

g(X, Y ) = gαβX
αY β + gaβX

aY β + gαbX
αY b + gabX

aY b

where we have written, for example, gαβ for the submatrix ∂2L/∂q̇α∂q̇β of the Hes-
sian of L. In general g(X, Y ) is a function on J1τ , although when the Lagrangian
is quadratic in the velocity coordinates we may also consider g(X, Y ) as a well-
defined function on E. At each point u ∈ J1

σ projecting to p ∈ E, this “metric”
defines a map g#u : V ∗p E → VpE such that, considering an element of V ∗p E as an
equivalence class of cotangent vectors,

g#u ([ηa(u)]) = hab(u)
∂

∂qb

∣∣∣∣∣
p

+ haβ(u)
∂

∂qβ

∣∣∣∣∣
p

.

In this formula we have written hab = gab−Ba
αg

αb and haβ = gaβ−Ba
αg

αβ, where gAB

is the inverse of the Hessian matrix gAB, and gαβ, etc. are its various submatrices.

At each point u ∈ J1
σ , there is also a canonical vertical lift operator vu sending a

vector in VpE to a vector in VuJ
1τ , so that

vu

 ∂

∂qb

∣∣∣∣∣
p

 =
∂

∂q̇b

∣∣∣∣∣
u

, vu

 ∂

∂qβ

∣∣∣∣∣
p

 =
∂

∂q̇β

∣∣∣∣∣
u

.

We then define
V a(u) = vu(g

#
u ([ηa(u)])),

so that the vector field V a along the inclusion i : J1
σ → J1τ is represented in

coordinates as

V a = hab
∂

∂q̇b
+ haβ

∂

∂q̇β
.

We can now state our final result.
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Theorem 3

Let Γ be the Sode field on J1τ for the unconstrained Lagrangian system with
Lagrangian L, so that Γ dθL = 0. Then the vector field Γ along i : J1

σ → J1τ
defined locally by

Γ = Γ|J1
σ

+ λaV
a

is tangent to J1
σ , and is the unique Sode field on J1

σ satisfying Γ Ω = 0.

3 Proofs

To prove Theorem 1, we shall obtain the equations in local coordinates which must
be satisfied by the components of Ω, and show that they have a unique solution.

We start by writing dθL in coordinates as

dθL =
∂2L

∂qA∂q̇B
θA ∧ θB + gABω

A ∧ θB

where the “force forms” ωA = dq̇A−FAdt are chosen so that the above expression
contains no separate terms in dt∧θB. If Γ is a Sode field on J1

σ then 〈Γ, i∗θA〉 = 0,
so that

Γ i∗dθL = i∗(gAB)〈Γ, i∗ωA〉i∗θB.
Letting θβ also denote contact forms pulled back to J1

σ as well as those forms on
the whole of J1τ , we have

i∗θβ = θβ, i∗θb = ηb +Bb
βθ

β.

Put ωα = dq̇α − F
α
dt, where the new force functions F

α
are to be determined.

Then

i∗ωa =

(
Ba
αF

α − F a + q̇α
dBa

α

dt
+
dBa

dt

)
dt+ . . . ,

where “. . .” represents terms in ωβ, θβ and ηb. In this expression, we have written
d/dt for the restriction of the total time derivative to J1

σ so that, for example,

dBa

dt
=
∂Ba

∂t
+ q̇β

∂Ba

∂qβ
+ (Bb

β q̇
β +Bb)

∂Ba

∂qb
;

we have also omitted the pullback map i∗ operating on functions where there will
be no confusion. If Γ is such that 〈Γ, ωα〉 = 0, we find that

Γ i∗dθL =

(
haβ

(
Ba
αF

α − F a + q̇α
dBa

α

dt
+
dBa

dt

)
+ hαβ(F

α − Fα)

)
θβ

+

(
gab

(
Ba
αF

α − F a + q̇α
dBa

α

dt
+
dBa

dt

)
+ gαb(F

α − Fα)

)
ηb
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where haβ = gaβ + gabB
b
β and hαβ = gαβ + gαbB

b
β. We shall therefore be able

to solve Γ (i∗dθL − dt ∧ (λaη
a)) = 0 if we can choose the functions F

α
so that

the coefficients of θβ vanish; the multiplier functions λa will then be determined
automatically. But those coefficients may be written in the form

(Ba
αhaβ + hαβ)F

α
+ . . .

and the matrix Ba
αhaβ +hαβ is non-singular by virtue of the positive-definiteness of

gAB (it is, essentially, just the restriction of gAB to vectors whose vertical lifts are
tangent to the constraint manifold). It follows that there is a unique local solution
to the equations; uniqueness implies that the solutions may be glued together to
give a unique global Sode field Γ and a unique constraint form η, completing the
proof of Theorem 1.

A different way to arrive at the same conclusion, offering a further insight into the
nature of the Sode field Γ and the multipliers λa, goes as follows. It is easy to
verify that

i∗θL = Ldt+
∂L

∂q̇α
θα +

(
i∗
∂L

∂q̇a

)
ηa.

In computing the exterior derivative of this form, we make use of the following
local basis of vector fields on J1

σ (compare with [10]):

Xα =
∂

∂qα
+Ba

α

∂

∂qa
,
∂

∂qa
, Γ,

∂

∂q̇α
,

with dual basis of 1-forms

θα, ηa, dt, ωα = dq̇α − Fα
dt.

Here, of course, the F
α

and the corresponding expression for Γ are again as yet to
be determined. For any f ∈ C∞(J1

σ) we therefore write

df = Xα(f) θα +
∂f

∂qa
ηa + Γ(f) dt+

∂f

∂q̇α
ωα.

Proceeding in this way we find, e.g.

dηa = −Ca
α dt ∧ θα −

∂

∂qb
(Ba

αq̇
α +Ba) ηb ∧ dt

−Xβ(Ba
α) θβ ∧ θα − ∂Ba

α

∂qb
ηb ∧ θα.

The calculation of i∗dθL is now a straightforward matter and yields

i∗dθL =

[
Γ

(
∂L

∂q̇α

)
−Xα(L)−

(
i∗
∂L

∂q̇a

)
Ca
α

]
dt ∧ θα

+

[
Γ

(
i∗
∂L

∂q̇a

)
− i∗ ∂L

∂qa

]
dt ∧ ηa + . . . ,
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where all the terms contained in the “. . .” part are made up of factors involving
only θα, ηa and ωα. Several things can be learned from this expression. First, we
see another manifestation of Theorem 1: there is a unique way to eliminate the
terms in dt ∧ ηa and the resulting form Ω then has a specific Sode field Γ in its
kernel. What we see in addition here is that this Sode field Γ is determined by

Γ

(
∂L

∂q̇α

)
= Xα(L) +

(
i∗
∂L

∂q̇a

)
Ca
α

and that the multipliers λa can in fact be expressed as

λa = Γ

(
i∗
∂L

∂q̇a

)
− i∗ ∂L

∂qa
.

The determining relation for Γ confirms that, in the case of a fibration π : E →M ,
we are talking about the same reduced dynamics (on J1

σ) as the one which was
uniquely determined in [10] by the condition Γ ΩM = 0, thus proving Theorem 2.
Note further that the regularity of the matrix Ba

αhaβ + hαβ in this alternative
description corresponds to the regularity of the Hessian matrix ∂2L/∂q̇α∂q̇β, which
again is consistent with [10].

To prove Theorem 3, we shall find the coordinate expression of the reaction force
which must be added to an unconstrained Sode field Γ to give the constrained
field Γ, and show that the equations so found are identical to those obtained in the
proof of Theorem 1. So let

Γ =
∂

∂t
+ q̇A

∂

∂qA
+ FA ∂

∂q̇A

as usual, and require Γ to be a Sode field on J1
σ : in terms of the coordinates on

J1τ , we obtain

Γ =
∂

∂t
+ q̇α

∂

∂qα
+ (Ba

αq̇
α +Ba)

∂

∂qa
+ F

α ∂

∂q̇α

+

(
Ba
αF

α
+ q̇α

dBa
α

dt
+
dBa

dt

)
∂

∂q̇a

where the coefficient of ∂/∂q̇a comes from the requirement that Γ be tangent to
J1
σ . We want the difference between Γ|J1

σ
and Γ to be a reaction force, so put

Γ = Γ|J1
σ

+ λaV
a.

Then the equations to be solved for F
α

are

F
α − Fα = λbh

bα

χa = λbh
ba
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where we have written

χa = Ba
αF

α − F a + q̇α
dBa

α

dt
+
dBa

dt
.

The theorem will be proved if we can show that these equations are the same as
the equations we obtained in the proof of Theorem 1. But those earlier equations,
rewritten in terms of χa, are

hαβ(Fα − Fα
) = haβχ

a

gαb(F
α − Fα

) = gabχ
a − λb

and it is straightforward to check, using the identities

hcαgαb = δcb − hcagab

and
hcαhαβ = −hcahaβ,

that the two sets of equations are, indeed, identical.

4 An example

Consider a sled which is constrained to move so that its velocity is always in the
direction of its orientation (see, for example, [8] p.94). If the coordinates on the
configuration manifold E = IR × (IR2 × S1) are (t, x, y, φ), where x, y represent
position and φ represents orientation, then the constraint may be written in the
form

ẏ = ẋ tanφ

for most values of φ, and the Lagrangian (putting for simplicity the mass and the
moment of inertia equal to 1) is

L = 1
2
(ẋ2 + ẏ2 + φ̇2).

To find the 2-form Ω described above, we start with the Cartan form

θL = ẋ dx+ ẏ dy + φ̇ dφ− 1
2
(ẋ2 + ẏ2 + φ̇2) dt

so that

i∗dθL = (tanφ dẋ+ ẋ sec2 φ dφ) ∧ (ηy + tanφ θx)

+dẋ ∧ θx + dφ̇ ∧ θφ
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where θx, θφ are the contact forms and ηy = dy − tanφ dx is the constraint form.
Expressing i∗dθL in terms of force forms ωx, ωφ, we find that the existence of a
Sode field Γ satisfying

Γ (i∗dθL − λ dt ∧ ηy) = 0

gives the condition

(Fx + ẋφ̇ tanφ) sec2 φ θx + Fφθφ + (Fx tanφ+ ẋφ̇ sec2 φ− λ)ηy = 0

so that

Fx = −ẋφ̇ tanφ

Fφ = 0

λ = ẋφ̇.

Hence

Ω = sec2 φ ωx ∧ θx + tanφ ωx ∧ ηy + ωφ ∧ θφ
+ẋ sec2 φ θφ ∧ ηy + ẋ sec2 φ tanφ θφ ∧ θx

and

Γ =
∂

∂t
+ ẋ

∂

∂x
+ ẋ tanφ

∂

∂y
+ φ̇

∂

∂φ
− ẋφ̇ tanφ

∂

∂ẋ
.

Note in passing that the explicit formula we obtained for the multipliers would for
this example read

λ = Γ

(
i∗
∂L

∂ẏ

)
= Γ(ẋ tanφ)

and confirms that indeed λ = ẋφ̇.

We may now take a manifold M with coordinates (t, x, φ) so that, in the

notation of [10] with L = i∗L,

L = 1
2
(ẋ2 sec2 φ+ φ̇2)

and

dθL = sec2 φ dẋ ∧ θx + dφ̇ ∧ θφ
+ẋ tanφ sec2 φ (dφ ∧ θx + dφ ∧ dx).

Then we use the formula

ΩM = dθL − dt ∧ (i∗Ψ̇(dL)−N(dL))
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where

N =
∂

∂y
⊗ ηy

and

Ψ̇ = (φ̇ sec2 φ θx − ẋ sec2 φ θφ)⊗ ∂

∂y
,

so that

ΩM = sec2 φ dẋ ∧ θx + dφ̇ ∧ θφ
+ẋ tanφ sec2 φ θφ ∧ θx + ẋ tanφ sec2 φ dφ ∧ θx.

It is straightforward to check that Γ ΩM = 0.

Now suppose we choose a different fibration E → M ′ where M ′ has coordinates
(t, y, φ), so that

ẋ = ẏ cotφ

ηx = dx− cotφ dy

Ω = −ẏ cosec2φ θφ ∧ ηx − ẏ cotφ cosec2φ θφ ∧ θy
+ cotφ ωy ∧ ηx + cosec2φ ωy ∧ θy + ωφ ∧ θφ

ΩM ′ = cosec2φωy ∧ θy − 2ẏ cosec2φ cotφ θφ ∧ θy
+ωφ ∧ θφ

Γ =
∂

∂t
+ ẏ cotφ

∂

∂x
+ ẏ

∂

∂y
+ φ̇

∂

∂φ
+ ẏφ̇ cotφ

∂

∂ẏ
.

Observe that these expressions for Ω and Γ are the ones which also follow from the
coordinate transformation ẋ = ẏ cotφ applied to the original expressions, whereas
this is not the case for the relationship between ΩM and ΩM ′ . This precisely reflects
the fact that Ω and Γ are independent of the choice of a fibration, whereas ΩM is
not.

Finally, we may consider the Sode for the unconstrained problem,

Γ =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ φ̇

∂

∂φ

and add to it a multiple of

V =
∂

∂ẏ
− tanφ

∂

∂ẋ

so that the result is tangent to J1
σ . We find that

λ

(
∂

∂ẏ
− tanφ

∂

∂ẋ

)
= (ẋφ̇ sec2 φ+ Fx tanφ)

∂

∂ẏ

+Fx
∂

∂ẋ
+ Fφ

∂

∂φ
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so that, as before,

Fx = −ẋφ̇ tanφ

Fφ = 0

λ = ẋφ̇.

5 Discussion

Given a system with a Lagrangian, a major objective is the construction of the
associated Sode field, as this will describe the system’s motion. For non-holonomic
systems, the traditional method starts with the unconstrained Sode field and adds
a vertical vector field to represent the reaction forces; at each point, the reaction
vector must lie in a subspace described using the Lagrangian “metric”. In contrast
the construction of Ω = Ω − dt ∧ η, as a 2-form with a suitable Sode field in
its kernel, involves that metric only in the proof that there is a unique constraint
form η with the requisite property. This latter approach, dual to the former one,
is perhaps the more straightforward. (An approach described in [3] using almost-
product structures apparently also leads to the 2-form Ω [4].)

There are, nevertheless, significant questions which arise if this point of view is
adopted. In holonomic dynamics, there is a clear prescription for constructing the
2-form Ω from which the motion of the system will be determined: that is, Ω = dθL.
In non-holonomic dynamics, this is no longer the case. We may always construct
the 2-form Ω, but given a suitable fibration E → M we may also construct the
2-form ΩM : indeed, the latter is not unique, as a different fibration E → M ′

may give rise to a different 2-form ΩM ′ . Furthermore, the availability of such
a fibration permits the further analysis of the system in terms of the dynamical
covariant derivative and the Jacobi endomorphism, as we have described elsewhere.
It is therefore of some interest to see how all these 2-forms are related.

Clearly, the difference between Ω and ΩM must arise from the difference between
i∗θL and θL. From [10] the constrained Cartan form θL is given by θL = Ldt +
S dL, where the fibration E → M has been used to define a projection κ :
J1τ → J1

σ and the vertical endomorphism S on J1τ then projects onto the vertical
endomorphism S on J1

σ . As we observed in the proof of Theorem 2, we have

i∗θL = θL + i∗
∂L

∂q̇a
ηa,

from which it follows that

Ω = ΩM + dt ∧ (i∗Ψ̇(dL)−N(dL))

+dt ∧ λaηa + d

(
i∗
∂L

∂q̇a
ηa
)
.

12



Using the coordinate expressions for Ψ̇ and N (see [10]) and the formulas for λa
and dηa obtained earlier, it is thus easy to check that

Ω = ΩM +

(
d

(
i∗
∂L

∂q̇a

)
− Γ

(
i∗
∂L

∂q̇a

)
dt

)
∧ ηa

−i∗ ∂L
∂q̇a

(
dBa

α − Γ(Ba
α) dt

)
∧ θα.

Essentially, i∗θL (and hence Ω) depend on the values of L close to J1
σ , whereas θL

(and hence ΩM) depend on the values of L on (rather than near) J1
σ , spread out

to a neighbourhood using the projection κ. It is therefore natural to ask whether
the projection κ is the more fundamental object, and whether consideration of the
fibration E →M is really necessary.

We may, however, be reassured by the fact that, if we are given an arbitrary affine
projection κ : J1τ → J1

σ , we may define a distribution of vertical vectors on E:
if two elements of J1τ map to the same element of J1

σ under κ, then the vertical
vector representing their difference is deemed to be a member of the distribution
(this is well-defined as κ is affine). In favourable circumstances this distribution
will be integrable and the collection of integral manifolds will form a manifold M .
The fibration E →M will then give rise to the projection κ which we started with.
Indeed, there is always a local projection from J1τ to J1

σ which will give rise to a
local fibration of E in just this way: we simply choose coordinates on E in such a
way that the constraints can be expressed in solved form.
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[7] E. Massa and E. Pagani, A new look at Classical Mechanics of constrained
systems, preprint (1995)

[8] Ju.I. Neimark and N.A. Fufaev, Dynamics of nonholonomic systems, Transla-
tions of Mathematical Monographs 33 AMS, Providence (1972)

[9] P. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts
in Math. 107 Springer, Berlin (1986)

[10] W. Sarlet, F. Cantrijn and D.J. Saunders, A geometrical framework for the
study of non-holonomic Lagrangian systems, J. Phys. A. (Math. Gen.) 28
(1995) 3253–3268

[11] A.M. Vershik, Classical and non-classical dynamics with constraints, in: Yu.G.
Borisovich and Yu.E. Gliklikh, eds., Global Analysis — Studies and Applica-
tions I , Lecture Notes in Math. 1108, (Springer-Verlag, Berlin, 1984) 278–301

14


