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Abstract

A theory is presented leading to a geometric characterization
of separable systems of second-order ordinary differential equations.
The idea is that such a characterization should provide necessary and
sufficient conditions for the existence of coordinates, with respect to
which a given system decouples. The specific problem of decoupling
is merely chosen as a motivation to review differential geometric tools
for the description of second-order dynamical systems. In particu-
lar, a survey is presented of the theory of derivations of scalar and
vector-valued forms along the projection of the velocity-phase space
onto the configuration manifold. It is explained how this theory re-
lates to the more traditional calculus on tangent or first-jet bundles.
In discussing this relation, the geometrical objects which are impor-
tant for studying separability or other features of the evolution of
second-order dynamics, come forward in a natural way. A few other
applications of this theory are briefly touched upon.

*The subject which is being reviewed here concerns mainly joint work to which the
following people have contributed: F. Cantrijn, J.F. Carinena, M. Crampin, E. Martinez,
A. Vandecasteele. We acknowledge support by a NATO Grant (CRG 940195).
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1. Introduction

Consider a system of, generally coupled and non-linear, second-order ordi-
nary differential equations

i = fit,q,q) i=1,...,n. (1.1)

It is a truism to say that there is in general no hope for solving such a
system analytically and that the best one can hope for is to obtain some
reduction of the problem (for example via symmetries), or to get insight
into qualitative aspects of the dynamics. Despite an enormous literature in
this field of applied analysis, very few results are available when it concerns
second-order equations with n > 1.

Suppose, however, that the given system (1.1) is actually a fairly simple
problem in disguised form. This might be the case, for example, if it were
possible to transform the equations into a system of (at least partially)
decoupled equations or if it were possible to linearize them. How is one
going to tell that this is the case?

The question we want to address here is the following: can one find new
coordinates Q' = Q’(t,q), such that the transformed system is completely
decoupled, i.e. has the form

Q= (t,Q,Q), (1.2)

where each F7 depends only on the corresponding 7 and its derivative (and
possibly also on time)? There are two aspects to this question. First of all,
how can we tell if such ()7 exist, in a way which has practical relevance?
In other words, we are certainly not interested in mere existence theorems,
but want to discover necessary and sufficient conditions which can directly
be applied to the given data, i.e. to the given functions f*. Secondly, as-
suming the f? pass all tests, we want to be able also to construct the good
coordinates (7.

It is perhaps not so obvious to everyone that differential geometry has some-
thing to offer in that respect. Generally speaking, differential geometry is
important in the study of dynamical systems when it comes to discussing
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global properties. In a somewhat less ambitious fashion, even in a local set-
ting it may be very relevant to search for intrinsic properties, i.e. properties
which do not depend on the choice of coordinates or, expressed differently,
on a perhaps coincidental appearance of the system at hand.

Why then could differential geometry be relevant for the above raised ques-
tion of separability? It is true of course that decoupling, if possible, will
occur in a special set of coordinates. The existence of such coordinates,
however, is coordinate independent, so that the tests which are to be dis-
covered may well come from intrinsic tensorial objects and operators related
to the given dynamical system.

Since the specific task for this workshop was to present a review lecture, the
separability question will in fact be an alibi to give a review of differential
geometric tools which have been developed to study systems of second-
order differential equations, henceforth abbreviated to SODE’s. The style
of presentation of these elements of differential geometry is chosen to be
very expository, in the hope that this will encourage students who have not
specialised in this field to get at least a flavour of the general reasoning.
Basically, the assumption will be that the reader has some notion about
the concept of a differentiable manifold, vector fields and differential forms,
and basic operations such as the exterior derivative and the Lie derivative.
An easy access to these matters is offered by the book of Schutz (1980).
To avoid extra technicalities, we will mostly restrict ourselves to an entirely
autonomous framework! The natural environment for discussing SODE’s
then is a tangent bundle 7 : TM — M.

We will enter into a short presentation of the following review topics. To
begin with, we recall some basic elements of the geometry of a tangent
bundle 7 : TM — M and discuss the additional structure coming from a
SODE. By the end of that section, we will discover indications that it is of
interest to introduce the concepts of differential forms (and in fact general
tensor fields) along the projection 7. Faced with the problem of developing
a calculus of differential forms along 7, Section 4 is about derivations. We
recall the main ingredients and results of the standard work of Frolicher
and Nijenhuis (1956) on the classification of derivations and sketch a survey
of the corresponding theory for derivations of forms along 7. In Section 5,
different ways are discussed for relating the newly developed calculus to the
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more traditional one on T'M. In doing so, we come across the important
covariant derivatives and the Jacobi endomorphism associated to a SODE.

After this review of general background information, we return to the sep-
arability problem in Section 6. For the concluding remarks in the final
section, we will briefly mention some other applications of this theory.

Before starting our excursion now, we list a number of references for the
various topics which will enter the discussion. The list is of course far from
being exhaustive. For the geometry of a tangent bundle and its application
to second-order dynamics in general and Lagrangian mechanics in partic-
ular, some key references are the work by Klein (see Klein (1962) for the
early history and e.g. Klein (1992) for more recent developments), the con-
tributions of Grifone (1972a,b) and a much cited paper by Crampin (1983a).
Also of interest is an extensive review paper by Morandi et al (1990). The
systematic study of forms along the projection 7 was introduced in the the-
sis of Martinez (1991) and subsequently developed in a series of papers: see
Martinez et al (1992, 1993a) and Sarlet et al (1995) for the corresponding
theory in the time-dependent case. The main references for the applica-
tion to complete separability are Martinez et al (1993b) and Cantrijn et al
(1996). Some more references will be given underway.

2. Elements of the geometry of a tangent
bundle and second-order dynamics

The tangent bundle T'M of a manifold M is the union of all tangent spaces
to M over all points ¢ € M. So each point of T'M is a vector v, attached to
some point ¢ of M and, if n is the dimension of M, it takes 2n coordinates
(¢%,v*) to specify v,, namely the coordinates ¢* which locate the point in M
and the components v* of the vector under consideration. The projection
7:TM — M is the map 7 : v, — ¢ and the inverse image 7 '(q) = T,M
is called the fibre over ¢q. T'M itself, as a manifold, has its own tangent
vectors of course, and those which are tangent to a fibre are said to be
vertical. Natural objects on a manifold are things which can be defined
in a canonical way, without needing any extra data or assumptions. On
T M, there exist natural objects of the following kind. First, merely by the
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fact that T M is a vector bundle, we have a dilation vector field (sometimes
called Liouville vector field) A = v* 9/dv’, characterizing indeed dilations in
the fibres. More specifically for T'M, there is a canonical type (1,1) tensor
field (to be thought of as a linear map on vector fields, or dually on 1-forms)

0

S =dq' .
Q®avz7

(2.1)

called the vertical endomorphism:

0
vt

0 .0 ‘

X — (2 . (2 . S X — 7
Haog tVaa ™ (X) =n

We refer to the already cited literature and e.g. to Crampin (1983b), Crampin
and Thompson (1985) and Yano and Davies (1975) for the properties of this
tensor field and its role in characterizing the structure of a tangent bundle.

There are two ways of lifting vector fields on M canonically to vector
fields on T'M: the vertical and complete lift (or prolongation). For X =
X'(q)0/dq" € X(M), the vertical lift XV is given by

0

XY = Xi(g) .

(2.2)
This construction in fact lies at the heart of the definition of S. The com-
plete lift on the other hand is obtained by prolonging the flow of X and
reads: :

0 ;0X' 0

X :X(q)a—qi—i-v 97 9ot

(2.3)

More structure becomes available on T'M when there are additional data.
For example, a function L € C>~(T'M) (satisfying some regularity condition)
gives rise to a symplectic form df,, where

oL . .
0, =S(dL) = — dq" 2.4
L= S(dL) = 5 dg (24)
is the so-called Poincaré-Cartan 1-form associated to L. There is then a cor-
responding SODE field which represents the Euler-Lagrange equations com-
ing from L. More generally, any SODE brings in itself some new canonical
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structure to TM. A SODE field I' is determined by the intrinsic requirement
S(I') = A and has the following coordinate representation:

aiz‘ R (2.5)

o’

Its most important contribution to the structure on T'M is that it comes
along with a so-called non-linear connection. In general terms, a non-linear
(Ehresmann) connection on 7 : TM — M is a smooth procedure for defining
at each point v, of TM a horizontal subspace of T,, (T'M), complementary
to the space of vertical vectors. Every SODE I' canonically defines such
a connection in the following way. Observe for a start that, sitting on a
manifold which carries a canonical structure (the tensor field S) and having
been given a preferred direction to travel around on this manifold (the flow
lines of the vector field I'), it is quite natural to look at the way this canonical
structure is being transported along the given flow. This is essentially the
meaning of computing the Lie derivative of S with respect to I' and it so
happens that the square of the resulting tensor field is the identity. From
the property (LrS)? = I, it follows that

P, = ;(1 _£rS), Py = ;(1 +£rS) (2.6)

=4

are complementary projection operators, i.e. their sum is the identity and
we have
P,2=P, P?*=P, PyoP,=0. (2.7)

The horizontal subspace at each v, then is, of course, the image of the
projector Py, restricted to T, (T'M).

An alternative definition of the horizontal subspaces is worth to be men-
tioned here. With the aid of I', we have another lifting procedure, called
horizontal lift, which can directly be defined as follows

X € X(M) = X" € X(TM) = ;(XC + XY, T)). (2.8)

For a coordinate explanation, it suffices to look at the lift of the coordinate
fields on M, which are of the form

(0 H_ 0 ; 0
i= () = Tl (2.9
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where the functions I/ are called connection coefficients and, for the case
at hand, are given by
: 10 fj
M =—-—— 2.10
3 2 avl ( )

It is of interest for our purposes to understand explicitly the link between
these two equivalent ways of constructing horizontal subspaces. Clearly,
every Z € X(T'M), through the use of the operators P, and P, has a unique
decomposition into a horizontal and a vertical part. Both of these parts can
actually be regarded as lifts. But since their coefficients will generally be
functions of ¢’s and v’s, we cannot be talking here about horizontal and
vertical lifts of vector fields on M. What we are looking at are vector
fields which in their derivation part look as if they live on M, but have
their coefficients living on T'M. They are vector fields along the projection
7 :TM — M and will be discussed in more detail in the next section. The
link we were trying to explain then becomes clear if we observe that the
above horizontal lift construction extends in a natural way to vector fields
along 7 by imposing linearity over C*>(TM).

3. Vector fields and forms along the projec-
tion 7:T'M — M

A vector field X along 7, and similarly a 1-form « along 7, are best visualized
as maps defined by the following commutative schemes (where of course
T*M is the cotangent bundle of M, constructed in the same way as T'M,
with the dual space of covectors at each point replacing the vector space of
tangent vectors, and with projection 7w : T*M — M).

TM M
/ - / T
TM M TM M
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As already indicated, the coordinate representation of these objects reads:
, 0 .
X:Xl(q,v)?, a = a;(q,v)dq". (3.1)
ql
More general tensor fields along 7 can be constructed out of these building
blocks by taking tensor products or wedge products in the usual way.
Let us introduce, as in Martinez et al (1992, 1993a), the following notations:
X (1) : set of vector fields along T,
A(T) : set of scalar forms along T,
V(7) : set of vector-valued forms along 7.

V(1) is a graded module over A(7). Typically, an element L € V(1) is a
tensor field of the form

D ‘ L , A
L=\N® o with AN =\, o dg" A~ Adgt € N(7). (3.2)
Coming back to the remark at the end of the previous section, the vertical
and horizontal lift operations from X (M) to X (T'M) naturally extend to
X (7). To be explicit, for

, 0
X = X'(q,v)=— € X(7), putting V; =

oq ovt’

we have

XV =X"V, X" = X' H,. (3.3)
For the prolongation, however, the situation is slightly more complicated.
Indeed, for X € X(7), it is quite easy to define a prolongation X but
the result is, technically speaking, a vector field along the projection 7o :
T?M — TM (the 3n-dimensional manifold T?M has fibre coordinates,
a’ say, to be thought of as modelling accelerations). With the aid of T,
however, which can be regarded as a section 7 of 751 (think of v as defining
the submanifold a' = fi(q,v) of T?M), we obtain another lift operator
Jr @ X(1) = X(T'M), defined by JrX = X® o~ and determined, in
coordinates, by the following prescription:

0 .0

JeX = X' on +T(XY) o

i (3.4)
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A similar construction applies dually to 1-forms o = a;(q,v)dg" € A'(7)
and results in a 1-form Ira € A'(TM), given by:

Ira = a;dv' +T(a;) dg' . (3.5)

A couple of remarks are in order here. The image sets Jp(X (7)) and
Ir(A'(7)) were used at an earlier stage in a number of papers (see e.g.
Sarlet et al (1984, 1987)) to develop calculational aspects adapted to given
second-order dynamical systems. For example, Jp(X(7)) is of interest be-
cause it contains all dynamical symmetries of I' and, likewise, Ir(A'(7))
contains all so-called adjoint symmetries. The motivation which led later
on to the idea of developing a “calculus along 7”7 came from the observa-
tion that many quantities of interest on T'M appear to be generated by a
corresponding object along 7. More precisely, they are such that the more
familiar calculations on T'M contain a certain degree of redundancy, be-
cause both the horizontal and the vertical part of the object in question
come from the same corresponding object along 7. It is clear, for example,
by looking at the coordinate expression of JpX that only the first term can
carry relevant information, the second one then being determined automat-
ically. Examples where this phenomenon occurs are the already mentioned
symmetries and adjoint symmetries, but also recursion operators and the
Poincaré-Cartan form in Lagrangian mechanics.

Before entering the review of the quite recent theory of derivations of forms
along 7, this may be the place to say a few words about the picture for the
more general case of time-dependent SODE’s, where there should be room
also to allow for time-dependent transformations.

For the time-dependent framework, the natural geometrical environment is
the following. Second-order equations are governed by a vector field

g (3.6)

4 0
+4q (97}“

r -
0q*

T ot

on a first-jet bundle J'7 of a bundle 7 : E — R. Here, (t,q") are local
bundle coordinates on the n + 1-dimensional space E and (t,¢’, ") then
are the induced natural coordinates on J'7, which is the set of equivalence
classes of curves t — (£, ¢'(t)) in E, whereby equivalence refers to first-order
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tangency. J'm also carries a canonical “vertical endomorphism”, defined by
the tensor field

S=0® aaqw with 6" = dg' — ¢'dt. (3.7)

The local 1-forms #° are called contact forms. For a general reference on jet
bundles, see Saunders (1989).

For any X € X(E), say

o 0
x=x2 ., xi?
o ag

(3.8)

there is a well defined concept of prolongation again: X® € X (J'x) is of
the form

P ) ;|
X =X"— 4+ X' — + (X' —¢'X") . 3.9
5y X g (X=X (39)
Obviously, there is also a vertical lift operation, in fact we have
XV =S(XW). (3.10)

Finally, the SODE I' this time defines a “non-linear connection” on the
bundle 70 : J'm — FE'; the subspaces of T'(J'w), which are complementary
to the vertical sub-bundle are determined by the following horizontal lift
construction:

X = ; (XD 4 [XV,T] + (X, dO)T). (3.11)

Despite some clear analogies at the start of the description, the time-
dependent theory is not a trivial copy of the autonomous one: there are

many technical complications, but a corresponding calculus of forms along
7 has been developed (see Sarlet et al (1995)).

4. Derivations — Classification

We have indicated several reasons why it is of interest to develop a calculus
of forms along 7, but what does that really amount to? Apart from purely
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algebraic operations (such as the wedge product), the operations we know
to be of interest from the standard calculus of forms (see e.g. Flanders
(1963), Loomis and Sternberg (1968)) are things like the exterior derivative,
the interior product with vector fields and the Lie derivative. Additional
operations may become important when there is more structure available.
For example, when there is a linear connection at our disposal, we will
certainly be interested in covariant derivatives. What all these operations
have in common is that they are derivations. A general theory of derivations
of differential forms has been developed by Frolicher and Nijenhuis (1956).
Since then, of course, many people have contributed to the field or have
developed a similar machinery starting from different premises. One of the
main contributors to the subject is Michor (see e.g. Michor (1987,1989) and
also Kolar et al (1993)). It is reasonable to expect that, also for the case
of forms along 7, most calculational aspects of interest will emerge from a
general theory of derivations or at least will benefit from being interpreted
within such a theory.

Introducing the concept of derivations of differential forms is a matter of
defining operators with certain abstract properties and these are the same
whether we are talking about ordinary differential forms on a manifold or
forms along a map.

Definition: D : A(7) — A(7) is a derivation of degree r if

L. D(A"(7)) € A"(7)
2. D(a+AB)=Da+ADB, «a,BeNAT), NeR

3. D(aANvy)=DaAy+ (—1)P"a A D, a e NP(7).

To define derivations of vector-valued forms, we need somehow to impose in
addition that the operator also satisfies the sort of graded Leibniz rule 3 with
respect to multiplication of the vector field part of the tensor with scalar
forms. Recall that V' (7) is a (graded) module over A(7), so that the wedge
product of a scalar and a vector-valued form makes sense. Instead of giving
a full definition then of a derivation of V' (7), it suffices to mention that a
derivation D (of degree r) of V(7) has an associated derivation of A(7),
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also denoted by D, and that the additional requirement to make everything
consistent is: for L € V¥(7), w € AP(1),

DwAL)=DwANL+ (-1)""wADL. (4.1)

One easily proves that every D of A(7) is completely determined by its
action on functions on T'M and on so-called basic 1-forms (i.e. elements of
A'(M)). For an extension of a derivation of A(7) to V(7), it then further
suffices to specify the action on basic vector fields (elements of X'(M)) in a
way which is consistent with multiplication by basic functions.

The set of derivations of A(7) (or V(7)) forms a graded Lie algebra. Indeed,
if Dy and Dy are derivations of degree r; and ro respectively, then

[Dl, DQ] = Dl ¢) D2 - (_1)r1r2D2 9] Dl (42)

is a derivation of degree r; + ro. Considering in addition a D3 of degree r3,
we have the graded Jacobi identity:

(=1)""*[D1, [D2, D3]] 4+ (=1)""[Dy, [Ds, D1]] + (=1)"*"*[Ds, [D1, Ds]] = 0.
(4.3)

Having introduced derivations, the first main challenge is understanding
their classification and for that purpose we will briefly review how the clas-
sification works in the standard theory of Frélicher and Nijenhuis (for deriva-
tions of scalar forms).

The algebra A (M) comes equipped with the exterior derivative d, a deriva-
tion of degree 1. T'wo types of derivations then can be distinguished: deriva-
tions of type iy, they are the ones which vanish on functions, and derivations
of type d,, by definition the ones that commute with d. For L € V"(M),
one defines i;, a derivation of degree r — 1 by the following requirements:
i, f = 0 (on functions) and for a € A'(M) we have,

(X1, X)) = a(L(X1,. .., X)) (4.4)

The action on forms of degree higher than one then follows from the deriva-
tion property 3. The main classification results of Frélicher and Nijenhuis
are summarized in the following theorem.

Theorem.
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1. Every type i,-derivation is of the form i, for some L.
2. Every derivation of type d, is of the form d;, = [i;,d| for some L.
3. Every derivation D has a unique decomposition of the form

D =1y +dg,, forsome Ly, Ls.

Coming back now to derivations of A(7), the situation turns out to be more
involved: it is not possible to come to a complete classification scheme
without extra data. One should, of course, first of all wonder whether there
exists some canonical kind of exterior derivative to mimic the idea of d,-
derivations. There is indeed such a derivation of degree one, called the
vertical exterior derivative, denoted by d" and determined by the following
rules

d"F = Viy(F)dq', w—5; VE € C=(TM) (4.5)
d"a=0 for aecA\Y(M). (4.6)

Defining and constructing ¢,-derivations is no problem: derivations of the
form i, (with L € V(7)) can simply be defined as before. One can, however,
rightaway suspect that this is not enough to arrive at a full classification of
derivations. Indeed, it suffices to think of functions to realize that informa-
tion about V;(F') (coming from d") will not be sufficient to cover the full
picture and that, so to speak, the horizontal information is missing. As we
already learned above, ‘horizontal information’ is not canonically available
and requires an extra tool. Assume therefore that we have a connection on
the bundle 7 : TM — M at our disposal (not necessarily a SODE connec-
tion). Then, we know what horizontal vector fields on T'M are and they are

locally spanned by
0 -0
Hi - = — Fl- .y
8qz J ovt
where the functions I'j(q,v) are the connection coefficients. We define a
degree 1 derivation d”, the horizontal exterior derivative by the following

properties,

d"F = H{(F)dq', FeC~(TM) (4.7)
d"o = da for o€ AY(M). (4.8)
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d", in some sense, is an extension to A(7) of the ordinary exterior derivative
on basic forms. For completeness, let us mention that the action of d" and
d" can easily be extended to V(7). Remembering that it suffices to know
what happens with basic vector fields for that purpose, the extension is
determined by,

0 0 : 0
v - | = " ) = V(I dg' @ . 4.
d < q1> 0, d < ql> ( j)dq ® " (4.9)

Needless to say, these key derivations can be defined also in an intrinsic way,
i.e. without using coordinate descriptions (see the literature quoted before).

We are sufficiently equipped now to arrive at a classification result. For
the classification of derivations of A(7), one has to distinguish the following
types of derivations:

e type i,: derivations vanishing on functions; they are determined as in
the standard theory by some L € V(1) and of the form ip;

e type dY: derivations of the form d} = [iy,d"];

e type di: derivations of the form d} = [i,d"].

For the extension to vector-valued forms along 7, one further ingredient is
needed to characterize the non-zero derivations which vanish on the whole
of A(7). These are called derivations of type a,. If D is of degree r and of
type a,, it is determined by a tensor field Q € A"(7) @ V! (7) and we write it
as ag. To understand the meaning of such a derivation, it suffices to think
of a () which consists of only one term and hence is of the form @ = w® U,
with w € A"(7) and U € V!(7), and to know what the action is on basic
vector fields. In fact, for any X € X(7) we have,

o (X) =w U(X) (€ V'(1)). (4.10)

Theorem. Every derivation D of V (1), of degree r, has a unique decom-
position into the form:

D =iy, +dj, +dj, +aq (4.11)
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for some Ly € V™(1), Ly, L3 € V' (1), Q € N' (1) @ V(7).

In further developing a calculus of such derivations, one will inevitably start
computing commutators of the different types of derivations which entered
the discussion so far and, of course, look for other derivations which come
along when more specific data are being introduced. The computation of
commutators of some of these derivations can be rather messy. We limit
ourselves here to discussing just a few commutators which lead us directly
to additional features of interest.

Derivations of type d constitute a subalgebra of the graded algebra of
derivations. The interest of such a property is that it implies a bracket
operation on the vector-valued forms themselves. The mechanism works as
follows: starting from arbitrary elements L, Ly of V (7), there must be a
third one which determines the commutator of the corresponding d; deriva-
tions; this new vector-valued form is then said to be the bracket of L; and
Ly. The (graded) Jacobi identity of the algebra of derivations automatically
induces a Jacobi identity on the newly defined bracket. So, for the case at
hand, we introduce a vertical bracket [, |, on V (1), which is defined by the
relation

[di,.d},] = [VL17L2]V. (4.12)
In particular, for X, Y € X(7), the resulting operation explicitly reads:
) 0
(X, Y], = (XFV(Y?) — Y’“Vk(XZ))a -, (4.13)
q'L

This result strongly suggests to introduce, by analogy, a horizontal bracket
operation, which for the case of vector fields reads:
, 0
(X,Y], = (XFHL(Y") - Y’“Hk(Xl))? . (4.14)
ql
This bracket, however, does generally not satisfy a Jacobi identity because
the commutator of two di derivations need not be a derivation of the same
type. We will see in a moment that the obstruction is related to the curva-
ture of the connection.

One cannot seriously talk about the role of a connection in a theory without
looking at properties of some important tensor fields related to this connec-
tion, namely its torsion and curvature. So how do torsion and curvature
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make their appearance within the present approach? If we restrict ourselves
for a moment to derivations of the scalar forms A(7), it appears that the
commutator of d” and d" is of type d}, while the commutator of d” with it-
self has terms of type i, and d} only. Having proved these facts, one simply
must look at the vector-valued forms which determine these terms. They
appear to be related to the torsion 7' € V?(7) and the curvature R € V(1)
in the following way:

", dV] = dy, (4.15)
1
i[dH,dH] = —igvg + dj. (4.16)
Torsion and curvature of a connection on 7 : TM — M are of course
well known concepts, but are in the traditional theory (see e.g. de Ledn
and Rodrigues (1989)) not regarded as elements of V(7). To see that we
are essentially talking about the same concepts here, it suffices to compare

the coordinate expressions. The tensor fields T and R which make their
appearance in our approach read:

1ok ork\ .. 0

R:

1 /or% ori  or: or . 0
. AP — AT dg? NdgF @ —— . (4.18
2 <8qk ogi  ovt 7 ot k) 1 e oq’ (4.18)
Note in passing that the commutator of dV with itself is zero or, in other
words that d od” = 0. Moreover, the cohomology of d" is trivial because of
the linear vector space structure of the fibres where d" is essentially acting.

To finish this section, it is important to bring a special class of deriva-
tions into the spotlight, namely the so-called self-dual derivations of de-
gree 0. Such a derivation D is characterized by the property that for all
X € X(1), a € N(7):

D(X,a) = (DX, a) + (X, Da) . (4.19)

Via this different Leibniz-type property, the action of a self-dual derivation
automatically extends to tensor fields of any type. As an example of a self-
dual derivation of degree zero in the ordinary calculus of forms, think of the
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Lie derivative. So far, we have not come across any such derivation in our
discussion of derivations of V(7). In fact, none of the degree zero derivations
which would enter the decomposition of an arbitrary derivation of degree
zero need be self-dual. But we can start from one of these fundamental
degree zero derivations to construct new ones by a process of self-dualization
(even in two different ways). We will not enter into the details of these
constructions here, but instead give one simple example. According to the
general classification results, a degree zero derivation of type a, will be of
the form a;; for some type (1,1) tensor field U along 7. It clearly is not self-
dual, because it vanishes on 1-forms. But we can construct a new degree
zero derivation, say p; by letting p; coincide with a;, on X' (7), defining its
dual action on 1-forms via the property (4.19) and extending this further
to the whole of A(7) via the derivation property 3. It turns out that

5. Interface with the calculus on T'M and the
special case of a SODE connection

Recall that, having a connection and its associated projectors P, and Py,
every Z € X(T'M) has a unique decomposition:

Z=X"4+Y" forsome X,Y € X(7). (5.1)

Similar decompositions can be discovered for 1-forms, type (1,1) tensor
fields, etcetera. Part of the motivation for introducing the calculus along 7
came afterall from situations where different parts in such a decomposition
essentially come from the same object along 7. It is nevertheless equally
essential to keep in touch with the space where our dynamics lives and we
have previously discussed various ways for doing that by certain lifting pro-
cedures. A nice additional aspect is that by doing calculations with these
lifts on T'M, one can learn new features about the calculus along 7. This is
so because the result of such a calculation again has its decomposition into
pieces which come from objects along 7 and these in turn must inevitably
originate from operations on the objects one started from. To illustrate
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this idea, think for example of the horizontal and vertical lift of two vec-
tor fields along 7 and compute the Lie bracket of the resulting elements
XYY € X(TM). Look subsequently at the decomposition of the new
vector field and more specifically at the elements of X'(7) which define both
parts. What one discovers in this case are two degree zero derivations D%
and Dy on the C~(T'M)-module X (7) (see the second of the formulas be-
low). These derivations can subsequently be extended to the whole of V' (7)
by imposing self-duality in the way explained before.

For completeness, let us now first write down the full set of bracket relations
which are obtained this way.

(X" Y"] = (X, Y],)" 5.2)
(X" YY] = (DYY)" — (DyX)" (5.3)
(X" v" = ([X,Y],)" + R(X,Y)". 5.

As one can observe, if the curvature tensor field R and the horizontal and
vertical brackets would not have been introduced before, we would be forced
to think of them now.

In coordinates, D% and D% are determined by
DY F = X'Vi{(F), DYF = X"H;(F) (5.5)

on functions F', and by the following action on basic vector fields and basic
1-forms:

Yog e o0
Digs = XVl r  Didd =—X'VeTde".  (57)

Note that these derivations depend linearly on their vector argument. They
are called, for that reason, the vertical and horizontal covariant derivative.
An arbitrary self-dual derivation of degree zero D has a unique decomposi-
tion of the form

D =DY%+Dy +puy XY eX(r), Qe V(r). (5.8)
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Everything that has been said so far about derivations of V'(7) is valid with
respect to any chosen connection on 7 : TM — M. Naturally, we are
interested primarily in the case where this connection is the one coming
from a SODE and will now look at the additional features which apply for
this case.

To begin with, as one can easily see from the coordinate expression (4.17)
of the torsion and the formula (2.10) for the connection coefficients, a SODE
connection is torsion free, which implies, for example, that d" and d" will
commute.

Using the mechanism explained in detail above, the additional lifting pro-
cedures Jp : X(7) — X(TM) and It : A'(7) = AY(T M) produce a new self
dual derivation V. We have

JrX = X"+ (VX)", Ira=(Va)"+a", (5.9)

and the definition of V is completed if we add that for functions F', VF =
['(F). V is called the dynamical covariant derivative, a name which reflects
that it is the operator for controlling or describing the evolution of the
system. The basic coordinate expressions read,

O\ _ 9 i i g
v(@q’) =17 o V(dg') = —T'dq’ . (5.10)

Equally important is a type (1,1) tensor field ® € V1(7), called the Jacobi
endomorphism and defined e.g. via the decomposition

LrX" = (VX)"+o(X)". (5.11)

In coordinates:

_of!
oq?

@:@;ldqj@ai with @' =

3 —T3T, — (). (5.12)

The terminology for ® is inspired by the fact that it reduces to the linear
map with the same name which appears in the equation for geodesic de-
viation in the case of a spray (and its associated linear connection). For
more general SODE’s, the concepts of dynamical covariant derivative and
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Jacobi endomorphism were first introduced by Foulon (1986), in the frame-
work of a projectivized tangent bundle (and homogenized formulation of
the second-order system).

To get a flavour of the importance of @, it suffices to mention that ® com-
pletely determines the curvature of the connection and its dynamical evo-
lution: we have

d'® =3R,  d"®=VR. (5.13)

For later use, let us mention here finally another interesting type (1,1) tensor
field, usually called (in the traditional calculus on T'M) the tension (see
Grifone (1972a) or de Leén and Rodrigues (1989)). In our present context,
the tension is defined by

. or? 9
t= —d"T = (rg _Ukal}]:) dq%@a—qj, (5.14)

where T = v 9/0q" is the canonical vector field along 7 (the identity map in
the commutative diagram of Section 3). Obviously, this tensor can provide
useful information about homogeneity properties of the connection coeffi-
cients. It is, incidentally, not a tensor field which comes out of the blue
here; it would be forced upon us, for example, if one were to look at the
decomposition of the dynamical covariant derivative V.

6. The separability problem

The following preliminary considerations will help to understand the general
context and justification for the methodology which will be sketched in
this section. Generally speaking, it is clear that many of the properties of
connections are governed by properties of its torsion and curvature. The
idea to study dynamical systems via a connection also has a history: it
probably arises first in work of Cartan on projective connections (Cartan
(1937), see also Arnold (1983)). The SODE connection has no torsion and
its curvature, as we observed in the previous section, is determined by . It
should therefore not come as a surprise that ® is the key to many aspects
related to second-order dynamics.
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In Martinez et al (1993b) and Cantrijn et al (1996), we have studied first
separability properties of general type (1,1) tensor fields along 7. Features
of this study include: the characterization of tensor fields whose eigendis-
tributions are basic, i.e. are generated by vector fields on the base manifold
M, with the further property that these generators span an integrable dis-
tribution (in the sense of the Frobenius theorem); conditions under which
algebraic diagonalizability of the coefficient matrix of such a tensor implies
diagonalizability via a coordinate transformation on M; finally, the sepa-
rability of such a tensor, meaning that its eigenfunctions depend on the
coordinates of the corresponding eigendistributions only. We merely com-
ment here on a couple of propositions which illustrate each of these features.

Let U € V(1) be a diagonalizable tensor field and D a self-dual derivation.

Proposition. The eigendistributions of U are invariant under D if and
only if [DU,U] = 0. DU is then also diagonalizable with eigenfunctions
which follow from those of U by the action of D.

The bracket operation involved here is of course the ordinary commutator
of linear maps. The idea is to apply this result to the case where D is D%
or V. In the first case, we introduce the type (1,2) tensor field C}; defined
by

CH(X,Y) = [DYU,UI(Y), (6.1)

whose vanishing will imply that the eigendistributions of U are basic. If one
further requires that [VU, U] = 0, the implication will be that all eigendis-
tributions are also D%-invariant (for all X'). As a result, they will be simul-
taneously integrable and therefore U will be diagonalizable in coordinates.
In fact, it can easily be seen from the coordinate expression (5.10) that the
V-invariance will do something more in these new coordinates: it implies
that connection coefficients with indices referring to different eigendistribu-
tions will be zero. This is clearly a step in the right direction, because it
says that each of the right-hand sides f* of the second-order system can
only depend on a certain number of velocity variables (the ones coming
from a single eigendistribution). In particular, if all eigendistributions were
1-dimensional, we would already have complete decoupling with respect to
the velocity variables.

Proposition. Let U be a diagonalizable tensor field, for which C}; =
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0, [VU, U] =0, d"U = 0 and d"U = 0. Then, U is separable and the
degenerate eigenvalues are constant.

The further gain in this statement is that we are now looking at situations
were the eigenfunctions of U are either constant or depend on at most one
position and one velocity variable. To relate such a property also to the
f of our system, we clearly have to specify U now to be a tensor field
associated to the given SODE and there can be little doubt that this tensor
field must be the Jacobi endomorphism ®. Besides, if the origin of the extra
two conditions we have thrown in for the second proposition may look a bit
mysterious, things should become clear when we have ® in mind: indeed,
via the results (5.13), these conditions refer directly to the curvature of the
connection (note by the way that, in the case of ®, the first extra condition
implies the other).

Theorem. Assume that ® is diagonalizable and that: R =0, [V®,®| =0
and Cy = 0. Then the given system separates into single equations for
each 1-dimensional eigenspace of ® and into individual subsystems for each
degenerate eigenvalue, which is then necessarily constant. Each such multi-

dimensional subsystem further decouples iff the tension t is diagonalizable
and C{ = 0.

The argumentation we have developed before the formulation of this theo-
rem gives a fairly good idea already of the different steps in its proof. The
only situation which needs some further comments concerns the case when
some eigenvalues are degenerate. For each such eigenvalue, we are faced
with a subsystem with ® = I (u constant). Clearly, such a ® contains no
further information, hence we appeal to another tensor (the tension t) to
help us out, and we need less of the requirements for this tensor because
some are identically satisfied in view of what preceeds. Are we, however,
going to get stuck again if also the tension has degenerate eigenvalues? The
answer is no, because by that time we are looking at an affine connection
whose linear part has zero curvature, so there is a classical result (see e.g.
Crampin and Pirani (1986)) which tells us that coordinates exist in which
all connection coefficients are zero.

It may be worthwhile pointing out at this point that for the time-dependent
version of this theory the situation is more complicated when ® is a multiple
of the identity. The reason is that an expression like (5.14) does not behave
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well under time-dependent coordinate transformations (even when we write,
as we should, contact forms 0 instead of the d¢*). In fact, there is no tension
tensor in the time-dependent set-up: there is a canonical vector field T for
sure, but when we take its horizontal exterior derivative we get zero. For
general f?, the subsequent analysis therefore can become quite complicated
(see Cantrijn et al (1996)); fortunately, in most cases of interest the given
f* will polynomially depend on the velocity coordinates and there is an easy
way out then as has been reported in Sarlet (1996).

Coming back to the autonomous situation, some comments are in order now
about the practical applicability of this theory. There have been earlier re-
sults in the literature about complete or partial separability (see Ferrario
et al (1985,1987) and Kossowski and Thompson (1991)). They rely on the
existence of a tensor field or distribution with certain properties, but there
are no conditions available to test the given f? for the existence of such
quantities. Our results, on the contrary, lead to algebraic conditions which
can be tested directly on the given data. When a system passes all tests,
finding the right coordinates is most of the time a matter of integrating
integrable distributions which poses no great difficulties. The test compu-
tations, although algebraic in nature, may be very tedious however, so one
will normally not try to do it all by hand and use computer algebra packages
in support. Note also that the hardest computations come with the test of
diagonalizability. So although this is the first requirement in the theory, it
is the condition one will test at the very end, after all the vanishing tensor
conditions (which in principle are very straightforward) have been matched.

One should realize also that complete decoupling is a very strong require-
ment, so we cannot expect many systems to pass the tests! If some model
equations contain a number of as yet undetermined parameters or arbi-
trary functions, then there is a reasonable chance that a case of separability
may be detected for specific values of the parameters or specific choices of
the functions. We will not enter into such lengthy considerations here and
merely give a few illustrative examples below.

As a first example, consider the following non-linearly coupled system:

Gi=—arq1 +bqige + (k1 — 01 q1%) o (6.2)
Go = —azqa +cq’ + (ka — b2 2°) Gy (6.3
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Imposing all vanishing tensor requirements consecutively leads to the fol-
lowing restrictions: ¢; = ¢y =0,b =0, ¢ = 0, as = a;. The diagonalizability
of ® in the end further requires: kjks > 0. Decoupling then is achieved by
the transformation

Q1 =kaq1 + \kik2¢2 (6.4)
Q2 = —\/kik2 1 + k1 qo. (6.5)

This may look like a rather disappointing result, because decoupling appar-
ently forces this system to be linear.

Consider next a system of the following type

G = —C1Q1+b9f—aqg7 (6.6)
Go = —Coqa—2mqiqa.

The vanishing tensor conditions here imply (apart from the trivially decou-
pled case a = m = 0) that we must have: ¢; = ¢ and m+b = 0. Diagonaliz-
ability of ® requires ab to be negative. Setting s> = —ab, the transformation
@1 = bq1 + sq2, Q2 = bqy — squ decouples the equations. What we have
recovered here is one of the integrable cases of the well-known Henon-Heiles
system. Note, by the way, that another integrable case of this system is re-
lated to a form of separability, namely separability of the Hamilton-Jacobi
equation. This, however, is an entirely different matter, for which of course
it would also be interesting, if possible, to characterize it by conditions on
the given data.

Finally, we give a simple example to illustrate the relevance of the general-
ization of the theory to a time-dependent framework:
i = —Ago, A constant (6.8)
No time-independent transformation will decouple this system. However,
although the system itself is autonomous, it turns out that the following
time-dependent transformation does the job:
Q1 = (1—cosAt)q — (sinAt)qa, (6.10)
Q2 = (sinM)g + (1 —cosAt)gs . (6.11)
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7. Final comments

It is convenient at this stage to mention a few other fields of applications of
the geometric tools which have been reviewed. To that end, we first make
a digression about the quite remarkable fact that one can associate a linear
connection to the non-linear SODE connection.

A (linear) connection on a bundle 7 : E — M is a map D associating to
every X € X(M) a derivation Dx of the C*(M)-module of sections o of 7,
so that for f € C~(M):

Dx(fo) = fDxo+ X(f)o, (7.1)
Dyxo = fDxo. (7.2)

The bundle of interest for our purposes is the so-called pull-back bundle
w: 7TM — TM. An element of the manifold 7T'M can simply be
regarded as a triplet (¢, v, w), where (¢, v) is the point of T'M onto which it
projects under m and w is a vector tangent to M at the point ¢ = 7(q,v). It
should be clear by comparison with the diagram of Section 3 that sections
of this bundle are exactly vector fields along 7. For any Z € X (TM), with
decomposition

Z=X"4+Y", XY € X(1), (7.3)

an associated derivation Dy of X(7) is defined by
D, =D + DY, (7.4)

and is easily seen to satisfy the requirements (7.1-2). This idea for a lin-
ear connection was developed in the thesis of Martinez (1991) and reported
recently in Carinena and Martinez (1995). A more extensive discussion of
the same idea in the context of time-dependent SODE’s is given in Crampin
et al (1996). The main advantage of this approach is that it directly brings
some of the most important derivations and tensor fields to the forefront.
Some of the tensorial identities mentioned before can, for example, be un-
derstood in this picture as expressing Bianchi identities associated to the
linear connection. Clearly, one will also be interested in its curvature and,
in particular, in the meaning or interpretation of vanishing curvature.
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The curvature of this linear connection is determined for a great deal by ®
again, but also by a tensor field of the form

0=0r,dd ®d¢ @ (dqm ® £k> , (7.5)

with
g _ L P f*

gmlE =9 Quigum vt
It turns out that vanishing curvature for the linear connection roughly corre-
sponds to linearizability of the SODE or reducability to free motion. One of
the conditions then is # = 0, i.e. the equations can at most depend quadrat-
ically on the velocities. We refer to the above cited papers for details. Note,
however, that there is no contradiction here with, for example, the work of
Lie on linearizability (reported elsewhere in this volume): the reason why
linearizable equations here are bound to be polynomials of degree 2 in the
velocities (and not of degree 3) is that our framework does not allow for

coordinate transformations which also transform the independent variable
t.

(7.6)
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