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Abstract. We recall the notion of adjoint symmetries for second-order or-
dinary differential equations and sketch a recent evolution in the coordinate
free description of this concept. We further indicate how the theory can be
generalized to mechanical systems with non-holonomic constraints. For both
cases, a theorem is presented which links a subclass of adjoint symmetries
to first integrals (and Lagrangians). We then discuss how the theory can be
used for a systematic construction of first integrals and how the resulting algo-
rithm can be implemented in a computer algebra environment. The example
of the last section can be used as a benchmark for testing the performance of
programmes for the automatic computation of symmetries.

1 Introduction

What are adjoint symmetries and what is their potential use in the study of ordinary
differential equations? For an elementary introduction to this subject, let us fix the idea
by looking at the case of systems of second-order equations of the form

q̈i = f i(t, q, q̇) i = 1, . . . , n , (1)

to which we can associate the partial differential operator or vector field (summation over
repeated indices)

Γ =
∂

∂t
+ q̇i

∂

∂qi
+ f i(t, q, q̇)

∂

∂q̇i
. (2)

It is well known that the study of symmetries of differential equations is an important
tool in the process of solution, or at least reduction of the problem (see e.g. [2, 10]). Many
efforts have been devoted to the creation of computer algebra packages for the automatic
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(or “guided automatic”) generation of symmetries (see [5] for a review). Roughly speak-
ing, symmetries arise from solving the following Pde’s (related to the so-called linear
variational equations of (1)):

Γ2(µi)− ∂f i

∂q̇j
Γ(µj)− ∂f i

∂qj
µj = 0, i = 1, . . . , n . (3)

Adjoint symmetries likewise correspond to solutions αi of the adjoint equations of (3),
namely

Γ2(αi) + Γ

(
∂f j

∂q̇i
αj

)
− ∂f j

∂qi
αj = 0, i = 1, . . . , n . (4)

They are perhaps not as fundamental for the analysis of dynamical systems as symme-
tries are — one cannot identify a sort of direct action of adjoint symmetries on the flow
of the system — but they do carry relevant information, in particular with respect to
the conservation laws of the system. Specifically, the concept of adjoint symmetries pro-
vides an elegant unification of various ways of generating conserved quantities: for all
systems of ordinary differential equations, there is a one-to-one correspondence between
first integrals and a class of adjoint symmetries. From this point of view, one might say
that the more familiar (and perhaps more appealing) duality between first integrals and
symmetries, which is the content of Noether’s celebrated theorem for Lagrangian sys-
tems, is mathematically speaking a mere coincidence of the fact that the availability of a
Lagrangian for the system provides a mechanism for “raising the indices”.

In the next two sections, we will briefly describe the theory of adjoint symmetries in its
proper differential geometric setting. First we will sketch the evolution in the way we
have modelled geometrically the equations (4). Secondly, we will outline a generalization
of the theory to mixed systems of first- and second-order differential equations, which are
important for example in the context of mechanical systems subject to non-holonomic
constraints. In Sections 4 and 5, we discuss the implementation of algorithmic procedures
for the construction of adjoint symmetries and for the computation of the first integrals
which they may generate. The final section contains an example for which symmetries
and adjoint symmetries coincide and formulates a challenge towards the computer algebra
programmes for the construction of symmetries.

2 The geometrical characterization of adjoint sym-

metries for second-order equations

A time-dependent second-order system such as (1) is modelled by a vector field Γ on the
first jet extension J1τ of a bundle τ : E → IR. In natural coordinates on J1τ , Γ is of the
form (2) and is characterized by the properties 〈Γ, dt〉 = 1, 〈Γ, θi〉 = 0, where the 1-forms
θi = dqi − q̇idt are the so-called contact forms.

In our original conception (see [11, 13]), we put the following set of 1-forms in the spotlight

X ∗
Γ =

{
φ ∈ X ∗(J1τ) | LΓ

(
S(φ)

)
= φ− 〈Γ, φ〉 dt

}
, (5)
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where

S =
∂

∂q̇i
⊗ θi (6)

is the canonically defined vertical endomorphism of J1τ . Adjoint symmetries in fact were
defined to be 1-forms in X ∗

Γ , whose Lie derivative with respect to Γ belongs to the same set.
Since the dt-component of an adjoint symmetry α is irrelevant, we may as well normalize
it by requiring 〈Γ, α〉 = 0 (see also [3]). An adjoint symmetry then locally has the form

α = αi ω
i + Γ(αi) θ

i, with ωi = dq̇i − f idt, (7)

where the leading coefficients αi precisely are solutions of the Pde’s (4). An alternative
way of giving a coordinate free meaning to these equations is to regard adjoint symmetries
as being invariant 1-forms with the same normalization of the dt-component, i.e. 1-forms
β with the property LΓβ = 0, 〈Γ, β〉 = 0. Such forms were in fact called “Γ-basic
forms” in [13] and they too are determined locally by n leading coefficients satisfying (4).
There is a one-to-one correspondence between both interpretations of adjoint symmetries,
determined explicitly by the type (1,1) tensor field LΓS. For a recent full account of
translations of results from one picture into the image picture under LΓS, see [9]. Note
also that Ten Eikelder [17] used the term adjoint symmetries for invariant 1-forms before,
in the context of first-order (and in particular Hamiltonian) dynamics.

Whatever interpretation of adjoint symmetries on J1τ is preferred, it should be clear that
it is only the leading part of the 1-form under consideration which matters (similar things
in fact can be said also about symmetries of second-order equations). A more ‘economical’
calculus, in which redundant parts such as the second term in (7) would not occur, may
therefore be expected to focus right away on the essential operations which are important
for understanding the coordinate free meaning of symmetries and adjoint symmetries.
Recently, such a calculus has indeed been developed (see [6, 7, 14]) and involves, for the
time-dependent framework, the theory of derivations of scalar and vector-valued forms
along the projection π : J1τ → E. The algebra of differential forms along π, denoted by∧

(π), consists of forms which are locally spanned by the basis of forms on E, but have
their coefficients in C∞(J1τ) (similarly for the C∞(J1τ)-module X (π) of vector fields
along π). What emerges from this new calculus is that two operations are essential for
the description of adjoint symmetries: a derivation ∇ of degree zero, called the dynamical
covariant derivative, and a type (1,1) tensor field Φ, called the Jacobi endomorphism.

For calculational purposes, it suffices to know that the action of ∇ on forms along π is
determined by the following prescriptions:

∇(F ) = Γ(F ) for F ∈ C∞(J1τ), ∇dt = 0, ∇θi = −Γij θ
j, (8)

where the functions

Γij = −1

2

∂f i

∂q̇j
(9)

are connection coefficients of a non-linear connection which is in a natural way associated
to the given dynamical system Γ. The tensor Φ has the coordinate expression

Φ = Φi
j

∂

∂qi
⊗ θj, Φi

j = −∂f
i

∂qj
− ΓikΓ

k
j − Γ(Γij). (10)
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We can now give a geometrical formulation of adjoint symmetries in its most econom-
ical appearance: an adjoint symmetry of Γ is an element α ∈ ∧1(π), of the form α =
αi(t, q, q̇) θ

i, satisfying the equation

∇2α + Φ(α) = 0. (11)

It is of course possible to define intrinsically a map which transforms this latter notion
of adjoint symmetries into any of the original ones on the full space J1τ . For the record,
let us mention that symmetries in this terminology are certain vector fields X along π,
which satisfy

∇2X + Φ(X) = 0, (12)

whereby the action of ∇ on X (π) follows from the rules (8) by duality with respect to the
pairing between X (π) and

∧1(π).

Needless to say, when it comes down to doing actual calculations, working out (11) in
coordinates will just bring us back to the system of Pde’s (4). The main advantage and
motivation for the concise coordinate free description (11) is the identification of essential
geometric constructions, which will help to discover interesting special requirements which
can be imposed on adjoint symmetries, and which will also be a guidance for possible
generalizations such as the one we will report on in the next section.

Let us now formulate the theorem which is responsible for the link between first integrals
of the given system Γ and a subclass of its adjoint symmetries. To that end, we introduce
one more operator, a kind of vertical exterior derivative, which on functions F ∈ C∞(J1τ)
is defined as follows:

dVF =
∂F

∂q̇i
θi. (13)

What the theorem provides in the first place is the possibility of finding a Lagrangian L
for the system. But there is no guarantee that this function L will satisfy the necessary
regularity condition, and in fact, from the point of view of detecting first integrals, we are
most interested in the very degenerate case where L happens to be zero.

Theorem. Let α ∈ ∧1(π) be an adjoint symmetry of Γ which can be written as dVF

for some function F . Then, the function L = Γ(F ) (provided the matrix
(
∂2L/∂q̇i∂q̇j

)
is

regular) is a Lagrangian for the given system.

This very simple statement covers a large number of results, previously discussed in the
literature, concerning the generation of first integrals of Lagrangian systems (both of
Noether and of non-Noether type) and the generation of alternative Lagrangians. As
indicated, the case of interest in our present survey is the situation where Γ(F ) turns out
to be zero, thus yielding a first integral. Note that, conversely, if F is a first integral, then
α = dVF is an adjoint symmetry of Γ, so that in principle all first integrals can be obtained
by going through the construction of adjoint symmetries in a systematic way. Note also
that in such a case, the corresponding “Γ-basic form” β, living on J1τ , is simply the exact
form dF . In the particular situation where the system is known to have a Lagrangian
description with corresponding Poincaré-Cartan 2-form dθL, the mechanism of raising
indices, referred to in the introduction, is the formula X dθL = dF , which associates to
F a symmetry vector field X (modulo Γ), thus reproducing Noether’s theorem.
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3 Generalization for mixed systems of first- and second-

order equations

Consider now a system of ordinary differential equations of the form

q̈α = fα(t, qA, q̇β), α = 1, . . . , k, (14)

q̇a = Ba
α(t, qA) q̇α +Ba(t, qA), a = 1, . . . ,m. (15)

The main motivation for investigating such systems comes from the mechanics of La-
grangian systems with non-holonomic constraints, a subject which is very much in the
spotlights nowadays (see e.g. [8, 1] and the many references therein). The equations (15)
are then the constraint equations in a kind of normal form — and are indeed linear in the
velocity coordinates in most practical applications — whereas the second-order equations
(14) are the reduced equations which emerge after elimination of the Lagrangian multipli-
ers. Clearly, there are two sorts of coordinates involved in the above equations: those with
a Greek index are in a way the free coordinates, while the ones with a lowercase Latin
index are constrained in their derivatives (the uppercase index is used to cover both sets,
i.e. an index like A runs from 1 to n = k + m). In [12], we have presented a geometrical
framework for the description of such systems which involves, among other things, an
intrinsic way of constructing directly the reduced set of equations (14,15) out of a given
Lagrangian on the unconstrained coordinate-velocity space and the constraints. We will
limit ourselves here to a sketch of the construction of all geometrical objects which are
needed to discuss adjoint symmetries, in a way which is similar to the presentation at the
end of the previous section. In that respect, equations (14,15) need not necessarily be
thought of as coming from non-holonomic mechanics.

The distinction between the two types of coordinates geometrically means that the con-
figuration space E, with coordinates (t, qA) is fibred over a manifold M with coordinates
(t, qα) and, as the notations for these coordinates indicate, both spaces are fibred over IR.
We denote the corresponding bundle projections as follows: π : E → M , τ0 : M → IR
and τ1 : E → IR. As a result of the given constraints (15), it is clear that only a certain
submanifold of the space J1τ1 will matter this time. Geometrically, these constraints
define a connection on the bundle π : E → M , the functions Ba

α(t, qA) and Ba(t, qA)
being precisely the connection coefficients. One way of interpreting such a connection is
that it defines a section σ of the bundle J1τ1 over the pull back bundle π∗J1τ0, expressed
in coordinates by the relations (15). We thus define our velocity-state space to be the
submanifold J1

σ = σ(π∗J1τ0) of J1τ1. Natural local coordinates on this space are the ones
coming from π∗J1τ0, i.e. (t, qα, qa, q̇α). There are two type (1,1) tensor fields which are
well defined on it, namely

S =
∂

∂q̇α
⊗ θα, and N =

∂

∂qa
⊗ ηa. (16)

The forms θα = dqα − q̇αdt are the contact 1-forms inherited from J1τ0, the ηa = dqa −
Ba
αdq

α −Badt can be called the constraint 1-forms.
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We say that a second-order system on the manifold J1
σ is a vector field Γ, satisfying the

requirements
〈Γ, dt〉 = 1, 〈Γ, θα〉 = 0, 〈Γ, ηa〉 = 0. (17)

In coordinates, such a vector field is of the form

Γ =
∂

∂t
+ q̇α

∂

∂qα
+ (Ba

β q̇
β +Ba)

∂

∂qa
+ fα(t, qA, q̇β)

∂

∂q̇α
, (18)

and thus precisely models differential equations such as (14,15). Similarly to the situation
in the preceding section, the vector field Γ comes with its own non-linear connection on
the bundle ρ : J1

σ → E, the most important coefficients of which are given by

Γαβ = −1

2

∂fα

∂q̇β
. (19)

Compared to the case of pure second-order equations, the model here, in some sense,
becomes richer because we now have two connections at our disposal. This time, the
most economical way of giving a coordinate free description of the notions of symmetries
and adjoint symmetries, will make use of elements of the ‘calculus along ρ : J1

σ → E’.
An appropriate local basis of 1-forms along ρ is given by {dt, θα, ηa}. The dynamical
covariant derivative for this theory is found to have the following action on this basis

∇(dt) = 0, ∇θα = −Γαβ θ
β, ∇ηa =

∂

∂qb
(Ba

β q̇
β +Ba) ηb, (20)

and is completely determined if we further specify that on functions F , as before, we
have ∇(F ) = Γ(F ). The other important operation of the preceding section, namely the
Jacobi endomorphism, is in fact a kind of time-component of the curvature tensor of the
connection involved. It will not come as a surprise therefore, that we will distinguish two
type (1,1) tensor fields in the present case, namely

Φ = −
[
Xα(fβ)+ΓγαΓβγ+Γ(Γβα)

]
Xβ⊗θα−

∂fβ

∂qa
Xβ⊗ηa, where Xα =

∂

∂qα
+Ba

α

∂

∂qa
, (21)

and

Ψ = Ca
βθ

β ⊗ ∂

∂qa
=
[
T(Ba

β)−Xβ(Ba
αq̇

α +Ba)
]
θβ ⊗ ∂

∂qa
, (22)

where T is the “total time-derivative operator”

T =
∂

∂t
+ q̇α

∂

∂qα
+ (Ba

αq̇
α +Ba)

∂

∂qa
(23)

which, technically speaking, is a canonically defined vector field along ρ. For more details
about all these constructions, see [12].

We are now in a position to formulate the equation for adjoint symmetries, in a way
similar to (11). Consider an element α ∈ ∧1(ρ) which is of the form

α = α + α̃ = aαθ
α + caη

a. (24)
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Note that both terms in this splitting of α have an intrinsic meaning. We say that such
an α is an adjoint symmetry of Γ if it satisfies:

∇2α−∇α̃ + (Φ + Ψ)(α) = 0. (25)

Explicitly, this condition gives rise to the following system of mixed first- and second-order
Pde’s for the unknown coefficients aα and ca:

Γ2(aα) = 2Γ(aβΓβα) + aβXα(fβ)− caCa
α, (26)

Γ(ca) = −aα
∂fα

∂qa
− cb

∂

∂qa
(Bb

αq̇
α +Bb). (27)

Not surprisingly, these are also the equations which characterize the invariance under Γ of
a certain 1-form on the space J1

σ . If, by analogy with (13), we define for every F ∈ C∞(J1
σ)

dVF =
∂F

∂q̇α
θα +

∂F

∂qa
ηa, (28)

then one can easily prove the following result.

Theorem. Let α ∈ ∧1(ρ) be an adjoint symmetry of Γ which can be written as dVF for

some function F . Then, the function L = Γ(F ) (provided the matrix
(
∂2L/∂q̇α∂q̇β

)
is

regular) is a Lagrangian for the given system.

What is meant here by a Lagrangian for a system of equations such as (14,15), is that the
second-order equations in fact are not coupled with the first-order ones and are equivalent
to the Euler-Lagrange equations coming from a function L(t, qα, q̇α). Needless to say, we
are at the moment more interested in the degenerate case of this theorem where Γ(F )
turns out to be zero: we then find a first integral of the equations (14,15) without an
implication on some form of decoupling.

To conclude this survey of the theory, let us mention that work is in progress concerning
a further generalization to the case of non-linear constraints, say of the form

q̇a = ga(t, qA, q̇α). (29)

Without going into details of the geometry of the problem, it looks like most results
will have a straightforward generalization in the sense that they may even look formally
identical, provided we make the following identifications

Ba
α =

∂ga

∂q̇α
, Ba = ga −Ba

β q̇
β. (30)

4 An algorithmic procedure for the construction of

adjoint symmetries

Solving Pde’s such as (4) or (26,27) in all generality is quite impossible, but it is usually
fairly easy to obtain a few particular solutions, especially the ones for which the unknown
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functions are assumed to be independent of the velocity coordinates. In the context of
symmetries, such a simplification would amount to constructing the point symmetries
of the system. The reason why it is generally easy to do this, even by hand, is in the
first place that in most practical applications, the right-hand sides f i or fα of the given
equations will have a polynomial dependence on the velocities. As a result, coefficients of
independent monomials in the Pde’s under consideration have to be put separately equal
to zero, yielding an overdetermined system of linear partial differential equations which
becomes quite manageable. Under the same assumption on the given f i or fα, it is clear
that one may gradually venture the construction of more complicated particular solutions,
by allowing the unknown functions to have a higher-degree polynomial dependence on the
velocities. In principle, this process could be carried out step by step so that at least the
adjoint symmetries (or symmetries) with such a polynomial structure could be constructed
in an algorithmic way. Obviously, however, with increasing degree of the polynomial
expressions and increasing number of degrees of freedom, the number of conditions to be
tackled rapidly grows out of hand and the only hope to pursue the procedure beyond the
first step is assistance of computer algebra.

There are clearly two distinct steps which need to be implemented: the first one is ‘setting
up the determining equations’, the second one is ‘solving these equations’.

Setting up the determining equations requires a procedure which should take care of the
following manipulations. After loading the data of the given system, the user should
simply choose a number, reflecting the ansatz concerning the degree of polynomial depen-
dence of the unknown coefficients of an adjoint symmetry. The programme should then
take over to create the required polynomial expressions, substitute them in the master
equations (4) or (26,27), single out the coefficients of all independent monomials in each
of these equations and finally make a list of all resulting expressions which, when put
equal to zero, will make up the set of determining equations. It is certainly helpful if
this final list is put together in a clever way, meaning that the coefficients of the highest
degree terms of all master equations should be on top of the list, because they usually
constitute the simplest equations which one would normally solve first.

It does not really require much programming skill to write procedures which take care of
such manipulations of expressions: it can all be done at the algebraic level of the computer
algebra package. We have previously written such a programme in Reduce and reported
on it in [15]. That little programme, however, could greatly benefit from an update. For
a start, the Reduce environment has evolved of course, and this would allow to make
the interaction with the programme more user friendly. Secondly, the old version is based
on the calculus of differential forms on the full space J1τ and makes use for that purpose
of Schruefer’s user package Excalc. We would prefer to make an update which more
closely links up with the calculus along π : J1τ → E. Afterall, it should not be difficult
to implement the action of the operators ∇ and Φ on forms and vector fields along π,
the way they are determined by (8–10). There is then no need to load Excalc first.
Finally, we of course would like to build in the possibility of treating also mixed first- and
second-order equations, along the lines of the theory sketched in the previous section.

Solving the determining equations is an entirely different matter and does require a great
deal of programming expertise. Fortunately, the nature of this problem for adjoint sym-

8



metries is exactly the same as the corresponding one for symmetries. One may therefore
hope that the many efforts which have been devoted to solving the determining equa-
tions for symmetries (see the review [5]) need not be duplicated for the study of adjoint
symmetries. All one really wants is an interface which allows stepping in with ones own
determining equations at the level of the solving routines of the existing software for sym-
metries. At the time of the submission of [15], the only programme which had such an
interface (to our knowledge) was Head’s muMATH package LIE (see [4]), the latest up-
date of which is version 4.4. Since then, the situation has improved and we know at least
of the Reduce package DIMSYM by Sherring [16] which offers the same facilities and
performs well. We would hope that there are similar developments in the other popular
symbolic software packages.

As a final remark towards the expert programmers: it seems to me that an interesting tool
for the user of the solving routines would be an option to specify that a certain set of the
unknown functions should not simultaneously become zero. The reason is clear: we want
to start searching for the simplest adjoint symmetries first and then gradually step up the
level of complexity by increasing the degree of polynomial dependence on the velocities.
In doing so, it is of course a waste of time if the programme repeats constructing the
earlier obtained solutions all the time.

5 The construction of first integrals

As a preliminary remark, it should be observed that the construction of first integrals
which have a polynomial structure does not necessarily require an approach via adjoint
symmetries. In fact, the equation Γ(F ) = 0 could itself be regarded as the master equa-
tion, from which one could generate determining equations much in the same way as
explained in the previous section. However, our general theorem about the subclass of
adjoint symmetries which are of the form dVF tells us that other interesting information
might be obtained from adjoint symmetries. We may thus as well aim at setting up proce-
dures which will test the possible generation of first integrals or Lagrangians at the same
time. Here, we are again facing problems which anyone can implement in the computer
algebra package of his choice.

A Reduce-programme for running such tests and for the actual computation of the first
integral or Lagrangian if the test is positive, was also presented in [15]. The same remark
applies, however, concerning the need of an update which incorporates the generalizations
of Section 3 and runs outside the EXCALC environment. So, let us take the situation
of Section 3 to indicate briefly how such a programme can be conceived. Obviously, the
first few steps will prompt the user to provide the data of the given system and of some
candidate for an adjoint symmetry, either interactively or via an input file. In our present
situation, the data of the system will consist of the dimensions k and m of the equations
(14,15) and of the functions fα, Ba

α, B
a in their right-hand sides. The data of an adjoint

symmetry will be the coefficient functions aα and ca of the 1-form (24), which have been
obtained via the methods described in the previous section. It cannot harm then to test
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first of all whether these data make sense, i.e. to verify whether the aα, ca satisfy the
master equations (26,27). Such a test is easy to implement.

The next step is to test for the existence of a function F (t, qA, q̇α), such that

aα =
∂F

∂q̇α
, ca =

∂F

∂qa
. (31)

Formally, this amounts to thinking of a 1-form which looks like aα dq̇
α + ca dq

a, and
verifying that it is closed, with the coordinates (t, qα) treated as parametric variables. If
the test turns out to be positive, the programme should say so, but should at the same
time proceed to compute a corresponding function F . This can in general be done by
instructing the following formula for this computation:

F = q̇α
∫ 1

0
aα(t, qβ, sqa, sq̇β)ds+ qa

∫ 1

0
ca(t, q

β, sqb, sq̇β)ds. (32)

There are cases where this formula will not be appropriate, for example when the inte-
grands have a singularity at the origin in the (qa, q̇α) coordinates. But there are also more
innocent situations in which the machine might fail to work out the integral. It will then
normally be very simple to intervene and do the calculation by hand, starting from the
relations (31). Once an F has been computed, the computer will certainly be happy to tell
you what the corresponding function L = Γ(F ) looks like. At this point, an extra routine
must be called upon to see whether we are in the situation of a first integral. Indeed, it
is clear that a function F for which (31) holds is not unique and is in fact determined
by (32) to within an arbitrary function f of the parametric coordinates (t, qα). It may
thus well be that Γ(F ) is not zero, even though we are in the favourable circumstances
for finding a first integral. This will be the case if and only if a function f(t, qα) exists,
such that Γ(F −f) = 0. This in turn is equivalent to saying that L = Γ(F ) is a total time
derivative and, as is well known from the calculus of variations, a necessary and sufficient
condition for this to be true, is that L sits in the kernel of the Euler-Lagrange operator.
In conclusion, the final stage in the automated process will be to test whether we have

∂L

∂qa
≡ 0, and

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
≡ 0. (33)

If the answer is yes, we know that there exists a function f(t, qα) such that

∂f

∂qα
=

∂L

∂q̇α
,

∂f

∂t
= L− q̇β ∂L

∂q̇β
. (34)

Hence, f can be computed via the formula

f = qα
∫ 1

0

∂L

∂q̇α
(st, sqβ) ds+ t

∫ 1

0

(
L− q̇α ∂L

∂q̇α

)
(st, sqβ) ds (35)

and the first integral is given by F − f .
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6 A benchmark example

For an instructive and illustrative example, we go back to the case of pure second-order
equations as discussed in Section 2. Consider the following system with three degrees of
freedom, which physically could represent the motion of a charged particle in some rather
special magnetic field:

q̈1 = −q1q̇3 (36)

q̈2 = −q2q̇3 (37)

q̈3 = q1 q̇1 + q2 q̇2. (38)

This system in fact is self-adjoint, so that the equations (3) for symmetries and (4) for
adjoint symmetries coincide. As a result, the example is well suited as a test case for
existing packages for the construction of symmetries. A Lagrangian for the system is
given by

L =
1

2

[
(q̇1)2 + (q̇2)2 + (q̇3)2

]
− 1

2
q̇3
[
(q1)2 + (q2)2

]
. (39)

Presumably, every computer algebra programme for the determination of symmetries will
be happy to tell us that the system has 4 independent point symmetries corresponding
to the following generators (only their leading parts are listed):

X1 =
∂

∂t
(40)

X2 = q2 ∂

∂q1
− q1 ∂

∂q2
(41)

X3 =
∂

∂q3
(42)

X4 = t
∂

∂t
− q1 ∂

∂q1
− q2 ∂

∂q2
− q3 ∂

∂q3
. (43)

If we were to regard these as adjoint symmetries and submit them to the tests for the
generation of first integrals (or Lagrangians), we would obtain the following results: the
first three generators give rise to the following first integrals (which reflects that they are
actually Noether symmetries with respect to the Lagrangian (39)),

F1 =
1

2

[
(q̇1)2 + (q̇2)2 + (q̇3)2

]
(44)

F2 = q2 q̇1 − q1 q̇2 (45)

F3 = q̇3 − 1

2

[
(q1)2 + (q2)2

]
, (46)

whereas the fourth one produces a Lagrangian, which is however simply a constant mul-
tiple of the one we already know.

Suppose now we move to the next step in our algorithmic process, namely the computation
of symmetries (or adjoint symmetries) with leading coefficients which are of degree 1 in
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the velocities. A preliminary remark is in order here. It is well known that symmetry
generators fall into equivalence classes modulo multiples of the given dynamical vector
field and that one can use this freedom to pick out a representative in each class having
zero ∂/∂t component. Explicitly, this amounts to replacing a generator like

X = τ
∂

∂t
+ ξi

∂

∂qi
+ · · · by X = (ξi − q̇iτ)

∂

∂qi
+ · · · .

Up to now, this transition was tacitly assumed in our theoretical discussion: with reference
to the Pde’s (4), for example, the functions µi would precisely correspond to ξi − q̇iτ . If
the ansatz about the polynomial degree concerns the µi, it is clear that the generators
X1 and X4 would in fact turn up only at the stage of ‘leading coefficients, linear in
the velocities’. It is, however, just as easy to implement the step by step generation of
determining equations with respect to the components τ and ξi and this is the approach
we will continue here.

Now, a little bit of thinking reveals that we should be able to find at least 12 generators
at the stage of (τ, ξi) which are of degree 1. Indeed, the product of a symmetry generator
with a first integral is again a symmetry generator and we have found two first integrals, F2

and F3 which are themselves linear in the velocities. Therefore, not only should we recover
the 4 point symmetries, but also 8 new generators, obtained from them via multiplication
with either F2 or F3. The question is: “Are there more than these 12 generators at that
stage?”.

It is our feeling that finding these 12 generators — which a theoretician will know with-
out further computations — without interference of the user of the package, is a good
challenge for the authors of code for the automatic generation of symmetries. We used
this benchmark while testing beta-versions of Sherring’s DIMSYM. In the end, this pro-
gramme gloriously passed the test and produced in effect 13 generators. The surprise one
reads:

X13 = 2t(F3X2 − F2X3) + 2(2q̇1 + q1q3)
∂

∂q2
− 2(2q̇2 + q2q3)

∂

∂q1
. (47)
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