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1 Introduction

There has recently been a considerable amount of interest in the study of non-
holonomic mechanics (see [1, 2, 5, 10, 11, 12, 15, 18, 19, 24, 33] for a sample of
geometrical approaches). In our earlier work [28, 31] we considered the case of
Lagrangian systems subject to linear non-holonomic constraints, and we paid most
of our attention to what could be called generalized Čaplygin systems, which is the
case where the constraints are generated by a connection on an auxiliary bundle.
One of us also discussed how some aspects of this work can be carried over to
the more general situation of non-linear constraints [26, 27]. The equations under
consideration then are of the form

q̈α = fα(t, qβ, qb, q̇β) α = 1, . . . , k

q̇a = ga(t, qβ, qb, q̇β) a = 1, . . . ,m.

In this earlier work, we saw how some of the constructions familiar from the geo-
metrical study of unconstrained second-order systems could also be defined in the
new situation. This is, in particular, the case for the dynamical covariant derivative
and the Jacobi endomorphism, two concepts which play a key role in the geomet-
rical analysis of second-order dynamics (see, for example, [4, 9, 14, 23, 30]). A
large part of our approach to non-holonomic systems, though aimed at unravelling
coordinate free properties, was carried out on the basis of coordinate calculations.
A more geometrical and comprehensive construction of the basic ingredients would
certainly, therefore, be of interest. It has moreover been observed in [7] that the
dynamical covariant derivative is just one component of the covariant derivative
operator defining some linear connection, and that the Jacobi endomorphism is in
fact a component of the curvature of this connection.

These are sufficient motivations for trying to put our earlier work in a broader
perspective. In doing so in the present paper, we will look at the picture from a
slightly different point of view. Rather than considering the non-holonomic con-
straints as given, and the second-order differential equations as resulting from a
larger system subjected to these constraints, we shall instead start with a mixed
system of coupled first- and second-order equations treated on the same footing.
There are indeed other applications which could be modelled by such type of equa-
tions (see e.g. [17]) and which need not have anything to do with the concept of
constraints. The combined system of equations of the general form displayed above
will be shown to define a pair of related connections on a fibre-product bundle, and
the whole issue is to understand how this double structure can be put to work to
detect the appropriate geometrical tools for analysing the dynamics. The most
important of these tools is a collection of degree zero derivations, of which the dy-
namical covariant derivative is only one component. Unlike the theory developed
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in [7], however, the fundamental derivations will not all be of a covariant derivative
type and accordingly will no longer comprise a linear connection. They do give
rise, nevertheless, to corresponding exterior derivatives and associated tensor fields
in much the same way as for pure second-order equations. As well as unravel-
ling the interplay between these geometrical concepts, our further aim will be to
apply this calculus to specific problems: as an example we shall prove a general-
isation, directly in the appropriate framework and without relying on coordinate
calculations, of some theorems about adjoint symmetries which were initiated in
[28].

The structure of this paper is as follows. In Section 2 we describe the geometrical
framework in which mixed equations are going to be studied, and introduce the
associated (non-linear) connections. Section 3 deals with local frames adapted to
these connections and discusses their curvature. Some properties of more general
situations where two such parametric connections are available are developed in
Appendix A. In Section 4 we examine the extent to which a linear connection, which
for pure second-order systems can be used to generate the operators we need for
our analysis, may also make an appearance in the present situation. Section 5 is
about exterior derivative operators obtained from the derivations of degree zero
introduced in the preceding section, and some aspects of the calculus related to
such derivations. In the final section we apply this calculus to the description of
symmetries and adjoint symmetries of mixed systems. Some further generalities
about the nature of the derivations involved are briefly discussed in Appendix B.

Remark: notations in what follows are usually chosen to correspond with those
in previous papers, but the present point of view will nevertheless require some
changes.

2 The dynamical vector field and its two associ-

ated connections

Let E be the configuration manifold of a system, and let π : E →M and τ0 : M →
IR be fibrations; denote the composition of the two projections by τ1; let k+1 denote
the dimension of M and m the fibre dimension of E → M . We shall consider the
pull-back manifold π∗J1τ0 and denote its two projections by ρ : π∗J1τ0 → E and
π1 : π∗J1τ0 → J1τ0. The type of differential equations we are going to study can
most directly be viewed as being given by a vector field Γ on π∗J1τ0 satisfying the
conditions that 〈Γ, dt〉 = 1 (where t is the coordinate on IR) and that S(Γ) = 0
(where S is the vertical endomorphism from J1τ0 transported to π∗J1τ0). This is
very similar to the framework described in [27, 28], the essential difference being
that in the earlier work we considered a section of the bundle J1τ1 → π∗J1τ0 as
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given, and took Γ to be defined instead on the image of that section, which is of
course diffeomorphic to π∗J1τ0.

Let coordinates on E be (t, qα, qa) and those on M be (t, qα). The vertical endo-
morphism on J1τ0 is

S = (dqα − q̇αdt)⊗ ∂

∂q̇α
,

and the conditions satisfied by Γ restrict it to have coordinate representation

Γ =
∂

∂t
+ q̇α

∂

∂qα
+ ga(t, qβ, qb, q̇β)

∂

∂qa
+ fα(t, qβ, qb, q̇β)

∂

∂q̇α
.

As in [27], several connections arise in this situation. One way to discover them,
as we learn from the standard treatment of second-order dynamics ([6, 8, 16]) is to
study the eigenspaces of the tensor field LΓS. One readily verifies here that this
tensor field has a k-dimensional eigenspace corresponding to the eigenvalue −1,
another k-dimensional eigenspace with eigenvalue +1, and an (m+ 1)-dimensional
eigenspace (containing Γ) with eigenvalue 0. Comparing this with the usual situ-
ation as described (for time-dependent systems) in [8], one is led to think of the
first eigenspace, complemented with Γ, as characterizing “horizontality”. There
seem to remain then two different sorts of complementary vertical spaces, one of
dimension k and another one of dimension m, corresponding of course to the fi-
bration of E over IR in two stages. To be specific, there is a connection σ on the
bundle π1 : π∗J1τ0 → J1τ0 with a vertical projector which we shall denote by N ;
secondly there is a connection χ on the bundle ρ : π∗J1τ0 → E with a vertical
projector which we shall denote by P V . The tensor field N measures the deviation
from “unconstrained” second-order systems and is defined by

N = I − (LΓS)2 − dt⊗ Γ .

P V can then be written as

P V = 1
2
(I + LΓS −N − dt⊗ Γ).

It is straightforward to check that N2 = N and (P V )2 = P V , and that Im N = Vπ1

and Im P V =V ρ. In coordinates,

N = (dqa −Ba
αdq

α − (ga − q̇αBa
α)dt)⊗ ∂

∂qa

P V = (dq̇α + Γαβdq
β − (fα + q̇βΓαβ)dt)⊗ ∂

∂q̇α

where the coefficients Ba
α and Γαβ are given by

Ba
α =

∂ga

∂q̇α
, Γαβ = −1

2

∂fα

∂q̇β
;

the sign of Γαβ is chosen to be consistent with previous work in this area.
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In this framework, the pull-back manifold π∗J1τ0 is of course just the fibre product
E ×M J1τ0. The connections σ and χ share a quite remarkable property: they
are connections on one of the factors of the fibre product, parametrised by the
other. To elaborate on this, observe for example that σ, viewed as a section
of J1π1 → π∗J1τ0 and with obvious notations for the fibre coordinates of this
fibration, is determined by the relations qat = ga− q̇αBa

α, q
a
α = Ba

α, q
a
α̇ = 0 (as may

be seen from the coordinate representation of N). This means that σ actually takes
its values in J1π ×E π∗J1τ0 and so defines a map σ̌ : π∗J1τ0 → J1π. A perfectly
symmetric situation applies to the connection χ on the bundle ρ : π∗J1τ0 → E as
may be seen from the lack of dqa-terms in the coordinate expression for P V . The
general situation of two such connections on fibre-product bundles is described
in Appendix A. It is shown there how the given connections give rise to a third
“diagonal” connection and how the curvature of this induced connection relates
to the curvatures of the original ones. In the present situation the “diagonal”
connection is a connection κ on π ◦ ρ : π∗J1τ0 → M , with horizontal projector
PH = I −N − P V .

For completeness, we end this section by making explicit the link with the geometric
picture underlying our previous publications in this area [27, 28]. Let (p, j1

t γ)
represent an arbitrary point in π∗J1τ0, where γ is a curve in M such that π(p) =
γ(t), and consider the point σ̌(p, j1

t γ) ∈ J1π. Let φ : M → E be such that
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j1
γ(t)φ = σ̌(p, j1

t γ), i.e. we have ∂φa/∂t = ga− q̇αBa
α, ∂φ

a/∂qα = Ba
α. Then j1

t (φ◦γ)

is a point in J1τ1 and, carrying out this construction for each point in π∗J1τ0, it is
clear that we obtain a section of J1τ1 → π∗J1τ0. In [27, 28], we took the image J1

σ

of this section to be our evolution space. Whereas this is the right space to look
at when we think of non-holonomic systems and want to relate, for example, a
free Lagrangian system living on J1τ1 with its reduced dynamics on the constraint
submanifold, π∗J1τ0 is the more natural environment when the starting point is a
general mixed system of first- and second-order equations. Since both spaces are
diffeomorphic, we are using ρ this time to denote the projection of π∗J1τ0 (rather
than J1

σ) onto E and we are now ready to enter into an analysis of interesting
operations and tensor fields along ρ.

3 Vector fields along ρ and frames adapted to the

connections

Solutions of the given mixed system on π∗J1τ0 will be curves in E, and studying
properties of such curves will therefore give rise in a natural way to maps from
π∗J1τ0 to tangent vectors to E. This is why, having the calculus adapted to pure
second-order equations in mind [21, 22, 30], we are now led to single out the
fibration ρ. Associated to each mixed system Γ as defined above, there is a “total
time derivative” vector field along ρ defined by TΓ = Tρ ◦ Γ:

TΓ =
∂

∂t
+ q̇α

∂

∂qα
+ ga

∂

∂qa
.

As in the general situation described in Appendix A, the connection σ defines a
decomposition of each vector field X along ρ, although here the presence of the
distinguished vector field TΓ allows us to carry the decomposition a little further.
In general we may write X = X̂+X̃, but here we may also put X̂ = 〈X̂, dt〉TΓ+X,
and as 〈X, dt〉 = 〈X̂, dt〉 we have

X = 〈X, dt〉TΓ +X + X̃.

We will denote the C∞(π∗J1τ0)-module of vector fields along ρ by X (ρ) and the
submodules corresponding to the above decompositions by X̂ (ρ), X (ρ) and X̃ (ρ)
respectively. Notations such as X̂, X, Ỹ , . . . will always refer to vector fields along
ρ, belonging to the corresponding submodule.

A local basis for X (ρ) is given by

TΓ, Xα =
∂

∂qα
+Ba

α

∂

∂qa
,

∂

∂qa
.
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TΓ and Xα, by the way, are the horizontal lifts, via the parametric connection σ̌,
of the local basis of vector fields (T = ∂/∂t+ q̇β∂/∂qβ, ∂/∂qα) along the projection
π ◦ ρ. For a general X along ρ, we have

X = ξαXα, X̃ = ξa
∂

∂qa
.

The dual basis for
∧1(ρ), the set of 1-forms along ρ, is given by

dt, θα = dqα − q̇αdt, ηa = dqa − ga dt−Ba
αθ

α .

By analogy, we denote the submodule spanned by the θα by
∧1

(ρ), and the span

of the ηa by
∧̃1

(ρ).

For a local frame of vector fields on π∗J1τ0, adapted to the connections and to the
vector field Γ, we must keep track of two kinds of verticality, spanned by vector
fields which we denote Va and Vα respectively; we denote the remaining basis of
horizontal fields by Hα. A suitable basis is therefore given by

Γ, Hα =
∂

∂qα
+Ba

α

∂

∂qa
− Γβα

∂

∂q̇β
, Va =

∂

∂qa
, Vα =

∂

∂q̇α

and the dual basis of 1-forms on π∗J1τ0 is

dt, θα, ηa, φα = dq̇α − fα dt+ Γαβθ
β.

With respect to these bases, we have

PH = dt⊗ Γ + θα ⊗Hα, P V = φα ⊗ Vα, N = ηa ⊗ Va.

For computing local expressions (such as components of the Nijenhuis tensors of
the various projectors which are relevant here), it is very helpful to have relations
for the brackets of these basis vector fields. The most useful ones are:

[Hα, Hβ] = (Hα(Bb
β)−Hβ(Bb

α))Vb − (Hα(Γγβ)−Hβ(Γγα))Vγ

[Γ, Hα] = ΓβαHβ + Ψb
α Vb + Φβ

α Vβ ,

where we set

Φβ
α = −

(
Hα(fβ)− ΓβγΓγα + Γ(Γβα)

)
= −

(
Xα(fβ) + ΓβγΓγα + Γ(Γβα)

)
Ψb
α = Γ(Bb

α)−Hα(gb)− ΓβαB
b
β = Γ(Bb

α)−Xα(gb).

We shall see in Section 5 that these expressions are the components of vector-valued
forms along ρ. Needless to say, these coefficients must be related to components of
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the curvature of the connections involved. The curvature of a connection is often
defined as being the Nijenhuis tensor of its horizontal projector or, equivalently,
the Nijenhuis tensor of its vertical projector. We find that

NN = Ψc
β dt ∧ θβ ⊗ Vc + 1

2
(Hα(Bc

β)−Hβ(Bc
α)) θα ∧ θβ ⊗ Vc −

∂Bc
α

∂q̇β
θα ∧ φβ ⊗ Vc

NPV = Φγ
β dt ∧ θβ ⊗ Vγ + 1

2
((Hα(Γγβ)−Hβ(Γγα)) θα ∧ θβ ⊗ Vγ

+

(
∂Γγα
∂qb

θα − ∂fγ

∂qb
dt

)
∧ ηb ⊗ Vγ.

It is a general property of Nijenhuis brackets of type (1,1) tensor fields that

NPV +N = NPV +NN + [P V , N ].

The left-hand side is nothing but the curvature of the “diagonal” connection κ; if
one computes all terms in the right-hand side, there are some cancellations, the
mechanism of which becomes clear from the general considerations in Appendix A.

4 In search of a linear connection

In [27, 28], the important dynamical covariant derivative ∇ – a degree zero deriva-
tion of the algebra of forms along the projection ρ – was detected by looking at
the decomposition of the Lie derivative of horizontal and vertical lifts (of vector
fields along ρ) with respect to Γ. We know from the standard second-order theory,
however, that there are other paths leading to the definition of the same opera-
tor [30]. What is not clear at the moment is that an attempt to generalise these
different approaches to the case of mixed systems would always lead to the same
result. It is therefore important for our present purposes that we try to see how
the operator ∇ arises in a more fundamental construction.

The most interesting interpretation of∇ in the standard theory is as a component of
a general linear connection associated to Γ. We will briefly review this construction
as it was elaborated in [7] (following the earlier version of [20] for autonomous
equations). Another approach to the same linear connection has recently been
developed in [32], while related connections on the full jet space where Γ lives were
introduced independently in [3, 25].

To see how the construction works for pure second-order equations, let us restrict
attention to the bundle τ0 : M → IR and its jet space J1τ0, and assume we have
a second-order vector field Γ0 on J1τ0. We then have a (non-linear) connection on
the bundle ρ0 : J1τ0 →M with horizontal projector

PH0 = 1
2
(I − LΓ0S + dt⊗ Γ0),
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and there are horizontal and vertical lift operators mapping vector fields X0 along
ρ0 to vector fields X0

H, X0
V on J1τ0. Each vector field Z0 on J1τ0 gives rise to

unique vector fields Z0V , Z0H along ρ0 satisfying

Z0 = (Z0H)H + (Z0V )V ,

and Z0H can be further decomposed as Z0H = 〈Z, dt〉T + Z0H, giving

Z0 = 〈Z, dt〉Γ0 + (Z0H)
H

+ (Z0V )V ,

〈Z0V , dt〉 = 〈Z0H, dt〉 = 0.

As in [7], we can define a linear connection on ρ∗0TM → J1τ0 by

DZ0X0 = [PH0(Z0), X0
V ]

V
+ [P V0(Z0), X0

H]
H

+ PH0(Z0)(〈X0, dt〉)T

for vector fields Z0 on J1τ0 and X0 along ρ0.

The two essential properties which ensure that this construction does indeed define
a linear connection are first, that the dependence on Z0 is linear over C∞(J1τ0),
and secondly, that DZ0 acts like a derivation on the C∞(J1τ0)-module of vector
fields along ρ0. As a matter of fact, the first two terms in the above formula are
the ones which make the construction work in the case of autonomous second-order
equations (see [20]); if one carries them over to the time-dependent framework, the
linearity in Z0 is preserved, but the derivation property is lost and the third term
is precisely the correction which is needed to restore this property (while keeping
the linearity in Z0).

What we are after now is a “parametrisation” of this formula to obtain a linear
connection on the bundle ρ∗TE → π∗J1τ0. One can verify that (as a first step
in the parametrisation process) the formula still makes sense when Z0 is a vector
field along π1 : π∗J1τ0 → J1τ0, with a suitable interpretation of the Lie bracket
of such vector fields, and X0 is a vector field along ρ0 ◦ π1 : π∗J1τ0 → M . It
does not seem to be possible, however, to make the formula continue to work in
the present situation, the difficulty coming essentially from the presence of two
different kinds of verticality. What we did in our previous papers [27, 28] was, in
fact, to use only the connection χ on ρ to obtain a splitting of vector fields on
π∗J1τ0 into a horizontal and vertical part. This way, for example, the vector fields
Va were part of the horizontal distribution. The analogue of the formula for DZ0X0

above then needs a further correction to restore the derivation property, but this
time the correction unfortunately destroys the linearity in the Z-argument in an
irrecoverable way. The “best approximation” to a linear connection can then be
achieved by restricting the deviation from linearity to the smallest possible part.
For that purpose, it is necessary to make consistent use of the threefold splitting
of X (π∗J1τ0) provided by the projection operators PH, P V and N .
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From now on, we distinguish three lifting operations from X (ρ) to X (π∗J1τ0):
as shown in Appendix A, the connection χ may be used to give horizontal and
“diagonal” lifts, while in this context we have a vertical lift as well. We may
summarise the effects of these lifts in the following table:

TΓ
H = Γ, Xα

H = Hα,

(
∂

∂qa

)H

= 0

TΓ
D = 0, Xα

D = 0,

(
∂

∂qa

)D

= Va

TΓ
V = 0, Xα

V = Vα,

(
∂

∂qa

)V

= 0.

Any vector field Z on π∗J1τ0 may now be written uniquely as the sum of three lifts:

Z = (ZH)H + (ZD)D + (ZV )V .

Here, ZD is fixed by requiring it to be vertical with respect to the projector π,
ZH is horizontal with respect to the parametrised connection χ̌, and so is ZV ,
with the additional restriction that 〈ZV , dt〉 = 0. In other words, referring to the
considerations of the previous section, ZV only has Xα-components, while ZH may
be split further as

ZH = 〈Z, dt〉TΓ + ZH

where 〈ZH, dt〉 = 0.

For later use, we also describe the dual process of lifting 1-forms along ρ to 1-forms
on π∗J1τ0. Any 1-form on π∗J1τ0 is fully determined by its action on XH, X

V
and

X̃D, with X ∈ X (ρ). For α ∈ ∧1(ρ), the three types of lifts of α are defined by

αH(XH) = α(X), αV (X
V
) = α(X), αD(X̃D) = α(X̃),

all other components being zero. This gives rise to the following table for the lifts
of the local basis of

∧1(ρ):

(dt)H = dt, (θα)H = θα, (ηa)H = 0

(dt)V = 0, (θα)V = φα, (ηa)V = 0

(dt)D = 0, (θα)D = 0, (ηa)D = ηa.

With the threefold decomposition of X (π∗J1τ0) now corresponding to the three lift
operations, we start our approach towards a linear connection by the provisional
formula which would work if we had no “diagonal parts”:

DZX
?
= [PH(Z), XV ]

V
+ [P V (Z), XH]

H
+ PH(Z)(〈X, dt〉)TΓ.
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This formula does not, however, represent a derivation. Indeed, we find that

DZ(fX)− fDZX = PH(Z)(f)(XV )
V

+ P V (Z)(f)(XH)
H

+ PH(Z)(f)〈X, dt〉TΓ

= (PH(Z) + P V (Z)) (f) X̂

= ((I −N)Z)(f) X̂

= Z(f)X − Z(f)X̃ − (NZ)(f)X̂.

We shall remedy this deficiency by adding the terms [Z,XD]
D

+ [NZ,XH]
H

to our
provisional formula, giving a final definition of the derivation DZ as

DZX = [PH(Z), XV ]
V

+ [(P V +N)(Z), XH]
H

+ [Z,XD]
D

+ PH(Z)(〈X, dt〉)TΓ.

As anticipated above, however, this operator is not linear over Z, and so does not
represent a linear connection; we have

DfZX = fDZX −XD(f)ZD,

which shows that the deficiency has been contained in the diagonal part. Another
way of looking at this deficiency is that the formula for DZX would define a
linear connection in the usual way if we were interested in vector fields along the
projection π ◦ ρ : π∗J1τ0 →M .

Again taking the theory of unconstrained second-order equations as a model and
thinking, more particularly, of the relation between the linear connection on the
bundle ρ∗0TM → J1τ0 and the fundamental derivations for the calculus along ρ0,
we should now discover the operations of interest for a calculus along ρ by splitting
Z into its three (or better four) components. Explicitly, the way to extract degree
zero derivations on forms and vector fields along ρ from the derivation DZ goes as
follows. For any X and Y in X (ρ), we put

DV

YX = DY VX, DH

YX = DY HX, ∇X = DH

TΓ
X = DΓX, DD

YX = DY DX.

It is clear that DV
Y and DH

Y are covariant derivative type operators: they depend
linearly on Y . For DD

Y on the other hand we have

DD

YX = [Y D, XH]
H

+ [Y D, XD]
D
.

It follows that DD
Y is covariant for its action on X̂ (ρ), but rather acts like a Lie

derivative operator, when restricted to X̃ (ρ). The extension of these derivations
to
∧1(ρ) (and subsequently to arbitrary tensor fields along ρ) is achieved via the

usual duality requirement: D〈X,α〉 = 〈DX,α〉+ 〈X,Dα〉.
We shall use all four of these derivations in our development of the calculus along
ρ, so it is worthwhile, for the convenience of the reader, to summarise their effect
on our basis vector fields and differential forms in a complete table. With Y =
ξαXα, Ỹ = ξa∂/∂qa, we have:
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DV

Y
TΓ = Y DV

Y
Xβ = 0 DV

Y

∂

∂qb
= 0

DH

Y
TΓ = 0 DH

Y
Xβ = ξα

∂Γγβ
∂q̇α

Xγ DH

Y

∂

∂qb
= −ξα∂B

c
α

∂qb
∂

∂qc

∇TΓ = 0 ∇Xβ = ΓγβXγ ∇ ∂

∂qb
= −∂g

c

∂qb
∂

∂qc

DD

Ỹ
TΓ = 0 DD

Ỹ
Xβ = 0 DD

Ỹ

∂

∂qb
= −∂ξ

a

∂qb
∂

∂qa

For 1-forms the table reads:

DV

Y
dt = 0 DV

Y
θβ = −ξβdt DV

Y
ηb = 0

DH

Y
dt = 0 DH

Y
θβ = −ξα

∂Γβγ
∂q̇α

θγ DH

Y
ηb = ξα

∂Bb
α

∂qc
ηc

∇dt = 0 ∇θβ = −Γβγθ
γ ∇ηb =

∂gb

∂qc
ηc

DD

Ỹ
dt = 0 DD

Ỹ
θβ = 0 DD

Ỹ
ηb = −∂ξ

b

∂qa
ηa

Finally, for functions on π∗J1τ0 we have

DV

Y
f = Y V (f), DH

Y f = 〈Y, dt〉Γ(f) + Y
H

(f), ∇f = Γ(f), DD

Ỹ
f = Y D(f).

∇ = DH
TΓ

will be called, as in previous work, the dynamical covariant derivative.

5 Exterior derivatives and further aspects of the

calculus along ρ

In this section, we shall see how the curvatures of the two connections σ and χ may
be characterised in terms of the calculus along ρ. There are several good reasons
for looking at the manisfestation of curvature in this way. Recall, for example,
from the standard theory of second-order systems [21, 22, 30] that the curvature,
regarded as a vector-valued 2-form along the projection on the base manifold (the
map ρ0 in the sketch of the previous section), turns out to be entirely determined by
a type (1,1) tensor field Φ, the Jacobi endomorphism. Here, though, we have two
curvatures, and (as may be seen in Appendix A) each splits into two components.
We might therefore expect to find four such tensor fields. This is not quite what
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is going to happen and it will be instructive to discover that the differences can
roughly be traced back to the deviation of the DZ operator from being a linear
connection, or in other words to the Lie-derivative component of the derivation
DD.

For a start, it is obvious that vector-valued 2-forms can not be obtained from
vector-valued 1-forms through derivations of degree zero, so we will have to explore
first what kind of exterior derivative operations have a natural existence in the
present framework. After introducing an exterior derivative corresponding to each
of the D-derivations, first on

∧
(ρ) and then, inasmuch as this is possible, also on

X (ρ) (and thus on vector-valued forms along ρ), we compute the decomposition
of the Lie brackets of the various lifted vector fields on π∗J1τ0. The algebraic
parts of such decompositions should be related to (and in fact determine) the
curvatures of the connections σ and χ: we find three vector-valued 2-forms Ri

and one symmetric vector-valued 2-tensor field G along ρ, which are shown to
be in one-to-one correspondence with the different components of NN and NPV .
The dt-parts of the tensors Ri give rise to type (1,1) tensor fields, which are in
turn shown to determine the Ri completely. For the action on functions, since
[DZ1 , DZ2 ](f) = D[Z1,Z2](f), the decomposition of the brackets just discussed tells
us at the same time how the commutators of the various D-derivations decompose.
The above equality does not hold for the action on vector fields: the difference
between both sides would in fact, if DZ were truly a linear connection, define its
curvature. We will not compute these curvature-like terms in all generality here,
but restrict such computations to the commutators of ∇ with DV , DH and DD. Let
us now develop this logical hierarchy of steps in some detail.

As usual, derivations of scalar forms (here
∧

(ρ)) are completely determined by
their action on functions and 1-forms. Because of the covariant nature of DV

X and
DH
X , we can define degree 1 derivations dV and dH by dVf(X) = DV

Xf = DV

X
f and

dHf(X) = DH
Xf = DH

X̂
f for functions f ∈ C∞(π∗J1τ0) (with X ∈ X (ρ) arbitrary),

and for a 1-form α along ρ, define dVα, dHα ∈ ∧2(ρ) by

dVα(X, Y ) = (DV

Xα)(Y )− (DV

Y α)(X)

dHα(X, Y ) = (DH

Xα)(Y )− (DH

Y α)(X).

It is easy to verify that these indeed have the tensorial properties of 2-forms, and
that dV and dH have the required derivation characteristics.

On the other hand, in view of the Lie derivative aspect in DD
X , we define dD by

dDf(X) = DD
Xf = DD

X̃
f and

dDα(X, Y ) = (DD

X̃
α)(Y )− (DD

Ỹ
α)(X)− α(DD

X̃
Ỹ ).

The covariant part of DD helps to verify that this construction depends f -linearly
on X and Y .

13



For practical purposes, we list the coordinate formulas for the exterior derivatives
of functions and 1-forms along ρ. We have:

dVf = Vα(f) θα, dHf = Γ(f) dt+Hα(f) θα, dDf = Va(f) ηa,

and the table for the actions on basis 1-forms reads:

dV (dt) = 0 dV θα = dt ∧ θα dV ηa = 0

dH(dt) = 0 dHθα = −Γαβ dt ∧ θβ dHηa =
∂ga

∂qb
dt ∧ ηb +

∂Ba
α

∂qb
θα ∧ ηb

dD(dt) = 0 dDθα = 0 dDηa = 0

Since we actually have exterior derivatives of vector-valued forms in mind, we ought
to extend the action of these operations to vector fields along ρ if possible. We
may define

dVX(Y ) = DV

YX, dHX(Y ) = DH

YX, dDX̂(Y ) = DD

Ỹ
X̂,

where it has to be emphasised that dD can be defined only on X̂ (ρ), because of the
non-linearity in Ỹ of the action of DD

Ỹ
on X̃ (ρ). The table of coordinate expressions

of interest here becomes (in a slightly different arrangement):

dV TΓ = θα ⊗Xα dHTΓ = 0 dDTΓ = 0

dVXα = 0 dHXα = Γβα dt⊗Xβ +
∂Γγβ
∂q̇α

θβ ⊗Xγ dDXα = 0

dV
∂

∂qa
= 0 dH

(
∂

∂qa

)
= −∂g

b

∂qa
dt⊗ ∂

∂qb
− ∂Bb

α

∂qa
θα ⊗ ∂

∂qb
–

To see a manifestation of the curvatures at the level of the calculus along ρ, one
has to compute Lie brackets of the various types of lifts of vector fields along ρ. We
repeat that the main idea behind such computations is that relevant operations
on X (ρ) will become apparent by looking at the decomposition of the resulting
vector fields on π∗J1τ0. Such a procedure in fact could be used to define the D-
derivations to some extent, while the curvature components are expected to make
their appearance in the algebraic parts of the decomposition.

It is appropriate to introduce the following bracket operations on the various sub-
modules of X (ρ):

[X,Y ]
V

= DV

X
Y −DV

Y
X

[X̂, Ŷ ]
H

= DH

X̂
Ŷ −DH

Ŷ
X̂

[X̃, Ỹ ]
D

= DD

X̃
Ỹ −DD

Ỹ
X̃.

14



A straightforward calculation then yields the following results:

[X
V
, Y

V
] = ([X,Y ]

V
)
V

[X̃D, Ỹ D] = ([X̃, Ỹ ]
D

)
D

[X
V
, Ỹ D] =

(
DV

X
Ỹ
)D

−
(
DD

Ỹ
X
)V

[X̂H, Ŷ H] = ([X̂, Ŷ ]
H

)
H

+
(
R1(X̂, Ŷ )

)D

+
(
R2(X̂, Ŷ )

)V

[X̃D, Ŷ H] =
(
DD

X̃
Ŷ
)H

−
(
DH

Ŷ
X̃
)D

+
(
R3(X̃, Ŷ )

)V

[X
V
, Ŷ H] =

(
DV

X
Ŷ
)H

−
(
DH

Ŷ
X
)V

+
(
G(X, Ŷ )

)D

.

As expected, curvature components arise when the distributions are not integrable,
i.e. when “horizontal” vector fields are involved. The tensor fields R1, R2 and R3

are vector-valued 2-forms along ρ. Less expected is that G on the other hand is
a symmetric vector-valued 2-tensor. The coordinate expressions of these tensor
fields read as follows:

R1 = Ψc
β dt ∧ θβ ⊗

∂

∂qc
+ 1

2
(Hα(Bc

β)−Hβ(Bc
α)) θα ∧ θβ ⊗ ∂

∂qc

R2 = Φγ
β dt ∧ θβ ⊗Xγ + 1

2
((Hα(Γγβ)−Hβ(Γγα)) θα ∧ θβ ⊗Xγ

R3 = −∂f
γ

∂qb
dt ∧ ηb ⊗Xγ +

∂Γγα
∂qb

θα ∧ ηb ⊗Xγ

G =
∂2ga

∂q̇α∂q̇β
θα ⊗ θβ ⊗ ∂

∂qa
.

The relationship between these tensors and the curvatures NN and NPV is now
obvious. A kind of vertical lift of R2 +R3 gives NPV . The same procedure applied
to R1 gives rise to the first part of NN . The relationship between the second part
of NN and G is more subtle: it is of the same type as the so-called Kähler lift which
relates a symmetric tensor field determined by the Hessian matrix of a Lagrangian
to the Poincaré-Cartan 2-form. We refer to [22] and [30] for this construction and
do not elaborate on it further here.

Observe in passing that the two different meanings we have given to vector fields
carrying a subscript V, D or H (one for the decomposition of vector fields on π∗J1τ0

and one for brackets of vector fields along ρ) are consistent. Indeed we see from
the above relations that [X,Y ]

V
= ([X

V
, Y

V
])

V
and likewise for the other two

notations.

We are now ready to define three type (1,1) tensor fields which are obtained simply
from the dt-part of the curvature tensors Ri. Explicitly, let Ψ = iTΓ

R1, Φ = iTΓ
R2

and Λ = iTΓ
R3. The components of Ψ and Φ were already listed in Section 3, but
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we repeat the full expressions here because of the importance of these tensor fields:

Ψ = (Γ(Bc
β)−Xβ(gc)) θβ ⊗ ∂

∂qc

Φ = −(Γ(Γγβ) +Xβ(fγ) + ΓαβΓγα) θβ ⊗Xγ

Λ = −∂f
γ

∂qb
ηb ⊗Xγ.

One of the striking features of these tensors is that they actually determine the
curvature 2-forms Ri completely. Indeed, it is fairly easy to verify in coordinates
that:

R1 = 1
2
(dV Ψ + dt ∧Ψ)

R2 = 1
3
(dV Φ + 2dt ∧ Φ)

R3 = 1
2
(dV Λ + 2dt ∧ Λ) .

Remark: the tensor field Φ defined in our earlier work ([27, 28]) was in fact the sum
of the Φ and Λ which are introduced here. The analysis of the next section will
illustrate that the present option is more appropriate, but a sufficient argument
for choosing it would be that the non-zero parts of the coefficient matrices of the
two tensors have different dimensions.

The next step which one logically makes in building up a calculus along ρ is to look
at the commutators of the fundamental degree zero derivations introduced in the
previous section. In fact, the above bracket relations already carry the information
for these commutators inasmuch as their action on functions is concerned. Indeed,
it follows from the definitions that on functions f we have:

[DV

X
,DV

Y
](f) = DV

[X,Y ]V
(f)

[DD

X̃
,DD

Ỹ
](f) = DD

[X̃,Ỹ ]D
(f)

[DV

X
,DD

Ỹ
](f) =

(
DD

DV

X
Ỹ
−DV

DD

Ỹ
X

)
(f)

[DH

X̂
,DH

Ŷ
](f) =

(
DH

[X̂,Ŷ ]H
+ DD

R1(X̂,Ŷ )
+ DV

R2(X̂,Ŷ )

)
(f)

[DD

X̃
,DH

Ŷ
](f) =

(
DH

DD

X̃
Ŷ
−DD

DH

Ŷ
X̃

+ DV

R3(X̃,Ŷ )

)
(f)

[DV

X
,DH

Ŷ
](f) =

(
DH

DV

X
Ŷ
−DV

DH

Ŷ
X

+ DD

G(X,Ŷ )

)
(f).

In Appendix B, building on our experience for second-order systems, we sketch a
few aspects of what a complete theory of derivations of forms along ρ would tell us
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about their canonical decomposition. It would follow from such a theory that the
difference between the two sides of each of the above relations among degree zero
derivations (when they are allowed to act on vector fields and forms as well) can
merely be an “algebraic derivation”, i.e. a derivation vanishing on functions. Such
a derivation (of degree 0) is determined by a type (1,1) tensor field, say Q, and then
written as µQ. Its action on vector fields U ∈ X (ρ) or 1-forms α ∈ ∧1(ρ) is given
by Q(U) and −Q(α) respectively. So, to complete the picture about commutators
of D-derivations, all that needs to be done, in principle, is to compute the QX,Y

tensor for each case.

In fact, there is a lot more that can be said about these tensors. As we learn from
[7], if the founding father of the D-derivations, i.e. the operation DZ introduced in
the preceding section, really had been a linear connection on the bundle ρ∗TE →
π∗J1τ0, then its curvature would be defined by curv (Z1, Z2) = [DZ1 , DZ2 ]−D[Z1,Z2].
This implies that the different tensor fields QX,Y we are talking about here would
essentially constitute the components of the curvature of this linear connection. In
the present situation, DZ falls short of defining a linear connection. The effect of the
deviation from a linear connection is that the tensor fields QX,Y will not in all cases
depend tensorially on X and Y as well: sometimes derivatives of the components
of X and Y will be involved. For the first two commutators in the above list there
are no terms of type µQ, i.e. the corresponding Q-tensor is zero. Computing the
Q-tensors for the other cases is a rather messy enterprise and so we will abstain
from it in the general case. We will instead pay more attention to the special case
where one of the operands in the commutator is the dynamical covariant derivative
∇ = DH

TΓ
. Incidentally, it is possible to obtain all such commutator relations in a

coordinate free way by using the Jacobi identity, applied to suitable combinations
of derivations. Often, however, the result will follow more quickly from a coordinate
calculation.

The following results are obtained:

[∇,DV

X
] = −DH

X
+ DV

∇X
[∇,DD

X̃
] = DD

∇X̃ + DV

Λ(X̃)
+ µQD

X̃

[∇,DH

X̂
] = DH

∇X̂ + DV

Φ(X̂)
+ DD

Ψ(X̂)
+ µQH

X̂

,

where the (1,1) tensors QD

X̃
and QH

X̂
are given by

QD

X̃
= i

X̃
R3 − iΛdV X̃

QH

X̂
= 2 i

X̂
R2 −DV

X̂
Φ− 2〈X̂, dt〉Φ

+ i
X̂

Ξ + Ψ ◦ dDX̂ − Λ ◦ (X̂ G).

Here Ξ is a vector-valued 2-form along ρ, which can be constructed out of G and
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Λ:
Ξ(X, Y ) = (Λ G)(X, Y )− (Λ G)(Y,X).

In coordinates:

Ξ =
∂fγ

∂qb
∂Bc

α

∂q̇γ
θα ∧ ηb ⊗ ∂

∂qc
.

6 The calculus along ρ at work

In this section we wish to develop, as an application of the basic intrinsic operations
which have been introduced so far, a theory of adjoint symmetries for mixed first
and second-order equations. The idea will be that, with the most essential tools at
hand, everything else should follow without needing to use coordinate expressions.
Infinitesimal generators of symmetry transformations of differential equations are
more familiar than adjoint symmetries, so we shall first derive the characterisation
of symmetries within the framework of vector fields along ρ (which is the most
economical way for writing the determining equations in a coordinate free way),
and then proceed to the theory of adjoint symmetries by duality.

Let Z ∈ X (π∗J1τ0) be a dynamical symmetry of the given dynamics Γ. As usual,
two symmetries should be regarded as equivalent if their difference is a multiple
of Γ. This means that we can concentrate, without loss of generality, on a rep-
resentative of the class for which LΓZ = 0. Such a representative will not have
a Γ-component so that, in accordance with the general discussion of Section 4, Z
will have a unique decomposition of the form

Z = X
H

+ X̃D + Y
V
,

for some X, X̃, Y ∈ X (ρ).

From the brackets of lifted vector fields computed at the beginning of the previous
section, in the special case where one of the vector fields is Γ = TΓ

H, we obtain

LΓX
V

= −XH
+ (∇X)

V

LΓX̂
H = (∇X̂)

H

+ Ψ(X̂)
D

+ Φ(X̂)
V

LΓX̃
D = (∇X̃)

D

+ Λ(X̃)
V

.

It now follows that LΓZ = 0 is equivalent to specifying that Y = ∇X, and requir-
ing that X and X̃ must be solutions of the mixed first and second-order partial
differential equations

∇2X + Φ(X) + Λ(X̃) = 0,

∇X̃ + Ψ(X) = 0.
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Essentially, therefore, looking for a symmetry means looking for a vector field
X ∈ X (ρ), of the form X = X + X̃, satisfying the above two conditions. Note
that Φ(X) = Φ(X), Λ(X) = Λ(X̃) and Ψ(X) = Ψ(X), and also that the left-hand
side of the first equation takes values in X (ρ), whereas this is X̃ (ρ) for the second
equation. As a result, the two conditions can equivalently be cast into the single
condition

∇2X +∇X̃ + (Φ + Λ + Ψ)(X) = 0 .

The dualisation of this picture is easily obtained using the standard procedure by
which one defines the adjoint of a linear partial differential operator. Hence, we
adopt here the following definition for the concept of adjoint symmetries.

Definition. An adjoint symmetry of Γ is a 1-form α ∈ ∧1(ρ), of the form α =
α + α̃ = aβθ

β + cbη
b, satisfying

∇2α−∇α̃ + (Φ + Λ + Ψ)(α) = 0.

It is easy to see, for instance from the coordinate expressions, that the submodules∧1
(ρ) and

∧̃1
(ρ) are invariant under ∇ and Φ. On the other hand, Λ has

∧̃1
(ρ) in

its kernel and maps
∧1

(ρ) into
∧̃1

(ρ), whereas Ψ does the reverse. As a result, the
single condition of the definition is equivalent to the two conditions

∇2α + Φ(α) + Ψ(α̃) = 0

−∇α̃ + Λ(α) = 0.

Observe that, in [27, 28], the adjoint symmetry condition did not split into two
separate conditions; this was due to the fact that Φ + Λ was regarded there as a
single tensor (called Φ). It is clear that the present situation is more elegant, if
only because of the similarity with the picture for symmetries. Comparison with
the line of approach adopted in [28] shows that, if α is an adjoint symmetry of
Γ, then φ = αV + α̃D − (∇α)H will be a Γ-invariant 1-form on π∗J1τ0 with Γ in
its kernel. More strongly, one can show that this formula establishes a bijective
correspondence between 1-forms φ satisfying the conditions LΓφ = 0 and iΓφ = 0,
and adjoint symmetries in the sense defined here. Hence, in particular, all first
integrals of the system should correspond to certain adjoint symmetries, and these
will be of the form dVF + dDF for some function F .

When we wish to substitute an α of this form in the adjoint symmetry condition,
it is clear that we will need to know how the dynamical covariant derivative ∇
commutes with the exterior derivatives. Since the exterior derivatives were defined
in terms of the D-derivations, it is fairly easy to obtain this information from the
commutator relations for [∇,DV

X
], [∇,DD

X̃
] and [∇,DH

X̂
]. We limit ourselves to the
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action on scalar forms along ρ. From the defining relation of dVα, for example, we
find:

∇dVα(X, Y ) + dVα(∇X, Y ) + dVα(X,∇Y ) =
(
DV

X
∇α−DH

X
α + DV

∇Xα
)

(Y )

+ DV

X
α(∇Y )−

(
DV

Y
∇α−DH

Y
α + DV

∇Y α
)

(X)−DV

Y
α(∇X) .

Subtracting
dV∇α(X, Y ) = DV

X
∇α(Y )−DV

Y
∇α(X),

it then readily follows that, on
∧

(ρ),

[∇, dV ] = − dH + dt ∧∇.

The other two commutators are somewhat more involved; we obtain (see Ap-
pendix B for notations)

[∇, dD] = dV

Λ + iR3 − 2 dt ∧ iΛ
[∇, dH] = dV

Φ + dD

Ψ + 2 iR2 − 2 dt ∧ iΦ − iΞ .

If one were to extend these commutator relations to vector-valued forms (whenever
that makes sense), there would again be additional algebraic terms arising. We
shall, however, not need these extensions for our present purposes.

Now let α be an adjoint symmetry for which α = dVF and α̃ = dDF . Then

∇dVF = dV∇F − dHF + (∇F )dt,

from which it follows, applying ∇ again and using the commutator [∇, dH], that

∇2dVF = ∇(dV∇F + (∇F )dt)− dH∇F − Φ(dVF )−Ψ(dDF ).

Putting L = ∇F , we conclude that the second-order requirement for α to be an
adjoint symmetry is equivalent to:

dHL = ∇(dVL+ Ldt).

Similarly, the first-order condition is found to be equivalent to

dDL = 0.

In coordinates, the first condition says that Γ(Vβ(L)) = Xβ(L), but the right-hand
side, in view of the second condition reduces further. Altogether we obtain

Γ

(
∂L

∂q̇α

)
=

∂L

∂qα
, with

∂L

∂qb
= 0 .
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Therefore, provided that the Hessian matrix VβVα(L) is regular, the conclusion
is that the right-hand sides fα of the second-order equations do not depend on
the qb coordinates and that these equations actually come from Euler-Lagrange
equations. It is easy also to formulate a converse statement, so that we arrive at
the following theorem.

Theorem. If Γ has an adjoint symmetry of the form α = dVF + dDF , and if
VβVα(L) is regular (where L = ∇F ), then the second-order differential equations
coming from Γ are decoupled from the first-order ones and are the Lagrange equa-
tions with Lagrangian L. Conversely, if the second-order equations are Lagrange
equations with a Lagrangian L(t, qβ, q̇β) of the form L = ∇F for some function
F ∈ C∞(π∗J1τ0), then α = dVF + dDF is an adjoint symmetry.

This result is of course not quite the one which was predicted when we referred to
adjoint symmetries related to first integrals. Let us see now how the generation
of first integrals is in some sense a particular case. What is already obvious from
the preceding analysis is that for any first integral F with ∇F = 0, the 1-form
dVF + dDF is an adjoint symmetry. Conversely, however, the situation may be
more complicated, since a Lagrangian L = ∇F (which is not regular) may be a
first integral in disguise through the customary gauge freedom. We have seen above
that for α = dVF ,

∇α + dHF = dVL+ Ldt, with L = ∇F.

The right-hand side is like a Poincaré-Cartan form

θL =
∂L

∂q̇β
θβ + Ldt.

When L is a total time-derivative of some function f , this necessarily has to be a
function on M , and an easy way to express this is to say that θL, regarded as a
“semi-basic” 1-form on π∗J1τ0, is exact (or closed for local results). We therefore
come to the following statement.

Theorem. Let α = dVF + dDF be an adjoint symmetry of Γ, such that ∇α+ dHF ,
regarded as 1-form on π∗J1τ0, is (locally) of the form df . Then F − f is a first
integral of Γ. Conversely, every first integral can be obtained through such a
procedure: if F is a first integral, then dVF + dDF is an adjoint symmetry.

It is worthwhile highlighting a quite striking feature of these results. Compared to
the standard theory of second-order equations, the second theorem is the type of
result one expects: it produces a general mechanism by which first integrals can
be generated, and this mechanism is likely to reduce to the more familiar relation-
ship between symmetries and conservation laws (Noether’s theorem) whenever the
given system of differential equations is self-adjoint (cf. [29]). The situation covered
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by the first theorem, however, is less expected, because it first of all creates cir-
cumstances in which the second-order equations are decoupled from the first-order
ones, and then the additional statement is that the second-order equations will be
of Lagrangian type.

Appendix A: Connections on fibre-product bun-

dles

Suppose we have two bundles µ0 : Y → M and ν0 : Z → M over the same base
manifold. We may consider the fibre-product manifold Y ×MZ, and the projections
of this manifold onto its components define two further bundles ν : Y ×M Z → Y
and µ : Y ×M Z → Z. We shall be interested in connections defined on these
two new bundles, and the way such connections interact with each other. (For the
situation described in the main body of the paper, the base manifold M has an
additional fibration over IR, Y and Z are the manifolds E and J1τ0 respectively,
and their fibred product over M is π∗J1τ0.)

In general, a connection on (say) µ is a section of the first jet bundle J1µ→ Y ×MZ.
In the present situation, though, we may define a distinguished submanifold (J1µ)0

of J1µ and consider only those sections which take their values in this submanifold.
To construct the submanifold, consider those (local) sections ψ of µ which are
“projectable” to µ0, in the sense that there are corresponding sections ψ0 of µ0

satisfying ψ0 ◦ ν0 = ν ◦ ψ. We shall define (J1µ)0 as the submanifold of jets
j1
pψ admitting a representative section which is projectable: it is clear that this

submanifold has a natural identification with J1µ0×M Z. We shall call a section σ
of J1µ0 ×M Z → Y ×M Z a projectable connection on µ: the name is appropriate
because the composition of σ followed by projection on the first factor of J1µ0×MZ
gives a map σ̌ : Y×MZ → J1µ0 which is rather like a connection on µ0 parametrised
by Z. Conversely, starting from σ̌ we may recover σ in full by specifying that the
second component of the image should be given by the identity on Z.

Now suppose we have two projectable connections σ and χ on µ and ν respectively.
As the connections are projectable, we may combine them to give a connection κ
on the composite bundle λ = ν0◦µ : Y ×M Z →M , using the natural identification
of J1λ with the fibre product J1µ0×M J1ν0: we just specify that κ should be given
by κ(x, y, z) = (σ̌(x, y, z), χ̌(x, y, z)). Conversely, starting with κ, we may obtain σ̌
and χ̌ by projecting on the first and second factor respectively, and hence recover
σ and χ.
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J1µ0 ×M J1ν0
∼= J1λ Y ×M J1ν0

J1µ ⊃ J1µ0 ×M Z Y ×M Z Z
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In terms of the horizontal and vertical tangent vectors associated with each con-
nection, we find that

Hor κ = Hor σ ∩ Hor χ

whereas

Hor σ = Hor κ⊕ V ν
Hor χ = Hor κ⊕ V µ.

Take local coordinate systems xA onM , (xA, ya) on Y , (xA, zα) on Z, and (xA, ya, zα)
on Y ×M Z. The horizontal projector of a general connection σ on µ would be
given in these coordinates by

PH

σ = dxA ⊗
(

∂

∂xA
+ σaA

∂

∂ya

)
+ dzα ⊗

(
∂

∂zα
+ σaα

∂

∂ya

)
,

but if σ is a projectable connection then the coefficients σaα all vanish, so that

PH

σ = dxA ⊗
(

∂

∂xA
+ σaA

∂

∂ya

)
+ dzα ⊗ ∂

∂zα
.

Similarly

PH

χ = dxA ⊗
(

∂

∂xA
+ χαA

∂

∂zα

)
+ dya ⊗ ∂

∂ya
,

and we also find that

PH

κ = dxA ⊗
(

∂

∂xA
+ σaA

∂

∂ya
+ χαA

∂

∂zα

)
.
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These formulas become easier to read if we use bases of vector fields and differential
forms adapted to the connections, rather than the coordinate bases. For the basis
of vector fields we shall use

HA =
∂

∂xA
+ σaA

∂

∂ya
+ χαA

∂

∂zα
,

∂

∂ya
,

∂

∂zα

and for the dual basis of forms we shall use

dxA, ηa = dya − σaAdxA, φα = dzα − χαAdxA.

The formulas for the horizontal projectors then become

PH

σ = dxA ⊗HA + φα ⊗ ∂

∂zα
,

PH

χ = dxA ⊗HA + ηa ⊗ ∂

∂ya
,

PH

κ = dxA ⊗HA

so that
PH

κ + P V

σ + P V

χ = I

where P V
σ , P V

χ are the corresponding vertical projectors.

We may also consider the horizontal projectors of the “parametrised connections”
σ̌ and χ̌. These will be tensor fields along ν and µ respectively, and in coordinates
on Y , Z will be given by

PH

σ̌ = dxA ⊗
(

∂

∂xA
+ σaA

∂

∂ya

)

PH

χ̌ = dxA ⊗
(

∂

∂xA
+ χαA

∂

∂zα

)
.

We shall be particularly interested in using these connections to decompose vector
fields and curvature tensors. It is clear that any vector field on Y ×M Z may be
written as the sum of three components by using the decomposition of the identity
tensor given above. We shall, however, be more concerned with vector fields X
along the projection ν, and the parametrised connection σ̌ may be used to split
such a vector field into two components X̂, X̃ according to the rule

X̂p = (PH

σ̌ )p(Xp), X̃p = (P V

σ̌ )p(Xp)

at each point p ∈ Y ×M Z.

We now have three vector fields along ν: the original oneX, and its two components
X̂, X̃ which are, respectively, horizontal and vertical with respect to σ. But to any
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vector field along ν we may apply the horizontal lift defined by the other connection
χ, giving a lifted vector field on Y ×M Z. We shall denote the χ-horizontal lift of X̂
by XH, and the χ-horizontal lift of X̃ by XD. The reasoning behind the notation is
that XH is horizontal with respect to both σ and χ (and hence, also, with respect
to κ), whereas XD is horizontal with respect to χ but vertical with respect to σ,
and so may be thought of as “diagonal”. In coordinates, if

X = ξA
(

∂

∂xA
+ σaA

∂

∂ya

)
+ ξa

∂

∂ya
,

then

X̂ = ξA
(

∂

∂xA
+ σaA

∂

∂ya

)
, X̃ = ξa

∂

∂ya
,

and

XH = ξAHA, XD = ξa
∂

∂ya
.

We can see a similar phenomenon when looking at the curvatures of the three
connections: each splits naturally into two components. Calculating the Nijenhuis
tensor of the horizontal projector of σ,

we find that

Nσ = 1
2

(HA(σaB)−HB(σaA)) dxA ∧ dxB ⊗ ∂

∂ya
+
∂σaB
∂zα

φα ∧ dxB ⊗ ∂

∂ya

= N̂σ + Ñσ

where Ñσ = P V
χ Nσ and N̂σ = Nσ − Ñσ. The relationship between the three

curvatures may then be given by the formula

Nκ = N̂σ + N̂χ.

It is interesting to note that, whereas the connection κ completely determines
the two projectable connections σ and χ, it is not the case that the curvature
of κ determines the curvatures of σ and χ: two curvatures are always needed to
determine the third.

Appendix B: Derivations of forms along ρ

For the general definition of derivations of scalar and vector-valued forms along
ρ, we refer to the similar concepts along the tangent bundle projection in [21].
Following the pattern of the standard theory of Fröhlicher and Nijenhuis [13], one
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is naturally interested in a classification of such derivations. We give a sketch here
of how this works in the present situation, without giving any proofs.

If L ∈ V r(ρ) denotes a vector-valued r-form along ρ, the meaning of the derivation
iL, of degree r− 1, is familiar. We will denote by dV

L, dD
L and dH

L the derivations of
degree r obtained via the commutator of iL and the exterior derivatives defined in
Section 5. In fact, each of these derivations will be relevant only when L takes values
in X (ρ), X̃ (ρ) and X̂ (ρ) respectively. We will denote this by the corresponding
symbol on L.

One can prove that every derivation D of
∧

(ρ) has a unique decomposition in the
form:

D = iL1 + dV

L2
+ dD

L̃3
+ dH

L̂4
.

Looking for such decompositions is one of the ways by which derivations can lead
to the discovery of new tensor fields. We illustrate this by investigating the de-
composition of the commutators of the exterior derivatives. For a start we have

dV ◦ dV = dt ∧ dV , dD ◦ dD = 0,

and
[dV , dD] = 0, [dV , dH] = 0.

It will not be a surprise that curvature components arise when we look at the
remaining commutators involving dH. We obtain

[dH, dD] = −idt∧R3 + dV

R3

dH ◦ dH = 1
2
[dH, dH] = −idV R2+Σ + dD

R1
+ dV

R2
.

Here, the apparently new vector-valued 3-form Σ turns out to be derived from the
vector-valued 2-form Ξ introduced in Section 5:

Σ = 1
2
(dV Ξ + dt ∧ Ξ).

In this respect, it is also worthwhile to observe the following properties of the
Ri tensors which are easily obtained from their expressions in terms of the (1,1)
tensors Ψ,Φ,Λ:

dVR1 = 0

dVR2 = −dt ∧R2

dVR3 = −dt ∧R3.

We do not enter into the extension of these derivations to vector-valued forms as
they are not always defined on the complete set V (ρ). The situation is different
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when it concerns a derivation of degree zero, as such a derivation can always be
extended to vector fields (and then to all tensor fields) by the duality rule.

Let D be an arbitrary derivation of
∧

(ρ) of degree 0. According to the general
decomposition result, we know that there exist vector fields X, Ŷ , Z̃ ∈ X (ρ) and
some L1 ∈ V 1(ρ), such that

D = iL1 + dV

X
+ dH

Ŷ
+ dD

Z̃
.

Now, from the definition of the exterior derivatives we easily obtain that for ω ∈∧1(ρ),
(dV

X
ω)(Y ) = (DV

X
ω)(Y ) + ω(dVX(Y )).

A similar property holds for dH

Ŷ
, but the situation is different for dD, where one

finds
dD

Z̃
= DD

Z̃
.

It follows that
D = DV

X
+ DH

Ŷ
+ DD

Z̃
− iQ,

with −Q = L1 +dVX+dHŶ not depending on Z̃. If we next extend the action of D
by duality, the term −iQ (which vanishes on vector fields by definition) is replaced
by, say, aQ, an algebraic derivation vanishing on forms and acting on vector fields
as aQ(X) = Q(X). It follows that every self-dual derivation D of degree 0 has a
unique decomposition into four self-dual components, namely

D = DV

X
+ DH

Ŷ
+ DD

Z̃
+ µQ ,

with µQ = aQ − iQ. The algebraic derivation µQ vanishes on functions. Therefore,
once the action of a self-dual derivation of degree zero is known on functions, its
complete determination is a matter of finding the type (1,1) tensor field Q in the
above decomposition. This is the technique which has been used to describe, in
Section 5, the properties of the self-dual derivations which are obtained through
the commutators of the basic D-derivations introduced in Section 4.
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