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1 Introduction

Consider a dynamical system which is described
by a mixed system of first and second-order or-
dinary differential equations, say of the general
form,

i = f*t.qd"¢" " a=1,....k
i = g*(t,d",¢".d") a=1,...,m.

In the context of mechanical systems with non-
holonomic constraints, such equations arise, for
example, when the (linear) constraints are solved
for m of the velocities:
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(with summation over « from 1 to k). If the
unconstrained physical system further is deriv-
able from a Lagrangian L, the classical procedure
for arriving at the equations of motion is to in-
troduce Lagrange-multipliers A, and to consider,
apart from the m constraint equations, the set of
equations
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Eliminating the multipliers between these equa-
tions and making use of the constraints, it is clear
that one will arrive at k second-order equations of
the above type. Caplygin systems (see [3]) are of
this form, with the additional restriction that the
functions B¢, B* and the Lagrangian depend on
the ¢? only. Our model equations of course also
encompass certain classes of Lagrangian systems
with non-linear non-holonomic constraints.

In what follows, we briefly sketch the geometri-
cal setting for such mixed equations, emphasize
the existence of natural connections, and illus-
trate the role of their curvature in studying vari-
ous properties of the dynamics.

2 Geometrical model

Modelling the occurrence of two different lots of
coordinates is achieved by considering the config-
uration space E as fibred over another manifold
M, where both F and M are fibred over IR. Local
coordinates on M are denoted by (¢,¢%), and on
E by (t,q%, ¢%). The projections under considera-
tion are denoted by 7 : E — M and 79 : M — IR.
The first jet space J'7y is a space with natural
coordinates (t,¢%,¢*). Clearly, a vector field rep-
resenting the kind of mixed systems under inves-
tigation will read in coordinates:
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and hence should live on a manifold with coor-
dinates (t,¢%, ¢%,¢%). Such a manifold is the so-
called pull-back bundle 7*J'7y over E. We thus
get the following commutative scheme of spaces.

Uyt
Iy ———  J'ng

| |

E M

o

R

An important observation to be made here is that
there are intrinsic prescriptions which force a vec-
tor field on ©*J'7y to have the form of I' above
(T, dty =1 and S(I') = 0, where S is the canoni-
cal vertical endomorphism which the space m*J 'y
inherits from J17p).

Each given vector field of the form I' gives rise to
two canonically defined (non-linear) connections,
one on the fibration m; : 7*J 79 — J 7o and one
on p: m™Jlrg — E. We will now give a rudi-
mentary description of these connections. With
respect to the fibration p, the fibre coordinates
on mJ'7y are the ¢* and vertical tangent vec-
tors are those spanned by 9/9¢*. A connection



can be regarded as defining a complementary no-
tion of horizontality, and this can be achieved,
for example, by an intrinsic procedure for lifting
the coordinate vector fields on the base manifold
E to vector fields on 7*J'7, which project onto
the vector fields we start from and, together with
the vertical fields, span the full tangent space to
7*J'79. For the case at hand, these rules appear
to be given by
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Similarly, with respect to the fibration 71, where
the ¢® play the role of fibre coordinates, a con-
nection is defined by the following horizontal lift
procedure:
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In these relations, the ‘connection coefficients’ I‘g
and Bj are defined by

re = _l% a _ %
B 29¢8° B G

Since these connections are automatically avail-

able whenever T is given, it should not be a sur-

prise that features of, for example, their curvature

play a distinctive role in various properties of the

given dynamics.

3 Curvature aspects

Solution curves of the given dynamics on 7*J17g
will be curves in F, so that it is natural to study
maps from 7*J17y to tangent vectors on E. Such
maps are called vector fields along p. In previ-
ous work on unconstrained second-order systems
(see e.g. [7]), we have seen that an effective cal-
culus of forms along a map can be developed for
the coordinate free description of such systems.
For the mixed systems under discussion here, el-
ements of a calculus of forms along p are treated
in [6]. We will limit ourselves here to just a few
aspects which are sufficient to see curvature com-
ponents of the connections make their appearance
as vector-valued forms along p.

Vector fields along p (the set of which is denoted
by X(p)) formally look like vector fields on FE,
but with coefficients which depend on all coordi-
nates of 7*J175. The most convenient local basis
of such vector fields (which takes the information

provided by the connections into account) is given
by
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The span of these different parts have an intrinsic
meaning as submodules of X (p). We write X(p),
X(p) and X(p) for the modules spanned respec-
tively by 0/0q¢*, X, and {X,, Tr}, and denote
elements of each of these sets with the correspond-
ing symbol. Each X € X(p) has a unique decom-
position in the form X = (X,dt)Tr + X + X.

Vector fields on the full space 7*J 1y also have in-
trinsic decompositions into various distinct parts.
In fact, as a result of the two fibrations with cor-
responding connections, there is a certain ambi-
guity there about what should be called ‘hori-
zontal’. It was observed in [6] that the connec-
tions on p and 7 induce a third connection on
mop: mJlry — M, and that the ambiguity is
best resolved by keeping the vector fields which
come from the lift along the sort of ‘diagonal pro-
jection” o p in a separate class. In short, ev-
ery Z € X(n*J'1) has a unique decomposition
in the form Z = (Z;)" + (Z,)" + (Z,)", with
Zy € X(p), Zp € X(p) and Z, € X(p). To ex-
plain what the ‘horizontal’, ‘diagonal’ and ‘verti-
cal’ lifting operations are, it suffices to list their
action on the local basis of X(p). Putting, for
shorthand, Vs = 8/9¢” and V,, = 9/9q" (as vec-
tor fields on 7*J17p), we have:
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The H, can be regarded as being defined by this
scheme. In coordinates, they read
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The set {T',H,,V,,Va} gives a local basis of
X(m*J'79), which is perfectly adapted to the
given dynamics and its associated connections.

One way to see a manifestation of curvature of
a connection is to look at Lie brackets of vec-
tor fields on the full space which are not verti-
cal. To be more specific, the vector field resulting
from such a bracket operation will have its own



decomposition; parts of this decomposition will
contain derivations, but other parts will be com-
pletely algebraic and hence determine a certain
tensor field; this tensor field can then be regarded
as defining the curvature. In our situation, the
brackets of interest will involve at least one diag-
onal or one horizontal lift, and we will encounter
curvature tensors related to different connections.
It turns out that some of the curvature compo-
nents are zero. Indeed, the list of bracket rela-
tions which give rise to algebraic parts reads, if
we leave the derivation part unspecified for sim-
plicity,
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The tensor fields R; are vector-valued 2-forms,
as expected. G on the other hand turns out to
be symmetric in its two arguments; this is due,
apparently, to the fact that we wish to have a
manifestation of curvature at the level of forms
along p. In the more traditional approach, where
curvature tensors are regarded as (vertical vector-
valued) tensor fields on the full space, one would
encounter two distinct vector-valued 2-forms for
each of the two connections. One can show that
Rs and R3 determine the curvature of the con-
nection on the fibration p, whereas R; and G de-
termine the curvature on ;.

In the applications we are aware of so far, the
tensor fields R; seem to contain the most rele-
vant features of curvature. An important prop-
erty which to some extent underscores the rele-
vance of the R; is that they are completely de-
termined by a tensorial object of lower covari-
ant order, namely a type (1,1) tensor field along
p. Explicitly, let ¥ = ip Ry, ® = i .Ro and
A = ip. R3. The coordinate expressions of these
tensor fields read:
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Here, the 6 are the so-called contact forms
dq® — ¢°dt, whereas n° = dq® — g°dt — B%0°. To-
gether with dt, #° and n® constitute a local basis
of 1-forms along p, which is dual to the local basis
for X(p) mentioned before. The relation between
these tensors and the curvature fields R; is as fol-
lows:

R = L(@W+dinw)

Ry = 1(dV®+2dt A D)
Ry = 1(d"A+2dtAA).

The ‘vertical exterior derivative’ d which figures
in these expressions, is a canonically defined op-
eration; for conciseness, however, we will not dis-
cuss it further here.

4 Applications

Working out full scale applications in a brief note
is impossible, of course. We will limit ourselves,
therefore, to discussing briefly a few fields of ap-
plication in which the tensor fields introduced in
the previous section clearly manifest themselves.

For a start, let us go back to the link
with mechanics mentioned in the introduction.
For Lagrangian systems of generalised Caplygin
type, consider the reduced Lagrangian function
L(t,q%,q% ¢*), obtained from the unconstrained
L by the substitution imposed by the constraint
equations. It turns out that one of the above men-
tioned type (1,1) tensor fields, namely ¥, already
makes its appearance in writing down simply the
reduced second-order equations for the ¢%. In-
deed, these equations take the form:
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This observation has led us in [5] to a direct geo-
metrical construction of these reduced equations,
without the need of introducing first Lagrange
multipliers which are in the end eliminated any-
way. In [4], this construction was even extended
to the case of non-linear constraints.

An interesting field of study concerning properties
of dynamical systems is the search for symmetries
or adjoint symmetries, which may lead, for exam-
ple, to the identification of conservation laws or
to a process of reduction of order of the system.
Symmetries are transformations which map solu-
tion curves of the given dynamics I' into solution
curves. One-parameter groups of such transfor-
mations are generated by vector fields which are
invariant under the flow of I'. Adjoint symme-
tries, likewise, (leaving apart some details) are
essentially invariant 1-forms. Obviously, since we
are thinking here about the way certain objects
evolve under the flow of I', there must be a kind of
derivation operator which, at the level of tensor
fields along p is the emanation of this evolution.
This operator is what we call the dynamical co-
variant derivative V. It can be defined through
the non-algebraic part of the decomposition of the
Lie derivative with respect to I' of the various



kinds of lifts. Indeed, we have the relations:

LrX = X"+ (VX)"
X = (vX)" + (X)) +oX)"
LrX? = (VX)) +AX)".

The action of V on the local basis of X'(p) is given
by
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If Z € X(n*J'7) is going to be a symmetry vec-
tor field of I', its component along I is irrelevant
and Z will therefore have a decomposition of the
form
Z=X"+XP4+Y",

for some X,X,Y € X(p). The point is that
the symmetry requirement [Z,T] = 0 immedi-
ately fixes the vertical part: in fact we have
Y = VX. So, essentially, the analytical equa-
tions which must be solved to obtain symmetries
(second- and first-order partial differential equa-
tions here) must be equations for the components
of X and X only. A concise, coordinate free for-
mulation of the symmetry conditions, which is the
direct geometrical translation of these analytical
conditions, is given by

VX + VX + (@ +A+T)(X)=0.

There is a perfectly dual version of this, concern-
ing the search for adjoint symmetries: the invari-
ant 1-form at the level of 7*J'7, will have a re-
dundant part, so that the essential information is
contained in two 1-forms @ and & along p. We will
not enter into details here about the definition of
such 1-forms along p. Suffices it to say that the
partial differential equations to be solved for con-
structing adjoint symmetries, are geometrically
modelled by a condition of the form

Via—-Va+ (®+A+V)(a)=0,

which also in this description is seen to be the
formal adjoint equation of the equation for sym-
metries.

The role of the tensor fields ®, ¥ and A (together
with the dynamical covariant derivative V) is of
course very manifest here. It is worthwhile to ob-
serve that there is only one such tensor (®) in the
geometrical study of unconstrained second-order
equations. It is called the Jacobi endomorphism
there, and its importance has already been recog-
nised in quite different types of applications, such
as the study of separability of differential equa-
tions (see [1]) and the so-called inverse problem
of Lagrangian mechanics (see [2]). Needless to

say, the three tensor fields which we encounter
here (and the curvature tensors which they de-
termine) are expected to be equally important in
the study of mixed first- and second-order equa-
tions in general, and of Lagrangian systems with
non-holonomic constraints in particular.
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