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1 Introduction

Consider a dynamical system which is described
by a mixed system of first and second-order or-
dinary differential equations, say of the general
form,

q̈α = fα(t, qβ , qb, q̇β) α = 1, . . . , k

q̇a = ga(t, qβ , qb, q̇β) a = 1, . . . ,m.

In the context of mechanical systems with non-
holonomic constraints, such equations arise, for
example, when the (linear) constraints are solved
for m of the velocities:

q̇a = Baα(t, q)q̇α +Ba(t, q), a = 1, . . . ,m,

(with summation over α from 1 to k). If the
unconstrained physical system further is deriv-
able from a Lagrangian L, the classical procedure
for arriving at the equations of motion is to in-
troduce Lagrange-multipliers λa and to consider,
apart from the m constraint equations, the set of
equations

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= −λaBaα, α = 1, . . . , k,

d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa
= λa, a = 1, . . . ,m.

Eliminating the multipliers between these equa-
tions and making use of the constraints, it is clear
that one will arrive at k second-order equations of
the above type. Čaplygin systems (see [3]) are of
this form, with the additional restriction that the
functions Baα, B

a and the Lagrangian depend on
the qβ only. Our model equations of course also
encompass certain classes of Lagrangian systems
with non-linear non-holonomic constraints.

In what follows, we briefly sketch the geometri-
cal setting for such mixed equations, emphasize
the existence of natural connections, and illus-
trate the role of their curvature in studying vari-
ous properties of the dynamics.

2 Geometrical model

Modelling the occurrence of two different lots of
coordinates is achieved by considering the config-
uration space E as fibred over another manifold
M , where both E and M are fibred over IR. Local
coordinates on M are denoted by (t, qα), and on
E by (t, qα, qa). The projections under considera-
tion are denoted by π : E →M and τ0 : M → IR.
The first jet space J1τ0 is a space with natural
coordinates (t, qα, q̇α). Clearly, a vector field rep-
resenting the kind of mixed systems under inves-
tigation will read in coordinates:

Γ =
∂

∂t
+ q̇α

∂

∂qα
+ ga

∂

∂qa
+ fα

∂

∂q̇α
,

and hence should live on a manifold with coor-
dinates (t, qα, qa, q̇α). Such a manifold is the so-
called pull-back bundle π∗J1τ0 over E. We thus
get the following commutative scheme of spaces.

-

-

?

?

?
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π
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An important observation to be made here is that
there are intrinsic prescriptions which force a vec-
tor field on π∗J1τ0 to have the form of Γ above
(〈Γ, dt〉 = 1 and S(Γ) = 0, where S is the canoni-
cal vertical endomorphism which the space π∗J1τ0
inherits from J1τ0).

Each given vector field of the form Γ gives rise to
two canonically defined (non-linear) connections,
one on the fibration π1 : π∗J1τ0 → J1τ0 and one
on ρ : π∗J1τ0 → E. We will now give a rudi-
mentary description of these connections. With
respect to the fibration ρ, the fibre coordinates
on π∗J1τ0 are the q̇α and vertical tangent vec-
tors are those spanned by ∂/∂q̇α. A connection



can be regarded as defining a complementary no-
tion of horizontality, and this can be achieved,
for example, by an intrinsic procedure for lifting
the coordinate vector fields on the base manifold
E to vector fields on π∗J1τ0, which project onto
the vector fields we start from and, together with
the vertical fields, span the full tangent space to
π∗J1τ0. For the case at hand, these rules appear
to be given by

∂

∂t
;

∂

∂t
+ (fα + q̇βΓαβ)

∂

∂q̇α

∂

∂qα
;

∂

∂qα
− Γβα

∂

∂q̇β
,

∂

∂qa
;

∂

∂qa
.

Similarly, with respect to the fibration π1, where
the qa play the role of fibre coordinates, a con-
nection is defined by the following horizontal lift
procedure:

∂

∂t
;

∂

∂t
+ (ga − q̇βBaβ)

∂

∂qa

∂

∂qα
;

∂

∂qα
+Baα

∂

∂qa
,

∂

∂q̇α
;

∂

∂q̇α
.

In these relations, the ‘connection coefficients’ Γαβ
and Baβ are defined by

Γαβ = − 1
2

∂fα

∂q̇β
, Baβ =

∂ga

∂q̇β
.

Since these connections are automatically avail-
able whenever Γ is given, it should not be a sur-
prise that features of, for example, their curvature
play a distinctive role in various properties of the
given dynamics.

3 Curvature aspects

Solution curves of the given dynamics on π∗J1τ0
will be curves in E, so that it is natural to study
maps from π∗J1τ0 to tangent vectors on E. Such
maps are called vector fields along ρ. In previ-
ous work on unconstrained second-order systems
(see e.g. [7]), we have seen that an effective cal-
culus of forms along a map can be developed for
the coordinate free description of such systems.
For the mixed systems under discussion here, el-
ements of a calculus of forms along ρ are treated
in [6]. We will limit ourselves here to just a few
aspects which are sufficient to see curvature com-
ponents of the connections make their appearance
as vector-valued forms along ρ.

Vector fields along ρ (the set of which is denoted
by X (ρ)) formally look like vector fields on E,
but with coefficients which depend on all coordi-
nates of π∗J1τ0. The most convenient local basis
of such vector fields (which takes the information

provided by the connections into account) is given
by

TΓ, Xα =
∂

∂qα
+Baα

∂

∂qa
,

∂

∂qa
,

where

TΓ = Tρ ◦ Γ =
∂

∂t
+ q̇α

∂

∂qα
+ ga

∂

∂qa
.

The span of these different parts have an intrinsic
meaning as submodules of X (ρ). We write X̃ (ρ),

X (ρ) and X̂ (ρ) for the modules spanned respec-
tively by ∂/∂qa, Xα and {Xα,TΓ}, and denote
elements of each of these sets with the correspond-
ing symbol. Each X ∈ X (ρ) has a unique decom-

position in the form X = 〈X, dt〉TΓ +X + X̃.

Vector fields on the full space π∗J1τ0 also have in-
trinsic decompositions into various distinct parts.
In fact, as a result of the two fibrations with cor-
responding connections, there is a certain ambi-
guity there about what should be called ‘hori-
zontal’. It was observed in [6] that the connec-
tions on ρ and π1 induce a third connection on
π ◦ ρ : π∗J1τ0 → M , and that the ambiguity is
best resolved by keeping the vector fields which
come from the lift along the sort of ‘diagonal pro-
jection’ π ◦ ρ in a separate class. In short, ev-
ery Z ∈ X (π∗J1τ0) has a unique decomposition
in the form Z = (ZH)

H
+ (ZD)

D
+ (ZV )

V
, with

ZH ∈ X̂ (ρ), ZD ∈ X̃ (ρ) and ZV ∈ X (ρ). To ex-
plain what the ‘horizontal’, ‘diagonal’ and ‘verti-
cal’ lifting operations are, it suffices to list their
action on the local basis of X (ρ). Putting, for
shorthand, Vβ = ∂/∂q̇β and Va = ∂/∂qa (as vec-
tor fields on π∗J1τ0), we have:

TΓ
H = Γ, Xα

H = Hα,

(
∂

∂qa

)H

= 0

TΓ
D = 0, Xα

D = 0,

(
∂

∂qa

)D

= Va

TΓ
V = 0, Xα

V = Vα,

(
∂

∂qa

)V

= 0.

The Hα can be regarded as being defined by this
scheme. In coordinates, they read

Hα =
∂

∂qα
+Baα

∂

∂qa
− Γβα

∂

∂q̇β
.

The set {Γ, Hα, Va, Vα} gives a local basis of
X (π∗J1τ0), which is perfectly adapted to the
given dynamics and its associated connections.

One way to see a manifestation of curvature of
a connection is to look at Lie brackets of vec-
tor fields on the full space which are not verti-
cal. To be more specific, the vector field resulting
from such a bracket operation will have its own



decomposition; parts of this decomposition will
contain derivations, but other parts will be com-
pletely algebraic and hence determine a certain
tensor field; this tensor field can then be regarded
as defining the curvature. In our situation, the
brackets of interest will involve at least one diag-
onal or one horizontal lift, and we will encounter
curvature tensors related to different connections.
It turns out that some of the curvature compo-
nents are zero. Indeed, the list of bracket rela-
tions which give rise to algebraic parts reads, if
we leave the derivation part unspecified for sim-
plicity,

[X̂H , Ŷ H ] = (.)
H

+
(
R1(X̂, Ŷ )

)D

+
(
R2(X̂, Ŷ )

)V

[X̃D, Ŷ H ] = (.)
H − (.)

D
+
(
R3(X̃, Ŷ )

)V

[X
V

, Ŷ H ] = (.)
H − (.)

V
+
(
G(X, Ŷ )

)D

.

The tensor fields Ri are vector-valued 2-forms,
as expected. G on the other hand turns out to
be symmetric in its two arguments; this is due,
apparently, to the fact that we wish to have a
manifestation of curvature at the level of forms
along ρ. In the more traditional approach, where
curvature tensors are regarded as (vertical vector-
valued) tensor fields on the full space, one would
encounter two distinct vector-valued 2-forms for
each of the two connections. One can show that
R2 and R3 determine the curvature of the con-
nection on the fibration ρ, whereas R1 and G de-
termine the curvature on π1.

In the applications we are aware of so far, the
tensor fields Ri seem to contain the most rele-
vant features of curvature. An important prop-
erty which to some extent underscores the rele-
vance of the Ri is that they are completely de-
termined by a tensorial object of lower covari-
ant order, namely a type (1,1) tensor field along
ρ. Explicitly, let Ψ = iTΓ

R1, Φ = iTΓ
R2 and

Λ = iTΓ
R3. The coordinate expressions of these

tensor fields read:

Ψ = (Γ(Bcβ)−Xβ(gc)) θβ ⊗ ∂

∂qc

Φ = −(Γ(Γγβ) +Xβ(fγ) + ΓαβΓγα) θβ ⊗Xγ

Λ = −∂f
γ

∂qb
ηb ⊗Xγ .

Here, the θβ are the so-called contact forms
dqβ − q̇βdt, whereas ηb = dqb − gbdt−Bbαθα. To-
gether with dt, θβ and ηb constitute a local basis
of 1-forms along ρ, which is dual to the local basis
for X (ρ) mentioned before. The relation between
these tensors and the curvature fields Ri is as fol-
lows:

R1 = 1
2 (dV Ψ + dt ∧Ψ)

R2 = 1
3 (dV Φ + 2dt ∧ Φ)

R3 = 1
2 (dV Λ + 2dt ∧ Λ) .

The ‘vertical exterior derivative’ dV which figures
in these expressions, is a canonically defined op-
eration; for conciseness, however, we will not dis-
cuss it further here.

4 Applications

Working out full scale applications in a brief note
is impossible, of course. We will limit ourselves,
therefore, to discussing briefly a few fields of ap-
plication in which the tensor fields introduced in
the previous section clearly manifest themselves.

For a start, let us go back to the link
with mechanics mentioned in the introduction.
For Lagrangian systems of generalised Čaplygin
type, consider the reduced Lagrangian function
L(t, qα, qb, q̇α), obtained from the unconstrained
L by the substitution imposed by the constraint
equations. It turns out that one of the above men-
tioned type (1,1) tensor fields, namely Ψ, already
makes its appearance in writing down simply the
reduced second-order equations for the qα. In-
deed, these equations take the form:

d

dt

(
∂L

∂q̇α

)
= Xα(L) + Ψa

α

∂L

∂q̇a
.

This observation has led us in [5] to a direct geo-
metrical construction of these reduced equations,
without the need of introducing first Lagrange
multipliers which are in the end eliminated any-
way. In [4], this construction was even extended
to the case of non-linear constraints.

An interesting field of study concerning properties
of dynamical systems is the search for symmetries
or adjoint symmetries, which may lead, for exam-
ple, to the identification of conservation laws or
to a process of reduction of order of the system.
Symmetries are transformations which map solu-
tion curves of the given dynamics Γ into solution
curves. One-parameter groups of such transfor-
mations are generated by vector fields which are
invariant under the flow of Γ. Adjoint symme-
tries, likewise, (leaving apart some details) are
essentially invariant 1-forms. Obviously, since we
are thinking here about the way certain objects
evolve under the flow of Γ, there must be a kind of
derivation operator which, at the level of tensor
fields along ρ is the emanation of this evolution.
This operator is what we call the dynamical co-
variant derivative ∇. It can be defined through
the non-algebraic part of the decomposition of the
Lie derivative with respect to Γ of the various



kinds of lifts. Indeed, we have the relations:

LΓX
V

= −XH

+ (∇X)
V

LΓX̂
H = (∇X̂)

H

+ Ψ(X̂)
D

+ Φ(X̂)
V

LΓX̃
D = (∇X̃)

D

+ Λ(X̃)
V

.

The action of ∇ on the local basis of X (ρ) is given
by

∇TΓ = 0, ∇Xβ = ΓαβXα, ∇ ∂

∂qb
= −∂g

c

∂qb
∂

∂qc
.

If Z ∈ X (π∗J1τ0) is going to be a symmetry vec-
tor field of Γ, its component along Γ is irrelevant
and Z will therefore have a decomposition of the
form

Z = X
H

+ X̃D + Y
V

,

for some X, X̃, Y ∈ X (ρ). The point is that
the symmetry requirement [Z,Γ] = 0 immedi-
ately fixes the vertical part: in fact we have
Y = ∇X. So, essentially, the analytical equa-
tions which must be solved to obtain symmetries
(second- and first-order partial differential equa-
tions here) must be equations for the components

of X and X̃ only. A concise, coordinate free for-
mulation of the symmetry conditions, which is the
direct geometrical translation of these analytical
conditions, is given by

∇2X +∇X̃ + (Φ + Λ + Ψ)(X) = 0 .

There is a perfectly dual version of this, concern-
ing the search for adjoint symmetries: the invari-
ant 1-form at the level of π∗J1τ0 will have a re-
dundant part, so that the essential information is
contained in two 1-forms α and α̃ along ρ. We will
not enter into details here about the definition of
such 1-forms along ρ. Suffices it to say that the
partial differential equations to be solved for con-
structing adjoint symmetries, are geometrically
modelled by a condition of the form

∇2α−∇α̃+ (Φ + Λ + Ψ)(α) = 0,

which also in this description is seen to be the
formal adjoint equation of the equation for sym-
metries.

The role of the tensor fields Φ, Ψ and Λ (together
with the dynamical covariant derivative ∇) is of
course very manifest here. It is worthwhile to ob-
serve that there is only one such tensor (Φ) in the
geometrical study of unconstrained second-order
equations. It is called the Jacobi endomorphism
there, and its importance has already been recog-
nised in quite different types of applications, such
as the study of separability of differential equa-
tions (see [1]) and the so-called inverse problem
of Lagrangian mechanics (see [2]). Needless to

say, the three tensor fields which we encounter
here (and the curvature tensors which they de-
termine) are expected to be equally important in
the study of mixed first- and second-order equa-
tions in general, and of Lagrangian systems with
non-holonomic constraints in particular.
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