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1 Introduction

The role and importance of Noether’s theorem in the study of Lagrangian systems is
widely recognised. It is the vehicle by which, from a physical perspective, the duality
is established between symmetries and conservation laws. The mathematical interest of
knowing symmetries and/or first integrals of a dynamical system is that they provide
means for a reduction of the integration process; knowledge of a sufficient number of such
elements may eventually lead to a form of complete integrability of the system.

Many authors have discussed ways of generating, if possible, first integrals also from
general symmetries of the Lagrangian (or Hamiltonian) differential equations, i.e. sym-
metries of non-Noether type. The general mechanisms behind all such constructions are
fairly easy to grasp if one makes use of some elementary concepts from the differential
geometric description of (Lagrangian) mechanics. Indeed, leaving aside certain slight vari-
ations or generalisations, one can roughly capture the full picture in the following scheme.
Noether symmetries of a Lagrangian system are symmetries of the Cartan 2-form df and
the corresponding integral originates from the closedness of the contraction of df with
the symmetry generator (see e.g. [28]). In the case of non-Noether symmetries, there is
usually one of two mechanisms at work: if a corresponding first integral has a divergence
part, then we are essentially looking at the invariance of the volume form (df)"”, where
n is the number of degrees of freedom (see e.g. [5]); alternatively, the invariant object is
a type (1,1) tensor field, constructed from df and its Lie derivative under the action of
the symmetry generator, and the first intergrals then essentially come from the Lax-type
equation which expresses this invariance (see e.g. [6, 29, §]).

Unfortunately, there is still a lot of confusion about such issues in the current literature,
probably because a number of authors are still not aware or convinced of the benefits
and the generality of coordinate free descriptions. To cite one (of many possible) exam-
ples where this leads to unfruitfull efforts: Lutzky recently discussed “generalisations” of
his earlier work on non-Noether symmetries (see [19, 20]), in which a class of velocity-
dependent symmetry generators is considered. His new results [21, 22], however, are
merely particular cases of the above cited construction of an invariant type (1,1) tensor
field, which is valid for all velocity-dependent symmetries.

The need for correcting some inaccurate or misleading statements lies partly at the origin
of the present paper. In some of the publications of Lakshmanan and co-workers about
integrability aspects of mechanical systems (see e.g. [15, 16]), consistent use of Noether’s
theorem was made to construct the invariants. In other papers, however, (see [13, 14, 17]),
the emphasis is much more on a methodology which starts from a systematic construction
of (generalised) symmetries of the differential equations (except that in the review paper
[17], a large part deals with Painlevé analysis as well). The adjective generalised refers to
the fact that the spirit is much in the line of the Lie approach to differential equations,
but non-point symmetries are being considered. From the point of view of symmetries
of the vector field generating second-order dynamics, however, there is no need to talk
about anything generalised here. This is of course not the point of criticism. The point
is that the authors believe that they are making use of a wider class of symmetries than
just Noether symmetries, as is illustrated by the explicit statement in [13, 14] that a first



integral is being constructed without recourse to Noether’s theorem. Yet, the calculations
are manifestly not about some volume form or some type (1,1) tensor field. Instead,
a certain ad hoc ansatz is imposed on the construction of (generalised) Lie symmetries,
which apparently has the effect that an invariant of the symmetry generator itself becomes
a first integral of the given differential equations. Another, potentially interesting, but in
the presentation of the authors rather peculiar story, is about the way separation variables
(in the sense of Hamilton-Jacobi theory) can be constructed directly from the components
of the symmetry generator. The claim is that such variables follow from a process of
“integration of part of the characteristic equations related to the symmetry vector field”.
However, no justification whatsoever is given concerning reasons why the manipulations
which are being carried out should have anything to do with the construction of separation
variables.

In Section 2, we will show first of all that the extra anzats which is assumed in [13, 14]
to find symmetries which lead to a corresponding first integral, is exactly a condition
which forces these symmetries to be of Noether type. In Section 3, we will take the op-
portunity to add new insights into the way Noether symmetries, from a computational
point of view, make up a subset of the set of all dynamical symmetries of a class of
autonomous Lagrangian systems. Roughly speaking, for symmetries whose leading com-
ponents are polynomial functions of the velocities of a certain degree, we will prove that
the restriction to be a Noether symmetry is equivalent to the requirement that: (i) the
coefficients of the terms of non-zero degree in the velocities are totally symmetric; (ii) the
symmetry generator preserves energy (a necessary condition for all Noether symmetries
of autonomous Lagrangian systems); (iii) the lowest order part (only) is imposed of the
determining equations for arbitrary symmetry vector fields.

In Section 4, we investigate the way the Noether symmetries, corresponding to a set of
n quadratic integrals in involution, might be directly related to the construction of sepa-
ration variables in the sense of Hamilton-Jacobi. For a start, the calculations presented
in [13, 14, 17] appear to have little to do with “integration of characteristic equations”
related to the first-order partial differential operator which comes from the symmetry
vector field. Instead, they are merely a set of formal manipulations which, at least in the
case of two degrees of freedom discussed in [13] and for the examples under consideration,
seem to produce the right answers. We will provide an explanation for this feature, which
is based on Eisenhart’s theorem about the intrinsic characterisation of Stackel systems
(see e.g. [12]), and shows that the manipulations under consideration can be given a the-
oretical backing from a factorisation property of the action of the natural volume form on
the vector fields corresponding to all quadratic integrals in involution. From this point
of view, it would seem that for an extension to more than two degrees of freedom, a
similar manipulation of characteristic equations, as attempted in [14, 17], has no meaning
whatsoever; instead, one is led to compute a determinant from the components of the
symmetries and look at a factorisation property again. Section 5 contains illustrative
examples.



2 Computational aspects of Noether’s theorem

For convenience, we will stick to the framework of autonomous second-order differential
equations (as is the case in the papers we wish to clarify).

Let L(z',%%), 7 =1,...,n be the regular Lagrangian of a given second-order dynamical
system &' = f*(x,2), with corresponding vector field
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living on the tangent bundle 7'M of some manifold M. With A = 7:9/d%" representing

the Liouville vector field, £ = A(L) — L the ‘energy function’ associated to L, and
0 = (0L/03%) dx' the Poincaré-Cartan 1-form, we know that I' is defined by

ird) = —dE. (2)

If, for simplicity, we restrict ourselves to symmetry vector fields which are time-independent
as well, Noether’s theorem says: let Y € X' (T'M) be a vector field with the properties

Ly =df and Y(F)=0, (3)

for some function f on TM, then F' = f —(Y,0) is a first integral, i.e. I'(F') = 0. The
function f is usually referred to as the gauge term in Noether’s theorem. Every such
Noether symmetry Y is effectively a symmetry of the given differential equations, i.e. we
have [I', Y] = 0. Recall further that the first condition can equivalently be written as

iyd = dF, (4)

from which in fact it trivially follows that I'(F') = 0 in view of (2) and Y(F) = 0.
Conversely, if F'is a first integral, the relation (4) uniquely defines a vector field Y which
will automatically leave the energy function invariant. This way, we obtain a one to one
correspondance between Noether symmetries and first integrals (which depends on the
Lagrangian). Note in passing that (4) trivially implies that Y (F') = 0, but needless to
say, if for a given symmetry vector field Y of I' one searches for invariants of Y, there is
no reason why these would at the same time be first integrals of the given dynamics as
well.

In coordinates, the symmetry generator Y will be of the form

B L0
e T(E) (5)

Y =¢
where the leading components £ are of course functions on 7'M, i.e. we are talking in

general about more than point symmetries.

Let us first link this up with the original version of Noether’s theorem, which has to
do with invariance of the action integral (up to a gauge term). In that approach, again



restricting ourselves to transformations which do not change the time variable, one arrives
at the following necessary and sufficient conditions for a Noether symmetry:
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This is often referred to as the Noether identity. A good reference in this respect is
[18]. The right way to look at the conditions (6), from the point of view of writing down
determining equations for the construction of Noether symmetries, is that (6) has to be
identically satisfied for all values of the independent variables z°, i, #*. The terms fl and
f stand for total time derivatives of functions of #%, &' and hence depend linearly on .
As a result, equation (6) immediately splits and is equivalent with the n+ 1 requirements:
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The full equivalence between these partial differential equations for the unknown ¢£°, f and
the ones which come out of the requirements (3) has been established (also more generally
for time-dependent situations) in [28]. It may be helpful, however, to make a few more
observations around this point here. Multiplying Eqns. (7) by f’, summing over j and
adding the result to (8), we see right away that the system (7,8) is equivalent with
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Y(L) = I(f), (10)

with Y as defined in (5). Recalling the identity

Lriyvd = v Lrf + i[r,y]9

(which is valid for arbitrary vector fields Y, I and arbitrary ), we observe that for a vector
field of type (5), [I', Y] is vertical, so that its contraction with the semi-basic 1-form 6 is
zero. We thus obtain,

Lriv0 = iy(ipd0 + dipb)
= iy(—dE 4+ d(AL)) = Y(L).

Putting F' = f — 1y, we conclude that (10) is further equivalent to I'(F') = 0. The point
about this remark is the following. Part of the folklore in the literature is that for the
explicit calculations involved in the construction of first integrals of Lagrangian systems,
one can either follow Darboux’ direct approach (cf. [32]), i.e. try to solve directly the
partial differential equation I'(F') = 0, or use Noether’s method to construct symmetries
first, and that these are different methods from the practical point of view. Of course,
Noether’s theorem expresses that one will lead to the other, but the above remark shows
that in fact the calculations are, roughly speaking, the same.



A computation which is different, in principle, but more or less of the same complexity,
is the search for solutions of the determining equations for arbitrary symmetries of I, i.e.
vector fields Y for which [I', Y] = 0. Such vector fields will be of the form (5), where the

¢ have to solve the second-order partial differential equations
r*(¢) = Y(f). (11)

If more than just point symmetries are hoped for, an ansatz will be needed about the
polynomial dependence of the ¢ on the velocities, to make such calculations feasible. The
set of solutions will always be larger than the solutions of the corresponding search for
Noether symmetries with the same ansatz. The construction of general symmetries (11)
is the line of approach followed in [13, 14], where the authors study Lagrangian systems
with 2 and 3 degrees of freedom, for some specific cases of standard Lagrangians of the
form

L= 33 = Vi), (12)

The ansatz is that the ¢ are linear in the velocities and the claim is somehow that with all
the symmetries which are obtained “one can find, without recourse to Noether’s theorem,
and almost by inspection, a set of involutive first integrals by looking for invariants of
the symmetry generator itself”. Close inspection of their analysis reveals for a start,
that in the process of solving equations (11), the authors must have taken for granted
certain simplifications, because all the symmetries they obtain will turn out to be Noether
symmetries anyway. Moreover, the impression is given that first integrals should follow
from “integrating the equation Y (F') = 0”. The fact that the energy integral every time
appears to be one of such functions F', points in the direction of Noether symmetries (see
the second condition in (3)). Finally, the rule of thumb by which the other integrals are
said to appear is that we ought to expect that our symmetries are such that (in more
correct notations):

for some function U (cf. Eqns. (2.7)(2.9) in [13] and (2.6)(2.8)(2.9) in [14]).

(13)

Now, for a Lagrangian of type (12), we have § = ' dz’ and hence, with a vector field Y

of type (5) o o
iy (di' A da®) = T(¢)) da’ — € di'.

It follows that the requirements (13) precisely express the condition (4) with F' = —U, so
that the whole idea is bound to be just an application of Noether’s theorem, as expected.

In [16, 17], no claim is made that the construction of first integrals follows without recourse
to Noether’s theorem. Symmetry generators are constructed from the general requirement
(11), with & which are of degree 1 or of degree 3 in the velocities. But also here, in
the course of the calculations, a number of unspecified simplifications must have been
imposed for the ease of finding solutions, because it turns out in the end that again all
the symmetries which are found are of Noether type. In the next section, therefore, we will
analyse in detail and in some generality what the minimal set of requirements is that one
has to impose on general symmetries, in order for them to become Noether symmetries.



3 Noether versus general symmetries

We wish to clarify the situation about conditions which force symmetries to fall into
the Noether class from the very practical point of view of actually solving determining
equations. For that purpose, we will limit ourselves to purely analytical considerations
and a case study for arbitrary n, which covers all the examples of symmetries mentioned
in the above cited papers.

The systems under consideration are the Lagrangian ones with a Lagrangian of the form
(12). It is known (see e.g. [30, 10]) that first integrals of such a system, which polynomially
depend on the velocities, can be taken to have only terms which are either all of odd or
all of even degree in the velocities. We consider the even degree case and assume, to be
concrete, that the degree is at most four. The leading coefficients ¢ of corresponding
Noether symmetries will thus contain only terms of odd degree in the velocities and the
maximal degree is three. These will then, of course, also be the restrictions we impose on
the search for general symmetries. Writing all the indices of undetermined coefficients as
bottom indices for easy legibility, we look for functions &' of the following form:

fi = aijkl(l’)i}ji}ki}l + b”(l')l'] (14)

Obviously, a;;k is assumed to be symmetric in its last three indices, but no further sym-
metry conditions for the coefficients in (14) must hold a priori, if the search is for general
symmetries. The conditions (11) for symmetries, here more specifically of the form

L) +Y (g;) =0, (15)

explicitly become:
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As customary, brackets around indices refer to symmetrisation. Let us, however, be
precise about this to avoid confusion concerning numerical factors: the convention here
is that in an expression like a;(n11,;), Where the object is already symmetric in k,[,m
by assumption, symmetrisation simply means taking a cyclic sum over all indices inside
the brackets. The determining equations for constructing all symmetries with leading
components of the form (14) are obtained by putting the coefficients of the terms of
degree 5, 3 and 1 in the above expression separately equal to zero.

If the symmetry is of Noether type, the £ will be related to a first integral F via the
relations £ = 9F /0 (strictly speaking, this is minus the I of (4)). In other words, and
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in agreement with our analysis in the previous section, Y will be a Noether symmetry if

and only if
1

F= Zaijk,mf:z;kj;l + %bijj;ij;f + g(2) (17)
is a first integral of I' for some function g. This implies for a start that we have to take the
functions a;j; and b;; to be symmetric in all indices. Note in passing that these symmetry
properties are the integrability conditions for existence of a function f which satisfies (9)
and that I'(F') = 0, as argued before, is another way of writing (10), which again shows
explicitly that we are expressing here the Noether identity (6). Now, I'(F') = 0 also gives
rise to a relation of degree 5 in the velocities and the terms of order 5, 3 and 1 produce
the requirements:

agijklmy = 0 (18)
ov
bijry = 6aijm E (19)
dg 1%
L = b — 2
Jxd W Dk (20)

In summary, functions of the form (14) are the leading components of a Noether sym-
metry if and only if the a5 and b;; are completely symmetric and satisfy (18-20) for
some function g. The last of the requirements will then give rise to further integrability
conditions which read

aVv 0%V 0%V

W—I_bjkaxkaxl —blkaxkaxj =0. (21)

(bjk,l - blk,j)

Clearly, the requirements for Noether symmetries are quite different from those for ar-
bitrary symmetries, if only because in the general case the undetermined functions in
(14) need not be totally symmetric. If one wants to pin down a minimal set of extra as-
sumptions which will force symmetries to fall into the subcategory of Noether symmetries,
imposing symmetry in all indices is obviously inevitable. Since all Noether symmetries will
further preserve the energy function, we wish to investigate now to what extent Y(F) =0
can count for these extra assumptions.

With £ = %E(:L‘Z)Q + V, we have

v
Y(E)=z2"T(& f—
(B) = T(E) + 62
and for general £ of the form (14), this becomes
g ke lem g 1L aVv
Y(F) = & Zai(jkl7m)x]xkxlx — 3aijkl@xkxl + §bi(j7k):1;]:1;k — bij@
ov .. ... AN
+ aijkl%l']l'kl'l + bij%l'].

Under the assumption of fully symmetric a;;5 and b;;, the terms of order 1 cancel out,
whereas the terms of order 5 and 3 can easily be seen to produce exactly (18) and (19).



Obviously, we need one further condition to produce the remaining requirement (20) or
equivalently (21). For that purpose, we look at the lowest order terms in the general
symmetry requirement (16). Originally, they produce the condition:

WOV, oV oV BV v
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Making use of the symmetry assumption on the a and b functions and condition (19)

which already followed from Y (£) = 0, one readily verifies that (22) becomes identical to
(21). The results can be summarised as follows.

Proposition. Consider a vector field Y of the form (5), where the functions £'(x,)
have the structure (14), then the following three conditions imply that Y will be a Noether
symmetry of the Lagrangian second-order system I' derived from the function L in (12):

6 A5kl 0. (22)

1. the coefficients in the expression (14) for & are symmetric in all indices,
2. Y(FE)=0 (where E is the energy function associated to L),

3. the lowest-order terms (i.e. terms of degree 1) in the non-zero components of the
vector field [Y, 1] cancel out.

Remark: since Noether symmetries are symmetries, the above requirements will guarantee
that the terms of degree 5 and 3 in the complicated expression (16) will automatically be
zero as well.

Needless to say, the proposition is equally valid for the case of symmetry components ¢
which are linear in the velocities, with corresponding quadratic first integrals: it suffices
to put a;;m = 0 in all calculations above. It would not be too difficult to extend it, on the
other hand, to higher-degree polynomials and to Lagrangians with a more general metric
in the kinetic energy term than the standard Euclidean metric in (12). We finally point to
a few other well known facts. The condition (18) in the Noether approach, which comes
from the terms of highest degree does not involve the potential and hence expresses that
the terms of highest degree in (17) (quartic in our case) will constitute a first integral of
the pure geodesic motion produced by the kinetic energy term in L. What the structure
of equations (18) further tells us is that we are looking at the components of a Killing
tensor: in the present situation, the comma of course refers to taking partial derivates; if
the kinetic energy metric would not be Euclidean, covariant derivatives would make their
appearance there instead. To name just a few references which deal with the relation
between first integrals and Killing tensors, see [31, 1, 12, 35]. As some of these references
indicate, Killing tensors play a key role also in the theory about separation of variables
in the Hamilton-Jacobi equation, to which we come in the next section.

4 Symmetries and separability

Separation of variables in the Hamilton-Jacobi equation is a problem with a long history.
It is not our intention to even attempt a short survey of the history here. For that we refer



to specialists in the field, like Benenti and Kalnins and Miller, who have contributed to the
subject with numerous publications of which we cite just a few here: [3, 11, 12]. Probably
the best known classical result is Stackel’s theorem about orthogonally separable systems.
It is a key result which tells you how separable systems look like in the coordinates in which
indeed the separation works (generalisations by Benenti cover a similar characterisation for
the non-orthogonal case). It does not tell you, however, how to construct such coordinates,
or in fact whether such coordinates exist (see also [23]). The first fundamental result about
existence of separation variables is Eisenhart’s theorem [9], which is in the first place an
existence theorem, but also has constructive features which are perhaps underestimated.
Eisenhart’s theorem essentially gives an intrinsic characterisation of the existence of a
point transformation which will transform a Hamiltonian system into Stackel form. Very
little is known about the existence of more general canonical transformations which have
such effect. A remarkable example of a non-point transformation which transforms a
Hamiltonian system into separable form is contained in [4]. In [34], this example is put
into a more general framework by the introduction of what the authors call quasi-point
transformations. An equivalent result for the same example, by the way, has been obtained
through techniques of algebraic geometry. See in that respect [27] and references therein.
In any event, even in the case of point transformations, there is still room for new insights
about tests which can tell whether a given system is separable and how one can find
the right coordinates explicitly. As a preliminary remark, although Hamilton-Jacobi is
of course, strictly speaking, about Hamiltonian systems, we will continue to describe the
situation for the corresponding Lagrangian setting. This is certainly justified for systems
with a Lagrangian of type (12), for which velocities and momenta are the same.

In [13, 14, 17], it is claimed that a direct calculation on the components of symmetry vector
fields can produce separation variables, at least in the case of functions ¢ which are linear
in the velocities. In a programme in which one starts the analysis of a given system by
constructing symmetries, in particular Noether symmetries and the corresponding first
integrals, it is certainly a good idea to investigate whether the symmetries contain by
themselves information about the construction of separation variables. Roughly, what
the authors do goes as follows. Consider the characteristic equations for the partial
differential equation Y (F') = 0, which read, for the case n = 2 say,

dat B dz? dzt di?

o B — 7 23
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and assume that the functions ¢ are of the form
fi = aij(l')i}j, with U5 = Q5. (24)

Then, the first equality can be written in the form

agj:i;j dat — alj:i;j dz? = 0.
Thinking of #/ as standing for da’ /dt and multiplying by dt, the formal quadratic expres-
sion

g, do’ dxt — a1 de’dz? =0 (25)
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is obtained. Solving this, for example, algebraically for dz?/dx' and treating these as
first-order differential equations, it so happens that their integration seems to produce the
separation variables. The authors call this procedure “integrating part of the characteristic
equations”. However, when integrating characteristic equations such as (23), the z* and &'
ought to be treated as independent variables, so the formal manipulation we just sketched
has nothing to do with that. In any event, the authors do not give any reason why this
manipulation should have something to do with the construction of separation variables.
The lack of a supporting theory puts the authors on even more shaky grounds, when
they attempt similar manipulations on some 3-dimensional systems, because there is then
more than one symmetry involved and it is in general not clear how one could, even in
principle, handle a set of such formal quadratic expressions.

We will develop arguments here to show first that the formal manipulations mentioned
above are indeed bound to produce separation variables for n = 2. These arguments
will show at the same time that the route to generalisations to more than two degrees of
freedom is quite different from the calculations performed in [14, 17]. As a preliminary
remark, observe that in manipulating the quadratic expression (25), it makes no difference
whether one writes dz* or &, and in fact it will be more appropriate for the developments
below to think of it as

ag; # ' —ay; '@ = 0. (26)

Since Eisenhart’s theorem concerning separability is about Killing tensors, and such ob-
jects are related to first integrals which in turn correspond to Noether symmetries, it
should not come as a surprise that we will seek an explanation which starts from Eisen-
hart. We first state the theorem more or less in the form in which it is cited in [12].

Eisenhart’s theorem. A necessary and sufficient condition that a kinetic energy La-
grangian L = Lg;(x)@'@? (or better its corresponding Hamiltonian) can be given the
Stickel form is that there exist n — 1 Killing tensors aj;, v =1,...,n — 1, such that:

1. the tensors {gi;,a;;} are linearly independent,

2. all roots of the (generalised) eigenvalue problem det(a” — X'g) = 0 are distinet for
all v (a7 stands for the matriz with components a3;),
3. there exist new coordinates y' such that the vectors Xry, with components X(jk) =

dz? [Oy* are common eigenvectors of all a”, i.e. we have

(a?j_)‘(wk)gij) X(jk):(), kE=1,...,n, vy=1,....,n—1. (27)

A dual version of this theorem is mentioned in [2]. If (¢*') denotes the inverse of the

matrix of the given metric tensor and a%f the contravariant version of the Killing tensors

obtained by raising indices in the usual way, then the contravariant version of the third

requirement in the theorem says that there are n common orthogonal closed eigenforms
(k).

ol

(a” — )\(Wk) gij) agk) =0, with  da® = 0. (28)

~
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Locally then, a®) = dy* for some functions y*, which define, as in the other version,
separation coordinates. It is worth mentioning in this context that Benenti now even has
a theorem about the characterisation of separable systems in which only one Killing tensor
is needed (see [3]), but this result will not be directly relevant to our further discussion.

Naturally, for the standard metric we are considering in Lagrangians of type (12), the
covariant and contravariant versions of the Killing tensors are the same, so if we con-
struct eigenvectors in the algebraic sense, we have the freedom of interpreting them either
as vector fields or as 1-forms. Strictly speaking, Eisenhart’s theorem is about geodesic
motions or, in other words, about Lagrangians without potential term. However, it is
well known since Levi-Civita that for a Hamiltonian of type T' 4+ V to be separable, it
is necessary that the kinetic energy part by itself is separable. Moreover, if the full La-
grangian or Hamiltonian has a quadratic first integral, which is the sum of a quadratic
part and terms of degree zero, it is the quadratic part only which defines the correspond-
ing symmetry as in (24) and, as said before, this quadratic part determines a Killing
tensor for the geodesic motion coming from the kinetic energy term. As a result, for the
sake of identifying separation variables and trying to relate them to symmetries, we can,
without loss of generality, omit the potential term alltogether. There are simple criteria
then (see again [3], for example, or even the original theorem of Stackel) to check, once
separation variables have been detected, whether the potential term has a structure which
is compatible with the separation.

We now start examining what the implications are of the conditions on the «; in Eisen-

hart’s theorem, for the symmetry components £ which correspond to these via (24). It is

clear that a symmetry vector field Y as in (5) is completely determined by its first term

0
ozt
which looks like a vector field on the base manifold M, whose components, however, are

functions on T'"M. This is called a vector field along the projection 7 : TM — M. So-
called semi-basic forms on T'M likewise can be regarded as differential forms along 7. For

X=¢

(29)

an adapted calculus about forms and fields along 7 and an application to separability
of second-order equations, we refer to [24, 25, 26]. We will, however, not really need
that sophisticated machinery here. Recall though, that there exists a canonically defined
vector field along 7, namely the ‘total time derivative operator’

0

T=3'"—
xaxZ

(30)

which, in the present context of Lagrangians of type (12), is in fact precisely the vector
field along 7 determining the Noether symmetry corresponding to the energy integral.

For simplicity, we first discuss the case n = 2 in some detail, for which there is just
one Killing tensor a;; with distinct eigenvalues. It is perhaps instructive to show via
Eisenhart’s theorem why in such a case separability always works. Using the covariant
version, for example, we have two 1-dimensional, integrable eigendistributions and their
sum is also integrable by dimension. It follows from the Frobenius theorem that there exist
coordinates y' such that 9/dy' spans the first distribution and 9/dy? the second. This in
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turn means that in each of the original eigendistributions, one can find an element such
that the two selected eigenvectors commute and hence can simultaneously be straightened
out. These elements are of course the eigenvectors with components of the form 9z’ /dy*
featuring in Eisenhart’s theorem. Likewise, referring to the contravariant version, 1-forms
in dimension 2 always have an integrating factor, so that we can always make the a(*)
locally exact, yielding again the desired separation variables. Note that these ideas can
in fact be used constructively to find the separation variables for two degrees of freedom
systems with a known second quadratic integral (see next section).

Now, if al¥) = ozgk)d:zji, k = 1,2 are the eigenforms and we consider their formal product to
produce a quadratic expression in the dz', we know that this expression will become (up
to a factor) the formal product dy'dy?, when expressed in the right coordinates. Hence, if
there is any truth in the expectation that the manipulations described about the quadratic
expression (25) should indeed lead to the identification of separation variables ', there
should be a link between (25) and the formal product of the o¥) (to be interpreted
properly, for example, as the symmetric tensor product). This is what we shall establish
now, taking account of the earlier remark that one can write just as well a quadratic
expression in 2' instead of dz', meaning that we then think of

ozgl)ozf) @' (31)
Expressing that the o(*) are eigenforms of the matrix a;;, we have

a0 =AW =12 =12,

7 K3

or equivalently, since these are functions of the coordinates only,

Plaol) = XBWai =12, (32)

J

In the left-hand side, we recognise the contraction of the basic 1-form o, regarded as
I-form along 7, with the vector field X along 7, determined by (29) and (24). The right-
hand side contains the contraction of a®) with T. In other words, the equality (32) has
the intrinsic interpretation:

(X,a®) = AT, ™), k=1,2, (33)
from which it follows that
(@M A a®) T, X) = (A® = AT, aMV)N(T, o). (34)

The final point to observe now is that o) A a?), being a volume form (on an open set),
is proportional to the standard volume form dz! A da?, and

(da' A da?) (T, X) = 4" — &'i? = ag; #'3" — ay; #7 3% (35)

Collecting the results we thus conclude: (35) shows that the quadratic expression (26)
(which was obtained through manipulation of characteristic equations in [13]) can be
interpreted as coming from the action of a volume form on the symmetry generators
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(T, X); as such, it is bound to be proportional to the right-hand side of (34) when
one thinks of the eigenforms of the matrix (a;;) to construct a volume form; since the
cigenvalues A*) are further assumed to be different in Eisenhart’s theorem, this right-
hand side is in turn proportional to the expression (31); finally, Eisenhart’s theorem
guarantees that separation coordinates exist, in which (31) will simply factorise as y'y?
(always up to a multiplicative function).

From a practical point of view, once a second quadratic integral has been found (or
its corresponding linear Noether symmetry) and the eigenvalues of the matrix (a;;) are
different, the above result somehow provides an indirect way of making use, constructively,
of Eisenhart’s theorem: without bothering about computing eigenforms, we compute a
determinant, namely the function (dz' A dz?)(T, X)) which gives rise to a quadratic form
in the #* and one can try to find separation variables by factorising this expression into
the product of two linear expressions. For two degrees of freedom, in fact, this idea can
be made stronger because there is a converse result: any such factorisation, with factors
which are linearly independent, will give rise to separation variables. Indeed, suppose we
can write the determinant in question as follows

RV CIEY

az; gt — aj 3t = (e @") (a7 @),
Identification of the coefficients of corresponding terms in both sides then gives:
(1 (2) (1)a(22) N O (1,2

a1 = Oy "y 7, a9 — d11 = Oy 9 Oy 7, a1z = — Q5 "0y

Remembering of course that ayy = ay; it follows that

anoz(ll) + algoz(;) = (au + 06(12)04(21)) a(ll) )
agloz(ll) + aggoz(;) = (Clzz — 06(22)04(11)) a(zl) )
anoz(12) + algoz(;) = (au + 06(11)04(22)) 04(12) )
Clzloé(12) + a22a(22) = (Gzz - 04(21)04(12)) 04(22)

This proves that, with

AD = g+ a(lz)a(zl) = Gy — agz)a(ll) :

A = ayy + 04(11)04(22) = a2 — 04(21)04(12) ;
the ozgl) and oz£2) give the components of an eigenform, and we have A() £ X2 in view
of the assumed linear independence. The two eigenforms have an integrating factor by
dimension and the resulting new variables will be separation variables by Eisenhart’s
theorem.

Let us now move on to the case n = 3. Clearly, if we follow the same line of thought
the generalisation will not lead to a set of quadratic expressions but rather to one cubic
expression, obtained from the computation of a determinant again and having a factori-
sation property as before. A sketch of the reasoning goes as follows. Assume we have
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obtained two extra quadratic integrals in involution or, equivalently, their corresponding
Noether symmetries which are determined by vector fields along 7, say

X, with & =a i’ y=1,2 (36)

_ ek 9
Y Pk
In case of separability, following Eisenhart, there must be closed 1-forms a9, i =1,2,3,
which are common eigenforms of both matrices a,. Denoting the eigenvalues of ., which
are assumed to be different, by )\(Wk), we thus have, in the same way as (32) was derived
and rewritten in the form (33):

(X, ™) = AXW(T, o), k=123, v =1,2. (37)
It follows that
(a(l) Aa®@ A a(B)) (T, X1, X2) = p(T,aWNT, a@)NT,a®), (38)
with
p= 2 (B 2P 1A (A - a) 1P (0 - 2@) 3

The function p is non-zero because of the first assumption in Eisenhart’s theorem. The
left-hand side of (38), coming from a volume form, is proportional to the determinant
(dx' A dz® A dz®) (T, Xy, Xy) which can be computed directly from the symmetry com-
ponents. The right-hand side of (38) then expresses that this cubic expression in the '
can be factorised as the product of three linear expressions and even in such a way that
this product becomes simply y'3%7® in a set of separation variables. For n > 2 there is
no converse in the sense that the existence of a factorisation of the determinant by itself
does not necessarily imply that each of the factors will be integrable. The results of our
analysis can be summarised as follows.

Proposition. Assume that X1 and Xy of the form (36) define Noether symmetries of
a Lagrangian system (12) with three degrees of freedom. Then, if we are in a situation
where corresponding separation variables for the Hamilton-Jacobi equation exist, they can
be obtained from factorising the determinant

-1 J‘/,2 j;3

a & & (40)
& & &

into the product of three factors which are linear in the velocities and integrable.

Observe that the potential energy function V' is not present in this statement: we repeat
that the potential is irrelevant as long as one wants to find out the nature of separation
variables if they exist; having found them, one is assured of separability of the kinetic
energy part and then it is relatively easy to check whether the form of the potential is
such that also the full system will be separable (see next section).

We have proved above a similar result for n = 2 and it is obvious that it can actually be
done for arbitrary n. But beyond n = 3, it is doubtful that this procedure (as perhaps
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any other) could be implementable in practice. We will show in the next section, however,
that up to three degrees of freedom, there are indeed different ways of making constructive
use of this proposition. Our point of view in this respect is that this amounts to making
constructive use of the existence theorem by Eisenhart.

On the theoretical side, it looks worthwhile for a future study to go more deeply into the
potential role and relevance of volume forms for the characterisation of separability. A
generalisation of the present considerations to non-standard metrics looks fairly straight-
forward. A more difficult issue is the question whether anything similar could be done
related to non-quadratic integrals, where a transformation to separation variables will not
be a point transformation (cf. the already cited example in [4]).

Before closing this section, let us make clear why one should not expect any meaningful
conclusion from manipulations of quadratic expressions such as (26) when n is greater
than 2. Indeed, thinking of the case n = 3, for example, and the matrix a;; related to one
of the symmetry generators, (26) can still be generated by a computation as in (35), and
the related computation (34) will still produce a quadratic expression which factorises in
the new variables guaranteed by Eisenhart’s theorem. The point then is, however, that
oM A a? will in general contain terms in all dz® A dz/, or alternatively, da' A da? will be
a combination of all a9 A o) and hence will by itself not factorise.

5 Illustrative examples

An example of an integrable and separable system with two degrees of freedom which can
be found e.g. in one of the tables in [17] is the Lagrangian system (12) with potential (we
will write here x, y for the coordinates instead of x!, z?)

Vi(z,y) = a(2® +4y?) + b(z* + 122%y* + 16y*), (41)
for which a second quadratic integral is of the form
F = (zy — yi)z + 2 (a + 4by® + 2b2*)2%y. (42)

For the sake of illustrating a number of points discussed in the previous section, we will
first of all limit ourselves to quartic potentials (¢ = 0) and in fact assume that the class of
admissible quartic potentials, in the sense that there exists a first integral with (zy — yi)
as quadratic part in the velocities, has as yet to be discovered. Let us say, for example,
that we aim at finding potentials of the form

V =2t + e’y + syt (43)

with ¢; to be determined.

When we think of quadratic integrals, the Noether requirements (18-20) reduce to
dg 1%

a(ij7k) = 0, % = ajk@. (44)
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Our starting point is the assumption that we have found from the highest-order terms
the quadratic part of the above first integral F' as particular solution, or in other words,
the symmetry generator (as vector field along 7):

0

d
X = (zy — 2y:i;)a—x + x:z;a—y : (45)

The potential V' plays no role in obtaining this part, which determines a Killing tensor

with components
-2y =
A= (aij) == ( 0 ) . (46)

X

Our objective is not only to find potentials for which a second quadratic integral exists,
but also to construct separation coordinates. The determination of the potential can
then further be suspended and separation variables, if they exist, should follow from the
following procedure. According to Eisenhart’s theorem, we construct a set of eigenvectors
of the matrix A; they read:

(x,y+r) and (x,y—r) with = (2 + y?)V/2

If we treat these as components of eigenvector fields, say

0 0 0 0
Xi=2—+(y+r)=— Xo = ao—+(y—r)=— 47
then it is easy to verify that this happens to be a basis of commuting vector fields for
the eigendistributions, so that they can simultaneously be straightened out. A coordinate
transformation which does this is and therefore defines separation variables reads:

v = Inyr—y.

X

b
r—y

u=1In

However, any further transformation which does not couple these coordinates will preserve
separability. We may, therefore, just as well take

u =/ +y, v o= \r—y. (48)

In agreement with the theoretical discussion of the previous section, we could here also
treat the eigenvectors of A as components of eigenforms, and one then readily finds in-
tegrating factors which bring these into the form du and dv, with « and v as defined by
(48). Finally, the new idea which we have introduced with regard to separation variables,
namely as coming from a factorisation of the determinant #£* — y¢!, can be seen to work
as follows. The quadratic expression (35) here becomes:

i — iy — xy’ = - (zz + (y+r)y) (2 + (y —1m)y) .

Again, one can see that the potential is irrelevant in this process of detecting possible
separation variables. One way of determining subsequently whether the potential has an
appropriate form for separability could go as follows: having found separation variables
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already, one could first express the given system in these new coordinates and then verify
for what values of the parameters the potential satisfies the criteria of Stackel’s theorem.
Alternatively, there is an intrinsic characterisation of the condition which the potential
should satisfy, which therefore can be verified directly in the original coordinates. This
characterisation can be found in [3], and says that the 1-form K - dV should be closed
(for all of the Killing tensors K entering Eisenhart’s theorem). For the present example,
this reduces to the requirement that the functions a;;dV/dz? should be the components
(locally) of an exact 1-form. Not surprisingly, this is exactly the remaining Noether
condition in (44), or equivalently, the condition (21). For the Killing tensor A given in
(46), we have

A-dV = (—Zyaa—‘:: + :I;aa—‘y/) dx + :Jcaa—‘:: dy,
and expressing that d(A - dV') should be zero, for a V of the form (43), reduces to the
condition

(12¢; — ¢2)z® + (8¢y — 6ez)zy® = 0.

It follows that we must have ¢ = 12¢; and ¢35 = 16¢;, which is in agreement with the
quartic part in the potential function (41).

It is worth mentioning that another, in fact well-known, admissible potential could have
been discovered along the lines of this example. Indeed, the quadratic part (zy — yi)d
of the function F' in (42) is the velocity-dependent part of one of the components of the
Runge-Lenz vector in the reduced (planar) Kepler problem. One easily verifies that the
Kepler potential also satisfies the above requirement d(A-dV') = 0 and we further conclude
that (48) defines separation variables for the Kepler problem as well. A good reference
where this example is encountered in the context of linking symmetries to Killing tensors

is [7].

For three degrees of freedom, it is not so obvious how one could use in practice the factori-
sation property of the determinant (40) to find separation variables. We will nevertheless
illustrate two ways in which one could make use of this result for constructive purposes.
We shall write z,y, 2 for the coordinates z* now.

Looking once more at the rich collection of examples which is contained in [17], assume
we have a Lagrangian of type (12) which has an angular momentum type first integral,
the square of which provides a first quadratic integral, say

by = (yz - 29)2 : (49)
Assume another integral is of the form
Fy=(y& —ag)y+ (2@ —ax2)s+---. (50)

As before, we leave the terms of degree zero, both in the Lagrangian and in F5, out of the
discussion for the time being. For the corresponding Noether symmetries, we have

fi = 07 5% = _ZZ(y'é - Zy)v 5? = Zy(y'é - Zy)v (51)

L=yg+ei, G = yi 22y, & = xd 20k (52)
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It is obvious from the second row (51) in the determinant (40) that there will be factor
yz — zy. The remaining quadratic factor then is

(i + 22)° + 22(yy + 22)& — (y* + 2%)a?,
and it is not too hard to see that this factorises as
Wy + 22+ (@ +r)a)(yy + 22 + (v —r)2),

with r = (:1;2 +yi 4 22)1/2. It turns out that these three factors are integrable and identify
separation variables u, v, w, defined by

u=\r+4+a, v = \r—uzo, wzardan(%).
However, we should emphasize that our theoretical arguments in Section 4 do not allow
to draw this conclusion at all. Indeed, it is easy to see that the matrix corresponding to
F has a double eigenvalue zero, so that we are not in the situation of Eisenhart’s theorem
from which our results were derived. The reason is that the essential first integral behind
Fy is the linear expression yZ — zy, which corresponds to a Killing vector (not a Killing
2-tensor). A rudimentary explanation about the reasons why the above determinant
calculation happens to produce the right answers anyway, is that the Killing vectors
for a separable Hamiltonian in the end correspond to ignorable coordinates (see [2]).
As a result, the system will immediately reduce to a lower dimensional one, and the
remaining quadratic expression which we factorised above can then be expected to be in
direct correspondance with the quadratic form coming from this lower dimensional system.
Note in passing that this situation should not be confused with the well-known property
(see e.g. [31]) that in spaces of constant curvature, every Killing 2-tensor is trivial, in
the sense of being expressible as a linear combination of symmetrised tensor products
of Killing vectors. From the point of view of the present analysis, there is no problem
with this form of ‘triviality’ as long as the regularity assumptions of Eisenhart’s theorem
are satisfied. For now, let us again sketch how one can subsequently find appropriate
potentials which preserve the separability.

Assume we want to find suitable potentials again in the class of homogeneous functions
of degree 4 and, to simplify matters, more particularly of the form

V=o' 4+ ey’ + ez + dia?y? + doa?2? + dsy?s? . (53)
The 1-form A - dV which comes from the Killing tensor related to F% reads

(yVy, + zVo)da 4+ (yVe — 22V, dy + (2V, — 22V,) d= .
Expressing its closure for a V' of type (53), we find restrictions on the undetermined

constants, which reduce to ¢; = 16¢3, 3 = ¢a, di = dy = 12¢3, d3 = 2¢5. This way, up to
a constant factor ¢y, the potential is bound to be of the form

V =162 + (y2 + 22)2 + 12:1;2(y2 + 22) ) (54)
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We observe then that this potential is already invariant under the action of the Killing
vector yd/0z — z0/dy related to Fy. It follows that F will be a quadratic integral for the
full system as well.

Let us finally illustrate how one can now further determine the terms in F, which are
indicated by dots. With the potential (54), the 1-form A - dV becomes

4(y2 + 22)(6:1;2 + 4%+ 22) dr + 16:1;(:1;2 + 4%+ 22)(ydy + zdz).

In agreement with the Noether condition (20), putting this expression equal to dg should
produce the remaining function in the quadratic integral. We thus find

g =1y’ +2°)" + 827 (y* + 7). (55)

For a third illustration now, assume we start from the following two Killing tensors of the
standard metric in dimension 3,

Fyo= (ag —yi)' + (02 = 22)* + (y2 = 29)" + (27 = &%) (56)
Fy = (yz—29)* — (2 — y2)? — (2% + 2%). (57)

Also this case is inspired by an example in [17] and fits as well into the category of
systems described in [33]. The idea again is that these should become the leading parts
of quadratic integrals of a Lagrangian system of type (12) for some suitable potential.
If we first want to verify whether the ultimate system and its integrals will correspond
to a case of separability in the Hamilton-Jacobi sense, then we could try our luck with
the factorisation property of the determinant (40). Needless to say, we could also try
to address directly the conditions of Eisenhart’s theorem. The determinant (40) for this
case gives rise to a fairly complicated cubic expression in z,y, z and it is not obvious at
first sight how one could think of a way to write it as a product of three linear factors.
Nevertheless, we know that there are only a finite number of coordinate systems in R? in
which the standard metric is separable (the eleven types first derived by Eisenhart [9] and
reconstructed also e.g. in [3]). With some experience in the field one can readily rule out a
number of these possibilities and then a direct computation on the determinant (40) does
become feasible, as we shall now illustrate. One of the more difficult types of coordinates
to work with is for example the class (IVy) in [9]. If we denote the new coordinates by
u, v, w again, they are defined by relations of the following type

, _ (a—u)(a—v)(a—w)
R (58)
g BB
B=a)(B—7)
: _ (b =wl=v)r—w)
(v—a)y—=8)

for some constants «, 3, v, and the domain of definition is determined by the requirement
a>u>0F>v>v>w. Itisthen afairly straightforward exercise to transform the cubic

X

(59)

(60)
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polynomial in z,y, z into a corresponding cubic expression in u,v,w via the derivatives
of (58-60). If there indeed exists a transformation of this type which will give rise to
separation variables, the new cubic polynomial should reduce to just one term, namely
the monomial %dw. Doing such a calculation is not as formidable as it may at first sound:
first of all, it is typically a symbolic calculation which computer algebra packages can
handle; secondly, to see whether there is any chance for this to work, it suffices to test
first just one term, i.e. to check for example whether the coefficient of %? can be made to
vanish. We have done this for the above situation and found that (58-60) does produce a
factorisation of the determinant (40), provided we choose «, 3,~ in such a way that

a—f3=1, v—03=-1. (61)

As before, one can separately compute what kind of potentials are acceptable and in that
process one will find at the same time what extra functions then have to be added to the
expressions (56)(57), in order to obtain quadratic integrals for the full Lagrangian. The
procedure works exactly as in the preceding case. We limit ourselves to the observation
that it is not possible for this case to find an acceptable potential which is homogeneous of
degree four in the coordinates. One does obtain, however, the following class of potentials
(with A an arbitrary constant):

V=A@ +y" +27) + (v +227) + (2" +y" + 7). (62)
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