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1 IntroductionThe role and importance of Noether's theorem in the study of Lagrangian systems iswidely recognised. It is the vehicle by which, from a physical perspective, the dualityis established between symmetries and conservation laws. The mathematical interest ofknowing symmetries and/or �rst integrals of a dynamical system is that they providemeans for a reduction of the integration process; knowledge of a su�cient number of suchelements may eventually lead to a form of complete integrability of the system.Many authors have discussed ways of generating, if possible, �rst integrals also fromgeneral symmetries of the Lagrangian (or Hamiltonian) di�erential equations, i.e. sym-metries of non-Noether type. The general mechanisms behind all such constructions arefairly easy to grasp if one makes use of some elementary concepts from the di�erentialgeometric description of (Lagrangian) mechanics. Indeed, leaving aside certain slight vari-ations or generalisations, one can roughly capture the full picture in the following scheme.Noether symmetries of a Lagrangian system are symmetries of the Cartan 2-form d� andthe corresponding integral originates from the closedness of the contraction of d� withthe symmetry generator (see e.g. [28]). In the case of non-Noether symmetries, there isusually one of two mechanisms at work: if a corresponding �rst integral has a divergencepart, then we are essentially looking at the invariance of the volume form (d�)n, wheren is the number of degrees of freedom (see e.g. [5]); alternatively, the invariant object isa type (1,1) tensor �eld, constructed from d� and its Lie derivative under the action ofthe symmetry generator, and the �rst intergrals then essentially come from the Lax-typeequation which expresses this invariance (see e.g. [6, 29, 8]).Unfortunately, there is still a lot of confusion about such issues in the current literature,probably because a number of authors are still not aware or convinced of the bene�tsand the generality of coordinate free descriptions. To cite one (of many possible) exam-ples where this leads to unfruitfull e�orts: Lutzky recently discussed \generalisations" ofhis earlier work on non-Noether symmetries (see [19, 20]), in which a class of velocity-dependent symmetry generators is considered. His new results [21, 22], however, aremerely particular cases of the above cited construction of an invariant type (1,1) tensor�eld, which is valid for all velocity-dependent symmetries.The need for correcting some inaccurate or misleading statements lies partly at the originof the present paper. In some of the publications of Lakshmanan and co-workers aboutintegrability aspects of mechanical systems (see e.g. [15, 16]), consistent use of Noether'stheorem was made to construct the invariants. In other papers, however, (see [13, 14, 17]),the emphasis is much more on a methodology which starts from a systematic constructionof (generalised) symmetries of the di�erential equations (except that in the review paper[17], a large part deals with Painlev�e analysis as well). The adjective generalised refers tothe fact that the spirit is much in the line of the Lie approach to di�erential equations,but non-point symmetries are being considered. From the point of view of symmetriesof the vector �eld generating second-order dynamics, however, there is no need to talkabout anything generalised here. This is of course not the point of criticism. The pointis that the authors believe that they are making use of a wider class of symmetries thanjust Noether symmetries, as is illustrated by the explicit statement in [13, 14] that a �rst2



integral is being constructed without recourse to Noether's theorem. Yet, the calculationsare manifestly not about some volume form or some type (1,1) tensor �eld. Instead,a certain ad hoc ansatz is imposed on the construction of (generalised) Lie symmetries,which apparently has the e�ect that an invariant of the symmetry generator itself becomesa �rst integral of the given di�erential equations. Another, potentially interesting, but inthe presentation of the authors rather peculiar story, is about the way separation variables(in the sense of Hamilton-Jacobi theory) can be constructed directly from the componentsof the symmetry generator. The claim is that such variables follow from a process of\integration of part of the characteristic equations related to the symmetry vector �eld".However, no justi�cation whatsoever is given concerning reasons why the manipulationswhich are being carried out should have anything to do with the construction of separationvariables.In Section 2, we will show �rst of all that the extra anzats which is assumed in [13, 14]to �nd symmetries which lead to a corresponding �rst integral, is exactly a conditionwhich forces these symmetries to be of Noether type. In Section 3, we will take the op-portunity to add new insights into the way Noether symmetries, from a computationalpoint of view, make up a subset of the set of all dynamical symmetries of a class ofautonomous Lagrangian systems. Roughly speaking, for symmetries whose leading com-ponents are polynomial functions of the velocities of a certain degree, we will prove thatthe restriction to be a Noether symmetry is equivalent to the requirement that: (i) thecoe�cients of the terms of non-zero degree in the velocities are totally symmetric; (ii) thesymmetry generator preserves energy (a necessary condition for all Noether symmetriesof autonomous Lagrangian systems); (iii) the lowest order part (only) is imposed of thedetermining equations for arbitrary symmetry vector �elds.In Section 4, we investigate the way the Noether symmetries, corresponding to a set ofn quadratic integrals in involution, might be directly related to the construction of sepa-ration variables in the sense of Hamilton-Jacobi. For a start, the calculations presentedin [13, 14, 17] appear to have little to do with \integration of characteristic equations"related to the �rst-order partial di�erential operator which comes from the symmetryvector �eld. Instead, they are merely a set of formal manipulations which, at least in thecase of two degrees of freedom discussed in [13] and for the examples under consideration,seem to produce the right answers. We will provide an explanation for this feature, whichis based on Eisenhart's theorem about the intrinsic characterisation of St�ackel systems(see e.g. [12]), and shows that the manipulations under consideration can be given a the-oretical backing from a factorisation property of the action of the natural volume form onthe vector �elds corresponding to all quadratic integrals in involution. From this pointof view, it would seem that for an extension to more than two degrees of freedom, asimilar manipulation of characteristic equations, as attempted in [14, 17], has no meaningwhatsoever; instead, one is led to compute a determinant from the components of thesymmetries and look at a factorisation property again. Section 5 contains illustrativeexamples. 3



2 Computational aspects of Noether's theoremFor convenience, we will stick to the framework of autonomous second-order di�erentialequations (as is the case in the papers we wish to clarify).Let L(xi; _xi); i = 1; : : : ; n be the regular Lagrangian of a given second-order dynamicalsystem �xi = f i(x; _x), with corresponding vector �eld� = _xi @@xi + f i(x; _x) @@ _xi ; (1)living on the tangent bundle TM of some manifold M . With � = _xi@=@ _xi representingthe Liouville vector �eld, E = �(L) � L the `energy function' associated to L, and� = (@L=@ _xi) dxi the Poincar�e-Cartan 1-form, we know that � is de�ned byi�d� = �dE: (2)If, for simplicity, we restrict ourselves to symmetry vector �elds which are time-independentas well, Noether's theorem says: let Y 2 X (TM) be a vector �eld with the propertiesLY � = df and Y (E) = 0; (3)for some function f on TM , then F = f � hY; �i is a �rst integral, i.e. �(F ) = 0. Thefunction f is usually referred to as the gauge term in Noether's theorem. Every suchNoether symmetry Y is e�ectively a symmetry of the given di�erential equations, i.e. wehave [�; Y ] = 0. Recall further that the �rst condition can equivalently be written asiY d� = dF; (4)from which in fact it trivially follows that �(F ) = 0 in view of (2) and Y (E) = 0.Conversely, if F is a �rst integral, the relation (4) uniquely de�nes a vector �eld Y whichwill automatically leave the energy function invariant. This way, we obtain a one to onecorrespondance between Noether symmetries and �rst integrals (which depends on theLagrangian). Note in passing that (4) trivially implies that Y (F ) = 0, but needless tosay, if for a given symmetry vector �eld Y of � one searches for invariants of Y , there isno reason why these would at the same time be �rst integrals of the given dynamics aswell.In coordinates, the symmetry generator Y will be of the formY = �i @@xi + �(�i) @@ _xi ; (5)where the leading components �i are of course functions on TM , i.e. we are talking ingeneral about more than point symmetries.Let us �rst link this up with the original version of Noether's theorem, which has todo with invariance of the action integral (up to a gauge term). In that approach, again4



restricting ourselves to transformations which do not change the time variable, one arrivesat the following necessary and su�cient conditions for a Noether symmetry:�i @L@xi + _�i @L@ _xi = _f: (6)This is often referred to as the Noether identity. A good reference in this respect is[18]. The right way to look at the conditions (6), from the point of view of writing downdetermining equations for the construction of Noether symmetries, is that (6) has to beidentically satis�ed for all values of the independent variables xi; _xi; �xi. The terms _�i and_f stand for total time derivatives of functions of xi; _xi and hence depend linearly on �xi.As a result, equation (6) immediately splits and is equivalent with the n+1 requirements:@�i@ _xj @L@ _xi = @f@ _xj j = 1; : : : ; n (7)�k @L@xk + _xk @�i@xk @L@ _xi = _xk @f@xk : (8)The full equivalence between these partial di�erential equations for the unknown �i; f andthe ones which come out of the requirements (3) has been established (also more generallyfor time-dependent situations) in [28]. It may be helpful, however, to make a few moreobservations around this point here. Multiplying Eqns. (7) by f j , summing over j andadding the result to (8), we see right away that the system (7,8) is equivalent with@�i@ _xj @L@ _xi = @f@ _xj j = 1; : : : ; n (9)Y (L) = �(f); (10)with Y as de�ned in (5). Recalling the identityL�iY � = iYL�� + i[�;Y ]�(which is valid for arbitrary vector �elds Y;� and arbitrary �), we observe that for a vector�eld of type (5), [�; Y ] is vertical, so that its contraction with the semi-basic 1-form � iszero. We thus obtain, L�iY � = iY (i�d� + di��)= iY (�dE + d(�L)) = Y (L):Putting F = f � iY �, we conclude that (10) is further equivalent to �(F ) = 0. The pointabout this remark is the following. Part of the folklore in the literature is that for theexplicit calculations involved in the construction of �rst integrals of Lagrangian systems,one can either follow Darboux' direct approach (cf. [32]), i.e. try to solve directly thepartial di�erential equation �(F ) = 0, or use Noether's method to construct symmetries�rst, and that these are di�erent methods from the practical point of view. Of course,Noether's theorem expresses that one will lead to the other, but the above remark showsthat in fact the calculations are, roughly speaking, the same.5



A computation which is di�erent, in principle, but more or less of the same complexity,is the search for solutions of the determining equations for arbitrary symmetries of �, i.e.vector �elds Y for which [�; Y ] = 0. Such vector �elds will be of the form (5), where the�i have to solve the second-order partial di�erential equations�2(�i) = Y (f i): (11)If more than just point symmetries are hoped for, an ansatz will be needed about thepolynomial dependence of the �i on the velocities, to make such calculations feasible. Theset of solutions will always be larger than the solutions of the corresponding search forNoether symmetries with the same ansatz. The construction of general symmetries (11)is the line of approach followed in [13, 14], where the authors study Lagrangian systemswith 2 and 3 degrees of freedom, for some speci�c cases of standard Lagrangians of theform L = 12X( _xi)2 � V (x): (12)The ansatz is that the �i are linear in the velocities and the claim is somehow that with allthe symmetries which are obtained \one can �nd, without recourse to Noether's theorem,and almost by inspection, a set of involutive �rst integrals by looking for invariants ofthe symmetry generator itself". Close inspection of their analysis reveals for a start,that in the process of solving equations (11), the authors must have taken for grantedcertain simpli�cations, because all the symmetries they obtain will turn out to be Noethersymmetries anyway. Moreover, the impression is given that �rst integrals should followfrom \integrating the equation Y (F ) = 0". The fact that the energy integral every timeappears to be one of such functions F , points in the direction of Noether symmetries (seethe second condition in (3)). Finally, the rule of thumb by which the other integrals aresaid to appear is that we ought to expect that our symmetries are such that (in morecorrect notations): �i = @U@ _xi and �(�i) = � @U@xi ; (13)for some function U (cf. Eqns. (2.7)(2.9) in [13] and (2.6)(2.8)(2.9) in [14]).Now, for a Lagrangian of type (12), we have � = _xi dxi and hence, with a vector �eld Yof type (5) iY (d _xi ^ dxi) = �(�i) dxi � �i d _xi:It follows that the requirements (13) precisely express the condition (4) with F = �U , sothat the whole idea is bound to be just an application of Noether's theorem, as expected.In [16, 17], no claim is made that the construction of �rst integrals follows without recourseto Noether's theorem. Symmetry generators are constructed from the general requirement(11), with �i which are of degree 1 or of degree 3 in the velocities. But also here, inthe course of the calculations, a number of unspeci�ed simpli�cations must have beenimposed for the ease of �nding solutions, because it turns out in the end that again allthe symmetries which are found are of Noether type. In the next section, therefore, we willanalyse in detail and in some generality what the minimal set of requirements is that onehas to impose on general symmetries, in order for them to become Noether symmetries.6



3 Noether versus general symmetriesWe wish to clarify the situation about conditions which force symmetries to fall intothe Noether class from the very practical point of view of actually solving determiningequations. For that purpose, we will limit ourselves to purely analytical considerationsand a case study for arbitrary n, which covers all the examples of symmetries mentionedin the above cited papers.The systems under consideration are the Lagrangian ones with a Lagrangian of the form(12). It is known (see e.g. [30, 10]) that �rst integrals of such a system, which polynomiallydepend on the velocities, can be taken to have only terms which are either all of odd orall of even degree in the velocities. We consider the even degree case and assume, to beconcrete, that the degree is at most four. The leading coe�cients �i of correspondingNoether symmetries will thus contain only terms of odd degree in the velocities and themaximal degree is three. These will then, of course, also be the restrictions we impose onthe search for general symmetries. Writing all the indices of undetermined coe�cients asbottom indices for easy legibility, we look for functions �i of the following form:�i = aijkl(x) _xj _xk _xl + bij(x) _xj: (14)Obviously, aijkl is assumed to be symmetric in its last three indices, but no further sym-metry conditions for the coe�cients in (14) must hold a priori, if the search is for generalsymmetries. The conditions (11) for symmetries, here more speci�cally of the form�2(�i) + Y  @V@xi! = 0; (15)explicitly become:110ai(jkl;mn) _xj _xk _xl _xm _xn � ai(mkl;j) @V@xj _xk _xl _xm � aij(kl;m) @V@xj _xk _xl _xm� aij(kl @2V@xm)@xj _xk _xl _xm + ajklm @2V@xi@xj _xk _xl _xm + 13bi(k;lm) _xk _xl _xm+ 6 aijkl @V@xj @V@xk _xl � bi(k;l) @V@xk _xl � bik;l @V@xk _xl� bik @2V@xk@xl _xl + bkl @2V@xi@xk _xl = 0: (16)As customary, brackets around indices refer to symmetrisation. Let us, however, beprecise about this to avoid confusion concerning numerical factors: the convention hereis that in an expression like ai(mkl;j), where the object is already symmetric in k; l;mby assumption, symmetrisation simply means taking a cyclic sum over all indices insidethe brackets. The determining equations for constructing all symmetries with leadingcomponents of the form (14) are obtained by putting the coe�cients of the terms ofdegree 5, 3 and 1 in the above expression separately equal to zero.If the symmetry is of Noether type, the �i will be related to a �rst integral F via therelations �i = @F=@ _xi (strictly speaking, this is minus the F of (4)). In other words, and7



in agreement with our analysis in the previous section, Y will be a Noether symmetry ifand only if F = 14aijkl _xi _xj _xk _xl + 12bij _xi _xj + g(x) (17)is a �rst integral of � for some function g. This implies for a start that we have to take thefunctions aijkl and bij to be symmetric in all indices. Note in passing that these symmetryproperties are the integrability conditions for existence of a function f which satis�es (9)and that �(F ) = 0, as argued before, is another way of writing (10), which again showsexplicitly that we are expressing here the Noether identity (6). Now, �(F ) = 0 also givesrise to a relation of degree 5 in the velocities and the terms of order 5, 3 and 1 producethe requirements: a(ijkl;m) = 0 (18)b(ij;k) = 6 aijkl @V@xl (19)@g@xj = bjk @V@xk (20)In summary, functions of the form (14) are the leading components of a Noether sym-metry if and only if the aijkl and bij are completely symmetric and satisfy (18-20) forsome function g. The last of the requirements will then give rise to further integrabilityconditions which read(bjk;l � blk;j) @V@xk + bjk @2V@xk@xl � blk @2V@xk@xj = 0: (21)Clearly, the requirements for Noether symmetries are quite di�erent from those for ar-bitrary symmetries, if only because in the general case the undetermined functions in(14) need not be totally symmetric. If one wants to pin down a minimal set of extra as-sumptions which will force symmetries to fall into the subcategory of Noether symmetries,imposing symmetry in all indices is obviously inevitable. Since all Noether symmetries willfurther preserve the energy function, we wish to investigate now to what extent Y (E) = 0can count for these extra assumptions.With E = 12 P( _xi)2 + V , we haveY (E) = _xi �(�i) + �i @V@xiand for general �i of the form (14), this becomesY (E) = _xi "14ai(jkl;m) _xj _xk _xl _xm � 3 aijkl @V@xj _xk _xl + 12bi(j;k) _xj _xk � bij @V@xj #+ aijkl @V@xi _xj _xk _xl + bij @V@xi _xj:Under the assumption of fully symmetric aijkl and bij, the terms of order 1 cancel out,whereas the terms of order 5 and 3 can easily be seen to produce exactly (18) and (19).8



Obviously, we need one further condition to produce the remaining requirement (20) orequivalently (21). For that purpose, we look at the lowest order terms in the generalsymmetry requirement (16). Originally, they produce the condition:6 aijkl @V@xj @V@xk � bi(l;k) @V@xk � bij;l @V@xj � bij @2V@xj@xl + bjl @2V@xi@xj = 0: (22)Making use of the symmetry assumption on the a and b functions and condition (19)which already followed from Y (E) = 0, one readily veri�es that (22) becomes identical to(21). The results can be summarised as follows.Proposition. Consider a vector �eld Y of the form (5), where the functions �i(x; _x)have the structure (14), then the following three conditions imply that Y will be a Noethersymmetry of the Lagrangian second-order system � derived from the function L in (12):1. the coe�cients in the expression (14) for �i are symmetric in all indices,2. Y (E) = 0 (where E is the energy function associated to L),3. the lowest-order terms (i.e. terms of degree 1) in the non-zero components of thevector �eld [Y;�] cancel out.Remark: since Noether symmetries are symmetries, the above requirements will guaranteethat the terms of degree 5 and 3 in the complicated expression (16) will automatically bezero as well.Needless to say, the proposition is equally valid for the case of symmetry components �iwhich are linear in the velocities, with corresponding quadratic �rst integrals: it su�cesto put aijkl = 0 in all calculations above. It would not be too di�cult to extend it, on theother hand, to higher-degree polynomials and to Lagrangians with a more general metricin the kinetic energy term than the standard Euclidean metric in (12). We �nally point toa few other well known facts. The condition (18) in the Noether approach, which comesfrom the terms of highest degree does not involve the potential and hence expresses thatthe terms of highest degree in (17) (quartic in our case) will constitute a �rst integral ofthe pure geodesic motion produced by the kinetic energy term in L. What the structureof equations (18) further tells us is that we are looking at the components of a Killingtensor: in the present situation, the comma of course refers to taking partial derivates; ifthe kinetic energy metric would not be Euclidean, covariant derivatives would make theirappearance there instead. To name just a few references which deal with the relationbetween �rst integrals and Killing tensors, see [31, 1, 12, 35]. As some of these referencesindicate, Killing tensors play a key role also in the theory about separation of variablesin the Hamilton-Jacobi equation, to which we come in the next section.4 Symmetries and separabilitySeparation of variables in the Hamilton-Jacobi equation is a problem with a long history.It is not our intention to even attempt a short survey of the history here. For that we refer9



to specialists in the �eld, like Benenti and Kalnins and Miller, who have contributed to thesubject with numerous publications of which we cite just a few here: [3, 11, 12]. Probablythe best known classical result is St�ackel's theorem about orthogonally separable systems.It is a key result which tells you how separable systems look like in the coordinates in whichindeed the separation works (generalisations by Benenti cover a similar characterisation forthe non-orthogonal case). It does not tell you, however, how to construct such coordinates,or in fact whether such coordinates exist (see also [23]). The �rst fundamental result aboutexistence of separation variables is Eisenhart's theorem [9], which is in the �rst place anexistence theorem, but also has constructive features which are perhaps underestimated.Eisenhart's theorem essentially gives an intrinsic characterisation of the existence of apoint transformation which will transform a Hamiltonian system into St�ackel form. Verylittle is known about the existence of more general canonical transformations which havesuch e�ect. A remarkable example of a non-point transformation which transforms aHamiltonian system into separable form is contained in [4]. In [34], this example is putinto a more general framework by the introduction of what the authors call quasi-pointtransformations. An equivalent result for the same example, by the way, has been obtainedthrough techniques of algebraic geometry. See in that respect [27] and references therein.In any event, even in the case of point transformations, there is still room for new insightsabout tests which can tell whether a given system is separable and how one can �ndthe right coordinates explicitly. As a preliminary remark, although Hamilton-Jacobi isof course, strictly speaking, about Hamiltonian systems, we will continue to describe thesituation for the corresponding Lagrangian setting. This is certainly justi�ed for systemswith a Lagrangian of type (12), for which velocities and momenta are the same.In [13, 14, 17], it is claimed that a direct calculation on the components of symmetry vector�elds can produce separation variables, at least in the case of functions �i which are linearin the velocities. In a programme in which one starts the analysis of a given system byconstructing symmetries, in particular Noether symmetries and the corresponding �rstintegrals, it is certainly a good idea to investigate whether the symmetries contain bythemselves information about the construction of separation variables. Roughly, whatthe authors do goes as follows. Consider the characteristic equations for the partialdi�erential equation Y (F ) = 0, which read, for the case n = 2 say,dx1�1 = dx2�2 = d _x1�(�1) = d _x2�(�2) ; (23)and assume that the functions �i are of the form�i = aij(x) _xj; with aij = aji: (24)Then, the �rst equality can be written in the forma2j _xj dx1 � a1j _xj dx2 = 0:Thinking of _xj as standing for dxj=dt and multiplying by dt, the formal quadratic expres-sion a2j dxjdx1 � a1j dxjdx2 = 0 (25)10



is obtained. Solving this, for example, algebraically for dx2=dx1 and treating these as�rst-order di�erential equations, it so happens that their integration seems to produce theseparation variables. The authors call this procedure \integrating part of the characteristicequations". However, when integrating characteristic equations such as (23), the xi and _xiought to be treated as independent variables, so the formal manipulation we just sketchedhas nothing to do with that. In any event, the authors do not give any reason why thismanipulation should have something to do with the construction of separation variables.The lack of a supporting theory puts the authors on even more shaky grounds, whenthey attempt similar manipulations on some 3-dimensional systems, because there is thenmore than one symmetry involved and it is in general not clear how one could, even inprinciple, handle a set of such formal quadratic expressions.We will develop arguments here to show �rst that the formal manipulations mentionedabove are indeed bound to produce separation variables for n = 2. These argumentswill show at the same time that the route to generalisations to more than two degrees offreedom is quite di�erent from the calculations performed in [14, 17]. As a preliminaryremark, observe that in manipulating the quadratic expression (25), it makes no di�erencewhether one writes dxi or _xi, and in fact it will be more appropriate for the developmentsbelow to think of it as a2j _xj _x1 � a1j _xj _x2 = 0: (26)Since Eisenhart's theorem concerning separability is about Killing tensors, and such ob-jects are related to �rst integrals which in turn correspond to Noether symmetries, itshould not come as a surprise that we will seek an explanation which starts from Eisen-hart. We �rst state the theorem more or less in the form in which it is cited in [12].Eisenhart's theorem. A necessary and su�cient condition that a kinetic energy La-grangian L = 12gij(x) _xi _xj (or better its corresponding Hamiltonian) can be given theSt�ackel form is that there exist n� 1 Killing tensors a
ij; 
 = 1; : : : ; n� 1, such that:1. the tensors fgij; a
ijg are linearly independent,2. all roots of the (generalised) eigenvalue problem det(a
 � �
g) = 0 are distinct forall 
 (a
 stands for the matrix with components a
ij),3. there exist new coordinates yi such that the vectors X(k), with components Xj(k) =@xj=@yk are common eigenvectors of all a
, i.e. we have�a
ij � �
(k) gij� Xj(k) = 0; k = 1; : : : ; n; 
 = 1; : : : ; n� 1: (27)A dual version of this theorem is mentioned in [2]. If (gkl) denotes the inverse of thematrix of the given metric tensor and aij
 the contravariant version of the Killing tensorsobtained by raising indices in the usual way, then the contravariant version of the thirdrequirement in the theorem says that there are n common orthogonal closed eigenforms�(k): �aij
 � �(k)
 gij� �(k)j = 0; with d�(k) = 0: (28)11



Locally then, �(k) = dyk for some functions yk, which de�ne, as in the other version,separation coordinates. It is worth mentioning in this context that Benenti now even hasa theorem about the characterisation of separable systems in which only one Killing tensoris needed (see [3]), but this result will not be directly relevant to our further discussion.Naturally, for the standard metric we are considering in Lagrangians of type (12), thecovariant and contravariant versions of the Killing tensors are the same, so if we con-struct eigenvectors in the algebraic sense, we have the freedom of interpreting them eitheras vector �elds or as 1-forms. Strictly speaking, Eisenhart's theorem is about geodesicmotions or, in other words, about Lagrangians without potential term. However, it iswell known since Levi-Civita that for a Hamiltonian of type T + V to be separable, itis necessary that the kinetic energy part by itself is separable. Moreover, if the full La-grangian or Hamiltonian has a quadratic �rst integral, which is the sum of a quadraticpart and terms of degree zero, it is the quadratic part only which de�nes the correspond-ing symmetry as in (24) and, as said before, this quadratic part determines a Killingtensor for the geodesic motion coming from the kinetic energy term. As a result, for thesake of identifying separation variables and trying to relate them to symmetries, we can,without loss of generality, omit the potential term alltogether. There are simple criteriathen (see again [3], for example, or even the original theorem of St�ackel) to check, onceseparation variables have been detected, whether the potential term has a structure whichis compatible with the separation.We now start examining what the implications are of the conditions on the a
ij in Eisen-hart's theorem, for the symmetry components �i which correspond to these via (24). It isclear that a symmetry vector �eld Y as in (5) is completely determined by its �rst termX = �i @@xi ; (29)which looks like a vector �eld on the base manifold M , whose components, however, arefunctions on TM . This is called a vector �eld along the projection � : TM ! M . So-called semi-basic forms on TM likewise can be regarded as di�erential forms along � . Foran adapted calculus about forms and �elds along � and an application to separabilityof second-order equations, we refer to [24, 25, 26]. We will, however, not really needthat sophisticated machinery here. Recall though, that there exists a canonically de�nedvector �eld along � , namely the `total time derivative operator'T = _xi @@xi (30)which, in the present context of Lagrangians of type (12), is in fact precisely the vector�eld along � determining the Noether symmetry corresponding to the energy integral.For simplicity, we �rst discuss the case n = 2 in some detail, for which there is justone Killing tensor aij with distinct eigenvalues. It is perhaps instructive to show viaEisenhart's theorem why in such a case separability always works. Using the covariantversion, for example, we have two 1-dimensional, integrable eigendistributions and theirsum is also integrable by dimension. It follows from the Frobenius theorem that there existcoordinates yi such that @=@y1 spans the �rst distribution and @=@y2 the second. This in12



turn means that in each of the original eigendistributions, one can �nd an element suchthat the two selected eigenvectors commute and hence can simultaneously be straightenedout. These elements are of course the eigenvectors with components of the form @xj=@ykfeaturing in Eisenhart's theorem. Likewise, referring to the contravariant version, 1-formsin dimension 2 always have an integrating factor, so that we can always make the �(k)locally exact, yielding again the desired separation variables. Note that these ideas canin fact be used constructively to �nd the separation variables for two degrees of freedomsystems with a known second quadratic integral (see next section).Now, if �(k) = �(k)i dxi; k = 1; 2 are the eigenforms and we consider their formal product toproduce a quadratic expression in the dxi, we know that this expression will become (upto a factor) the formal product dy1dy2, when expressed in the right coordinates. Hence, ifthere is any truth in the expectation that the manipulations described about the quadraticexpression (25) should indeed lead to the identi�cation of separation variables yi, thereshould be a link between (25) and the formal product of the �(k) (to be interpretedproperly, for example, as the symmetric tensor product). This is what we shall establishnow, taking account of the earlier remark that one can write just as well a quadraticexpression in _xi instead of dxi, meaning that we then think of�(1)i �(2)j _xi _xj: (31)Expressing that the �(k) are eigenforms of the matrix aij, we haveaij�(k)j = �(k)�(k)i ; k = 1; 2; i = 1; 2;or equivalently, since these are functions of the coordinates only,_xiaij�(k)j = �(k)�(k)i _xi; k = 1; 2: (32)In the left-hand side, we recognise the contraction of the basic 1-form �(k), regarded as1-form along � , with the vector �eld X along � , determined by (29) and (24). The right-hand side contains the contraction of �(k) with T. In other words, the equality (32) hasthe intrinsic interpretation:hX;�(k)i = �(k) hT; �(k)i; k = 1; 2; (33)from which it follows that(�(1) ^ �(2))(T;X) = (�(2) � �(1))hT; �(1)ihT; �(2)i: (34)The �nal point to observe now is that �(1) ^ �(2), being a volume form (on an open set),is proportional to the standard volume form dx1 ^ dx2, and(dx1 ^ dx2)(T;X) = �2 _x1 � �1 _x2 = a2j _xj _x1 � a1j _xj _x2: (35)Collecting the results we thus conclude: (35) shows that the quadratic expression (26)(which was obtained through manipulation of characteristic equations in [13]) can beinterpreted as coming from the action of a volume form on the symmetry generators13



(T;X); as such, it is bound to be proportional to the right-hand side of (34) whenone thinks of the eigenforms of the matrix (aij) to construct a volume form; since theeigenvalues �(k) are further assumed to be di�erent in Eisenhart's theorem, this right-hand side is in turn proportional to the expression (31); �nally, Eisenhart's theoremguarantees that separation coordinates exist, in which (31) will simply factorise as _y1 _y2(always up to a multiplicative function).From a practical point of view, once a second quadratic integral has been found (orits corresponding linear Noether symmetry) and the eigenvalues of the matrix (aij) aredi�erent, the above result somehow provides an indirect way of making use, constructively,of Eisenhart's theorem: without bothering about computing eigenforms, we compute adeterminant, namely the function (dx1 ^ dx2)(T;X) which gives rise to a quadratic formin the _xi and one can try to �nd separation variables by factorising this expression intothe product of two linear expressions. For two degrees of freedom, in fact, this idea canbe made stronger because there is a converse result: any such factorisation, with factorswhich are linearly independent, will give rise to separation variables. Indeed, suppose wecan write the determinant in question as followsa2j _xj _x1 � a1j _xj _x2 = (�(1)i _xi)(�(2)j _xj):Identi�cation of the coe�cients of corresponding terms in both sides then gives:a21 = �(1)1 �(2)1 ; a22 � a11 = �(1)1 �(2)2 + �(1)2 �(2)1 ; a12 = ��(1)2 �(2)2 :Remembering of course that a12 = a21 it follows thata11�(1)1 + a12�(1)2 = �a11 + �(2)1 �(1)2 � �(1)1 ;a21�(1)1 + a22�(1)2 = �a22 � �(2)2 �(1)1 � �(1)2 ;a11�(2)1 + a12�(2)2 = �a11 + �(1)1 �(2)2 � �(2)1 ;a21�(2)1 + a22�(2)2 = �a22 � �(1)2 �(2)1 � �(2)2 :This proves that, with �(1) = a11 + �(2)1 �(1)2 = a22 � �(2)2 �(1)1 ;�(2) = a11 + �(1)1 �(2)2 = a22 � �(1)2 �(2)1 ;the �(1)i and �(2)i give the components of an eigenform, and we have �(1) 6= �(2) in viewof the assumed linear independence. The two eigenforms have an integrating factor bydimension and the resulting new variables will be separation variables by Eisenhart'stheorem.Let us now move on to the case n = 3. Clearly, if we follow the same line of thoughtthe generalisation will not lead to a set of quadratic expressions but rather to one cubicexpression, obtained from the computation of a determinant again and having a factori-sation property as before. A sketch of the reasoning goes as follows. Assume we have14



obtained two extra quadratic integrals in involution or, equivalently, their correspondingNoether symmetries which are determined by vector �elds along � , sayX
 = �k
 @@xk ; with �k
 = a
 kl _xl 
 = 1; 2: (36)In case of separability, following Eisenhart, there must be closed 1-forms �(i); i = 1; 2; 3,which are common eigenforms of both matrices a
. Denoting the eigenvalues of a
, whichare assumed to be di�erent, by �(k)
 , we thus have, in the same way as (32) was derivedand rewritten in the form (33):hX
 ; �(k)i = �(k)
 hT; �(k)i; k = 1; 2; 3; 
 = 1; 2: (37)It follows that��(1) ^ �(2) ^ �(3)� (T;X1;X2) = � hT; �(1)ihT; �(2)ihT; �(3)i; (38)with � = �(1)1 ��(2)2 � �(3)2 �+ �(2)1 ��(3)2 � �(1)2 �+ �(3)1 ��(1)2 � �(2)2 � : (39)The function � is non-zero because of the �rst assumption in Eisenhart's theorem. Theleft-hand side of (38), coming from a volume form, is proportional to the determinant(dx1 ^ dx2 ^ dx3) (T;X1;X2) which can be computed directly from the symmetry com-ponents. The right-hand side of (38) then expresses that this cubic expression in the _xican be factorised as the product of three linear expressions and even in such a way thatthis product becomes simply _y1 _y2 _y3 in a set of separation variables. For n > 2 there isno converse in the sense that the existence of a factorisation of the determinant by itselfdoes not necessarily imply that each of the factors will be integrable. The results of ouranalysis can be summarised as follows.Proposition. Assume that X1 and X2 of the form (36) de�ne Noether symmetries ofa Lagrangian system (12) with three degrees of freedom. Then, if we are in a situationwhere corresponding separation variables for the Hamilton-Jacobi equation exist, they canbe obtained from factorising the determinant������� _x1 _x2 _x3�11 �21 �31�12 �22 �32 ������� (40)into the product of three factors which are linear in the velocities and integrable.Observe that the potential energy function V is not present in this statement: we repeatthat the potential is irrelevant as long as one wants to �nd out the nature of separationvariables if they exist; having found them, one is assured of separability of the kineticenergy part and then it is relatively easy to check whether the form of the potential issuch that also the full system will be separable (see next section).We have proved above a similar result for n = 2 and it is obvious that it can actually bedone for arbitrary n. But beyond n = 3, it is doubtful that this procedure (as perhaps15



any other) could be implementable in practice. We will show in the next section, however,that up to three degrees of freedom, there are indeed di�erent ways of making constructiveuse of this proposition. Our point of view in this respect is that this amounts to makingconstructive use of the existence theorem by Eisenhart.On the theoretical side, it looks worthwhile for a future study to go more deeply into thepotential role and relevance of volume forms for the characterisation of separability. Ageneralisation of the present considerations to non-standard metrics looks fairly straight-forward. A more di�cult issue is the question whether anything similar could be donerelated to non-quadratic integrals, where a transformation to separation variables will notbe a point transformation (cf. the already cited example in [4]).Before closing this section, let us make clear why one should not expect any meaningfulconclusion from manipulations of quadratic expressions such as (26) when n is greaterthan 2. Indeed, thinking of the case n = 3, for example, and the matrix aij related to oneof the symmetry generators, (26) can still be generated by a computation as in (35), andthe related computation (34) will still produce a quadratic expression which factorises inthe new variables guaranteed by Eisenhart's theorem. The point then is, however, that�(1) ^�(2) will in general contain terms in all dxi ^ dxj , or alternatively, dx1 ^ dx2 will bea combination of all �(i) ^ �(j) and hence will by itself not factorise.5 Illustrative examplesAn example of an integrable and separable system with two degrees of freedom which canbe found e.g. in one of the tables in [17] is the Lagrangian system (12) with potential (wewill write here x; y for the coordinates instead of x1; x2)V (x; y) = a (x2 + 4y2) + b (x4 + 12x2y2 + 16y4) ; (41)for which a second quadratic integral is of the formF = (x _y � y _x) _x+ 2 (a + 4by2 + 2bx2)x2y : (42)For the sake of illustrating a number of points discussed in the previous section, we will�rst of all limit ourselves to quartic potentials (a = 0) and in fact assume that the class ofadmissible quartic potentials, in the sense that there exists a �rst integral with (x _y�y _x) _xas quadratic part in the velocities, has as yet to be discovered. Let us say, for example,that we aim at �nding potentials of the formV = c1x4 + c2x2y2 + c3y4 ; (43)with ci to be determined.When we think of quadratic integrals, the Noether requirements (18-20) reduce toa(ij;k) = 0; @g@xj = ajk @V@xk : (44)16



Our starting point is the assumption that we have found from the highest-order termsthe quadratic part of the above �rst integral F as particular solution, or in other words,the symmetry generator (as vector �eld along � ):X = (x _y � 2y _x) @@x + x _x @@y : (45)The potential V plays no role in obtaining this part, which determines a Killing tensorwith components A = (aij) =  �2y xx 0 ! : (46)Our objective is not only to �nd potentials for which a second quadratic integral exists,but also to construct separation coordinates. The determination of the potential canthen further be suspended and separation variables, if they exist, should follow from thefollowing procedure. According to Eisenhart's theorem, we construct a set of eigenvectorsof the matrix A; they read:(x; y + r) and (x; y � r) with r = (x2 + y2)1=2:If we treat these as components of eigenvector �elds, sayX1 = x @@x + (y + r) @@y ; X2 = x @@x + (y � r) @@y ; (47)then it is easy to verify that this happens to be a basis of commuting vector �elds forthe eigendistributions, so that they can simultaneously be straightened out. A coordinatetransformation which does this is and therefore de�nes separation variables reads:u = ln xpr � y ; v = lnpr � y :However, any further transformation which does not couple these coordinates will preserveseparability. We may, therefore, just as well takeu = pr + y; v = pr � y : (48)In agreement with the theoretical discussion of the previous section, we could here alsotreat the eigenvectors of A as components of eigenforms, and one then readily �nds in-tegrating factors which bring these into the form du and dv, with u and v as de�ned by(48). Finally, the new idea which we have introduced with regard to separation variables,namely as coming from a factorisation of the determinant _x�2 � _y�1, can be seen to workas follows. The quadratic expression (35) here becomes:x _x2 � 2y _x _y � x _y2 = 1x (x _x+ (y + r) _y) (x _x+ (y � r) _y) :Again, one can see that the potential is irrelevant in this process of detecting possibleseparation variables. One way of determining subsequently whether the potential has anappropriate form for separability could go as follows: having found separation variables17



already, one could �rst express the given system in these new coordinates and then verifyfor what values of the parameters the potential satis�es the criteria of St�ackel's theorem.Alternatively, there is an intrinsic characterisation of the condition which the potentialshould satisfy, which therefore can be veri�ed directly in the original coordinates. Thischaracterisation can be found in [3], and says that the 1-form K � dV should be closed(for all of the Killing tensors K entering Eisenhart's theorem). For the present example,this reduces to the requirement that the functions aij@V=@xj should be the components(locally) of an exact 1-form. Not surprisingly, this is exactly the remaining Noethercondition in (44), or equivalently, the condition (21). For the Killing tensor A given in(46), we have A � dV =  �2y@V@x + x@V@y ! dx+ x@V@x dy;and expressing that d(A � dV ) should be zero, for a V of the form (43), reduces to thecondition (12c1 � c2)x3 + (8c2 � 6c3)xy2 = 0:It follows that we must have c2 = 12c1 and c3 = 16c1, which is in agreement with thequartic part in the potential function (41).It is worth mentioning that another, in fact well-known, admissible potential could havebeen discovered along the lines of this example. Indeed, the quadratic part (x _y � y _x) _xof the function F in (42) is the velocity-dependent part of one of the components of theRunge-Lenz vector in the reduced (planar) Kepler problem. One easily veri�es that theKepler potential also satis�es the above requirement d(A�dV ) = 0 and we further concludethat (48) de�nes separation variables for the Kepler problem as well. A good referencewhere this example is encountered in the context of linking symmetries to Killing tensorsis [7].For three degrees of freedom, it is not so obvious how one could use in practice the factori-sation property of the determinant (40) to �nd separation variables. We will neverthelessillustrate two ways in which one could make use of this result for constructive purposes.We shall write x; y; z for the coordinates xi now.Looking once more at the rich collection of examples which is contained in [17], assumewe have a Lagrangian of type (12) which has an angular momentum type �rst integral,the square of which provides a �rst quadratic integral, sayF1 = (y _z � z _y)2 : (49)Assume another integral is of the formF2 = (y _x� x _y) _y + (z _x� x _z) _z + � � � : (50)As before, we leave the terms of degree zero, both in the Lagrangian and in F2, out of thediscussion for the time being. For the corresponding Noether symmetries, we have�11 = 0; �21 = �2z(y _z � z _y); �31 = 2y(y _z � z _y) ; (51)�12 = y _y + z _z; �22 = y _x� 2x _y; �32 = z _x� 2x _z : (52)18



It is obvious from the second row (51) in the determinant (40) that there will be factory _z � z _y. The remaining quadratic factor then is(y _y + z _z)2 + 2x(y _y + z _z) _x� (y2 + z2) _x2 ;and it is not too hard to see that this factorises as(y _y + z _z + (x+ r) _x)(y _y + z _z + (x� r) _x) ;with r = (x2+y2+ z2)1=2. It turns out that these three factors are integrable and identifyseparation variables u; v; w, de�ned byu = pr + x; v = pr � x; w = arctan�yz� :However, we should emphasize that our theoretical arguments in Section 4 do not allowto draw this conclusion at all. Indeed, it is easy to see that the matrix corresponding toF1 has a double eigenvalue zero, so that we are not in the situation of Eisenhart's theoremfrom which our results were derived. The reason is that the essential �rst integral behindF1 is the linear expression y _z � z _y, which corresponds to a Killing vector (not a Killing2-tensor). A rudimentary explanation about the reasons why the above determinantcalculation happens to produce the right answers anyway, is that the Killing vectorsfor a separable Hamiltonian in the end correspond to ignorable coordinates (see [2]).As a result, the system will immediately reduce to a lower dimensional one, and theremaining quadratic expression which we factorised above can then be expected to be indirect correspondance with the quadratic form coming from this lower dimensional system.Note in passing that this situation should not be confused with the well-known property(see e.g. [31]) that in spaces of constant curvature, every Killing 2-tensor is trivial, inthe sense of being expressible as a linear combination of symmetrised tensor productsof Killing vectors. From the point of view of the present analysis, there is no problemwith this form of `triviality' as long as the regularity assumptions of Eisenhart's theoremare satis�ed. For now, let us again sketch how one can subsequently �nd appropriatepotentials which preserve the separability.Assume we want to �nd suitable potentials again in the class of homogeneous functionsof degree 4 and, to simplify matters, more particularly of the formV = c1x4 + c2y4 + c3z4 + d1x2y2 + d2x2z2 + d3y2z2 : (53)The 1-form A � dV which comes from the Killing tensor related to F2 reads(yVy + zVz) dx+ (yVx � 2xVy) dy + (zVx � 2xVz) dz :Expressing its closure for a V of type (53), we �nd restrictions on the undeterminedconstants, which reduce to c1 = 16c2; c3 = c2; d1 = d2 = 12c2; d3 = 2c2. This way, up toa constant factor c2, the potential is bound to be of the formV = 16x4 + (y2 + z2)2 + 12x2(y2 + z2) : (54)19



We observe then that this potential is already invariant under the action of the Killingvector y@=@z� z@=@y related to F1. It follows that F1 will be a quadratic integral for thefull system as well.Let us �nally illustrate how one can now further determine the terms in F2 which areindicated by dots. With the potential (54), the 1-form A � dV becomes4(y2 + z2)(6x2 + y2 + z2) dx+ 16x(x2 + y2 + z2)(ydy + zdz) :In agreement with the Noether condition (20), putting this expression equal to dg shouldproduce the remaining function in the quadratic integral. We thus �ndg = 4x(y2 + z2)2 + 8x3(y2 + z2) : (55)For a third illustration now, assume we start from the following two Killing tensors of thestandard metric in dimension 3,F1 = (x _y � y _x)2 + (x _z � z _x)2 + (y _z � z _y)2 + ( _x2 � _z2) (56)F2 = (y _z � z _y)2 � (x _y � y _x)2 � ( _x2 + _z2): (57)Also this case is inspired by an example in [17] and �ts as well into the category ofsystems described in [33]. The idea again is that these should become the leading partsof quadratic integrals of a Lagrangian system of type (12) for some suitable potential.If we �rst want to verify whether the ultimate system and its integrals will correspondto a case of separability in the Hamilton-Jacobi sense, then we could try our luck withthe factorisation property of the determinant (40). Needless to say, we could also tryto address directly the conditions of Eisenhart's theorem. The determinant (40) for thiscase gives rise to a fairly complicated cubic expression in _x; _y; _z and it is not obvious at�rst sight how one could think of a way to write it as a product of three linear factors.Nevertheless, we know that there are only a �nite number of coordinate systems in IR3 inwhich the standard metric is separable (the eleven types �rst derived by Eisenhart [9] andreconstructed also e.g. in [3]). With some experience in the �eld one can readily rule out anumber of these possibilities and then a direct computation on the determinant (40) doesbecome feasible, as we shall now illustrate. One of the more di�cult types of coordinatesto work with is for example the class (IV1) in [9]. If we denote the new coordinates byu; v; w again, they are de�ned by relations of the following typex2 = (� � u)(� � v)(�� w)(�� �)(�� 
) ; (58)y2 = (� � u)(� � v)(� � w)(� � �)(� � 
) ; (59)z2 = (
 � u)(
 � v)(
 � w)(
 � �)(
 � �) ; (60)for some constants �; �; 
, and the domain of de�nition is determined by the requirement� > u > � > v > 
 > w. It is then a fairly straightforward exercise to transform the cubic20



polynomial in _x; _y; _z into a corresponding cubic expression in _u; _v; _w via the derivativesof (58-60). If there indeed exists a transformation of this type which will give rise toseparation variables, the new cubic polynomial should reduce to just one term, namelythe monomial _u _v _w. Doing such a calculation is not as formidable as it may at �rst sound:�rst of all, it is typically a symbolic calculation which computer algebra packages canhandle; secondly, to see whether there is any chance for this to work, it su�ces to test�rst just one term, i.e. to check for example whether the coe�cient of _u3 can be made tovanish. We have done this for the above situation and found that (58-60) does produce afactorisation of the determinant (40), provided we choose �; �; 
 in such a way that� � � = 1; 
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