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Our approach was very much tuned to the solution which Douglas gave to this problem[6] for the case of two degrees of freedom (n = 2). However, our methods have severalmarked advantages compared with the analytical ones used by Douglas. For example,whereas Douglas's calculations are very explicit and done in terms of the standardcoordinate derivatives, our calculus is coordinate free: all computations are performedin terms of a local frame of vector �elds which in general remains unspeci�ed, but whichin each speci�c case may be chosen optimally in relation to the natural geometricalstructures which come with the given system. We thus reach a degree of generalitywhich avoids the necessity of computing, for example, certain types of integrabilityconditions over and over again, either for the di�erent subcases for each �xed numberof degrees of freedom, or for di�erent degrees of freedom.The basic ingredients of our calculus are certain types of covariant derivative. There aretwo main sources which can be consulted for background, [19, 4], each giving a di�erentperspective and general framework in which these derivations come to life in a naturalway.The geometrical setting for modelling time-dependent second-order ordinary di�erentialequations is the �rst jet bundle J1� of a bundle � : E ! IR. The bundle E can bethought of as being di�eomorphic to a manifold of the form IR �M , in which case J1�becomes di�eomorphic to IR�TM , but it is not necessary to choose such a trivialization.A second-order system in normal form is a vector �eld � on J1� which satis�es h�; dti = 1and which is annihilated by the contact forms �i = dxi � vidt. (Here (t; xi; vi) are localcoordinates on J1� with t the coordinate on IR, xi �bre coordinates on E, and vi the jetcoordinates.) It turns out that many other geometrical objects on J1� of interest arecompletely determined by tensor �elds along the projection �01 : J1� ! E, and thereforehave a smaller number of independent components than might have been expected. Forexample, the Poincar�e-Cartan 2-form d�L determined by a Lagrangian L on J1�, whenexpressed in terms of the local basis of 1-forms fdt; �i; �ig adapted to the non-linearconnection associated to the second-order di�erential equation �eld � corresponding tothe Euler-Lagrange equations of L, turns out to have only 12n(n + 1), as opposed ton(2n+ 1), non-zero components; it is given byd�L = gij �i ^ �j ; with gij(t; x; v) = @2L@vi@vj :Here, the �i are given by �i = dvi � f idt+ �ik�k ;where the functions f i(t; x; v) are the right-hand sides of the second-order equations innormal form, and �ik denotes the connection coe�cients of the non-linear connectiondetermined by these equations, i.e. �ik = �12 @f i@vk : (1)2



As such, d�L can be interpreted as coming from a kind of generalised metric tensor �eldg = gij �i 
 �j ; gij = gji; (2)g is actually a tensor �eld along the projection �01 . The process which relates g to d�Lis called the K�ahler lift.In fact, a second-order di�erential equation �eld � is itself determined by a vector �eldalong �01; it is simply the horizontal lift of the canonical vector �eldT = @@t + vi @@xi (3)along �01. All such matters are explained in [19], which deals at length with the theoryof derivations of forms along �01.A preliminary remark is in order here about the structure of X (�01), the space of vector�elds along �01 . The canonical vector �eld T along �01 determines a natural splitting ofX (�01) in the form X (�01) = hTi � X (�01);in other words, every X 2 X (�01) has a representation in the formX = X0T+X; X = X i @@xi ; X0; X i 2 C1(J1�):The vector �elds fT; @=@xig constitute a basis for X (�01) adapted to the splitting; thedual local basis of 1-forms along �01 is given by fdt; �ig.The most interesting operations which emerge from the theory of derivations of formsalong �01 are vertical and horizontal covariant derivatives, denoted by DVX and DHX re-spectively, where X belongs to X (�01). Being self-dual derivations of degree zero, theiraction extends to tensor �elds along �01 of arbitrary type. We have DVT = 0, whereasDHT is an important derivation which has been given its own name and notation: wecall it the dynamical covariant derivative and denote it by r. All further occurrencesof vertical and horizontal covariant derivatives, therefore, will have for the argument Xan element of X (�01). In fact, all tensor �elds of interest in what follows will also havea non-zero action only on this submodule; moreover, if they are vector valued they willtake values in X (�01) also. Therefore, in the rest of this paper all vector �elds along�01 will be elements of X (�01) unless it is stated explicitly otherwise; and to simplifynotations, we will omit the overbar.We are now ready to de�ne the derivations under consideration by specifying their ac-tions on the building blocks of all tensor �elds along �01, namely functions F 2 C1(J1�)and the bases of vector �elds and 1-forms discussed earlier:rF = �(F ); DVXF = XV (F ) = X i@F@vi ; DHXF = XH(F ) = X i� @@xi � �ji @@vj� (F );(4)3



r� @@xj� = �ij @@xi ; DVX � @@xj� = 0; DHX � @@xj� =  Xk @�ij@vk! @@xi ; (5)and by dualityr�i = ��ij�j ; DVX�i = �X idt; DHX�i = � Xk @�ij@vk! �j : (6)To this we add for completeness thatrT = 0; DVXT = X; DHXT = 0;and dually rdt = 0; DVXdt = 0; DHXdt = 0:That DVX , DHX and r are indeed the operations of interest when analysing propertiesof second-order equations has become apparent in applications such as the study ofcomplete separability in [11, 3], but is perhaps even more obvious from further theoreticalfoundations. The set X (�01) is in fact the set of sections of the pull back bundle �01�(�E)over J1�, where �E is the tangent bundle projection TE ! E. It was shown in [4] thata second-order di�erential equation �eld � further determines a linear connection on�01�(�E), and that various tensor �elds encountered in the study of derivations of formsalong �01 acquire an elegant interpretation in this framework. To explain the direct linkbetween [19] and [4], it su�ces to point out that the covariant derivative operator D�associated with the linear connection on �01�(�E) can be written asD� = DVX +DHY + h�; dtir: (7)Here, � is a vector �eld on J1�, and X and Y are the elements of X (�01) uniquelydetermined by the decomposition � = XV + Y H + h�; dti�.We now come back to the inverse problem. One virtue of our approach is that byusing the kind of geometrical objects and operations referred to above, one arrives at aformulation of the Helmholtz conditions which reveals their geometrical content but atthe same time stays very close to the analytical formulations which can be found e.g.in the work of Douglas [6] and in [18]. As we said at the beginning of this section, wemade considerable progress in [5] towards understanding the geometry behind Douglas'ssolution of the inverse problem and its possible generalization to more than two degreesof freedom. However, at that time we did not complete the discussion of integrabilityconditions (the computation of `alternants' in the terminology of the Riquier theory) atthe same level of generality as we started it. It is precisely at this point that the newinsights gained in [4] provide a breakthrough. Indeed, much of the work of computingfurther alternants can be clari�ed by the fact that we now have the so-called secondBianchi identities of the linear connection on �01�(�E) at our disposal. There is anotheraspect of Riquier theory which we did not even touch in [5]. There were good reasons4



for that because, as our present contribution will show, it is a topic which cannot bediscussed at the same level of coordinate free analysis and certainly not without enteringthe details of a classi�cation into numerous subcases.To be more precise, the Riquier theory [17], in the form we shall need it, depends ontwo basic notions, those of the orthonomicity and of the passivity of a system of partialdi�erential equations. We take our de�nitions of these terms from the resum�e of Riquiertheory given by Douglas in his paper on the inverse problem, adjusting the wording asnecessary to �t our exposition. Other useful descriptions, in the context of setting upcomputer algebra algorithms, can be found in [16, 22]. Further general references are ofcourse the works of Janet [8, 9].A system of partial di�erential equations is orthonomic if1. it is solved for distinct derivatives of the unknown functions: these derivatives, eachof which appears as the single term on the left-hand side of one of the equations,together with all their derivatives, are called the principal derivatives2. a way of ordering the partial derivatives has been assigned so that in each equa-tion the derivative appearing on the left-hand side has a higher order than anyderivative which appears in the corresponding right-hand side3. no right-hand side contains any principal derivative.A derivative which is not principal is said to be parametric.Repeated di�erentiation of the di�erent equations of the given system will producedi�erent expressions for the same principal derivative in terms of parametric derivatives,which will possibly lead to non-trivial relations between the parametric derivatives.Such relations are usually called integrability conditions, but Riquier (and Douglas)occasionally refer to them also as `passivity conditions'. If in fact no such relationsbetween parametric derivatives can be derived as the result of repeated di�erentiationthe system is said to be passive.The fundamental result of Riquier theory which we need is that every system of partialdi�erential equations which is passive and orthonomic is formally integrable.Needless to say, more precision is required when it comes to describing the details of theordering process (for example, the axioms to be satis�ed by what Riquier calls the `cotes'assigned to all variables, the unknown functions and their derivatives). We will spelldetails out when we need them in the speci�c situation of the application discussed inSection 4. In fact, a very important feature of our approach to the inverse problem is thefollowing. The standard Riquier theory, as sketched above, clearly is not geometrical:writing equations in orthonomic form and computing alternants to obtain integrability5



conditions are procedures that normally go hand in hand and depend, among otherthings, on the choice of principal derivatives. We will present a geometrical way of usingthese ideas in the context of the inverse problem. More precisely, we will carry out a largepart of the integrability analysis of the Helmholtz conditions in a completely coordinatefree way, which means that the process of repeated di�erentiation of equations andlooking for new non-trivial relations is carried out by intrinsic operations and in a waywhich is independent of the selection of principal derivatives which will have to made atsome later stage, when one is forced to enter a classi�cation into di�erent subcases.The plan of the paper is as follows. In the next section, we recall the geometricalformulation of the Helmholtz conditions in the form of coordinate independent equationsto be satis�ed by the generalized metric tensor �eld g introduced above. To prepare thestage for the full integrability analysis, the �rst few steps in that process are explainedup to the point where all purely algebraic restrictions on g have been obtained; theproof that there are no others is given in Appendix A. In Section 3 we show how theprocess of computing prolongations of the equations, with the possibility of obtainingnew passivity requirements, terminates by virtue of the Bianchi identities referred toabove, at least when there is no degeneracy (to be de�ned later on). The calculationsrequired in the �nal stage are explained in Appendix B, though since they are quitetedious the explanation is brief. As an application and illustration of the generalityof these results we prove in Section 4 that for the analogue of Douglas's Case I inarbitrary dimension, i.e. the case where the Jacobi endomorphism � is a multiple of theidentity, the inverse problem always has solutions. This is the stage where the aspectof orthonomicity has to be addressed. Accordingly, we shall start this discussion froma coordinate representation of the equations, but we shall prove in fact that also thispart of the Riquier analysis can be given a geometrical 
avour. Indeed, the conclusionof our detailed investigation will be the following: the local frame of vector �elds onJ1� which is imposed upon us by the geometry of the problem (i.e. by the non-linearconnection coming from the given second-order equation �eld) can replace the local basisof coordinate derivatives also in the process of checking orthonomicity. In Section 5 weset up a formula for the degree of arbitrariness in this solution, which again is the directgeneralization of Douglas's claim for n = 2.A few more words of introduction are in order. The �rst proof of the existence ofa Lagrangian in Case I for arbitrary n that we are aware of is due to Anderson andThompson [1]; their result for the number of arbitrary functions in the solution, however,di�ers from ours, and in fact is in con
ict also with the claim of Douglas for n = 2.While the preparation of this paper was in progress, we have been informed of verysimilar results obtained by Grifone and Muzsnay [7, 13]. Their approach seems to havebeen worked out for autonomous di�erential equations only so far. It is very di�erentfrom ours in that their analysis starts directly from the Euler-Lagrange operator, ratherthan from the Helmholtz conditions for the multiplier matrix g. Grifone and Muzsnayalso prove the existence of a Lagrangian for Case I in arbitrary dimension, and their6



method seems to lead to the same number of arbitrary functions in the solution as in[1]1. There are many con
icting statements in the literature about the arbitrariness ofsolutions of formally integrable systems, because such results depend very much on therepresentation of the solution (cf. [20]). We will try to clarify the origin of the di�erentresults obtained for the inverse problem. Finally, we mention a more fundamental issue:the term \integrability condition" does not seem to have a universal meaning in thedi�erent theories for partial di�erential equations which are now available. Some of thepassivity requirements which we face in our Riquier-Janet approach would not appearas integrability conditions in the Spencer-Goldschmidt approach to formal integrabilityof partial di�erential equations. We dare to hope that the way we sketch the di�erencebetween integrability and passivity conditions here will also be of some interest outsidethe present context.2 An e�cient formulation of the Helmholtz conditionsIn purely analytical terms, the problem we are investigating is the characterization ofthose systems of second-order ordinary di�erential equations of the form�xj = f j(t; x; _x)for which a non-singular symmetric matrix gij(t; x; _x) can be constructed, at least locally,such that the equivalent system gij(�xj � f j) = 0 is a set of Euler-Lagrange equations.Necessary and su�cient conditions for the existence of such a multiplier matrix, knownas the Helmholtz conditions, make their appearance in the literature in many di�erentdisguises. A good list of references for the state of the art prior to 1990 can be foundin [12]. The better analytical formulations of the Helmholtz conditions (so we believe)are those which make reference to another matrix �ij(t; x; _x) associated with the givensystem and de�ned by (the minus sign is a matter of convention):�ij = �@f i@xj � �ik�kj � �(�ij): (8)This matrix is already present in the paper of Douglas, but seems subsequently to havebeen forgotten, until it was assigned an important role again in [18]. The minimal setof Helmholtz conditions reads:�(gij) = gik�kj + gjk�ki ; @gij@vk = @gik@vj ; gij�jk = gkj�ji : (9)We next give a geometrical version of these equations. We know already that the objectg we are looking for is a symmetric type (0,2) tensor �eld along �01 , of the form (2). As for1Private communication. 7



the matrix �ij , it represents the components of a type (1,1) tensor �eld (a vector-valued1-form) along �01 of the form: � = �ij �j 
 @@xi : (10)This tensor �eld plays an important part in all our recent contributions to the studyof second-order equations. It is called the Jacobi endomorphism; this terminologywas introduced, for autonomous equations, in [10]. The geometrical derivation of theHelmholtz conditions in [19] provides a direct coordinate-free transcription of the con-ditions (9), in the following form: rg = 0 (11)DV g (Z;X; Y ) = DV g (Y;X; Z) (12)g (�(X); Y ) = g (�(Y ); X): (13)Here, we have introduced the vertical covariant di�erential DV , which increases thecovariant order of an arbitrary tensor �eld T by one, and is simply de�ned by:DV T (Z; : : :) = DVZT (: : :):There is, however, a technical point which needs to be clari�ed. Due to certain choiceswhich were made in developing the theory of derivations in [19], DVX�i is not zero and infact introduces terms in dt into the picture (see (6)). Whenever we apply such operationsin this paper, however, the resulting tensor �eld will be restricted to act on X (�01) only,which means that the terms in dt can be ignored. Let us agree therefore to incorporatethis feature into the de�nition of the operator DV , so that for all practical purposes wecan take DV �i = 0. For the same reason the properties of derivations that we need areessentially identical to those in the autonomous theory described in [10], which is whatwe exploited in [5].The computation of integrability conditions for the equations for g is a fairly delicatebusiness and cannot be decoupled completely from a classi�cation into subcases derivedfrom the algebraic restrictions on g. In his paper Douglas had to carry out a tediousintegrability analysis for each of the many subcases in his classi�cation. What we pro-pose to do (in the next section) is to push the computation of integrability conditionsas far as possible before even starting a classi�cation into subcases, and to do this in acoordinate-free way. These general results will then be available for each case and willonly require further integrability computations when there is a certain form of degen-eracy. With respect to the modern theory of formal integrability of partial di�erentialequations (see e.g. [15, 2]), one has to interpret what we are doing with some care. Theterm \integrability condition" does not seem to have the same meaning in the di�er-ent approaches. What we are doing here, following Riquier, is to check \passivity" ofthe equations. New conditions have to be added on to the system, in this approach,whenever one encounters restrictions on what were previously parametric derivatives.Such restrictions may well be of the same order of di�erentiation as the prolongation8



under consideration. In the other approach, integrability conditions will turn up whena prolongation does not project onto the equations of the previous stage, so they willalways be of lower order than the equations in the prolongation under consideration.For the purpose of setting up some basic computational rules, we explain here the startof the integrability analysis. What we need in the �rst place are commutator propertiesof the derivations involved. They were already used in [5], but the sometimes tediouscomputations can be performed more e�ciently if one learns to work directly withcovariant di�erentials such as DV , rather then with the degree zero derivation DVX forarbitrary X . Thus, the commutator relation[r;DVX] = DVrX �DHX (14)translates into [r;DV ] = �DH ; (15)DH being de�ned in a way similar to DV .Comparing the DV prolongation of (11) to the r prolongation of (12) using (15) bringsus to the integrability requirementDHg (Z;X; Y ) = DHg (Y;X; Z) (16)which has to be added to the three equations we start from. Note that these are true\integrability conditions" in any sense of the word, because they are new �rst-orderequations resulting from prolonging the given system to second order (i.e. they areobstructions for the prolongation projecting onto the original system).Compatibility of (11) with (13) leads to the new algebraic requirementg (r�(X); Y ) = g (r�(Y ); X):This process can obviously be continued to produce the in�nite hierarchy of requirementsg (rk�(X); Y ) = g (rk�(Y ); X) (17)for all k = 1; 2; 3; : : : , �rst discussed in [18]. How many of these conditions will have tobe imposed will of course depend on the dimension n and on a case by case classi�cationrelated to the structure of �.A second hierarchy of algebraic conditions, �rst derived in [18], follows from compat-ibility of (12) and (13). This works as follows. The DV prolongation of (13) is theequationDV g (Z;�(X); Y )� DV g (Z;�(Y ); X) = g (DV�(Z; Y ); X)� g (DV�(Z;X); Y ): (18)As before, the �rst objective is to see whether algebraic consequences of such prolon-gations can lead to new equations of lower order in the derivatives, which here means9



that one should look for possible combinations of these relations which eliminate the�rst-order terms in g. In view of the symmetry of g and the condition (12), the tensor�eld DV g is symmetric in its three arguments. As a result, writing two more versionsof this equation with cyclic permutations of X; Y; Z and adding them up, the left-handside identically vanishes, yielding the new algebraic condition (P meaning cyclic sum,here and below) X g (DV�(X; Y )� DV�(Y;X); Z) = 0:The geometrical meaning of this relation becomes more apparent if we recall the identity(see [19, 4]) DV�(X; Y )�DV�(Y;X) = 3R(X; Y ); (19)where R is the curvature tensor (in our context a vector-valued 2-form along �01) ofthe non-linear connection associated to the given second-order system �. (To be moreprecise, it is the restriction of the curvature tensor to X (�01), which was denoted by ~Rin the above cited references, but we will omit the tilde here.) In conclusion, the newalgebraic restriction on g can be written asX g (R(X; Y ); Z) = 0: (20)Acting on this repeatedly with r and taking account of (11) gives rise to the hierarchyof conditions X g (rkR(X; Y ); Z) = 0; 8k: (21)Of course, having augmented the original Helmholtz conditions with the DH condition(16), we should consider also its compatibility with the algebraic relations (13). However,this will not produce anything which has not already been mentioned, because we havethe property DH�(X; Y )�DH�(Y;X) = rR(X; Y ): (22)But we have now again augmented the original conditions with an extra algebraic re-striction (20) (and its r derivatives). Therefore, we have to consider the possibility thateven more algebraic conditions might be created from suitable combinations of the DVand DH prolongations of these. The method of investigation is the same: one writesdown the prolongation, for exampleDV g (U;R(X; Y ); Z) + DV g (U;R(Y; Z); X)+ DV g (U;R(Z;X); Y ) =� g (DVR(U;X; Y ); Z)� g (DVR(U; Y; Z); X)� g (DVR(U; Z;X); Y ); (23)and then makes the appropriate combination of cyclic permutations which, when addedtogether, will eliminate all the derivative terms. The result is the algebraic relationg �XDVR(U;X; Y ); Z�� g �XDVR(X; Y; Z); U�+ g �XDVR(Y; Z; U); X�� g �XDVR(Z; U;X); Y� = 0;10



and similarly for DH . Both of the resulting relations, however, are identically satis�edin view of the properties XDVR(X; Y; Z) = 0 (24)XDHR(X; Y; Z) = 0: (25)It is worthwhile to observe that the properties (19), (22), (24) and (25) are among the�rst Bianchi identities satis�ed by the curvature of the linear connection on �01�(�E).This is still not the end of the line in terms of the possibility of creating further indepen-dent algebraic conditions. Indeed, one can repeat the manipulations we have consideredso far for the compatibility between the DV (or DH) equation and each of the algebraicrelations in the lists (17) and (21) for k > 0. The commutator relation (15) showsthat such an analysis will rely essentially on what happens when we interchange r andDH . To �nd the commutator of r and DH we take the formula for [r;DHX]. As weknow from [10, 19], the i� part of the action of a self-dual derivation of degree zero on1-forms translates by duality into a corresponding algebraic derivation of vector �elds.Therefore, in all generality we have[r;DHX] = DHrX +DV�(X) + 2�iXR � �DVX�; (26)where for any type (1,1) tensor �eld A, �A contains two terms: �A = aA � iA. Theaction of these terms on a type (1; p) tensor �eld T , or vector-valued covariant p-tensor,is given by iAT (X1; : : : ; Xp) = pXi=1 T (X1; : : : ; A(Xi); : : : ; Xp); (27)aAT (X1; : : : ; Xp) = A(T (X1; : : : ; Xp)): (28)When �A acts on a type (0; p) tensor �eld T , however, the term aAT is absent. (In the�nal section of [5] a formula for [r;DHX] was given which contained no aA term; sincethe operators were used there to act only on covariant tensor �elds such as g, this termwas not needed.) Passing from the derivation DHX to the di�erential DH and making useof (19), one obtains [r;DH] = � DV � �	; (29)where 	 is a type (1,2) tensor �eld along �01, de�ned by	(X; Y ) = R(X; Y ) + DV�(Y;X); (30)and the action of the operator �	 on vector-valued covariant tensor �elds is given by�	T (X; : : :) = �X 	T (: : :): (31)By making use of this commutator relation one can show that no further algebraicrestrictions can be obtained apart from those given in (17) and (21). To be precise, westate the following proposition, whose proof is given in Appendix A.11



Proposition 1 Assume g satis�es the di�erential conditions (11), (12), (16) and thealgebraic conditions (17), (21) up to order k = l. Then the next level of integrabilityconditions between the di�erential and the algebraic equations generates the conditions(17), (21) for k = l + 1.3 The complete set of passivity conditions when there isno degeneracySummarizing the results of the previous section we have, so far, augmented the originalHelmholtz conditions with the DH equations (16), and we have found all generic algebraicconditions on g. The next stage will be to look for the possible integrability or passivityconditions for the extended system which may come from other prolongations to second-order equations for g. Some of these computations were done in [5] already, but will berepeated here with the more compact formulations that the use of covariant di�erentialsmakes possible.Integrability conditions would occur if combinations of the prolongations to second-order equations turned out to produce new equations of lower order. Following theRiquier approach, on the other hand, other so-called passivity conditions may arisewhich are of the same order as the prolongation. In the process of bringing the systemof partial di�erential equations into orthonomic or standard form (see the Introduction),the equations have to be written in such a way that a principal derivative appears in theleft-hand side, while the right-hand side contains no such derivatives and no derivativesof higher order than the left-hand side. It may happen that all the terms of highestderivative order in an equation obtained by prolongation were previously designatedparametric derivatives. One of them has then to be promoted to the rank of principalderivative, and the equation under consideration has to be added to the system.Our purpose is to obtain the true integrability conditions, if any; and to obtain also,in advance of any choice of ordering, all the relations which can give rise to possiblepassivity conditions when some suitable choice of ordering has been made. In otherwords, our analysis is designed to be valid irrespective of the ordering which one mayselect later on in a case by case study.The computations which follow are concerned with g and its covariant di�erentials only,which means that we will need commutator properties such as (29) only for the actionon type (0; p) tensor �elds, so that the a term in � has no e�ect.Acting with r on (16) and making use of the commutator (29), we obtain �rst:(� DV g + i	g)(Z;X;Y ) = (� DV g + i	g)(Y;X; Z):Using the prolongation (18) to eliminate the terms in DV g, all terms become algebraic12



again and using the de�nition of 	, it turns out that we recover the curvature condition(20). Here we make use of the fact that	(X; Y )� 	(Y;X) = �R(X; Y ): (32)The next stage will involve second-order covariant di�erentials. From the de�nition ofDV and DH , it follows that for any covariant tensor �eld T ,D2D1T (U; V;X; : : :) = D2UD1V T (X; : : :)� D1D2UV T (X; : : :); (33)where D2 and D1 stand for either DH or DV . For the compatibility analysis of DV andDH prolongations of (12) and (16), we need the commutator properties of all possiblecombinations of covariant derivations DVX and DHY . We used them extensively alreadyin the �nal section of [5] and write them here directly in the form of properties of thecorresponding covariant di�erentials. With T again representing any covariant tensor�eld, we have the identities:DVDV T (X; Y; Z; : : :)� DVDVT (Y;X; Z; : : :) = 0 (34)DHDHT (X; Y; Z; : : :)�DHDHT (Y;X; Z; : : :) =DVT (R(X; Y ); Z; : : :)� iRie(X;Y )T (Z; : : :) (35)DVDHT (X; Y; Z; : : :)�DHDVT (Y;X; Z; : : :) = �i�(X;Y )T (Z; : : :): (36)In e�ect these relations de�ne the curvature tensor of the linear connection on �01�(�E)(cf. [4]), so it is best to regard the last two here as de�ning the tensor �elds Rie and�, which are type (1,3) tensor �elds along �01 (or better, covariant 2-tensors which taketype (1,1) tensors as their values). As part of the �rst Bianchi identities satis�ed by thiscurvature, one �nds that � is symmetric in all its vector arguments, i.e.�(X; Y )Z = �(Y;X)Z = �(X;Z)Y ; (37)and also that Rie = �DVR or Rie(X; Y )Z = �DVZR(X; Y ): (38)For completeness, we should add here again that this Rie is the restriction to X (�01) ofthe tensor with the same name in [19].At this point, it is necessary to go through some of the calculations in detail, to showhow the calculus works in practice. We take the prolongation to second-order horizon-tal derivatives as an example. Acting on an equation of the form (16) with another(arbitrary) horizontal covariant derivative yields a prolonged equation of the formDHDHg (U;X; Y; Z) = DHDHg (U; Z; Y;X):Interchanging the names of U and X , we could have written just as well:DHDHg (X;U; Y;Z) = DHDHg (X;Z; Y; U):13



The left-hand sides of these two representations are related through the identity (35).Replacing their di�erence by the lower order terms in (35) might give rise to new re-strictions on parametric derivatives, i.e. to passivity conditions, or even integrabilityconditions if the second-order terms coming from the right-hand sides could also beeliminated in the same process.Making use of (35) to replace both sides of the second equation and then substituting theterm DHDHg (U;X; Y; Z) on the left via the �rst equation, we obtain the intermediaterelationDHDHg (U; Z; Y;X)�DHDHg (Z;X; Y;U) =�DV g (R(X;U); Y;Z)� g (DVR(Y;X; U); Z)� g (Y;DVR(Z;X; U))+ DV g (R(X;Z); Y;U)+ g (DVR(Y;X; Z); U)+ g (Y;DVR(U;X; Z)):Now in all such computations we can freely add or subtract straight prolongations. Theidea is that such terms will cancel out anyway when, for a given ordering, principalderivatives are substituted for in terms of parametric ones. Exactly which ordering ischosen is irrelevant for the present argument. Here, for example, we can interchange Xand U in the second term on the left again, and then the two second-order derivativeterms will be replaced by terms of lower order in view of (35). It is at this point incalculations of this type that we might �nd a new integrability or passivity condition.In the present case, however, it turns out that we get a combination of terms of theform g (Y;PDVR(X;U; Z)), which is identically zero in view of (24), whereas all theremaining terms precisely make up the DV prolongation (23) of the curvature condition(20). We conclude that no new integrability or passivity requirements can arise here.It is immediately clear that no conditions will arise for DV prolongations of (12), in viewof the lack of \vertical curvature" in the linear connection, as expressed by the zero inthe right-hand side of (34).The situation is di�erent, however, for mixed horizontal and vertical derivatives. Con-sider the prolongation DHDV g (U;X; Y; Z) = DHDV g (U; Z; Y;X)of an equation of type (12) on the one hand, and the prolongationDVDHg (X;U; Y; Z) = DVDHg (X;Z; Y; U)of an equation of type (16) on the other. It is clear that if we use the de�ning relation(36) of the tensor � for replacements in the second equation, we will create on theleft-hand side a term which is identical to the left-hand side of the �rst equation. If wecontinue the same procedure explained above line by line, and make use of the symmetryproperties (37) of �, we can write the end result in the following formDHDV g (U; Z; Y;X)�DHDV g (Z; U; Y;X)+g (�(Y;X)Z; U)�g (�(Y;X)U; Z) = 0: (39)14



The second-order derivative terms involve the same components of g (the third andfourth arguments are the same for both). Also, not all components of g can have alltheir DH and DV derivatives in the list of principal derivatives at the level of the �rst-order equations. Therefore, whatever ordering process one happens to select, there willbe equations coming from (39) which establish a relation between parametric derivativesand therefore have to be added on as passivity conditions. An explicit example of thisphenomenon is given in the next section.The second-order operator in (39) may be expressed in a number of di�erent equivalentways by interchanging DV and DH derivatives through (36). We introduce A(X; Y ) asshorthand notation for it: thus(A(X; Y )T ) (Z; : : :) = DVDHT (X; Y; Z; : : :)� DVDHT (Y;X; Z; : : :) (40)= DHDVT (Y;X; Z; : : :)� DHDVT (X; Y; Z; : : :) (41)= DVDHT (X; Y; Z; : : :)� DHDV T (X; Y; Z; : : :) + i�(X;Y )T (Z; : : :): (42)It is clear that A(X; Y ) is skew-symmetric in its two arguments. We further de�ne anoperator A(X; Y ), speci�cally for the action on g. This is also skew-symmetric in Xand Y , and is given by(A(X; Y )g) (U; V ) = (A(X; Y )g) (U; V ) + g (�(U; V )X; Y )� g (X; �(U; V )Y ); (43)so that the conditions (39) acquire the form (A(X; Y )g) (U; V ) = 0, for all X; Y; U; V .Observe that the right-hand side of (43) is also manifestly symmetric in U and V .How many such passivity conditions will have to be imposed will depend on the choice ofprincipal derivatives. If one were to write down an expression like (43) with leading termswhich are principal derivatives, these would have to be replaced by a substitution fromthe �rst-order equations. Such an operation amounts to interchanging the two middlearguments in the leading terms. The self-consistency of the second-order conditions inrelation to this operation is illustrated by the following result.Proposition 2 We have the property(A(X; Y )g) (U; V ) = (A(X;U)g)(Y; V ) modulo prolongations: (44)Proof In expressions like DV g (X; Y; Z) or DHg (X; Y; Z) and their prolongations, wecan write the arguments X; Y; Z in any order we like in view of the symmetry of g andthe conditions (12) and (16). Using the representation (42) of the A-operator, collectingall the algebraic terms and using the symmetry of g and �, we can write(A(X; Y )g) (U; V ) = (DVDHg � DHDV g)(X; Y; U; V ) + i�(X;Y )g (U; V )+ i�(X;U)g (Y; V )� i�(Y;U)g (X; V ):In the derivative terms, Y and U can be interchanged by using prolongations, whereasthe algebraic part is now manifestly symmetric in Y and U . The result follows. 215



It is now clear that, given a particular ordering of the �rst-order equations, the inde-pendent second-order conditions will come from those expressions (43) in which none ofthe second-order terms is a derivative of a term which �gures in the left-hand side of�rst-order DV or DH equations.At this point our set of equations has been augmented with a number of second-orderequations, and the process of computing alternants has to be started all over again. Thecomputations involved are extremely laborious. We give a sketch of what is involved incarrying them out in Appendix B, and content ourselves here with a statement of theresults.To compute the alternant of (39) (in any of its appearances) and (11), we apply r to (39)and use the commutator properties (15) and (29) to bring r inside, taking advantage inthe end of the fact that rg = 0. In the long process of checking whether this producesanything new, one has to make use of a large number of properties of tensors alreadyintroduced and prolongations of the equations we already have on our list. This willnot be su�cient, however, to prove that no new conditions are born. What one needsin addition is the propertyr�(X; Y )Z = �13XDVDV�(X; Y; Z): (45)This is one of the second Bianchi identities for the curvature of the linear connection on�01�(�E), as proved in [4].The computation of the alternant coming from the second-order conditions and the DVequation (12) proceeds in much the same way: here, the essentially new property whichhas to be invoked is the full symmetry of DV �, following fromDV �(X; Y; Z)U = DV �(Y;X; Z)U; (46)which is another second Bianchi identity for the linear connection.That the alternant with the DH equation (16) does not give rise to new conditions eitheris due to the propertyDVDVR(U;X; Y;Z) = DH�(Z;X; Y )U �DH�(Y;X; Z)U: (47)Again, this is a second Bianchi identity of the linear connection, although it has beenshown in [4] that it is merely a consequence of the other two.Finally, one must consider whether there could be a condition coming from the internalcompatibility of the second-order conditions. If one starts with second prolongations ofthe conditions (39) and proceeds in much the same way as was explained in some detailfor the DH prolongations of (16), it is fairly easy to see that nothing else but directprolongations can be produced. 16



Since the second-order conditions are not true integrability conditions (they wouldmerely be part of the prolonged system in other approaches to formally integrable par-tial di�erential equations), there is no need to verify compatibility between them andthe double hierarchy of algebraic restrictions: for example, it would not be possibleto �nd suitable combinations of second-order prolongations of the algebraic conditionswhich would eliminate the derivative terms. So at last the process seems to have cometo an end. This is only partially true, however, because the computations of Appen-dix B rely on the fact that the conditions (39) e�ectively express a dependency betweensecond-order parametric derivatives. If, for example, the diagonal elements of g aregiven priority in the selection of principal derivatives, then the leading terms of thesecond-order passivity requirements (39) will involve only non-diagonal elements of g.But if, for example as a result of the algebraic requirements, some of these non-diagonalelements are zero, then the corresponding passivity conditions will \degenerate" intonew �rst-order (or even algebraic) integrability conditions. One can see this happeningin a large number of cases discussed by Douglas for n = 2. In such situations, thefurther computation of alternants will not follow the course described in Appendix B,and it seems unlikely that anything could be said about such cases at the same level ofgenerality.Let us summarize the whole scheme, in the form of a theorem.Theorem 1 The complete set of integrability and/or passivity conditions associatedwith the Helmholtz equations (11), (12) and (13)rg = 0DV g (Z;X; Y ) = DV g (Y;X; Z)g (�(X); Y ) = g (�(Y ); X);are equation (16) DHg (Z;X; Y ) = DHg (Y;X; Z);the two sets of algebraic requirements (17)g (rk�(X); Y ) = g (rk�(Y ); X) k = 1; 2; 3; : : :and (21) X g (rkR(X; Y ); Z) = 0 k = 0; 1; 2; : : : ;and the second-order conditions (39)DHDV g (U; Z; Y;X)�DHDV g (Z; U; Y;X)+ g (�(Y;X)Z; U)� g (�(Y;X)U; Z) = 0:The completeness of the scheme only applies when there is no degeneracy in the second-order passivity conditions. 17



4 The generalization of Douglas's Case I to arbitrary di-mensionRecall that the classi�cation of Douglas for n = 2, as explained in detail in [5], startsfrom the degree of linear independence of the matrices I;�;r�; : : : in the hierarchy (17)of algebraic conditions. Observe, by the way, that Douglas did not have to worry aboutthe other hierarchy (21), because these conditions are void in dimension 2. The casewhich is most easy to identify, which we will continue to call Case I, is the case where� is a multiple of the identity tensor:� = �I; � 2 C1(J1�): (48)It is called (for autonomous equations) the (
at) isotropic case in [7].Under these circumstances, it is obvious that all conditions (17) are satis�ed. Also,we have from (19) that 3R(X; Y ) = XV (�)Y � Y V (�)X , so that for any symmetric gthe cyclic sum (20) will be identically zero (and likewise for the other conditions in thehierarchy (21)). Thus the algebraic integrability tests place no restrictions on g.In more explicit form, the resulting system of equations we have to deal with is obtainedfrom equations (11), (12), (16) and (39) in the following way. We take a local basisfXig1�i�n of X (�01), so that f�; XiH ; XiV g will be a local frame of vector �elds on J1�;the system of equations referred to this basis, isrg(Xi; Xj) = 0DV g (Xk; Xi; Xj) = DV g (Xj; Xi; Xk)DHg (Xk; Xi; Xj) = DHg (Xj ; Xi; Xk)(A(Xk; Xl)g) (Xi; Xj) = 0:As i, j, k and l range over 1; 2; : : : ; n we obtain a system of partial di�erential equationsfor the components of g with respect to the Xi. We shall denote the components of gby gij (that is, gij = g(Xi; Xj)).Since the terms appearing in the equations are tensorial, a di�erent choice of local basisfXig will produce an equivalent system of equations. We shall therefore take for fXiga coordinate basis: Xi = @=@xi. Notice that this does not imply that the correspondinglocal basis for J1� is a coordinate basis.In fact it is not the full set of equations listed above that we shall be concerned with.In the �rst place, some of the equations are trivial for certain values of the su�ces: forexample, we do not have to consider the cases j = k in equations (12) or (16). Moresigni�cantly, only a certain subset of equations (39), which we will specify later, will berequired. 18



The general theory developed in the previous section deals with the question of passivityalmost in its entirety. Passivity conditions arise from the computation of alternantsbetween di�erent equations of the system. We know that equations (16) arise as passivityconditions for equations (11) and (12), and equations (39) contain all passivity conditionsthat might arise between the �rst three. Moreover, all conditions arising as alternantsbetween the full set are satis�ed automatically by virtue of the original equations, theirprolongations, and the Bianchi identities for the curvature associated with the covariantderivative operatorsr, DV and DH. Provided that we ensure that the subset of equations(39) which we include in our system consists precisely of the passivity conditions whichcan arise from consideration of equations (11), (12) and (16), our system as a whole isbound to be passive. All that remains is to deal with orthonomicity.The system consisting of equations (11), (12) and (16) and the passivity conditions tobe found amongst equations (39) is clearly not orthonomic as it stands. What we shalldo is show that it can be put in orthonomic form. For this purpose we must specify anordering of the derivatives which appear in the equations, including the undi�erentiatedterms gij , which are treated as derivatives of degree zero. We must now spell out inmore detail how this process can be carried out in full agreement with the general rulesfor orthonomicity mentioned in the Introduction.As a preliminary step we specify an ordering of the components gij of g, the dependentvariables in our system of di�erential equations. We may think of them as the elementsof a symmetric matrix { and we need consider only those that come on and above themain diagonal. The diagonal elements come �rst, in their natural order; that is to say,g11 is the dependent variable of highest order, followed by g22, and so on down to gnn.The elements of the sub-diagonal immediately above the main diagonal come next, againin their natural order. We continue to work up through the sub-diagonals in the sameway, the �nal element { the one of lowest order { being the one in the top right-handcorner of the matrix. To be speci�c: for two components of g, say gij and gi0j0 (wherewe may assume without loss of generality that i � j and i0 � j0), we have gij > gi0j0 ifeither j � i < j 0� i0, or if j � i = j0� i0 and i < i0. This ordering is a natural extensionof the one given by Douglas for n = 2.In order to describe the ordering of the derivatives of the gij it is convenient to renamethe independent variables temporarily, as follows: t 7! x0; vi 7! xn+i. We can thereforedeal with all the independent variables as xa, say, with a = 0; 1; 2; : : : ; n; n+ 1; : : : ; 2n.The advantage of this manoeuvre is that it allows us to use the multi-index notationfor derivatives: we write @jAjgij=@xA for the partial derivative determined by the multi-index A, where jAj is the sum of the entries of A. We remind the reader that there is anatural ordering of multi-indices, such that A > A0 just in case the �rst non-zero entryin A� A0 is positive.We can now specify the ordering of the partial derivatives @jAjgij=@xA. We say that@jAjgij=@xA > @ jA0jgi0j0=@xA0 if 19



1. jAj > jA0j; or2. jAj = jA0j and gij > gi0j0 ; or3. jAj = jA0j, i = i0, j = j0 and A > A0.That is to say, we order the partial derivatives �rst by degree of di�erentiation, then(for derivatives of the same degree) by the order of the dependent variable according tothe ordering de�ned earlier, and �nally (for derivatives of the same degree of the samedependent variable) according to the independent variables as determined by their multi-indices. In this last situation, t derivatives have higher order than x derivatives, whichin turn have higher order than v derivatives. This system is again a direct generalizationof the one used by Douglas in his analysis of Case I for n = 2. Douglas in fact usesRiquier's method of cotes to de�ne his ordering; it is not necessary to introduce cotesinto the discussion here, but it is easy to see how cotes could be de�ned to produce theordering speci�ed above for the general case.We can now explain how to write the equations in orthonomic form. As a �rst stepwe shall say, in each case, which derivative is to be singled out to appear on the left-hand side of the rearranged equation, that is, to be the principal derivative. This mustbe one of the derivatives of highest degree which occur in the equation; in the case ofequations (11), (12) and (16) it will be a derivative of degree 1, for equations (39) itwill be a derivative of degree 2. All terms of lower degree may therefore be transferredimmediately to the right-hand sides of the equations.We shall always suppose that the su�ces i, j on any term gij = gji have been writtenin non-decreasing order.The �rst derivative terms in equation (11) are@gij@t + vk @gij@xk + fk @gij@vk :We must choose @gij=@t as principal derivative, and transfer the remaining terms to theright-hand side of the equation. This clearly isolates the derivative of highest order onthe left-hand side, as required.The equations (12) take the form@gij@vk = @gik@vj or @gki@vj :We consider only the non-trivial equations, for which i, j and k are not all the same.The dependent variables that appear are therefore di�erent, and we must choose forthe principal derivative in each equation that for which the dependent variable has thehigher order according to our ordering scheme. In the case in which two of the indices20



are the same and the third is di�erent, this simply requires that the derivative of thediagonal term be taken as principal. When all three indices are distinct, however, threeequations can be written down, one of which is super
uous: for example, when i, j andk are 1, 2 and 3 in some order, the equations are@g12@v3 = @g13@v2 = @g23@v1 :Of the three distinct dependent variables which occur, one is of least order according toour ordering scheme, and we choose the two equations which involve this one, placingit on the right-hand side. Thus in the speci�c case just considered the chosen equationsare @g12@v3 = @g13@v2 and @g23@v1 = @g13@v2 :It is immediate that the terms on the left-hand sides of our equations are all distinct,and that in each case the term on the right-hand side has lower order than the term onthe left.The equations (16) are (modulo the order of the su�ces on g)@gij@xk � �lk @gij@vl + : : : = @gik@xj � �lj @gik@vl + : : :where the omitted terms do not involve derivatives of the dependent variables. Wechoose the principal derivative from between the two x derivatives using exactly thesame procedure as we did for equations (12). On rearrangement the equation becomes(say) @gij@xk = �lk @gij@vl + @gik@xj � �lj @gik@vl + : : : :The terms involving @gij=@vk are of lower order than the principal derivative becausethey are derivatives of the same dependent variable but with respect to v variables ratherthan xk ; the other derivatives on the right-hand side are derivatives of a dependentvariable of lower order than gij .With these provisions the �rst-order equations as rearranged are seen to satisfy the �rsttwo conditions for orthonomicity as described in the Introduction; but they are not yetin orthonomic form because some of the derivatives appearing on the right-hand sidesare principal. However, these may clearly be eliminated by substitution in terms ofparametric derivatives; each such substitution involves the replacement of a term byterms of lower order, so the second of the conditions for orthonomicity still obtains. Sothe �rst-order equations may be written in orthonomic form.Notice that for each choice of values for the indices i, j and k, the derivatives @gij=@xkand @gij=@vk are either both principal or both parametric. The conditions on i, j and kthat these derivatives are principal are that either k < i or j < k. For these derivativesto be parametric, conversely, i � k � j. It is perhaps worth mentioning, what might21



easily be overlooked, that @gii=@xi and @gii=@vi are parametric, as indeed are all theundi�erentiated dependent variables.Notice also that the equations (12) by themselves are orthonomic. It is clear from ourdiscussions of the passivity conditions in the previous section that these equations bythemselves also comprise a passive system.We turn now to consideration of the second-order equations (39). From their full ex-pression, which isDHDV g (Xk; Xl; Xi; Xj)� g (�(Xi; Xj)Xk; Xl)= DHDV g (Xl; Xk; Xi; Xj)� g (�(Xi; Xj)Xl; Xk);it can be seen that when Xi = @=@xi these equations take the form@2gij@xk@vl � �mk @2gij@vm@vl + : : := @2gij@xl@vk � �ml @2gij@vm@vk + : : :where the omitted terms are, again, of lower order. We must �rst state which of theseequations are to be included in our system. We wish to include only those which ex-press relations between parametric derivatives for the �rst-order equations. A necessarycondition for this is that the values of i, j, k and l must be restricted to those forwhich both @gij=@xk and @gij=@vl are parametric, and equally for which both @gij=@xland @gij=@vk are parametric. There may be principal derivatives among terms like@2gij=@vm@vl, since all the derivatives of principal derivatives are themselves princi-pal, by de�nition. However, it follows from the fact that equations (12) by themselvesform a passive orthonomic system, and from the property of such systems noted earlier,that all such principal derivatives may be replaced by parametric derivatives by makingappropriate substitutions from equations (12), and that the expression so obtained isuniquely determined. So this choice of values of i, j, k and l will give precisely theequations which arise as passivity conditions for the �rst-order equations. With theseequations now added to the system we have to con�rm that they can also be written inorthonomic form (which involves selecting some of what were parametric derivatives forthe �rst-order system to be principal for the extended system). Clearly we must havek 6= l, and in accordance with our ordering principles we have to choose @2gij=@xk@vl tobe principal for k < l. When each equation containing such a term is written with it onthe left-hand side, and all the principal derivatives on the right-hand side are eliminatedby substitution in terms of parametric derivatives, the system becomes orthonomic. Thederivative @2gij=@xk@vl will be principal when i � k < l � j.Thus the system we have de�ned is orthonomic and passive, and it follows that Case Iis variational.For a strict application of Riquier theory it was necessary to deal with the partialderivatives of the dependent variables in the way described above. But this approach22



appears very pedestrian, and foreign to the spirit of previous sections in which we madefull use of the tensorial properties of our equations. A way of improving the situationis obtained by extending a procedure already used by Douglas: he elects to use (inour notation) � in place of @=@t not just in calculating passivity conditions but alsoin testing for orthonomicity. As he puts it: `The cote of x [our t] is thought of asassociated with the operator d=dx [our �] rather than @=@x [our @=@t].' The idea here isthat for any ordering of the independent variables in which t has highest order, it makesno essential di�erence when considering orthonomicity whether we write the equationrg(Xi; Xj) = 0 in the form @gij=@t = : : : or �(gij) = : : :, since the di�erence between theleft-hand sides of the two versions of the equation consists of terms which are necessarilyof lower order than @gij=@t. Now the vector �elds XiH = @=@xi � �ji@=@vj share with� the property of containing a coordinate vector �eld with coe�cient 1; it is clear thatDouglas's idea may be extended to the XiH , provided that the independent variables vihave lower order than the xi. There is no need to extend the idea further since the XiVare coordinate �elds anyway.The detailed arguments given above, in particular the reasoning which shows that inexpressions like XlVXkH(gij) terms like @2gij=@vl@vm will always become parametric bythe end of the process, show that our system is passive and orthonomic in this generalizedsense in which the operators f@=@t; @=@xi; @=@vig are replaced by f�; XiH; XiV g (whereXi = @=@xi), and is formally integrable. Since, however, there is no generalized versionof Riquier theory available from which we could have started to argue immediately inthese terms, we have chosen the safer way of showing the validity of such an approachdirectly, by relating it to the standard theory with coordinate derivatives.5 Counting the degree of arbitrarinessAs mentioned at the end of Section 1, the formula in [1] for the degree of arbitrariness ofthe solution is not in agreement with Douglas's result for n = 2. We wish to sketch herehow Douglas's way of counting proceeds for general n. In addition, we wish to explainwhere the di�erence comes from.Douglas's calculation of the number of arbitrary functions in the solution, and thenumber of variables occurring in each of these functions, uses the notion of a completeset of parametric derivatives. A �nite set of parametric derivatives is termed completeif all parametric derivatives (of all degrees) can be derived from the set, in the followingmanner. First, with each parametric derivative from the complete set a certain collectionof independent variables must be associated; these are called the multipliers for thatderivative. For clarity we emphasise that di�erent parametric derivatives may havedi�erent multipliers. Then for the set (with the associated assignment of multipliersto each element) to be complete, every parametric derivative must be expressible in23



one and only one way as a (multiple) derivative of one of the members of the set withrespect to its multipliers. It is permissible (indeed in our case necessary) to includeundi�erentiated dependent variables among the elements of a complete set, regardingthem as derivatives of degree zero in the usual way. It is a result of the Riquier theorythat when a system of equations is orthonomic and passive, a complete set of parametricderivatives may be found for it; there is no implication that a complete set is uniquelydetermined, however. There is then an arbitrary function in the solution for each of themembers of the complete set, and this is a function of the associated multipliers. If acomplete set of parametric derivatives can be exhibited then the freedom or arbitrarinessin the solution can be read o� from it. Douglas shows how this can be done for Case Iwith n = 2. We shall explain how to generalize his result to arbitrary n.Note �rst of all that since @gij=@t is principal for all i and j, no derivative with respectto t can occur among the parametric derivatives. We may therefore simply ignore thevariable t in the process of counting the freedom in the general solution.It is instructive �rst to consider what happens for small values of n, beginning withn = 2, in order to recall Douglas's method.Since parametric derivatives are de�ned in terms of principal derivatives, we shall needto consider all the principal derivatives (other than those involving @gij=@t) for smallvalues of n. To do so it is enough to list the values of the indices i, j, k and (for thesecond-order derivatives) l for which the corresponding derivatives @gij=@vk, @gij=@xkand @2gij=@xk@vl are principal. Note that for the �rst-order derivatives each appropriatechoice of values of the indices i, j and k identi�es two terms, one a v derivative andthe other an x derivative. We shall write the values in the form ij; k or ij; kl, with thecomma to separate the su�ces on the dependent variable (the �rst two) from the index(indices) on the independent variable(s) of di�erentiation. In order to be systematic weshall list these principal derivatives, in tabular form, in decreasing order reading downthe columns, except that we shall give the �rst-order derivatives before the second-orderones.Incidentally, the values of the indices we shall list will serve at the same time to identifythe equations in the system, if the given values are substituted for i, j, k and l inDV g (Xk; Xi; Xj) = DV g (Xj; Xi; Xk)DHg (Xk; Xi; Xj) = DHg (Xj ; Xi; Xk)(A(Xk; Xl)g) (Xi; Xj) = 0(where Xi = @=@xi). Note again that for the �rst-order equations each entry in thelist corresponds to two equations, one involving vertical derivatives only and the otherinvolving horizontal derivatives.For n = 2, with the notational conventions introduced above, the principal derivativesthat occur in the equations of the system are represented by24



11,2 12,1222,1Of course, in addition to these all their derivatives are principal. The parametric deriv-atives can be described as follows: the undi�erentiated dependent variables; any deriva-tive of g11 with respect to the variables x1 and/or v1; any derivative of g22 with respectto the variables x2 and/or v2; any derivative of g12 with respect to any of x1, x2 and v1;any derivative of @g12=@v2 with respect to any variable other than x1. This descriptionreveals a complete set of parametric derivatives: they areDerivative Multipliersg11 x1, v1g22 x2, v2g12 x1, x2, v1@g12=@v2 x2, v1, v2These parametric derivatives and multipliers are the ones given by Douglas, translatedinto our notation. It is easy to check that they do satisfy the condition for being acomplete set. Consider, for example, a parametric derivative of g12. If it includes anydi�erentiations with respect to v2 then it cannot also include any di�erentiations withrespect to x1; it can therefore be obtained by di�erentiating @g12=@v2 with respect tosome or all of the variables x2, v1 and v2. If it does not include any di�erentiations withrespect to v2 then it can be obtained by di�erentiating g12 with respect to any variableother than v2.The general solution in this case therefore contains two arbitrary functions of two vari-ables and two arbitrary functions of three variables, which we shall indicate by sayingthat the freedom is 2 f(2)+ 2 f(3):Consider next the case n = 3. The principal derivatives are11,2 12,3 12,1211,3 23,1 23,2322,122,3 13,1233,1 13,1333,2 13,23together with all their derivatives. The way in which the complete set of parametricderivatives is drawn up for n = 2 gives us plenty of guidance for the case n = 3. Clearlywe must include in the complete set all the diagonal elements gii, with multipliers xi and25



vi. Consider now the parametric derivatives of g12. Since 12,3 is principal, neither x3nor v3 can appear in a parametric derivative of g12. Furthermore, 12,12 is principal, andis the only second-order principal derivative of g12. Thus g12 for n = 3 behaves exactlylike g12 for n = 2. The same is true for g23, under the substitutions 2 7! 1 7! 3 7! 2.This shows what the elements of the complete set for these two dependent variablesmust be. Finally we must consider g13. There are no �rst-order principal derivatives ofthis variable (as is the case for g12 when n = 2), but three second-order ones. A littlethought shows how to extend the method for g12 from n = 2 to cover g13 for n = 3. Weobtain the following complete set:Derivative Multipliersg11 x1, v1g22 x2, v2g33 x3, v3g12 x1, x2, v1@g12=@v2 x2, v1, v2g23 x2, x3, v2@g23=@v3 x3, v2, v3g13 x1, x2, x3, v1@g13=@v2 x2, x3, v1, v2@g13=@v3 x3, v1, v2, v3The freedom is 3 f(2) + 2� 2 f(3) + 3 f(4):The induction process will become more apparent when we go one step further and lookat the case n = 4. The principal derivatives are11,2 12,3 12,12 14,1211,3 12,4 23,23 14,1311,4 23,1 34,34 14,1422,1 23,4 14,2322,3 34,1 13,12 14,2422,4 34,2 13,13 14,3433,1 13,2333,2 13,433,4 24,1 24,2344,1 24,2444,2 24,3444,3The diagonal elements behave just as the diagonal elements did previously.26



The elements in the �rst sub-diagonal (the one immediately above the main diagonal)behave just like g12 for n = 2. Indeed, the fact that 12,3 and 12,4 are principal meansthat only x1, v1, x2 and v2 can appear in parametric derivatives of g12; then the factthat 12,12 is principal reduces the case to that of g12 for n = 2. Similar considerationsapply to the other entries in this sub-diagonal, with appropriate substitutions of indices.There are three such terms in all.The two elements of the next sub-diagonal behave just like g13 for n = 3; for g13 itself, thetranslation is direct, while for g24 one has to make the substitutions 2 7! 1 7! 4 7! 3 7! 2.Note that there are again no �rst-order principal derivatives of the top right-hand cornerelement g14. Since the other terms have already been dealt with, it is enough to list themembers of the complete set involving g14. They areDerivative Multipliersg14 x1, x2, x3, x4, v1@g14=@v2 x2, x3, x4, v1, v2@g14=@v3 x3, x4, v1, v2, v3@g14=@v4 x4, v1, v2, v3, v4The freedom for n = 4 is4 f(2) + 3� 2 f(3)+ 2� 3 f(4) + 4 f(5):The f(2) terms come from the 4 diagonal elements, the f(3) terms from the 3 elementsin the �rst sub-diagonal, the f(4) terms from the 2 elements in the next sub-diagonal,and the f(5) terms from the top right-hand corner element.It is now easy to see what the general formula for the freedom must be. If we indexthe sub-diagonals with m, so that the element gij lies in the m th sub-diagonal wherem = j � i (including the cases m = 0 { the main diagonal { and m = n � 1 { the topright-hand corner element), then there are n�m elements in the m th sub-diagonal andeach of them contributes m+ 1 functions of m+ 2 variables. Therefore, the formulan�1Xm=0(n�m)(m+ 1)f(m+ 2)gives the total freedom in the solution for Case I in n dimensions.A crucial part is played in this calculation by the top right-hand corner element g1n.Let us denote it for convenience by �. There are no �rst-order principal derivatives of �,while all second-order derivatives of the form @2�=@xk@vl with k < l are principal. Thepart of the table of a complete set of parametric derivatives for dimension n involving�, with the corresponding multipliers, will be27



Derivative Multipliers� x1, x2, x3, . . . , xn�1, xn, v1@�=@v2 x2, x3, . . . , xn�1, xn, v1, v2@�=@v3 x3, . . . , xn�1, xn, v1, v2, v3... ...@�=@vn�1 xn�1, xn, v1, v2, . . . , vn�1@�=@vn xn, v1, v2, v3, . . . , vn�1, vnA parametric derivative of � which contains a di�erentiation with respect to vn cannotalso contain a di�erentiation with respect to any xk for k < n, because @2�=@xk@vnis principal when k < n. Thus any such derivative can be obtained by di�erentiating@�=@vn with respect to some of the variables xn, v1, v2, v3, . . . , vn�1, vn. This accountsfor the �nal row in the table. Once derivatives of � which contain a di�erentiation withrespect to vn have been dealt with, the situation reduces to that for the top right-handcorner element for dimension n�1, except that the list of multipliers for each parametricderivative must include an additional variable, namely xn. The table has been built upinductively on this pattern from that for g12 when n = 2.There is an heuristic method for �nding the freedom in the solution which can be usedto con�rm the results given above. For any dependent variable, take all of its principalderivatives in the list for the dimension under consideration, and set them equal to zero.The resulting system of partial di�erential equations can be readily solved; the solutioncontains the same number of arbitrary functions of the same variables as the theorypredicts will be associated with that dependent variable according to the method ofcomplete sets of parametric derivatives. This approach is evidently consistent with (andindeed suggested by) the remarks above concerning g12 for n = 3, where it was pointedout that the fact that 12,3 is principal means in e�ect that no parametric derivativeof g12 occurring in a complete set { including g12 itself { can have x3 or v3 among itsmultipliers. If the reader cares to check back (s)he will see that similar considerationsapply to all the arguments given explicitly in the determination of the freedom for n = 2,3 and 4.Let us consider the case of the corner element � = g1n for arbitrary n from this point ofview. There will be no �rst-order principal derivatives of �, and the second-order oneswill be those for dimension n � 1 with in addition @2�=@xk@vn for k = 1; 2; : : : ; n � 1.Consider the partial di�erential equations obtained by setting all these derivatives tozero; and �rst consider the set just explicitly identi�ed:@2�@xk@vn = 0; k = 1; 2; : : : ; n� 1:On solving these equations we obtain@�@vn = F (xn; v1; v2; : : : ; vn);28



and therefore� = F̂ (xn; v1; v2; : : : ; vn) + G(x1; x2; : : : ; xn; v1; v2; : : : ; vn�1);where F , F̂ and G are functions of the indicated variables (and F = @F̂=@vn). This doesnot complete the determination of � of course: the remaining equations appropriate todimension n� 1 still have to be satis�ed. Since each of these involves a derivative withrespect to some xk with k < n, the function F̂ is not a�ected by these conditions; but Ghas in e�ect to satisfy the corresponding equations for the corner element in dimensionn�1 (though of course it depends on one additional variable, namely xn). Thus accordingto this reasoning, in dimension n there will be one more arbitrary function associatedwith � than there is for the corresponding element in dimension n� 1, and each of thearbitrary functions will be a function of one more variable. This con�rms inductivelythe freedom n f(n+ 1) associated with � in dimension n. All the other contributions tothe calculation of the overall freedom can be dealt with in similar ways.We summarize the results of this and the previous section in the following statement.Theorem 2 For a system of second-order equations �xj = f j(t; x; _x), satisfying theproperty � = �I, it is always possible to construct a symmetric multiplier matrix gij,which solves the conditions (9) (or (11{13)). The freedom in choosing arbitrary functionsin the general solution will be given byn�1Xm=0(n�m)(m+ 1)f(m+ 2): (49)However, one should be a little sceptical about the formula for the freedom in thesolution. It predicts, for example, far more arbitrary functions than the result givenby Anderson and Thompson in [1]; their result is just the m = n � 1 term in (49),namely n f(n+ 1) (except that they made a slip of the tongue and said (n+ 1) f(n) intheir conclusion). Seiler [20] has discussed in detail the possible ambiguity in statementsabout arbitrariness in the solution of involutive systems; his concluding remarks suggestthat one should not take any results in that area too seriously. The problem is thatthere are many ways of representing a solution and new arbitrary functions which arisein a step by step integration process can often be absorbed into previously obtainedfunctions of more arguments. Seiler says that the best measure is probably providedby the coe�cients of the Hilbert polynomial, but it would take us too far to enter intosuch a discussion here. What is important in Seiler's work is a theorem which provesthat the only true invariant is the number of free functions of the maximal numberof arguments. Other authors have made this observation as well. In the Spencer-Goldschmidt approach to formally integrable systems, the arbitrariness in the solutionis measured in one way or another from the computation of the Cartan characters and itis known that only the last non-zero Cartan character (when the system is representedin `�-regular' coordinates) has an intrinsic meaning. From this point of view, therefore,29



the discrepancy between the formula for the freedom in the solution in [1] and the oneobtained above (and previously by Douglas for n = 2) need not be a cause for concern.Rather than going into more theoretical considerations, we will provide now a simpli�edmodel which exhibits a lot of the features of the complex set of passivity conditions ofCase I (at least for n = 2), but is simple enough to let us understand exactly what ishappening.Consider the following problem with two unknowns �i and four independent variables:@�1@x2 = @�2@x1@�1@x4 = @�2@x3 :Equating @2�1=@x2@x4 and @2�1=@x4@x2, as computed from the above equations, oneobtains the following relation between parametric derivatives:@2�2@x1@x4 = @2�2@x2@x3 :So this is a second-order passivity condition in the Riquier approach. Promoting the left-hand side to principal derivative, no further conditions can be obtained and we reachthe conclusion that the system is formally integrable. A complete set of parametricderivatives and multipliers is given in the following table:Derivative Multipliers�1 x1, x3�2 x1, x2, x3@�2=@x4 x2, x3, x4According to the Riquier method, therefore, the freedom is f(2) + 2 f(3). The �rstpoint we can illustrate explicitly here is that 2 f(3) is the unambiguous part of thismeasurement of the freedom and that the f(2), although we can see where it comes from,is somehow redundant. If we solve �rst the second-order equation involving �2 only, thefreedom in its solution clearly is 2 f(3). Substituting this solution into the originalequations and integrating for �1 creates the additional freedom f(2). But it is not hardto verify explicitly here that this arbitrary function of two variables can be absorbed intothe two functions of three variables which are left free in �2. Alternatively, one couldproceed to solve the problem as follows. The �rst equation shows that �i = @�=@xi,i = 1; 2, for some function � of all four independent variables; the necessary and su�cientcondition for the second equation to be satis�ed also is that@2�@x1@x4 = @2�@x2@x3 :30



By the same reasoning the freedom in � is just 2 f(3) and is now clearly the only freedomin the system.The second point of interest about this example is that we can illustrate that the second-order passivity condition for �2, which plays an essential role in the Riquier approachand manifestly provides information which is not explicitly contained in the given �rst-order equations, from yet another point of view is itself redundant. If we apply thecoordinate transformation y1 = x1 + x4, y2 = x2, y3 = x3, y4 = x1 � x4 to the originalequations, they become @�1@y1 = @�1@y4 + @�2@y3@�2@y1 = @�1@y2 � @�2@y4 :The transformed system is of Cauchy-Kowalevski type, so there is no need to search forintegrability conditions (and it is clear again that the solution will depend on 2 f(3)).It is perhaps not entirely convincing to extrapolate the conclusions of this simple modelproblem to the complicated reality of the inverse problem in Case I. If the extrapolationwere allowable we would conclude that only the functions depending on the largestnumber of variables, that is, the term corresponding to m = n� 1 in (49), which is thecontribution of the top right-hand corner element, would represent the true freedom inthe solution. The other functions of fewer variables might indeed turn up if one wereable to solve the equations explicitly by the methods of Riquier theory; but even so itis quite plausible that they would not be functionally independent of the functions withthe maximal number of independent variables.It is worth saying, �nally, that the overcounting which we have observed here, is not justa feature of Riquier-Janet theory versus more modern approaches. In Appendix C, webrie
y discuss the matter of computing Cartan characters and provide another simplemodel example where di�erent forms of measuring the freedom lead to di�erent answersand where this time the Riquier method provides the more economical result.6 Concluding remarksUsing the geometrical version (11{13) of the Helmholtz conditions and the calculus ofcovariant derivations which can be associated in a natural way to a given system ofsecond-order di�erential equations, we have obtained all general passivity and integra-bility conditions which the Riquier theory can produce in the inverse problem of thecalculus of variations. This is the maximal result one may hope to attain at this level ofgenerality, i.e. without entering a case by case study based for example on the Jordan31



normal form of the matrix � (cf. [6, 5]). Further analysis is required when the second-order passivity conditions (39) degenerate into �rst- or zeroth-order conditions and thusbecome true integrability conditions. Our results remain useful for such cases as theconditions (39) are in any case the source of potentially new integrability requirementsand a further investigation can then be taken up from this point.We have applied our general theory to the solution of the inverse problem in Case Iof Douglas for arbitrary dimension; this is the case where the nature (48) of � is suchthat the algebraic conditions have no e�ect on the generalized metric g we are lookingfor, so that no degeneracy can occur. We have shown that Case I is variational andhave estimated the degree of arbitrariness in the solution which follows from the Riquiermethod. We �nally have discussed to some extent the origin of con
icting statementsin the literature concerning such estimates and have illustrated our remarks by somesimple model problems.In a forthcoming paper, we will work out an application on a case where there is degen-eracy in the second-order passivity conditions, namely the generalization to n degreesof freedom of what Douglas identi�ed as the separability Case IIa1.Acknowledgements We are indebted to Geo� Prince and Gerard Thompson for many stim-ulating discussions. This research was partially supported by NATO Collaborative ResearchGrant No. CRG 940195. W.S. thanks the Fund for Scienti�c Research { Flanders (Belgium) forcontinuing support. W.S. and M.C. in particular thank La Trobe University, where part of thisresearch was conducted, for its hospitality and �nancial support. We thank one of the refereesfor a number of useful comments.A The hierarchy of algebraic conditionsThe purpose of this appendix is to prove the proposition formulated at the end ofSection 2. With this in mind, we �rst prove two lemmas whose function is to show thatall further integrability conditions which might arise from acting with DH on membersof the lists (17) and (21) belong to the list (21). The inspiration comes directly fromthe commutator property (29).The basic assumption for the lemmas below is that g satis�es the di�erential conditions(11), (12), (16), and the algebraic conditions (13), (20) (i.e. the k = 0 elements of bothlists). The summation symbolP, when it appears without limits, indicates that a cyclicsum is to be taken.Each of the lemmas involves an instance of the following general construction. If P is avector-valued k-form along �01, we de�ne the type (1; k+ 1) tensor �eld P�;R byP�;R = �� DV P + �	P: (50)32



Lemma A1 Let P be a vector-valued 1-form along �01, satisfyingg(P (X); Y ) = g(P (Y ); X);then Xhg(P�;R(X; Y ); Z)� g(P�;R(Y;X); Z)i= 0: (51)Proof We have (from (31) in combination with (27), (28) and (30))P�;R(X; Y ) = �DVP (�(X); Y ) + DV�(P (Y ); X)+ R(X;P (Y ))� P (DV�(Y;X)+ R(X; Y )):The �rst term, using the DV -prolongation of the assumption on P (a relation of theform (18)), gives rise to�Xhg(DVP (�(X); Y ); Z)� g(DVP (�(X); Z); Y )i=XhDV g(�(X); P (Y ); Z)�DV g(�(Z); P (Y ); X)i;where on both sides we have used the freedom coming from the cyclic sum to rearrangearguments in the second term. Similar manipulations on the expressions generated bythe second term of P�;R(X; Y ) give rise to exactly the same terms, with a minus sign.The third term, again using the cyclic sum freedom, generatesXhg(R(Y; P (Z));X)� g(R(X;P (Z)); Y )i = �X g(R(X; Y ); P (Z)):Here we have used (20) in the last transition. Finally, for the last combination of termsin P�;R(X; Y ), the DV� terms, due to the skew-symmetrization and (19), give rise tothree curvature terms which precisely compensate the two other curvature terms in thesame combination and the one generated above. The result follows. 2Lemma A2 Let P be a vector-valued 2-form along �01, satisfyingX g(P (X; Y ); Z) = 0;then 4Xi=1(�1)i�1g �XP�;R(Xj; Xk; Xl); Xi� = 0: (52)It is to be understood here that (i; j; k; l) is a cyclic permutation of (1; 2; 3; 4), andthat for each �xed value of i a cyclic sum is to be taken over the remaining arguments(indicated by the symbol P without subscripts). The above equation is a concise wayof writing an expression such as the one preceding equation (24).33



Proof This time we haveP�;R(Xj ; Xk; Xl) = �DV P (�(Xj); Xk; Xl) + DV�(P (Xk; Xl); Xj) + R(Xj; P (Xk; Xl))� P (DV�(Xk; Xj); Xl)� P (Xk;DV�(Xl; Xj))� P (R(Xj; Xk); Xl)� P (Xk; R(Xj; Xl)):One can easily verify that in a sum of type (52) the Xi argument can be interchangedwith another argument, provided the expression is skew-symmetric in the remainingtwo arguments; the sign has to be changed in this process. Looking at the �rst term ofP�;R(Xj ; Xk; Xl) with this in mind, and using also the DV prolongation of the assump-tion on P (cf. (23)), we obtain:� 4Xi=1(�1)i�1g �XDV P (�(Xj); Xk; Xl); Xi�= + 4Xi=1(�1)i�1X g (DVP (�(Xi); Xj; Xk); Xl)= � 4Xi=1(�1)i�1XDV g(�(Xi); P (Xj; Xk); Xl):Likewise, from the second term, using the skew-symmetry of P and the prolongation(18) we can write4Xi=1(�1)i�1g �XDV�(P (Xj ; Xk); Xl); Xi�= � 4Xi=1(�1)i�1X g (DV�(P (Xj; Xk); Xi); Xl)= �12 4Xi=1(�1)i�1Xhg(DV�(P (Xj; Xk); Xi); Xl)� g(DV�(P (Xj ; Xk); Xl); Xi)i= 12 4Xi=1(�1)i�1XhDV g(P (Xj; Xk);�(Xi); Xl)�DV g(P (Xj; Xk);�(Xl); Xi)i= 4Xi=1(�1)i�1XDV g(P (Xj; Xk);�(Xi); Xl):It is obvious that the two expressions so far computed cancel each other.The four P terms in P�;R(Xj; Xk; Xl) lead in a direct way to4Xi=1(�1)i�1g �XP (R(Xj ; Xk); Xl); Xi� :It remains to consider P4i=1(�1)i�1g (PR(Xj; P (Xk; Xl); Xi). The calculation whichfollows shows that, using (20) and the similar assumption on P to bring the R inside34



P , the result cancels the above term. The cyclic sum freedom and the skew-symmetryof both R and P is exploited in various places.4Xi=1(�1)i�1g �XR(Xj ; P (Xk; Xl); Xi�= 12 4Xi=1(�1)i�1Xhg(R(Xj; P (Xk; Xl)); Xi) + g(R(P (Xk; Xl); Xi); Xj)i= �12 4Xi=1(�1)i�1X g(R(Xi; Xj); P (Xk; Xl))= 12 4Xi=1(�1)i�1Xhg(Xk; P (Xl; R(Xi; Xj))) + g(Xk; P (R(Xi; Xl); Xj))i= �12 4Xi=1(�1)i�1Xhg(Xi; P (Xl; R(Xk; Xj))) + g(Xi; P (R(Xk; Xl); Xj))i= � 4Xi=1(�1)i�1g �Xi;XP (R(Xj ; Xk); Xl)� :The �nal step which makes Xi the �rst argument of g relies on the skew-symmetry inXl, Xj of the whole expression between square brackets. 2Proof of Proposition 1If we assume that g satis�es the di�erential conditions of Section 2 and the algebraicrequirements (17),(21) up to order l, then obviously, compatibility with rg = 0 alreadygenerates the next algebraic conditions of order l + 1. Compatibility with the DV andDH condition, following the procedure carried out in Section 2 for the �rst step, will at�rst create conditions of the following form (where D stands for either DV or DH):Xhg(Drl�(X; Y ); Z)� g(Drl�(Y;X); Z)i = 04Xi=1(�1)i�1g �XDrlR(Xj ; Xk; Xl); Xi� = 0:For l = 0 we have seen in Section 2 that D = DV creates the R condition which isalready assumed in the present context, whereas D = DH creates the rR condition,which has been obtained at this level from the compatibility with rg = 0. For l > 0 wecan commute D with one r operator. In the case of D = DH, the result is, using alsothe fact that rg = 0, an expression which is simply the r prolongation of the conditionobtained at the previous stage, plus an expression which is of the form of the left-handsides of (51) or (52) respectively, with respectively P = rl�1�, and P = rl�1R. Theabove lemmas just prove that these terms are zero as a result of the assumptions on P .In the case of D = DV , the situation is even simpler as we are led back essentially to the35



DH analysis of the preceding case in view of the commutator (15). The result followsby induction. 2B Alternants with the second-order conditionsWith the A-operator in the form (40), applying r to the second-order conditions, usingconsecutively the commutators (15) and (29) and the identity (35) for the resultingdouble DH derivatives, we obtain(DV (� DV )g) (X; Y; U;Z)� (DV (� DV )g) (Y;X; U; Z) =(DV i	g)(Y;X; U;Z)� (DV i	g)(X; Y;U;Z) + DV g (R(X; Y ); U; Z)� iRie(X;Y )g (U; Z) + g (X;r�(U; Z)Y )� g (r�(U; Z)X; Y ):Let us sketch how the various parts of this equation can be manipulated further. Theterms in the left-hand side can be brought to the formDVDV g (X;�Y; U; Z)�DVDV g (Y;�X;U; Z)+ 3DV g (R(X; Y ); U; Z):The terms involving 	 on the right can be reduced in the �rst place toiX DVY 	g � iY DVX	g + iX 	DVY g � iY 	DVXg;acting as a covariant 2-tensor on U and Z. The �rst two (algebraic) terms in the latterexpression can be shown to equal 2 iRie(X;Y )g (U; Z). Thus an intermediate result for thecomplete equation readsDVDV g (X;�(Y ); U; Z)�DVDV g (Y;�(X); U;Z) =�2DV g (R(X; Y ); U; Z) + iRie(X;Y )g (U; Z) + iX 	DVY g (U; Z)� iY 	DVXg (U; Z) + g (X;r�(U; Z)Y )� g (r�(U; Z)X; Y ):The two remaining terms involving 	, using the de�ning relation (30), represent a sumof eight terms in DV g. For the term involving the Rie tensor, we use the propertyRie(X; Y )Z = �13DVDV�(Z;X; Y ) + 13DVDV�(Z; Y;X) (53)which follows from (38) and (19). The second derivative terms in the left-hand side arereplaced by using a second DV prolongation of the algebraic condition (13); it readsDVDV g (U; Z;�(X); Y )� DVDV g (U; Z;�(Y ); X) =DV g (Z;DV�(U; Y ); X) + DV g (U;DV�(Z; Y ); X)�DV g (Z;DV�(U;X); Y )�DV g (U;DV�(Z;X); Y ) + g (DVDV�(U; Z; Y ); X)� g (DVDV�(U; Z;X); Y ):36



When putting this all together one has to keep it in mind that in expressions involvingDV g one can write the three arguments in any desired order. Moreover, in view ofthe fact that there is no \vertical curvature", expressed by (34), the four arguments inDVDV g may also be written in any preferred order. One �nds in this way that a numberof terms will cancel out as a result of the DV prolongation (23) of the algebraic condition(20). The remaining terms are all algebraic in g and have either DVDV� or r� in one oftheir arguments. When we appeal to the Bianchi identity (45) these terms also �nallycancel out.Next, considering a DV prolongation of the second-order conditions, we get relations ofthe formDVDVDHg (W;X; Y;U;Z) = DVDVDHg (W;Y;X; U;Z)+ DV g (W; �(U; Z)Y;X)� DV g (W; �(U; Z)X; Y ) + g (DV �(W;U; Z)Y;X)� g (DV �(W;U; Z)X; Y ):For potential compatibility problems, this should be compared to the following DVDHprolongation of (12):DVDHDV g (X; Y;W; U;Z) = DVDHDV g (X; Y; Z; U;W ):Indeed, one can use a DV prolongation of the identity (36) applied to g to replace thesethird-order derivatives by derivatives of the form DVDVDHg also, with an interchange ofthe second and third argument. The leading term on the left, in view of (34) again, be-comes identical to the left-hand side of the �rst equation, and the compatibility consistsof matching all the other terms. What we get, making use of (34) and the symmetry ofDV � (the Bianchi identity (46)), is the intermediate conditionDVDVDHg (Y;W;X; U;Z)�DVDVDHg (Z;X; Y;U;W ) =DV g (Y; �(U; Z)X;W )� DV g (Z; �(W;Y )U;X) + g (DV �(Y; U; Z)X;W )� g (DV �(Y; U; Z)W;X)+ g (DV �(Z; U;W )X; Y )� g (DV �(X;W; Y )U; Z):Recalling that all such calculations can be freely changed modulo prolongations, wemake three further substitutions for the highest order derivatives. The �rst one is takenfrom the DVY prolongation of (A(W;X)g)(U; Z) = 0. The second one comes from theDVZ prolongation of (A(X; Y )g) (U;W ) = 0. In the resulting expression we swap the�rst two arguments in the leading term by appealing to (34) again, and then make athird and �nal substitution from the DVY prolongation of (A(Z;X)g)(U;W ) = 0. Inthe course of these calculations, one repeatedly simpli�es the expression by using thesymmetry properties of � and DV �. The result �nally readsDVDVDHg (Y;X;W;U;Z) = DVDVDHg (Y;X; Z; U;W );and this is nothing but a second-order prolongation of the equation DHg (W;U; Z) =DHg (Z; U;W ). Hence, no integrability or passivity conditions are obtained.37



We trust that a reader who has had the courage to get to this point will be able tosee how to do the similar calculation for DH. Very brie
y, it is best to start from theexpression (41) of the A operator (i.e. the second-order conditions in the form (39)); themanipulations on the leading terms are of the same form as above with repeated useof the identity (35) to swap arguments; that all algebraic terms cancel out in the endthis time follows from the Bianchi identity (47), and the second DV prolongation of thecurvature condition (20).C Elements of the theory of formally integrable systemsOur purpose in this appendix is to illustrate with a few simple examples how the comp-tutation of Cartan characters works and how this possibly relates to the counting pro-cedure for the arbitrariness in the solutions, discussed in Section 5. We will show, inparticular, that our counting procedure for the solution of the second-order equations ong1n �ts the process of checking involutivity of the symbol and relates to the last non-zerocharacter. The reader may consult e.g. [2, 15], or the last chapter in [14] for an accountof the Cartan-K�ahler theory for partial di�erential equations. A concise introductionmay be found also in [21].Let us start with an equation for which we know the general solution, for example, thewave equation �22 � �11 = 0;a second-order equation for 1 unknown � in N = 2 independent variables x1, x2, wherethe subscripts indicate partial di�erentiations with respect to the corresponding vari-ables. This equation de�nes a symbol G2 of dimension 2: there is one linear relationamong the three second-order derivative coordinates �11, �12, �22 on the appropriatejet space. According to [15], we should divide these coordinates, or `components', intoseparate classes in the following way: �11, �12 are the components of class 1, and �22the component of class 2. If (G2)i is the space formed from the elements of G2 withzero components of class 1; : : : ; i, with (G2)0 = G2 and (G2)N = 0, then the Cartancharacters �i could be de�ned by�i = dim(G2)i�1 � dim(G2)i:Alternatively, one can try to write as many equations as possible with class i coordinatesas principal derivatives, starting with class N . The number of such equations in classi is denoted by �i. There is a direct relation between �i and �i, which for a system ofsecond-order equations in 1 unknown and N independent variables is�i = (N � i+ 1)� �i;38



and the sequences �i and �i are also related by the general propertyNXk=1 k�k =  N + 23 !� NXk=1 k�k :The symbol is involutive ifP k�k is equal to the number of independent equations in theprolongation of the de�ning relations (equivalently,P k�k is the dimension of the symbolde�ned by the prolonged equations). One of the di�culties is that the computation ofthe numbers �i and �i is very much coordinate dependent, and the test of involutivitycan only be positive with respect to so-called �-regular (or quasi-regular) coordinates.Such coordinates correspond to a maximization of the sequence �i, starting as beforewith �N . An algorithmic way of constructing �-regular coordinates is concisely describedin the introduction of [21].For the simple wave equation above, it is clear that �2 = 1, �1 = 0 and these arethe maximal numbers one can obtain. Also, �1 = 2, �2 = 0. We have Pk�k = 2,and this is indeed the number of equations one obtains by prolonging the original one.As expected, we have involutivity, and since no integrability conditions will arise fromthe prolongation the equation is formally integrable. The Cartan-K�ahler theorem thenincludes a statement about the number of arbitrary functions in the general solutionand the number of variables they depend on, and these numbers are computed fromthe Cartan characters �i. But there are di�erent versions of this result in the literaturewhich contradict each other (see [20]). For the present example, nothing can go wrongbecause there is only one non-zero �, and so the statement will be that the solutiondepends on two functions (the value of �1) of one variable (the superscript of �1), whichis in agreement with our knowledge about the general solution of the wave equation. Itis clear that the method explained in Section 5 gives the same answer.Now, let us confuse the issue by considering again the wave equation, but in the form�44 � �11 = 0;where N = 4 this time, but the variables x2, x3 do not appear in the given equationsexplicitly. Computing the numbers �i and �i as before, one �nds that �4 = 1, �3 =�2 = �1 = 0, and �1 = 4, �2 = 3, �3 = 2 and �4 = 0. We have: P k�k = 4, whichis indeed the number of (independent) equations in the prolongation, so the symbol isinvolutive. Pommaret's version of the Cartan-K�ahler theorem (see [15], p.160) wouldnow state that the freedom in the solution will be 4 f(1)+3 f(2)+2 f(3). Clearly this isnot the most economical measure, because we know the general solution: it is the sameas before, but depending parametrically on the extra variables x2, x3, so the optimalanswer should be 2 f(3). This is again an illustration of the fact that really only the lastnon-zero character (in this case �3) has an intrinsic meaning and should be taken intoaccount in describing the arbitrariness in the solution (cf. [14]). It is rather odd thatwhile [2] does mention this at some stage, it also contains a statement (on p.87) which39



seems to indicate that all non-zero Cartan characters contribute to the arbitrariness inthe solution.The counting procedure of Section 5 indicates that the solution to this problem willdepend on 2 f(3), the correct answer. In fact the equation �44 � �11 = 0 is equivalent,so far as this analysis goes, to the second-order equation for g12 for n = 2 discussed inSection 5: the two equations can be converted one into the other by a linear change ofcoordinates, modulo terms of degree less than 2.To conclude this discussion we shall examine the general structure of the second-orderconditions for � = g1n of Sections 4 and 5, for arbitrary n. The �rst point to be made isthat the test of involutivity of the symbol, as it is described in [15], p.92, can be carriedout at a �xed generic point of J1�. It is easy to see that, given any point p 2 J1�,there is a coordinate transformation of jet coordinates which makes �ij zero at p: this isa consequence of the fact that �ij transforms a�nely under a change of jet coordinates.So without loss of generality we may assume in our calculations that �ij = 0. Forconvenience let us relabel the coordinates as in Section 4, so that vi 7! xn+i. Then forarbitrary n the whole system can be cast into the following form, modulo terms of lowerdegree: �k;n+l � �l;n+k = 0; (54)with k = 1; : : : ; n � 1, l = 2; : : : ; n and k < l. The number of equations correspondstherefore to the number of independent elements in a skew-symmetric n � n matrix,which is �n2� = 12n(n � 1).When we prolong these equations, we have to write down for a start 2n times that manyequations, but there may be redundancies. As a matter of fact, the following identitieshold amongst the 3-jets of � as a consequence of equations (54):X(�k;n+l;m � �k;n+m;l) = 0X(�k;n+l;n+m � �k;n+m;n+l = 0;the sums being cyclic sums over k, l and m. Since k, l and m must be di�erent, we cantake 1 � k < l < m � n. This gives the complete set of independent identities on the3-jets of �; their number is twice the number of independent elements in an arbitrarycompletely skew 3-tensor in n dimensions, which is 2��n3� = 13n(n�1)(n�2). It followsthat the number of independent equations in the prolongation of the system (54) is2n� 12n(n � 1)� 13n(n� 1)(n� 2) = 23n(n2 � 1): (55)The route to maximizing the numbers �i goes through transforming terms like �k;n+linto �aa � �bb via a change of coordinates of the form ya = xk + vl; yb = xk � vl. Wecan use such transformations to write the 12n(n� 1) equations (54) in such a form that40
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