Integrability aspects of the inverse problem of the
calculus of variations
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ABSTRACT. For a long time, a paper by J. Douglas of 1941 has been the only
contribution to the question of classifying second-order ordinary differential
equations for which a non-singular multiplier matrix exists which turns the
given system into an equivalent system of Euler-Lagrange equations. It was
based on the Riquier-Janet theory of formal integrability of partial differen-
tial equations and limited to systems with two degrees of freedom. Quite
recently, a geometrical calculus of derivations of tensor fields along projec-
tions has been developed, which in the study of second-order differential
equations is primarily related to the existence of a canonically defined linear
connection on a suitable bundle. It turns out that this calculus provides
the right tools for closely monitoring the process of Douglas’s analysis in a
coordinate free way. After a survey of the integrability analysis which can be
carried out this way, we briefly sketch how subcases belonging to each of the
three classes in the main classification scheme of Douglas can be generalised
to an arbitrary number of degrees of freedom.

1 Introduction: the inverse problem for second-
order ordinary differential equations

Considering a given system of differential equations of the form
= fi(t,x, 1), i=1,...,n

whose vector field representation reads
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the inverse problem of the calculus of variations concerns the investigation of the
existence of a non-singular, symmetric matrix (g;;(¢, z, £)), such that
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for some function L(t,x, &).

In analytical terms, the conditions to be satisfied by such g;;, known as the
Helmholtz conditions, are the following (see e.g. [6, 13]):
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The ultimate aim is to characterize the existence of such a multiplier matrix by
conditions involving the given f* only. One may expect this to lead to a sort of
classification problem, based on an integrability analysis of the Helmholtz condi-

tions.
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Remarks: until fairly recently, only Douglas [6] approached this aspect of the
inverse problem, his analysis being limited to the case n = 2. The memoir by
Anderson and Thompson [1] is a first recent contribution to the problem. We will
report here on a new systematic approach, which has been developed in joint work,
mainly with M. Crampin, E. Martinez, G. Prince and G. Thompson [5, 14, 3]. A
completely different method of investigation has been developed simultaneously by
Grifone and Muzsnay [7, 10]. These authors do not take the Helmholtz conditions
as their starting point. Instead, for autonomous systems, they investigate the
existence of function a L(x, &), such that
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A coordinate free version of this second-order partial differential equation for L
and the Spencer-Goldschmidt approach to formally integrable partial differential
equations is the basis for their work.

2 Geometrical version of the Helmholtz condi-
tions

A geometrical version of the inverse problem which can be found in [4] reads as

follows: find a suitable Cartan 2-form for T, i.e. a 2-form w, such that

Lrw=0, dv=0, wX",Y")=0.



w lives on Jm say (coordinates (t,z,v)), with 7 : E — IR, and X",Y"V are
arbitrary vector fields which are vertical with respect to the fibration 79 : Ji7 — E
and can be regarded therefore as vertical lifts of vector fields along 9.

One can readily see that this setting is somehow too large: indeed, with respect
to the coframe adapted to the connection coming with the second-order equation
field T', w is of the form

w=gin' N, 9ij = 9jis
07 = da’ — 7 dt, 0 =dv' — fidt +Ti6".
Hence, although this geometrical description takes place on a space with dimension
2n+1, we truly investigate, as expected, the existence of a symmetric n X n matrix.
A good interpretation of what is happening here is the following (cf. [15]) : w
is the ‘Kihler lift’ of a symmetric, covariant 2-tensor along 7 : Jm — E, namely

Schematically, w is related to g in the following way:

0 |g|O0
w = —g |1 0]0
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Hence, if a calculus can be developed for g directly, it will be more economical:
each formula for g will correspond somehow to two formulas for w. Such a calculus
has been developed, first for autonomous equations in [8, 9], and later for time-
dependent equations in [15, 2]. It leads to the following concise transcription of
the Helmholtz conditions in a coordinate free form:

Vg = 0
DVg(Z,X,Y) DVg (Y, X, Z)
g(2(X),Y) = g(2(Y),X).

Here, @ is to be thought of as a (1,1) tensor along 7, called the Jacobi endomor-
phism, with the matrix <1>§ mentioned before as components:
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To give an idea of the meaning of the symbols which enter this description,
we first make a short digression. Let X' (7) denote the set of vector fields along
79 . J'r — E. There is a natural splitting X (7)) = (T) @ X (7)), where T =
£ +v' 52 is the canonical vector field along 7{. So, each X € X(n¥) is of the

form
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X=XxT+X, X=Xx' XY X e C=(J ).



All vector fields along 79 in what follows belong to X (7?) and we henceforth omit
the bar.

There are three important so-called self-dual, degree zero derivations, denoted
by V, DY%, D%, X here being an arbitrary element of X' (7). To see how they act
on arbitrary tensor fields along 7¥, it suffices to specify their action on functions,
vector fields and 1-forms along 7{. This can be done intrinsically, of course, but
for our present needs, it suffices to know that on C>~(J'7) we have,

VF =T(F), DY\F=X"(F), DLF=X"(F),

on the local basis for X (7?):
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and then by duality,

Vo = T, D6 = —xidr, Do = — [ x+0 )
I 2L A

To give a clue about the structure behind these derivations, observe that vector
fields along 79 are sections of the bundle 79" (7,) over J!7 and that T' determines
a linear connection on 79" (75) — J'm, which roughly has DY, D% and V (the
‘dynamical covariant derivative’) as its independent components (see [2] for de-
tails). Many of the formulas and properties to follow in fact relate to properties of
the curvature of this linear connection, plus its first and second Bianchi identities.

Finally, to give a meaning to the coordinate free Helmholtz conditions presented
above, it suffices to introduce covariant differentials DV and D¥ defined, for any
tensor field T along 79, by

D'T(Z,...)=DYT(...), D"T(Z,...)=DIT(...).

3 Some basic ideas about Riquier-Janet theory

In rudimentary terms, checking ‘integrability’ of systems of partial differential
equations means: looking for potential incompatibilities in the prolongations of
the equations, i.e. differential consequences of the given equations which reveal
new restrictions on the unknown functions. In the Riquier-Janet approach, one can
distinguish two ways in which such supplementary restrictions can arise. Basically,
what one will attempt first is to see whether combinations of prolonged equations
exist in which all highest-order derivatives cancel out. This may give rise to
new equations, of the same order as the original ones, which are not just linear
combinations of these and therefore have to be added on to the given system.



Integrability conditions of this kind will be encountered in any theory of formal
integrability of pde’s.

An example in the present context is readily encountered as follows. We have
the following prolongations of our coordinate free Helmholtz conditions:

D'Vg = 0
VD"g(Z,X,Y) = VDYg(Y,X,Z),
but we know about the identity
[V,DV] = -D".

Hence, a combination of these prolongations imposes that
D"g(Z,X,Y) =D"g(Y, X, Z).

This is an equation which cannot be obtained from combining the original ones.
Obviously, every solution of the original equations will automatically satisfy the
newly derived one. However, in the process of verifying that a solution exists
(at least a formal solution, represented by its formal Taylor expansion), we are
looking at new information here. Accordingly, the equation has to be added on to
the system and the process can start allover again.

The algorithmic procedure by which such integrability conditions have to be
looked for, is not the same in different approaches. In the more modern Spencer-
Goldschmidt theory, for example, one would check first at each level whether
the symbol of the system is ‘involutive’. If then no new integrability condition
emerges from projecting the next prolongation onto the system under investigation
at that stage, the process has come to an end and one can conclude for formal
integrability. In the spirit of the Riquier theory, however, the other aspect which
plays a role in the algorithm is ‘orthonomicity’. Briefly, this requires that one
solves all equations for so-called ‘principal’ derivatives; all derivatives of these are
principal also and all others are said to be ‘parametric’. Orthonomicity means
that one must be able to write all equations with one principal derivative in the
left-hand side and only parametric derivatives on the right. To do this without
internal inconsistencies, one has to set up ordering rules so that all elected principal
derivatives are ‘higher in rank’ than everything in the right-hand side. It would
lead us too far to enter into the details of this mechanism here, but roughly what
it means is that the parametric derivatives will determine in the end how much
freedom there is in selecting arbitarily certain coefficients in the formal Taylor
expansion of the solution. The idea clearly originates from the Cauchy-Kowalevski
theorem.

What is important now is the following. In the Riquier approach, if an ortho-
nomic system is prolonged, something else can happen re compatibility: combina-
tions of prolonged equations may be found which eliminate all principal derivatives
of highest order, leaving us with a relation (of the same order of the prolongation



still) between parametric derivatives. Obviously, such relations contain new in-
formation as well: parametric derivatives, previously thought to be unrestricted,
now are no longer independent so that there may be less freedom in the formal
solution. To distinguish them from the other integrability conditions, we use the
terminology initiated by Riquier and call them ‘passivity conditions’. They also
have to be added on to the system, meaning that one of the parametric deriva-
tives will be promoted to the rank of principal derivative and the process must be
re-initiated again. A fairly comprehensive survey of the Riquier method can be
found in [6]. A computer algebra implementation was described by Reid [11].

Concerning the inverse problem for an arbitrary number of degrees of freedom,
we have computed in [14], in a coordinate free way, all integrability and passivity
conditions which one can obtain without entering the discussion of the ordering
process which accompanies the procedure for writing everything in orthonomic
form. These results are briefly summarised in the next section.

4 The complete set of passivity conditions
From Vg = 0 and the algebraic equation, it follows that we must satisfy the full
hierarchy of algebraic conditions

g (VFO(X),Y) = g(VFO(Y),X), ¥k =>0.

From the DV equation and the DV-prolongation of the original algebraic equation
follows a new algebraic integrability condition, namely (> stands for ‘cyclic sum’):

ZQ(R(X7Y)>Z) =0,

where R is the curvature of the non-linear connection. This is a result of the

property
DV®(X,Y)-D"®(Y,X) =3R(X,Y).

Subsequently, we of course obtain a second hierarchy of algebraic conditions:
> 9(VFR(X,Y),Z)=0,  Vk.

As already indicated, the V and DV equation produce the D equation
D"g(Z,X,Y)=D"g(Y,X,Z).

Going through the same process with D” instead of DV, nothing new comes
from the combination of D¥ and ®, because

D ®(X,Y) - D"®(Y,X) = VR(X,Y),

and we obtain this way a condition which was already accounted for. Also, DV
and R, and D¥ and R give nothing new as a result of the properties

> DYR(X,Y, Z) =0, > D"R(X,Y,Z) =0.



Observe that all extra properties which have so far been exploited are first Bianchi
identities of the curvature of the linear connection. Finally, it can be shown (see
Appendix A of [14]) that combining DV and V¥® or V¥R for k > 1, and also
D" and V¥® or VFR for k > 1 produce no further algebraic requirements. This
exhausts all possible algebraic conditions (generically).

Consider now further prolongations to second-order equations. One easily finds
that the V and D equation reproduce the curvature condition again, as a result of
the property of the commutator [V, D”]. Finally, the process of comparing corre-
sponding prolongations of the DV and D” equations is extremely tedious. Among
other things, one has to make use of the following identities, which essentially
define components of the curvature of the linear connection on 79" () — J'm:
for any covariant tensor field T' along 7, we have

D'D'T(X,Y,Z,..)—D'D'T(Y,X,Z,...) = 0
DYD“T(X,Y,Z,...) -~ D*D'T(Y, X, Z,...) ~igx iy T(Z....),

and finally

DD*T(X,Y,Z,...)— D"D"T(Y, X, Z,...) =
D'T(R(X,Y),Z,...) +ipvrixaT(Z, . ..).

The first of these identities expresses that the linear connection has no ‘vertical
curvature’; the second one can be regarded as the defining relation of the (1,3)
tensor field 8, which in view of the first Bianchi identities is completely symmetric:

0(X,Y)Z =0(Y,X)Z = 0(X, Z)Y.

No passivity conditions can be created from prolonging DY equations among
themselves, precisely because of the zero ‘vertical curvature’. More difficult to
prove is that nothing comes from prolonging D equations among themselves
either. From the DV and D* equations, however, we do obtain potential passivity
or integrability conditions. They can be expressed as follows:

0 =AX,Y)g(U,V)=
D"DYg (Y, X,U,V) =D"D"g (XY, U,V) + g (0(U,V)X,Y) — g (6(U, V)Y, X).

The common arguments U, V in the leading terms indicate that the highest-order
terms will concern the same components of g. But now, whatever ordering pro-
cess one could think of for writing the first-order equations in orthonomic form,
one easily understands that not all g;; can have all their first-order DY and D*
derivatives as principal derivatives. We may be facing here, therefore, second-order
passivity conditions.

On the other hand, in many cases, depending on the structure of g as deter-
mined by the algebraic restrictions, all parametric second-order terms may vanish,
giving rise this way to a situation where the A-conditions will degenerate into



first-order or even algebraic conditions. The further analysis of such situations
can only be dealt with in a case by case investigation.

For the non-degenerate situation, we know that certain second-order conditions
will have to be added to the system and we face the problem of re-initiating the
prolongation and compatibility procedure. One of the main achievements in [14] is
that we have succeeded in pushing the further passivity analysis to the very end.
We have shown in fact that all further potential passivity conditions are identically
satisfied in view of the second Bianchi identities of the linear connection.

In summary, the situation concerning formal integrability of the Helmholtz
conditions, to the extent that it is possible to state general conclusions, is the
following. The original equations, let us refer to them as the V, DV and ® equation,
have to be extended with:

e the double hierarchy of algebraic conditions involving V*® and V¥R,
e the first-order D¥ equation,

e the second-order A conditions.

If the latter are truly passivity conditions of second-order, no further integrability
or passivity conditions can be obtained, and it remains to verify that the complete
set of equations can be written in orthonomic form. If, on the contrary, the A
conditions degenerate into integrability conditions of first or zeroth order, then
a further detailed study is required into the nature of these conditions and the
possible generation of more integrability conditions.

A natural way to make use of these general results is to start by imposing
the restrictions on the multiplier matrix g;; coming from the algebraic conditions
involving the Jacobi endomorphism ®. Obviously, since the module of type (1,1)
tensor fields along 7¥ is finite dimensional, only a certain number of these will
play a role. It should come as no surprise, therefore, that the three main cases
which are distinguished in Douglas’s classification for n = 2, precisely correspond
to the assumptions: ® and the identity tensor I are linearly dependent (case I);
V®, ® and I are linearly dependent (case II); V2®, V®, ® and I are linearly
dependent (case III). Perhaps this pattern cannot be exactly followed for n > 2.
For example, Douglas could not be worried about the algebraic conditions involving
the curvature, as these are void for n = 2. But it seems plausible that any form of
classification will be related to different assumptions on ®, for example with respect
to its Jordan canonical form. For each case, if there is any algebraic freedom left
over in g after imposing the algebraic restrictions, one could, for example, first look
at the A conditions to see whether these need any further attention with regard
to computing more integrability requirements (many of the nested subcases of
case II in Douglas fall into this category), and then verify whether the full set of
differential equations can be written in orthonomic form.

Let us repeat here that the main merit of the results which were reviewed in this
section is that they take us quite a long way already into the integrability analysis,
in a manner which is completely independent of technicalities such as deciding in



each case which derivatives are going to be selected as principal derivatives for
checking orthonomicity. But there is a substantial part of the problem which can
only be dealt with further in a case by case investigation.

5 Application: two variational cases for general n

Assume first that
Sd=pul

for some function p € C>(J1r). This is case I in [6] and we will refer to it as case I
also for arbitrary n. It is easy to verify that all algebraic requirements are trivially
satisfied, so g can still be an arbitrary (non-singular) symmetric matrix up to this
stage. As a result, there is no degeneracy in the second-order passivity conditions
and we know that we are left with the question of orthonomicity. This has been
discussed in great detail in [14]. What was perhaps not sufficiently exploited there
is the fact that also this technical discussion greatly simplifies if one works with a
local frame of vector fields adapted to the geometry coming with the given vector
field T, rather than with the coordinate derivatives, which a strict application of
the original Riquier theory would require. So, we will try to explain this aspect
now.

Replacing coordinate vector fields by the more geometrical frame coming from
the connection defined by I', schematically means the following:

0 o .0 0
a 7 Teatvaatlaa
) o ;0
o M= gaTigy
0 0

ot ~ Vizﬁvi'

Verifying orthonomicity will always require that the first order DV equations, which
in coordinates involve the operators V; only, are orthonomic by themselves. It is
known (see e.g. [12]) that all derivatives of principal derivatives in an orthonomic
system can be substituted in terms of parametric derivatives. Suppose then that
in a standard application of Riquier theory, a term like dg;;/ dz*, or in a second-
order equation a term like 92 gij/ 0z*ov! would be selected as principal derivative
(in a way which is consistent with all the rules which the assignment of ‘cotes’
must satisfy). Then, strictly speaking, an equation of the form H(g;;) = ... ,
or likewise HyVi(gi;) = ... , should be thought of as having only the coordinate
derivatives just mentioned on the left. But we know from the above argument that
the other terms on the left, even if they originally involve principal V;-derivatives
or derivatives thereof, can be replaced after proper substitutions by parametric
derivatives. So, we need not bother about these terms: they will not interfere
with the reasoning which will lead to the conclusion that the full system can be
written in orthonomic form or not. In more technical terms: the ‘cote’ of the



variables ¢ and z* can be thought of as being associated to the operators I' and
Hy, rather than to 9/0t and 9/0xz*. Tt is perhaps interesting to observe here
that this argumentation in fact takes an idea of Douglas one step further. Indeed,
Douglas already used the same argument for replacing /9t by T

We now briefly sketch how one can verify the orthonomicity requirement for
case 1. To fix the idea, we take n = 3 and choose for example the diagonalisewise
ordering of the g;;, ¢ < j. We note first that Vg = 0 will produce a I' (or 9/0t)
equation for each g;;, meaning that all terms in the formal Taylor series solution
involving a t-derivative are determined. We can, therefore, safely disregard the
equation Vg = 0 from the analysis which follows. We further choose an ordering
for the remaining ‘independent variables’ as follows: Hy, Ho, Hs, V1, V2, V5. In
symbolic notations which are fairly self-evident now, an orthonomic representation
of the full system of equations is the following one (for conciseness, an equation
like 11,2 = 12,1 actually represents both the equation V5(g11) = V1(g12) and its
analogue coming from the D# equation).

11,2 =121 12, H,\ Vs = 12, HoVj
11,3 = 13,1 23, HyV3 = 23, H3 Vs
22,1 = 12,2 13, H\Vy = 13, HoV4
22,3 = 23,2 13, H, V3 = 13, H3V;
33,1 = 13,3 13, HyVs = 13, H3Vs
33,2 = 23,3
12,3 = 13,2
23,1 = 13,2

The second-order equations in the second column, which are formally repre-
sented by their leading terms only, come from those A-expressions in which none
of the second-order terms is a derivative of a principal derivative in the first-order
equations.

Such a procedure works for all n, hence case I is variational. The same con-
clusion was obtained before by Anderson and Thompson [1] and recently also by
Grifone and Muzsnay [7].

Remark: counting the freedom in the general solution is a delicate matter
which does not lead to unique answers, because there may be many different ways
of representing the solution (see [16]). Only the number of arbitrary functions of
the maximal number of arguments has an invariant meaning. The freedom we find
from our Riquier approach here is given by the formula:

Y k(n—k+1)f(k+1),

n
k=1

f (@) being shorthand for an arbitrary function of ¢ variables. It contains n f(n+1)
for the prediction of the functions with the highest number of arguments, which
is in agreement with the result in [1].

10



For distinguishing a second case, we start by assuming that [V®, ®] = 0 and
that @ is diagonalisable with distinct (real) eigenvalues A;. Note hereby that for
n=2, [V®, ®] =0 is equivalent to V® = a® + I, which was the assumption of
Douglas in his case II. The former condition is weaker, however, for larger n and
will be sufficient for our purposes.

With respect to a basis X; of eigenvectors of ®, which can be rescaled to be V
invariant, g will be diagonal, say

g=> pit @0

(the ¥¢ are dual to the X;). The original DV conditions then become:

D (ps) = 27y = /) = Tspis 7
and, with 4, j, k different
75 ok + Ty = Thpk + T

The functions T;k are known, in principle; they are defined by:
DY, Xi =Y 7 Xs.
S

A further, tensorial assumption Hg = 0 now has the following effect:
75 =0 for k#iandk# j.
Here, Hg is the type (1,2) tensor field, determined by:
Ho(X,Y) = DY®(&(X),8(Y)) — B(D'D(X, &(Y)))
— ®(DYP(®(X),Y)) + &*(DVP(X,Y)).

The simplification which results is that all above algebraic equations disappear
and that the remaining DV equations decouple:

Dx.(pj) = (27, —m5)p;  i#].
For this reason, Douglas called this the ‘separated case’ for n = 2 (it is his

case Ilal).

Since g is diagonal, all potential second-order passivity conditions degenerate
here. One can prove, however, that fortunately all terms cancel out, so that no
further integrability analysis is required. Orthonomicity then follows easily, and
the freedom in the solution is easily seen to be n functions of 2 variables.

The details of this case can be found in [3], where it is also shown that the
extra assumption Hg = 0 has the following interesting interpretation: there exist

11



coordinates, with respect to which the original n second-order equations decouple
into n separate systems of two first-order equations (not in general n separate
second-order equations).

We conclude with a few words about case III in [6] and what our approach
can tell about this case. As said before, in case III (for n = 2) we have for a
start that V2® = aV® + b® + ¢ and if the system is variational, ® will again
be diagonalisable. The algebraic freedom in g is reduced to a scalar factor; with
respect to a suitable basis of eigenforms of ®, we have

g:u(191®191—0m92®192)

where « is a (known) first integral. Douglas showed that the existence of a solution
for p is reduced to the closedness of a certain 1-form on J'm. Our approach can
make this much more precise. Indeed, the .A-conditions here degenerate into a
single algebraic requirement of the form (...)u = 0. The coefficient of p involves
a, the structure functions Tjik and their derivatives. We conclude that vanishing of
this coefficient is the only obstruction to variationality (and hence to the closedness
of the 1-form considered by Douglas). Explicit calculations would show, by the
way, that Hg = 0 is sufficient again for this to happen. Work is in progress to
describe an n-dimensional analogue of this situation as well.
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