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and using methods developed from, Douglas's classic paper of 1941 [6]. The �rst ofthe series, [5], gave a geometrical interpretation of the key parts of Douglas's paperusing a geometrical formalism developed over a number of years for the study of second-order di�erential equation �elds, Lagrangian dynamical systems and related topics byMart��nez and Sarlet and their co-workers: see [3] and references therein for an accountof the relevant results. The second, [9], contained a complete general analysis of theintegrability conditions, or more properly in the context the passivity conditions, forthe Helmholtz equations for the inverse problem with arbitrarily many { say n { degreesof freedom (recall that Douglas dealt only with the two degree of freedom case). It isthe availability of the same geometrical formalism that makes such a general accountpossible. The results were put to use to show that a particular class of systems withn degrees of freedom, corresponding to Class I of Douglas's classi�cation in the twodegrees of freedom case, is always variational.In the present paper we extend another of Douglas's results from two to n degreesof freedom, namely the variationality of the separated subcase of Case IIa, which isCase IIa1 in Douglas's notation. Whereas other authors have tackled Case I by othermethods [1, 7], to the best of our knowledge the result that Case IIa1 with arbitrarilymany degrees of freedom is variational has not been proved before.The �rst task is to generalize the speci�cation of Case IIa1 so that it applies witharbitrarily many degrees of freedom. We suggested how this by no means obviousgeneralization should be made in [5]; we now give the details, in Section 2 below. Weturn to the question of variationality in Section 3. There are three distinct ways knownto us of proving that Case IIa1 is variational; two of them are explained in detail in thispaper. Let us dispose of the remaining method. The di�erential Helmholtz conditions inthe case in question consist of a system of systems of equations of the form Z�(�) = ���for an unknown function �, where the Z� are (in principle) known vector �elds andthe �� known functions. There is a straightforward theory of the integrability of sucha system of equations, based on Frobenius's theorem, whose main result is that whenthe distribution spanned by the Z� is involutive the system is integrable if and onlyif the functions �� satisfy the integrability conditions Z�(�
) � Z
(��) �P c ��
�� = 0,where [Z�; Z
 ] = P c ��
Z�. That the necessary integrability conditions are satis�ed inthe case in question can be shown, but only by long and laborious calculations. We havetherefore avoided this method in this paper.We have done so for another reason as well. One of the other methods of proof is to usethe Riquier theory of partial di�erential equations to show that the di�erential Helmholtzconditions are solvable. Now the Riquier theory forms the backbone of Douglas's paper;and our treatment of integrability and passivity conditions in the previous paper of thisseries, [9], is designed to be used in conjunction with the Riquier theory. By drawing onthe results given in [9], therefore, we are able to give a proof of variationality which isnot only relatively painless but also �ts in with the line of attack of the previous papers.2



The other proof arises as a by-product of an investigation into just what it means tosay, as Douglas does, that systems of the kind that fall under Case IIa1 are separated.Douglas uses the term to mean that the di�erential Helmholtz conditions separate in acertain way; however, the example that he gives to illustrate his results can be separatedin a stronger sense: it consists of a system of second-order equations in two unknownswhich is simply the concatenation of two independent second-order equations each inone unknown. We show, in Section 4, that any system of second-order equations inCase IIa1 with n degrees of freedom can be separated into n separate systems of two �rst-order equations. However, in principle separability into independent pairs of �rst-orderequations need not imply separability into single independent second-order equations.The question therefore arises as to whether there are non-trivial systems in Case IIa1,that is, systems which are not separable in the stronger sense. We resolve this questionby presenting an example of a non-trivial Case IIa1 system, in Section 5.In the course of the discussion of separability in Section 4, we introduce special coordi-nates, in terms of which it is easy to construct explicitly a Cartan 2-form for the system.Since the existence of a Cartan 2-form is su�cient for there to be a Lagrangian for thesystem, as is shown in [4], this provides another proof of variationality.Rather than repeat the general background to the methods used in the present paper,we refer the reader to [9] for the requisite information; in fact the present paper isprobably best regarded as a continuation of the previous one. However, it does seemhelpful to explain some of our notation, and also to repeat below the main result of theintegrability and passivity analysis in [9], which will be needed in Section 3.The summation convention is not generally in force in this paper. However, we will haveto write down some expressions involving sums, and in order to minimize our use of thesummation symbol we will adopt the convention that whenever the multiply occurringindex s appears summation is implied { and it is implied for that choice of index only.Indices i and j, and on occasion others from the same part of the alphabet, will rangefrom 1 to n; the index s will sum over the same range.In our approach to the inverse problem a system of second-order ordinary di�erentialequations �xi = f i(t; xj ; _xj) is represented by the vector �eld� = @@t + vs @@xs + f s @@vson the �rst jet bundle J1� of a bundle � : E ! IR.Many of the geometrical objects of interest for our analysis are tensor �elds along theprojection �01 : J1� ! E. To be more precise, we will be concerned with objects whichare sections of tensor product bundles formed from the vector bundle �01�(V �), the pull-back by �01 to J1� of the vertical subbundle of TE with respect to the projection �.3



We will always use the term `tensor �eld along �01 ' in this special sense. In particular,for us the multiplier in the inverse problem is a symmetric type (0; 2) tensor �eld along�01. Vector �elds along �01, in other words sections of �01�(V �), will be denoted by suchsymbols as X , Y and Z.We will also make extensive use of certain di�erential operators on tensor �elds along�01. It was shown in [3] that a second-order di�erential equation �eld � determines alinear connection on �01�(V �), whose covariant di�erentiation operator is denoted by D.Any vector �eld � on J1� determines unique vector �elds X and Y along �01 by meansof its decomposition into vertical and horizontal components: � = XV + Y H + h�; dti�,where XV and Y H + h�; dti� are respectively the vertical and horizontal componentsof � with respect to the horizontal distribution on J1� determined by the second-orderdi�erential equation �eld �. Then the covariant di�erentiation operator D� associatedwith the linear connection on �01�(�E) can be written asD� = DVX + DHY + h�; dtir:The component operators DV , DH and r have important roles to play in our analysis.Since they are built out of a covariant derivative, they extend to operate on tensor �eldsin the usual way. In our formulation the Helmholtz equations for the multiplier g arewrittenrg = 0DVg(Z;X; Y ) = DVg(Y;X; Z)g(�(X); Y ) = g(�(Y ); X);where � is the Jacobi endomorphism, a type (1; 1) tensor �eld along �01 which is essen-tially de�ned by the formula [�; XH] = (rX)H + (�(X))V .The main result of the integrability and passivity analysis in [9] is that the complete setof integrability and/or passivity conditions associated with the Helmholtz conditions is:� the additional �rst-order conditionDHg(Z;X; Y ) = DHg(Y;X; Z);� the two sets of algebraic requirementsg(rr�(X); Y ) = g(rr�(Y ); X) r = 1; 2; 3; : : :4



and X g(rrR(X; Y ); Z) = 0 r = 0; 1; 2; : : : ;where R is a type (1; 2) tensor-�eld along �01, which is a component of the curvatureof the connection D, and is related to � by DV�(X; Y )�DV�(Y;X) = 3R(X; Y );� the second-order conditionsDVDHg(U; Z; Y;X)+ g(�(Y;X)Z;U)= DVDHg(Z; U; Y;X)+ g(Z; �(Y;X)U);where � is a type (1; 3) tensor �eld along �01 (here written as a type (1; 1) tensorvalued twice covariant tensor), which is another part of the curvature of the con-nection D, and which is symmetric in all of its arguments as a consequence of the�rst Bianchi identities.The latter conditions were written in the shorthand form A(U; Z)g(Y;X) = 0 in [9]; wewill use the same notation here, and refer to the conditions as the A conditions.2 Case IIa1We will follow, and adapt, the classi�cation of second-order systems in relation to theinverse problem given by Douglas. For n = 2, this classi�cation can be interpreted asbeing based on the linear dependence or independence of the tensors I , �, r�, . . . .The simplest case is that in which � is a multiple of the identity tensor; this, whichlike Douglas we call Case I, was generalized to arbitrary n in [9]. The next simplest isthe case in which r� is a linear combination of � and the identity; this is Douglas'sCase II. One can easily see, however, that such a linear dependence leads to conditionswhich become more restrictive with increasing n. Note that, for n = 2, a condition liker� = �� + �I is equivalent to the condition that r� and � commute, but the latterbecomes much less restrictive than the former for large n. Since [r�;�] = 0 will be asu�cient condition for the situation we want to describe in this paper for arbitrary n,we will accept this (and not r� = �� + �I) as the de�ning assumption for what wewill call Case II.Within Case II we distinguish those systems for which � has n distinct eigenvalues(which we take to be real); systems with this property comprise Case IIa.Consider such a system. Let fXig be an eigenvector basis for �, with�(Xi) = �iXi (no summation). 5



>From the Helmholtz condition g(�(X); Y ) = g(�(Y ); X) it follows that0 = g(�(Xi); Xj)� g(�(Xj); Xi) = (�i � �j)g(Xi; Xj);whenceg(Xi; Xj) = 0 for i 6= j.That is to say, in order to be a multiplier, g must be diagonal with respect to anyeigenvector basis.>From the condition [r�;�] = 0, it follows that (�� �iI)(r�(Xi)) = 0, which impliesthat r�(Xi) is proportional to Xi. This in turn implies that (���iI)(rXi) is propor-tional to Xi, from which it follows that also rXi / Xi. But Xi is determined only upto a scalar factor, and this freedom may be used to rescale Xi so thatrXi = 0:Let us setg(Xi; Xi) = �i:Then with rXi = 0 in force, the condition rg = 0 is equivalent to�(�i) = 0;that is, the functions �i must be �rst integrals of �.We require that �i 6= 0 for all i = 1; 2; : : : ; n, for the multiplier to be regular.We now introduce `connection coe�cients' �kij for the basis fXig:DVXiXj = � sijXs (summation over s intended).The so-called closure conditions, DVg(X; Y; Z) = DVg(Y;X; Z), when expressed in termsof the basis, lead to conditions which the �i must satisfy, involving the �kij . NowDVg(Xi; Xj; Xk) = XiV(g(Xj; Xk))� g(� sijXs; Xk)� g(Xj; � sikXs)= XiV(�j�jk)� �kij�k � � jik�j ;6



so the closure conditions amount toXiV(�j)�jk � �kij�k � � jik�j = XjV(�i)�ik � �kji�k � � ijk�i:When i, j and k are all di�erent (possible only when n � 3) we obtain purely algebraicconditions�kij�k + � jik�j = �kji�k + � ijk�i:When j = k 6= i we obtain the di�erential conditionsXiV(�j) = (2� jij � � jji)�j � � ijj�i:The inverse problem for Case IIa is to �nd non-vanishing functions �i which are �rstintegrals of � and which satisfy these conditions.Following Douglas, we make a further subdivision of Case IIa, motivated as follows. Ingeneral the di�erential conditions XiV(�j) = (2� jij � � jji)�j� � ijj�i involve both �i and �j ;the separated case for Douglas is that for which the term involving �i is absent. If thiswere the only consideration, however, we would be left with the algebraic conditions forn > 2. We therefore adopt the following de�nition: Case IIa1 is the subcase of CaseIIa in which the algebraic conditions on �i are satis�ed trivially, and the di�erentialequations are separated in Douglas's sense. That is to say, Case IIa1 is that for which�kij = 0 whenever i, j and k are all di�erent, and � ijj = 0 for i 6= j.This may appear to be a somewhat arbitrary requirement; however, it can be conve-niently speci�ed in a covariant way, that is, in a way which shows that it is indeedgeometrically natural. This speci�cation involves a certain di�erential tensor concomi-tant of � which we denote by H�. This object, which is a tensor �eld along �01 of type(1; 2), is de�ned as follows:H�(X; Y ) = DV�(�(X);�(Y ))� �(DV�(X;�(Y )))� �(DV�(�(X); Y ))+ �2(DV�(X; Y )):In Case IIa we can express H� in terms of the eigenvector basis fXig, as follows:H�(Xi; Xj) = �i�jDV�(Xi; Xj)� �j�(DV�(Xi; Xj))� �i�(DV�(Xi; Xj))+ �2(DV�(Xi; Xj))= (�iI � �)(�jI � �)DV�(Xi; Xj):7



But DV�(Xi; Xj) = DVXi (�(Xj))� � �DVXiXj� = XiV(�j)Xj + (�jI � �)DVXiXj ;whenceH�(Xi; Xj) = (�iI � �)(�jI � �)2DVXiXj = (�i � �s)(�j � �s)2� sijXs(where summation is intended over all terms containing an occurrence of the index s).Thus H� = 0 if and only if �kij = 0 unless k = i or k = j. That is to say, Case IIa1,which we also call the separable case, is determined by the conditions� [r�;�] = 0� � has n distinct real eigenvalues� H� = 0.This gives a covariant de�nition of Case IIa1. In practice, however, it is usually moreconvenient to use the formulation in terms of the vanishing of connection coe�cients {simply because calculations are usually most conveniently carried out using an eigen-vector basis.In Case IIa1 the closure conditions reduce toXiV(�j) = (2� jij � � jji)�j i 6= j:3 The variationality of Case IIa1We will show that Case IIa1 is variational in arbitrary dimension. We will continue touse fXig to denote an eigenvector basis of � such that rXi = 0.According to the general theory of [9], as summarized in the Introduction, we can showthat Case IIa1 is variational by �rst identifying those g which satisfy the two sets ofalgebraic conditionsg(rr�(Xi); Xj) = g(rr�(Xj); Xi) r = 0; 1; 2; : : :and X g(rrR(Xi; Xj); Xk) = 0 r = 0; 1; 2; : : : ;8



and second, showing that for such g there is an orthonomic passive system of di�erentialequations containing the di�erential Helmholtz conditionsrg = 0 DVg(Xi; Xj; Xk) = DVg(Xj; Xi; Xk):The algebraic conditions involving � are clearly satis�ed in Case IIa in general by anyg which is diagonal with respect to one, and thus any, eigenvector basis of �. On theother hand, in Case IIa1 R(Xi; Xj) has components in the directions of Xi and Xj only.This follows from the formulaDV�(Xi; Xj) = � iij(�j � �i)Xi +XiV(�j)Xj ;which shows in particular that DV�(Xi; Xj) is a linear combination of Xi and Xj ; giventhat DV�(Xi; Xj) � DV�(Xj; Xi) = 3R(Xi; Xj) it is apparent that R(Xi; Xj) has thesame property. The fact that g is diagonal with respect to the basis fXig then ensuresthat the algebraic conditions which involve the tensor R are satis�ed in Case IIa1. Thusthere are no algebraic conditions to be satis�ed by g in addition to the requirement thatit be diagonal with respect to the basis fXig.We know from our general results that to the di�erential Helmholtz conditions rg = 0and DVg(Xi; Xj ; Xk) = DVg(Xj; Xi; Xk) there must be added the further �rst-orderconditions DHg(Xi; Xj; Xk) = DHg(Xj; Xi; Xk). We know further that if there are anyintegrability or passivity conditions for this augmented set of equations they are to befound amongst the A conditions A(Xi; Xj)g(Xk; Xl) = 0. These conditions requirefurther attention if they give rise to new �rst-order or algebraic conditions. However,in Case IIa1 the A conditions are automatically satis�ed in virtue of the �rst-orderequations and their prolongations, as we will show below. It follows that the �rst-orderequations form a passive set.As we have seen, in Case IIa1 the equations DVg(Xi; Xj; Xk) = DVg(Xj; Xi; Xk) maybe written XjV(�i) = �ji�i, i 6= j, where for convenience we have set 2� iji � � iij = �ji.We will now express the additional equations DHg(Xi; Xj; Xk) = DHg(Xj; Xi; Xk) in asimilar form. First, we show that the connection coe�cients for DH are related in asimple way to those for DV when rXi = 0. Since [r;DV ] = �DH and rXi = 0 we haverDVXiXj = �(� sij)Xs= DVXirXj �DHXiXj = �DHXiXj ;whence, writing _� sij for �(� sij) for convenience,DHXiXj = � _� sijXs: 9



In Case IIa1 we therefore haveDHXiXj = � _� iijXi � _� jijXj i 6= jDHXiXi = � _� iiiXi:It is now easy to see that the additional conditions areXjH(�i) = �(2 _� iji � _� iij)�i = � _�ji�i i 6= j:We have therefore to show that the augmented set of �rst-order equations�(�i) = 0; XjH(�i) = � _�ji�i; XjV(�i) = �ji�i i 6= j;where �ji = 2� iji � � iij , is passive.We will do so by examining the A conditions. However, it is not necessary to con-sider all of them, as we now explain. In computing the passivity conditions of the�rst-order equations we may freely make use of the prolongations of the equations tosubstitute for the second derivatives which occur. Thus in evaluating the A conditionswe need to work only modulo prolongations. If we can show that any particular ex-pressions A(Xi; Xj)g(Xk; Xl) vanish as a consequence of the �rst-order equations andtheir prolongations, so must all those which are equivalent to them modulo prolonga-tions of those equations. Now a lemma proved in the previous paper [9] states thatA(Xi; Xj)g(Xk; Xl) = A(Xi; Xk)g(Xj; Xl) modulo prolongations. We take advantageof this result in the following way. The A operator is skew-symmetric, so that we mayassume i 6= j. For k = l at least one of the indices i or j (since they are di�erent) willnot be k. Using the lemma, therefore, we may shu�e the indices so that those occurringin the �nal two arguments are di�erent. We will show that A(Xi; Xj)g(Xk; Xl) vanishesin virtue of the �rst-order equations whenever k 6= l; it then follows from the precedingremarks that A(Xi; Xj)g(Xk; Xl) vanishes in virtue of the �rst-order equations and theirprolongations without any such restriction.The result is obtained by a direct computation. The equation A(Xi; Xj)g(Xk; Xl) = 0when written out explicitly takes the formDVDHg(Xi; Xj; Xk; Xl) + g(�(Xk; Xl)Xi; Xj)= DVDHg(Xj; Xi; Xk; Xl) + g(Xi; �(Xk; Xl)Xj):We will express the various terms which occur as expressions in the connection coef-�cients � ijk and _� ijk; the result will follow essentially from the fact that both of these10



coe�cients vanish except when i = j or i = k. Straightforward computations give, fork 6= l,DVDHg(Xi; Xj; Xk; Xl)= _�kjlXiV(�k)� �kilXjH(�k) + (XiV( _�kjl)� � sij _�ksl � �sil _� kjs)�k+ _� ljkXiV(�l)� � likXjH(�l) + (XiV( _� ljk)� � sij _� lsk � � sik _� ljs)�l� (� sik _�sjl + �sil _� sjk)�sand g(�(Xk; Xl)Xi; Xj)= (�XkV( _�jli)�XlH(� jki) + � ski _�jls + � skl _� jsi � � jks _�sli � � jsi _� slk)�j :So far we have used only the fact that g is diagonal with respect to the eigenvectorbasis. It is immediately clear that when in addition H� = 0 both of these expressionsvanish when i, j, k and l are all di�erent, simply as a consequence of the properties thensatis�ed by the connection coe�cients: note that in a term involving summation suchas � sij _�ksl there is no choice of the summation index s for which both of the connectioncoe�cients are non-zero. Thus A(Xi; Xj)g(Xk; Xl) vanishes identically when i, j, k andl are all di�erent.Bearing in mind that A(Xi; Xj)g(Xk; Xl) is skew-symmetric in i and j and symmetricin k and l, and that i 6= j and by assumption k 6= l, it is enough to consider only thecases i = k, j 6= l and i = k, j = l to complete the argument.>From the above formulae, also using now the �rst-order equations to substitute forterms of the form XjV(�k) and XjH(�k), we �nd that when j 6= lDVDHg(Xk; Xj ; Xk; Xl) = �(� kkj _�kkl + �kkl _� kkj)�kg(�(Xk; Xl)Xk; Xj) = 0DVDHg(Xj; Xk; Xk; Xl) = (XjV( _�kkl)� � kkj _�kkl � � jjl _� kkj � � ljl _�kkl)�kg(Xk; �(Xk; Xl)Xj) = g(Xk; �(Xj; Xk)Xl)= (�XjV( _�kkl) + � jjl _� kkj + � ljl _�kkl � �kkl _� kkj)�k;where in the �nal expression we have taken advantage of the fact that � is symmetric inall of its arguments. By inspection of these formulae it follows thatA(Xk; Xj)g(Xk; Xl) =0 when j 6= l, on account of the �rst-order equations.11



For the remaining case we �nd thatDVDHg(Xk; Xl; Xk; Xl) = �2�kkl _�kkl�k + (XkV( _� llk)� � llk _� llk � � kkk _� llk)�lg(�(Xk; Xl)Xk; Xl) = (�XkV( _� llk) + � kkk _� llk � � llk _� llk)�l;whenceDVDHg(Xk; Xl; Xk; Xl) + g(�(Xk; Xl)Xk; Xl) = �2�kkl _�kkl�k � 2� llk _� llk�l:Since this expression is invariant under the interchange of k and l we haveDVDHg(Xk; Xl; Xk; Xl) + g(�(Xk; Xl)Xk; Xl)= DVDHg(Xl; Xk; Xl; Xk) + g(�(Xl; Xk)Xl; Xk)= DVDHg(Xl; Xk; Xk; Xl) + g(Xk; �(Xk; Xl)Xl);where the symmetry of � has been used again to obtain the last expression. But thissays that A(Xk; Xl)g(Xk; Xl) = 0.The �rst-order equations are therefore passive. It remains to show that they can be putin orthonomic form.For this purpose, given that the equations are separated, it is enough to consider thoseequations involving just one of the dependent variables, say �n. These involve only theeigenvectors Xa for a = 1; 2; : : : ; n� 1. The full set of eigenvectors fXig, i = 1; 2; : : : ; n,is of course linearly independent, so that if we write Xi = Pj Xji @=@xj the matrix ofcoe�cients (Xji ) is non-singular. The n � (n� 1) sub-matrix (Xja) has rank n� 1, andso by relabelling the coordinates if necessary we can �nd an (n � 1) � (n � 1) matrix(Y ba ) such that Pb Y baXb = @=@xa. The �rst-order equations for �n may be replaced bythe equivalent set�(�n) = 0; � @@xa�H(�n) = �Xb Y ba _�bn�n; � @@xa�V(�n) =Xb Y ba �bn�n:We may write these in the form@�n@t = expression in @�n@xi ; @�n@vi 12



@�n@xa = expression in @�n@vi ; �n@�n@va = expression in �n:When written in this form these equations are orthonomic.It follows that Case IIa1 is variational. The freedom in the solution of the multiplierproblem is clearly n functions of 2 variables.4 Varieties of separabilityLet fXig be a basis of eigenvectors of � which are r-invariant, as before. Let N beany subset of f0; 1; 2; : : : ; ng, and consider on J1� the distribution (vector �eld system)DN spanned by the following vector �elds: XiH and XiV for all i 2 N , i > 0, and � if0 2 N . Then DN is involutive for every N if H� = 0. This result is a consequence of thefollowing formulae for the brackets of the vector �elds XjV , XkH and � when H� = 0:[XjV ; XkV ] = (DVXjXk)V � (DVXkXj)V = (� jjk � � jkj)XjV + (� kjk � � kkj)XkV[XjH ; XkV ] = (DHXjXk)V � (DVXkXj)H = � _� jjkXjV � _� kjkXkV � � kjkXjH � � kkjXkH[XjH ; XjV ] = � _� jjjXjV � � jjjXjH[XjH ; XkH ] = (DHXjXk)H � (DHXkXj)H + R(Xj; Xk)V= �( _� jjk � _� jkj)XjH � ( _� kjk � _� kkj)XkH + RjkjXjV +RjkkXkV[�; XjV ] = (rXj)V �XjH = �XjH[�; XjH ] = (rXj)H +�(Xj)V = �jXjV ;where R(Xj ; Xk) = RjkjXj +RjkkXk (recall that R(Xj ; Xk) is a linear combination ofXj and Xk when H� = 0).In fact this gives us another way of specifying Case IIa1: it is the subcase of Case IIafor which Dfig and Dfi;jg are involutive for all i; j 2 f1; 2; : : : ; ng. In Case IIa in generalwe have[XiH ; XjV ] = (DHXiXj)V � (DVXjXi)H = � _� sijXsV � � sjiXsH13



(where the possibility that i = j is allowed). This vector �eld will belong to DN ,N = fi; jg or N = fig, only if � sji = 0 when s is not i or j, which is equivalent toH� = 0. To summarize: in Case IIa the following conditions are equivalent� H� = 0� Dfig and Dfi;jg are involutive for all i; j 2 f1; 2; : : : ; ng� DN is involutive for all N � f0; 1; 2; : : : ; ng.These properties of the distributions DN will allow us to show, below, that the de-scription of Case IIa1 as the separable case has much wider relevance than just to thedi�erential equations arising from the Helmholtz conditions.One way of stating the Frobenius integrability theorem is as follows. Let D be a distri-bution on a di�erentiable manifold M . We denote by D? the annihilator of D, that is,the C1(M)-module of 1-forms which give zero when paired with any vector �eld in D.Then if, and only if, D is involutive for each point x 2 M there is a neighbourhood Oof x and functionally independent functions u1, u2, . . . , uk de�ned on O, where k is theco-dimension of D, such that D?���O is the span of fdui j i = 1; 2; : : : ; kg.We now apply this version of Frobenius's theorem to Case IIa1. Of the many involutivedistributions at our disposal we choose to apply it to the distributions DN for which Nis the subset of f0; 1; 2; : : : ; ng obtained by omitting just one of the non-zero integers1; 2; : : : ; n: when the omitted integer is i we denote the corresponding distribution by Di.Each Di has co-dimension 2. Let ui�, � = 1; 2, i �xed, be independent (local) functionssuch that Di? is (locally) the span of fdui� j � = 1; 2g. Then�(ui�) = 0; XjH(ui�) = XjV(ui�) = 0 for all j 6= i:The independence of the two functions ui�, for each i, amounts to the claim that thematrix" XiH(ui1) XiH(ui2)XiV(ui1) XiV(ui2) #is non-singular. Denote its determinant by �i.Consider now the 2n+1 locally de�ned functions ft; ui� j i = 1; 2; : : : ; n;� = 1; 2g, wheret is the \time". They are easily shown to be independent, for example by consideringthe (2n+ 1)-form� = dt ^ du11 ^ du12 ^ du11 ^ du12 ^ � � � ^ dun1 ^ dun2 :14



the result of evaluating � on f�; X1H ; X1V ; X2H ; X2V ; : : : ; XnH ; XnV g { a basis of vector�elds on J1� { is easily seen to be�(�; X1H ; X1V ; X2H ; X2V ; : : : ; XnH ; XnV ) = nYi=1�i 6= 0;and so � 6= 0. Here we have made use of the facts that �(t) = 1 while XiH(t) = XiV(t) = 0for i = 1; 2; : : : ; n.One immediate consequence is that we can write down a Cartan 2-form for � in termsof the ui�. Let
 = du11 ^ du12 + du21 ^ du22 + � � �+ dun1 ^ dun2 :Then d
 = 0, trivially. Since �(ui�) = 0, � 
 = 0, and since XjV(ui�) = 0 for j 6= i,
(XiV ; XjV ) = 0. Finally, dt ^ (^n
) 6= 0 as we have shown above, and so a fortiori^n
 6= 0. These properties characterize the Cartan 2-form(s) of a second-order di�er-ential equation �eld �, as given in [4]. In e�ect, this gives us a second proof of thevariationality of Case IIa1. More generally, for each i = 1; 2; : : : ; n let fi be a nowhere-vanishing function of two variables; then Pni=1 fi(ui�) dui1 ^ dui2 is a Cartan 2-form for�. It is interesting to note that the freedom of choice of Cartan 2-forms constructed inthis way is again n functions of two variables.We can regard (t; ui�) as a local coordinate system on J1�. Since for each i, dui� anni-hilates all vector �elds in DN for each N not containing i, ui� is constant on all integralsubmanifolds of each DN for which N does not contain i. Thus with respect to thesecoordinates the coordinate 2-planes over which the ui� (�xed i) vary are the integralsubmanifolds of Dfig, and the coordinate 3-planes over which t and the ui� vary are theintegral submanifolds of Df0;ig. About any point O in J1� we can �nd a neighbourhoodin which J1� is a �bre product over IR of n 3-dimensional manifolds each �bred over IR,each such manifold being (the appropriate part of) the integral submanifold of Df0;igthrough O, and its standard �bre being (the appropriate part of) the integral submani-fold of Dfig through O. The coordinate system described above is adapted to this localproduct structure. With respect to these coordinates the di�erential equations for theintegral curves of � are just _ui� = 0. Note that, by leaving the given vector �eld � out ofthe discussion of simultaneously integrable distributions above, one will arrive more gen-erally, at a similar local product structure and, with respect to correspondingly adaptedcoordinates, the equations for the integral curves of � will decouple into n separatesystems of two �rst-order equations. To summarize: if for a given second-order system�, � is diagonalizable with distinct (real) eigenvalues, and further satis�es H� = 0 and[r�;�] = 0, then � decouples into n separate systems of two �rst-order equations.15



In general, these n separate systems need not be second-order equations. Indeed, acoordinate transformation which will transform the given system into its decoupledform will, in general, not be a point transformation and therefore will not preserve thesecond-order character of the system.Since we are in a situation where � has only one-dimensional eigenspaces, a characteri-zation of complete separability in the sense of second-order equations is easily expressed,on the basis of results in [10] and [2], as follows. Suppose that � is diagonalizable withdistinct eigenvalues. Then, for � to be completely separable into n decoupled second-order equations, it is necessary and su�cient that CV� = 0 and [r�;�] = 0. Here CV� isthe type (1,2) tensor �eld along �01 de�ned byCV�(X; Y ) = [DVX�;�](Y ) = DV�(X;�(Y ))� �(DV�(X; Y )):The above result is explicitly stated in [10] for autonomous equations and easily followsfrom Theorem 3.11 in [2] in the case of time-dependent systems.For clarity we give a sketch of the proof. It is trivial to verify that any system of ndecoupled second-order equations in one dependent variable, with di�erent �ii, satis�esthe given conditions. To see that the conditions are also su�cient, observe �rst thatCV� = 0 means that the eigendistributions of � are DV -invariant and are thereforespanned by basic vector �elds, more precisely vector �elds on E which are vertical withrespect to the �bration over IR. Since the eigendistributions are also r-invariant in viewof [r�;�] = 0, and [r;DV ] = �DH , one easily deduces that they are also DH-invariant.This can be shown to imply that all the basic eigendistributions are simultaneouslyintegrable. Hence, there exist coordinates on � : E ! IR, with respect to which each ofthe Xi is a multiple of @=@xi. The r-invariance then implies that �ij = 0 for i 6= j andthe coordinate expression of �ij subsequently reveals that also @f i=@xj = 0 for i 6= j.The complete separation follows.To see how this �ts as a special case within the situation of Case IIa1, it su�ces toobserve that the tensor �eld H� can be expressed as followsH�(X; Y ) = CV� (�(X); Y )� � (CV�(X; Y )) ;so that CV� = 0 implies H� = 0, but not the other way around.5 Illustrative exampleIt is very easy to construct examples of systems of second-order di�erential equationssatisfying the requirements of Case IIa1. Indeed, with reference to the discussion in the16



previous section, examples could be manufactured in the following way: take any systemof n separate second-order equations with the property that each equation contributesa distinct component of the overall �; apply an arbitrary, possibly time-dependenttransformation to the base space coordinates, which will make the transformed equationslook hopelessly coupled. But we know that the conditions CV� = 0 and [r�;�] = 0 willbe satis�ed by construction. Thus, we are bound to have an example of a system ofdi�erential equations belonging to Case IIa1.The true challenge, therefore, is to �nd an example which does not decouple in the senseof references [8] and [2]. The following two-dimensional geodesic 
ow was considered in[1] (for convenience, we label the coordinates here with a subscript):�x1 = �2 _x1 _x2�x2 = ( _x2)2:The matrix representation of �, with respect to the coordinate �elds, is given by �2(v2)2 2v1v20 0 !and is seen to have distinct eigenvalues. One easily veri�es that r� and � commute.Eigenvectors of � are given byX1 = @@x1 ; X2 = v1 @@x1 + v2 @@x2 :It is clear that the second eigenspace cannot be spanned by a basic vector �eld, whichis su�cient to conclude that CV� 6= 0. Yet H� will be zero, as can be seen for examplefrom the relationsDVXiX1 = 0; DVX1X2 = X1; DVX2X2 = X2;which show that only � 112 and � 222 are non-zero. As a result, the equations are notseparable by a point transformation, but should have the weaker separability propertyof Case IIa1, as we will show explicitly now.The distributions Df1g and Df2g are spanned respectively byX1H = @@x1 � v2 @@v1 ; X1V = @@v1 ;17



and X2H = � � @@t ; X2V = v1 @@v1 + v2 @@v2 :The given coordinates are already adapted to the distribution Df1g which has x2 andv2 as invariants. Integrals for the distribution Df2g are found to be 3x1 + v1(v2)�1 ande3x2v1(v2)�1. If we introduce the non-point transformation�x1 = x1 + v13v2 ; �x2 = x2;�v1 = e3x2v1v2 ; �v2 = v2then Df1g is spanned by @=@�x1; @=@�v1, whereas the two other coordinate �elds now spanDf2g. Indeed, we haveX2H = �v2 @@�x2 + (�v2)2 @@�v2 ; X2V = �v2 @@�v2 :Since � is actually X2H + @=@t, we see that the transformed di�erential equations areindeed decoupled into two pairs of �rst-order equations:_�x1 = 0; _�v1 = 0; and _�x2 = �v2; _�v2 = (�v2)2:This illustrates that any system of coordinates adapted to both distributions will giverise to this form of decoupling. The analysis of the previous section has shown that onecan in principle even construct such coordinates which at the same time straighten outthe given vector �eld �. In the present example, this would be achieved by choosingexp(��x2) as a new coordinate.AcknowledgementMuch of the work reported in this paper was carried out while MC, WS and GT werevisitors to the School of Mathematics at La Trobe University. They would like to takethe opportunity to express their gratitude to the School for its hospitality. The authorsacknowledge the �nancial support of the Australian Research Committee.18
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