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Abstract

This paper deals with the inverse problem of the calculus of variations for systems
of second-order ordinary differential equations. The case of the problem which Dou-
glas, in his classification of pairs of such equations, called the “separated case” is
generalized to arbitrary dimension. After identifying the conditions which should
specify such a case for n equations in a coordinate-free way, two proofs of its vari-
ationality are presented. The first one follows the line of approach introduced by
some of the authors in previous work, and is close in spirit, though being coordinate
independent, to the Riquier analysis applied by Douglas for n = 2. The second
proof is more direct and leads to the discovery that belonging to the “separated
case” has an intrinsic meaning for the given second-order differential equations: the
system is separable in the sense that it can be decoupled into n pairs of first-order
equations.

1 Introduction

This paper is the third in a series dealing with the inverse problem of the calculus of
variations for systems of second-order ordinary differential equations in the spirit of),



and using methods developed from, Douglas’s classic paper of 1941 [6]. The first of
the series, [5], gave a geometrical interpretation of the key parts of Douglas’s paper
using a geometrical formalism developed over a number of years for the study of second-
order differential equation fields, Lagrangian dynamical systems and related topics by
Martinez and Sarlet and their co-workers: see [3] and references therein for an account
of the relevant results. The second, [9], contained a complete general analysis of the
integrability conditions, or more properly in the context the passivity conditions, for
the Helmholtz equations for the inverse problem with arbitrarily many — say n — degrees
of freedom (recall that Douglas dealt only with the two degree of freedom case). It is
the availability of the same geometrical formalism that makes such a general account
possible. The results were put to use to show that a particular class of systems with
n degrees of freedom, corresponding to Class I of Douglas’s classification in the two
degrees of freedom case, is always variational.

In the present paper we extend another of Douglas’s results from two to n degrees
of freedom, namely the variationality of the separated subcase of Case Ila, which is
Case Ilal in Douglas’s notation. Whereas other authors have tackled Case I by other
methods [1, 7], to the best of our knowledge the result that Case Ilal with arbitrarily
many degrees of freedom is variational has not been proved before.

The first task is to generalize the specification of Case Ilal so that it applies with
arbitrarily many degrees of freedom. We suggested how this by no means obvious
generalization should be made in [5]; we now give the details, in Section 2 below. We
turn to the question of variationality in Section 3. There are three distinct ways known
to us of proving that Case Ilal is variational; two of them are explained in detail in this
paper. Let us dispose of the remaining method. The differential Helmholtz conditions in
the case in question consist of a system of systems of equations of the form 7, (p) = (ap
for an unknown function p, where the Z, are (in principle) known vector fields and
the (, known functions. There is a straightforward theory of the integrability of such
a system of equations, based on Frobenius’s theorem, whose main result is that when
the distribution spanned by the Z, is involutive the system is integrable if and only
if the functions (, satisfy the integrability conditions Z3(¢y) — Z,(¢g) — 25 o =0,
where [Z5, Z,] = Y ¢35 Zo- That the necessary integrability conditions are satisfied in
the case in question can be shown, but only by long and laborious calculations. We have
therefore avoided this method in this paper.

We have done so for another reason as well. One of the other methods of proof is to use
the Riquier theory of partial differential equations to show that the differential Helmholtz
conditions are solvable. Now the Riquier theory forms the backbone of Douglas’s paper;
and our treatment of integrability and passivity conditions in the previous paper of this
series, [9], is designed to be used in conjunction with the Riquier theory. By drawing on
the results given in [9], therefore, we are able to give a proof of variationality which is
not only relatively painless but also fits in with the line of attack of the previous papers.



The other proof arises as a by-product of an investigation into just what it means to
say, as Douglas does, that systems of the kind that fall under Case Ilal are separated.
Douglas uses the term to mean that the differential Helmholtz conditions separate in a
certain way; however, the example that he gives to illustrate his results can be separated
in a stronger sense: it consists of a system of second-order equations in two unknowns
which is simply the concatenation of two independent second-order equations each in
one unknown. We show, in Section 4, that any system of second-order equations in
Case [lal with n degrees of freedom can be separated into n separate systems of two first-
order equations. However, in principle separability into independent pairs of first-order
equations need not imply separability into single independent second-order equations.
The question therefore arises as to whether there are non-trivial systems in Case Ilal,
that is, systems which are not separable in the stronger sense. We resolve this question
by presenting an example of a non-trivial Case Ilal system, in Section 5.

In the course of the discussion of separability in Section 4, we introduce special coordi-
nates, in terms of which it is easy to construct explicitly a Cartan 2-form for the system.
Since the existence of a Cartan 2-form is sufficient for there to be a Lagrangian for the
system, as is shown in [4], this provides another proof of variationality.

Rather than repeat the general background to the methods used in the present paper,
we refer the reader to [9] for the requisite information; in fact the present paper is
probably best regarded as a continuation of the previous one. However, it does seem
helpful to explain some of our notation, and also to repeat below the main result of the
integrability and passivity analysis in [9], which will be needed in Section 3.

The summation convention is not generally in force in this paper. However, we will have
to write down some expressions involving sums, and in order to minimize our use of the
summation symbol we will adopt the convention that whenever the multiply occurring
index s appears summation is implied — and it is implied for that choice of index only.
Indices ¢ and j, and on occasion others from the same part of the alphabet, will range
from 1 to n; the index s will sum over the same range.

In our approach to the inverse problem a system of second-order ordinary differential
equations ' = f'(t, 27, 47) is represented by the vector field

s 0 s 0
F_%—HJ 8x5+f Jdvs

on the first jet bundle J'x of a bundle 7 : £ — RR.

Many of the geometrical objects of interest for our analysis are tensor fields along the
projection 7} : J'x — E. To be more precise, we will be concerned with objects which
are sections of tensor product bundles formed from the vector bundle 79" (V'7), the pull-
back by 7¥ to Jlr of the vertical subbundle of TE with respect to the projection 7.



We will always use the term ‘tensor field along 79" in this special sense. In particular,
for us the multiplier in the inverse problem is a symmetric type (0,2) tensor field along
9. Vector fields along 7?, in other words sections of 70" (V' ), will be denoted by such
symbols as X, Y and Z.

We will also make extensive use of certain differential operators on tensor fields along
7%, It was shown in [3] that a second-order differential equation field I' determines a
linear connection on #{*(V ), whose covariant differentiation operator is denoted by D.
Any vector field ¢ on J!7 determines unique vector fields X and Y along 7} by means
of its decomposition into vertical and horizontal components: £ = XV 4+ Y 4 (£, dt)T",
where XV and Y 4 (£, dt)I" are respectively the vertical and horizontal components
of ¢ with respect to the horizontal distribution on J!'7 determined by the second-order
differential equation field I'. Then the covariant differentiation operator D¢ associated

. . . * .
with the linear connection on 7{" (7g) can be written as

De = DY + Dy + (£, dt) V.

The component operators DV, D¥ and V have important roles to play in our analysis.
Since they are built out of a covariant derivative, they extend to operate on tensor fields
in the usual way. In our formulation the Helmholtz equations for the multiplier ¢ are
written

Vg=10
DY (Z,X,Y)=D"(Y, X, Z)
g(®(X),Y) =g(2(Y), X),

where ® is the Jacobi endomorphism, a type (1, 1) tensor field along 72 which is essen-

tially defined by the formula [[', X*] = (VX)" + (®(X))".

The main result of the integrability and passivity analysis in [9] is that the complete set
of integrability and/or passivity conditions associated with the Helmholtz conditions is:

e the additional first-order condition
D"(Z,X,Y) =D"(Y, X, Z);
e the two sets of algebraic requirements

g(V'O(X),Y)=g(V'®(Y),X) r=123,...



and
Y g(VR(X,Y),Z)=0 r=0,1,2,...,

where R is a type (1, 2) tensor-field along 7?, which is a component of the curvature
of the connection D, and is related to ® by DV®(X,Y) -D"®(Y, X) =3R(X,Y);

e the second-order conditions

DDA (U, Z,Y, X )+ g(6(Y, X) Z,U)
= DYDH(Z, U, Y, X) + g(Z,0(Y, X)U),

where 6 is a type (1,3) tensor field along 7{ (here written as a type (1,1) tensor
valued twice covariant tensor), which is another part of the curvature of the con-
nection D, and which is symmetric in all of its arguments as a consequence of the
first Bianchi identities.

The latter conditions were written in the shorthand form A(U, Z)g(Y, X)= 0 in [9]; we
will use the same notation here, and refer to the conditions as the A conditions.

2 Case IIal

We will follow, and adapt, the classification of second-order systems in relation to the
inverse problem given by Douglas. For n = 2, this classification can be interpreted as
being based on the linear dependence or independence of the tensors I, ®, V&, ....
The simplest case is that in which ® is a multiple of the identity tensor; this, which
like Douglas we call Case I, was generalized to arbitrary n in [9]. The next simplest is
the case in which V& is a linear combination of ® and the identity; this is Douglas’s
Case I1. One can easily see, however, that such a linear dependence leads to conditions
which become more restrictive with increasing n. Note that, for n = 2, a condition like
V& = a® + I is equivalent to the condition that V& and ® commute, but the latter
becomes much less restrictive than the former for large n. Since [V®, ®] = 0 will be a
sufficient condition for the situation we want to describe in this paper for arbitrary n,
we will accept this (and not V& = a® + 31) as the defining assumption for what we
will call Case II.

Within Case Il we distinguish those systems for which & has n distinct eigenvalues
(which we take to be real); systems with this property comprise Case la.

Consider such a system. Let {X;} be an eigenvector basis for ®, with

¢(X;) =N X, (no summation).



JFrom the Helmholtz condition ¢(®(X),Y) = g(®(Y), X) it follows that
0= g(®(Xi), Xj) = g(P(X;), Xi) = (A = A;)g(Xi, X)),

whence
9(Xi, X;) =0 fori#j.

That is to say, in order to be a multiplier, ¢ must be diagonal with respect to any
eigenvector basis.

JFrom the condition [V®, ®] = 0, it follows that (& — A1) (V®(X;)) = 0, which implies
that V@(X;) is proportional to X;. This in turn implies that (® — A\;J)(VX;) is propor-
tional to X;, from which it follows that also V.X; o« X;. But X; is determined only up
to a scalar factor, and this freedom may be used to rescale X; so that

VX;=0.
Let us set
9(X, X5) = pi.

Then with VX; = 0 in force, the condition Vg = 0 is equivalent to

L(pi) =0,

that is, the functions p; must be first integrals of I'.
We require that p; # 0 for all i = 1,2, ..., n, for the multiplier to be regular.

We now introduce ‘connection coefficients’ TZ]; for the basis {X;}:
DY, X; = 77X, (summation over s intended).

The so-called closure conditions, DVg(X,Y, Z) = DVg(Y, X, Z), when expressed in terms
of the basis, lead to conditions which the p; must satisfy, involving the TZ];. Now

DY(Xi, Xj, Xi) = Xi"(9(X5, Xu)) — 9(75X5, Xi) — 9(X;, 73.X5)

X
X (pséjn) — Tz'];‘Pk — TikPss



so the closure conditions amount to
k j k ;
Xi"(pi) ik — ok — Tipi = X (pi)dir — Thipk — Tjpi-

When i, j and k are all different (possible only when n > 3) we obtain purely algebraic
conditions

Thpr + e = PR+ TP
When j =k # ¢ we obtain the differential conditions
Xi'(ps) = @27 — m3)p; — 7j;pi-

The inverse problem for Case Ila is to find non-vanishing functions p; which are first
integrals of I' and which satisfy these conditions.

Following Douglas, we make a further subdivision of Case Ila, motivated as follows. In
general the differential conditions X;"(p;) = (277, — 7/;)p; — Tjijpi involve both p; and p;;
the separated case for Douglas is that for which the term involving p; is absent. If this
were the only consideration, however, we would be left with the algebraic conditions for
n > 2. We therefore adopt the following definition: Case Ilal is the subcase of Case
ITa in which the algebraic conditions on p; are satisfied trivially, and the differential
equations are separated in Douglas’s sense. That is to say, Case Ilal is that for which

k

77> = 0 whenever ¢, 7 and k are all different, and T]«ij =0 for ¢ #j.

This may appear to be a somewhat arbitrary requirement; however, it can be conve-
niently specified in a covariant way, that is, in a way which shows that it is indeed
geometrically natural. This specification involves a certain differential tensor concomi-
tant of ® which we denote by Hg. This object, which is a tensor field along 7¢ of type
(1,2), is defined as follows:

Hy(X,Y) = DYO(®(X),d(Y)) — (D'®(X,d(Y))) — (DVB(B(X),Y))
+ d2(DVD(X,Y)).

In Case Ila we can express Hg in terms of the eigenvector basis {X;}, as follows:

Ha (X, X;) = M DY®(X,, Xj) — L ®(DYD(X,, X)) — MB(DYB(X;, X))
+ P DYR(XG, X))
= (M = @)\ T — D)DYD(X, X).



But

D'®(X;, X;) = DY, (B(X;)) — @ (D, X;) = Xi"(\) X, + (A, ] — @)D, X,
whence

Hg (X, X;) = (MI — @) (M — @)°DY, X; = (A — X)) (A — X)* 75 X,
(where summation is intended over all terms containing an occurrence of the index s).

Thus Hg = 0 if and only if TZ»]; = 0 unless £ = ¢ or £ = j. That is to say, Case Ilal,
which we also call the separable case, is determined by the conditions

e [VO,0]=0
e ® has n distinct real eigenvalues

o Hyp = 0.

This gives a covariant definition of Case Ilal. In practice, however, it is usually more
convenient to use the formulation in terms of the vanishing of connection coefficients —
simply because calculations are usually most conveniently carried out using an eigen-
vector basis.

In Case Ilal the closure conditions reduce to

Xi¥(py) = 2, = m)p;  iF

3 The variationality of Case IIal

We will show that Case Ilal is variational in arbitrary dimension. We will continue to
use {X;} to denote an eigenvector basis of ® such that V.X; = 0.

According to the general theory of [9], as summarized in the Introduction, we can show
that Case Ilal is variational by first identifying those g which satisfy the two sets of
algebraic conditions

g(V@(XZ»),Xj) :g(VTCD(Xj),XZ») 7‘20,1,2,...

and

S g(V'R(X;, X;), X)) =0 r=0,1,2,...;



and second, showing that for such g there is an orthonomic passive system of differential
equations containing the differential Helmholtz conditions

The algebraic conditions involving & are clearly satisfied in Case Ila in general by any
g which is diagonal with respect to one, and thus any, eigenvector basis of ®. On the
other hand, in Case Ilal R(X;, X;) has components in the directions of X; and X only.
This follows from the formula

DV(I)(XZ',X]‘) = T'Z:(/\]‘ — /\Z)XZ + XZ'V(/\]‘)X]‘

)

which shows in particular that DY®(X;, X;) is a linear combination of X; and X; given
that DY®(X;, X;) — DY®(X;, X;) = 3R(X;, X;) it is apparent that R(X;, X;) has the
same property. The fact that ¢ is diagonal with respect to the basis {X;} then ensures
that the algebraic conditions which involve the tensor R are satisfied in Case Ilal. Thus
there are no algebraic conditions to be satisfied by g in addition to the requirement that
it be diagonal with respect to the basis {X;}.

We know from our general results that to the differential Helmholtz conditions Vg = 0
and D¢(X;, X;, Xi) = DVg(X;, X;, Xy) there must be added the further first-order
conditions Dfg(X;, X;, Xy) = D (X;, X;, Xi). We know further that if there are any
integrability or passivity conditions for this augmented set of equations they are to be
found amongst the A conditions A(X;, X;)g(Xk, X;) = 0. These conditions require
further attention if they give rise to new first-order or algebraic conditions. However,
in Case Ilal the A conditions are automatically satisfied in virtue of the first-order
equations and their prolongations, as we will show below. It follows that the first-order
equations form a passive set.

As we have seen, in Case llal the equations DVg(X;, X;, X3) = DY¢(X;, X;, X;) may
be written X;"(p;) = pjipi, @ # j, where for convenience we have set 27']% - Tj] = ;.
We will now express the additional equations D%g(X;, X;, X3) = D"g(X;, X;, X}) in a
similar form. First, we show that the connection coefficients for D¥ are related in a
simple way to those for DY when VX; = 0. Since [V,D"] = =D and V.X; = 0 we have

VDY X; = I(75) X,
= DY, VX; - D¥ X; = -D% X,

whence, writing 7;; for I'(7};) for convenience,



In Case Ilal we therefore have

DY X, = -7, X; —7.X; i#j
D% X; = —75X,.

It is now easy to see that the additional conditions are
Xipi) = —(27); = 75)pi = —fjipi 1 # .
We have therefore to show that the augmented set of first-order equations

(p:) =0,  X;%pi) = —fijipi,  X;¥(pi) = pjipi 1 7,

o= 2l gl
where pj; = 27/, — 7,

is passive.

We will do so by examining the A conditions. However, it is not necessary to con-
sider all of them, as we now explain. In computing the passivity conditions of the
first-order equations we may freely make use of the prolongations of the equations to
substitute for the second derivatives which occur. Thus in evaluating the A conditions
we need to work only modulo prolongations. If we can show that any particular ex-
pressions A(X;, X;)g(Xg, X;) vanish as a consequence of the first-order equations and
their prolongations, so must all those which are equivalent to them modulo prolonga-
tions of those equations. Now a lemma proved in the previous paper [9] states that
A(XG, X)) g(Xe, Xi) = A(Xy, Xi)g(X;, Xj) modulo prolongations. We take advantage
of this result in the following way. The A operator is skew-symmetric, so that we may
assume ¢ # j. For k = [ at least one of the indices ¢ or j (since they are different) will
not be k. Using the lemma, therefore, we may shuffle the indices so that those occurring
in the final two arguments are different. We will show that A(X;, X;)g(Xy, X)) vanishes
in virtue of the first-order equations whenever k # [; it then follows from the preceding
remarks that A(X;, X;)¢(Xg, X;) vanishes in virtue of the first-order equations and their
prolongations without any such restriction.

The result is obtained by a direct computation. The equation A(X;, X;)g(Xk, X;) =0
when written out explicitly takes the form

[)‘/I)I{(]()(Z'7 )(]‘7 Xk, Xl) + g(H(Xk, )(1))(2'7 X]‘)
= DViDHg()(]‘7 Xi7 Xk, Xl) + g(XZ', O(Xk, XI)X]‘).

We will express the various terms which occur as expressions in the connection coef-
ficients 7 and 7/ the result will follow essentially from the fact that both of these

10



coeflicients vanish except when ¢ = j or « = k. Straightforward computations give, for

k1,

DVDHg(XZ7X]7Xk7Xl)
= X (k) — TR X (k) + (XM(F) — 7575 — 77 )P
+ 75X (o) — i X o) + (XM — ik — e

S5 -5 S5 -5
— (7575 + TiT5)ps
and

= (_ka(%lji) - XZH(TIgi) + Tlfﬁi?s + 7'1517;5]2' - Tk]s%lsi - 57’1‘2),0]‘-

7

So far we have used only the fact that g is diagonal with respect to the eigenvector
basis. It is immediately clear that when in addition He = 0 both of these expressions
vanish when 17, 7, k and [ are all different, simply as a consequence of the properties then
satisfied by the connection coefficients: note that in a term involving summation such
as Tfji'fl there is no choice of the summation index s for which both of the connection
coeflicients are non-zero. Thus A(X;, X;)g(Xg, X)) vanishes identically when ¢, j, k and
[ are all different.

Bearing in mind that A(X;, X;)¢(Xg, X) is skew-symmetric in ¢ and j and symmetric
in k and [, and that ¢ # j and by assumption k # [, it is enough to consider only the
cases 1 = k, j # l and i = k, j = [ to complete the argument.

JFrom the above formulae, also using now the first-order equations to substitute for
terms of the form X;"(p;) and X;"(p;), we find that when j # 1

DD (X, Xj, Xy, X0) = = (7578 + 7878 o
g(0( Xk, X)) X5, X;) =0
DD (X, Xg, Xi, Xi) = (X fl) - Tlfﬁlfl - Tjjﬁlfj - lelj—lfl)pk
9( X, 0(Xp, X0) X)) = g( X, 0(X;, X)) X)
= (= X;Y(7) + Tjjﬁlfj + T]‘lﬂfl - Tflﬁfj)%
where in the final expression we have taken advantage of the fact that # is symmetric in

all of its arguments. By inspection of these formulae it follows that A(Xy, X;)g(Xg, X7) =
0 when j # [, on account of the first-order equations.

11



For the remaining case we find that

DDAy (X, X1, Xy, X)) = =275 fpn + (Xk V(7)) — 07 — Tl
9(0( Xk, X)) Xy, X1) = (= Xp"(7)) + Tk — k)Pt

whence
DDy (Xg, X1, Xk, X1) + 9(0(Xi, X0) Xp, X1) = =27575pp — 277001

Since this expression is invariant under the interchange of & and ! we have

DVDHg(kalekaXl) +g(0(Xk7Xl)Xk7Xl)
= DVDHg(lekaleXk) —|—g(0(X[,Xk)X[,Xk)
- DVDHg(Xl7Xk7Xk7Xl) +g(Xk70(Xk7Xl)Xl)7

where the symmetry of # has been used again to obtain the last expression. But this
says that A(Xy, X;)g(Xg, X;) =0.

The first-order equations are therefore passive. It remains to show that they can be put
in orthonomic form.

For this purpose, given that the equations are separated, it is enough to consider those
equations involving just one of the dependent variables, say p,. These involve only the
eigenvectors X, for a = 1,2,...,n — 1. The full set of eigenvectors {X;},71=1,2,...,n,
is of course linearly independent, so that if we write X; = 3, Xf@/@xj the matrix of
coefficients (X7) is non-singular. The n x (n — 1) sub-matrix (X7) has rank n — 1, and
so by relabelling the coordinates if necessary we can find an (n — 1) x (n — 1) matrix
(Y2) such that 37, P X}, = 9/02%. The first-order equations for p,, may be replaced by
the equivalent set

=0 (55) () =~ v (%) =3
Pn) =Y, e Pn) = : a MbnPry Jza Pn) = ) a HbnPn-

We may write these in the form

0pn Opn
dxt’ vt

0pn ..
—" = expression in

ot

12



Opn
oz

. Pn
= expression 1n W’ Pn
v

Opn
dve

= expression in p,.

When written in this form these equations are orthonomic.

It follows that Case Ilal is variational. The freedom in the solution of the multiplier
problem is clearly n functions of 2 variables.

4 Varieties of separability

Let {X;} be a basis of eigenvectors of ® which are V-invariant, as before. Let N be
any subset of {0,1,2,...,n}, and consider on J'x the distribution (vector field system)
Dy spanned by the following vector fields: X;” and X;" for all 7 € A/, i > 0, and I' if
0 € N. Then Dy is involutive for every A if Hg = 0. This result is a consequence of the
following formulae for the brackets of the vector fields X;", X}"” and I when Hg = 0:

X;¥, X0V = (DY Xe)¥ = (D%, X)) = (7, = )XY + (7 — ) XY
X7, X3 = (DF Xp)" = (DY, X)) = =#),X;" = #h XY = Th X — 7l X7
]
X X = (D, X0)" — (DE, X)) + R(X;, Xp)”
= — (1], — )X = (Fh = )X+ R XY + Rk X,
[0, X" = (VX;)" - X;7 = -X;*
[0, X7 = (VX)) +(X;)" = N X,Y,

where R(X;, X}) = Rjx’ X; + R;3* X}, (recall that R(X;, X}) is a linear combination of
X; and X} when Hg = 0).
In fact this gives us another way of specifying Case Ilal: it is the subcase of Case Ila

for which Dy;y and Dy; ;y are involutive for all ¢, j € {1,2,...,n}. In Case Ila in general
we have

(X7, X5V = (DX, X)) — (DY, X)) = 75X, — 5 X7

13



(where the possibility that ¢ = j is allowed). This vector field will belong to Dy,
N = {i,j} or N = {i}, only if 75; = 0 when s is not i or j, which is equivalent to
Hg = 0. To summarize: in Case Ila the following conditions are equivalent

e Hs =10
e Dy and Dy jy are involutive for all 4,5 € {1,2,...,n}

e Dy is involutive for all N C {0,1,2,...,n}.

These properties of the distributions Dy will allow us to show, below, that the de-
scription of Case Ilal as the separable case has much wider relevance than just to the
differential equations arising from the Helmholtz conditions.

One way of stating the Frobenius integrability theorem is as follows. Let D be a distri-
bution on a differentiable manifold M. We denote by D+ the annihilator of D, that is,
the C°°(M)-module of 1-forms which give zero when paired with any vector field in D.
Then if, and only if, D is involutive for each point € M there is a neighbourhood O
of z and functionally independent functions u', w2, ..., u* defined on O, where k is the

co-dimension of D, such that DL‘O is the span of {du' |i=1,2,...,k}.

We now apply this version of Frobenius’s theorem to Case Ilal. Of the many involutive
distributions at our disposal we choose to apply it to the distributions D for which A
is the subset of {0,1,2,...,n} obtained by omitting just one of the non-zero integers
1,2,...,n: when the omitted integer is ¢ we denote the corresponding distribution by D;.
Each D; has co-dimension 2. Let v, a = 1,2, 7 fixed, be independent (local) functions
such that D;* is (locally) the span of {du!, | « = 1,2}. Then

D(ub) =0,  X;ul)=X;"(ul)=0 forall j#1i.

The independence of the two functions u!,, for each i, amounts to the claim that the
matrix

X)) Xi™(ub)
XiY(uy)  Xi¥(uy)

H,
14

is non-singular. Denote its determinant by A;.

Consider now the 2n+41 locally defined functions {t, !, | i =1,2,...,n;a = 1,2}, where
t is the “time”. They are easily shown to be independent, for example by considering
the (2n + 1)-form

X = dt Aduj Aduy Adui Aduy A - A duf A dul
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the result of evaluating y on {T', X1 X1, Xp" X0V ..., X,,%, X, } — a basis of vector
fields on J'm — is easily seen to be

X(F7X1H7X1V7X2H7X2V7 .. '7XnH7XnV) = H A; 7£ 0,
=1

and so y # 0. Here we have made use of the facts that I'(t) = 1 while X;"(¢) = X;"(t) = 0
fore=1,2,...,n.

One immediate consequence is that we can write down a Cartan 2-form for I' in terms
of the ul,. Let

Q = duj Aduj + dui A dul + -+ dul A dub.

Then dQ = 0, trivially. Since I'(u%) = 0, T1Q = 0, and since X;"(u}) = 0 for j # i,
Q(X;Y,X;Y) = 0. Finally, dt A (A"Q) # 0 as we have shown above, and so a fortiori
A"Q # 0. These properties characterize the Cartan 2-form(s) of a second-order differ-
ential equation field I', as given in [4]. In effect, this gives us a second proof of the
variationality of Case Ilal. More generally, for each i = 1,2,...,n let f; be a nowhere-
vanishing function of two variables; then S"™, fi(u’,) du} A duj, is a Cartan 2-form for
I'. It is interesting to note that the freedom of choice of Cartan 2-forms constructed in
this way is again n functions of two variables.

We can regard (¢, u’) as a local coordinate system on J'm. Since for each 4, du!, anni-
hilates all vector fields in Dy for each A not containing i, ', is constant on all integral
submanifolds of each Dy for which A does not contain 7. Thus with respect to these
coordinates the coordinate 2-planes over which the u, (fixed i) vary are the integral
submanifolds of Dy;y, and the coordinate 3-planes over which ¢ and the u!, vary are the
integral submanifolds of Dyq ;1. About any point O in J'm we can find a neighbourhood
in which J!7 is a fibre product over R of n 3-dimensional manifolds each fibred over IR,
each such manifold being (the appropriate part of) the integral submanifold of Dy,
through O, and its standard fibre being (the appropriate part of) the integral submani-
fold of Dy;y through O. The coordinate system described above is adapted to this local
product structure. With respect to these coordinates the differential equations for the
integral curves of I' are just 4, = 0. Note that, by leaving the given vector field I' out of
the discussion of simultaneously integrable distributions above, one will arrive more gen-
erally, at a similar local product structure and, with respect to correspondingly adapted
coordinates, the equations for the integral curves of I' will decouple into n separate
systems of two first-order equations. To summarize: if for a given second-order system
I', @ is diagonalizable with distinct (real) eigenvalues, and further satisfies Hg = 0 and
[V®, ®] = 0, then I' decouples into n separate systems of two first-order equations.
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In general, these n separate systems need not be second-order equations. Indeed, a
coordinate transformation which will transform the given system into its decoupled
form will, in general, not be a point transformation and therefore will not preserve the
second-order character of the system.

Since we are in a situation where ® has only one-dimensional eigenspaces, a characteri-
zation of complete separability in the sense of second-order equations is easily expressed,
on the basis of results in [10] and [2], as follows. Suppose that ® is diagonalizable with
distinct eigenvalues. Then, for I' to be completely separable into n decoupled second-
order equations, it is necessary and sufficient that Cy = 0 and [V®, ®] = 0. Here C§ is
the type (1,2) tensor field along 79 defined by

CY(X,Y) = [D%®, ®](Y) = D'B(X,d(Y)) — (D'B(X,Y)).

The above result is explicitly stated in [10] for autonomous equations and easily follows
from Theorem 3.11 in [2] in the case of time-dependent systems.

For clarity we give a sketch of the proof. It is trivial to verify that any system of n
decoupled second-order equations in one dependent variable, with different (I>§:, satisfies
the given conditions. To see that the conditions are also sufficient, observe first that
Cy = 0 means that the eigendistributions of ® are DY-invariant and are therefore
spanned by basic vector fields, more precisely vector fields on E which are vertical with
respect to the fibration over R. Since the eigendistributions are also V-invariant in view
of [V®,®] =0, and [V, D] = —=D¥ | one easily deduces that they are also D¥-invariant.
This can be shown to imply that all the basic eigendistributions are simultaneously
integrable. Hence, there exist coordinates on 7 : F — IR, with respect to which each of
the X; is a multiple of @/dz'. The V-invariance then implies that F; =0 for ¢ # j and
the coordinate expression of (I>§ subsequently reveals that also 9f'/dz7 = 0 for i # j.
The complete separation follows.

To see how this fits as a special case within the situation of Case Ilal, it suffices to
observe that the tensor field Hg can be expressed as follows

He(X,Y) = Cg (®(X),Y) - @ (Cg(X,Y)),

so that Cg = 0 implies Hg = 0, but not the other way around.

5 Illustrative example

It is very easy to construct examples of systems of second-order differential equations
satisfying the requirements of Case Ilal. Indeed, with reference to the discussion in the
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previous section, examples could be manufactured in the following way: take any system
of n separate second-order equations with the property that each equation contributes
a distinct component of the overall ®; apply an arbitrary, possibly time-dependent
transformation to the base space coordinates, which will make the transformed equations
look hopelessly coupled. But we know that the conditions Cy = 0 and [V®, ®] = 0 will
be satisfied by construction. Thus, we are bound to have an example of a system of
differential equations belonging to Case Ilal.

The true challenge, therefore, is to find an example which does not decouple in the sense
of references [8] and [2]. The following two-dimensional geodesic flow was considered in
[1] (for convenience, we label the coordinates here with a subscript):

Fpo= =2y
By = (ig)%

The matrix representation of @, with respect to the coordinate fields, is given by

—2(?]2)2 2?]1?]2
0 0

and is seen to have distinct eigenvalues. One easily verifies that V& and & commute.

Eigenvectors of & are given by

0 0 0
Xl_a—xl’ Xz_vla—xl—l_vz@—xg'

It is clear that the second eigenspace cannot be spanned by a basic vector field, which
is sufficient to conclude that C'y # 0. Yet Hg will be zero, as can be seen for example
from the relations

DY X, =0, DY, X, = X, DY, Xy = X,

which show that only 7, and 7 are non-zero. As a result, the equations are not
separable by a point transformation, but should have the weaker separability property
of Case Ilal, as we will show explicitly now.

The distributions Dy and Dyyy are spanned respectively by



and

O

X, =T - —
2 8t7 8?]1 8?]2

The given coordinates are already adapted to the distribution Dy, which has z3 and
vy as invariants. Integrals for the distribution Dyyy are found to be 327 + vl(vg)_l and
e32p; (vy) 7L If we introduce the non-point transformation

_ (%1 _
=21+ 5—, To = T3,
3?]2
] -~
U1 = y Vg = U3
V2

then Dyyy is spanned by 9/91, d/0v;, whereas the two other coordinate fields now span
Dyy;. Indeed, we have

0 0 0
H _ 5 = \2 vV 5
X2 = U2 —8f2 + (UQ) —8@27 X2 = U2 —8@2 .

Since T is actually X9 + 0/0t, we see that the transformed differential equations are
indeed decoupled into two pairs of first-order equations:

fl = 07 ?71 = 07 and fg = ?727 ?72 = (?72)2.

This illustrates that any system of coordinates adapted to both distributions will give
rise to this form of decoupling. The analysis of the previous section has shown that one
can in principle even construct such coordinates which at the same time straighten out
the given vector field I'. In the present example, this would be achieved by choosing
exp(—2z2) as a new coordinate.
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