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Abstract. We discuss various aspects of the transition from Lagrangian
to Hamiltonian equations for systems with general (non-linear) non-
holonomic constraints. The emphasis is first on constructing the re-
duced dynamics on the constraint submanifold, and then trying to start
a Hamiltonisation procedure from there. We prove theorem concern-
ing the regularity which is required to obtain a unique second-order
dynamics on the constraint submanifold, and we show that the same
condition allows the transition to a Hamiltonian picture. Throughout
the analysis, different degrees of generality are discussed.

1 Introduction

In a number of recent contributions, we have analysed various aspects of the geome-
try of non-holonomic systems. In [16], we considered Lagrangian systems subjected
to generalised Caplygin-type constraints. To be precise, let L(t,q*,¢") be the La-
grangian, with A = 1,...,n, and assume m of the velocities ¢* are given in terms
of the n — m remaining ¢“ by relations of the form

q* = Ba(t,q)¢" + B(t,q), a=1,...,m. (1)
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Classically, we would then make use of Lagrange multipliers to write equations of
motion of the form
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But if we are not interested in the reaction forces caused by the constraints, it is
very easy to eliminate the multipliers A,. With

L(t,q¢"* ¢*) = L(t,¢", ¢“, B§i" + B*),

we obtain a reduced dynamical problem described by the constraints, together with
the second-order equations
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and the constraints are also used to substitute for the ¢* in 9L/3¢* and C®. This
procedure is described, for example, in the classical textbook of Neimark and Fu-
faev [13] for a generalisation of Caplygin’s equations which is attributed to Voronec.

In [16], we describe a geometrical framework for this situation. We assume that
the space E with coordinates (t,¢") is fibred over a manifold M with coordinates
(t,q%), such that both E and M are fibred over R, so that we have fibrations
m:E— M, 79: M —Rand7=mon:E — R. The constraints can then be
considered as being defined by a connection ¢ on 7, which determines a section
of the bundle J'7 — 7*J'7y whose image J} is the constraint submanifold where
the reduced dynamics takes place. The purpose of [16] was to show that, if the
equations (2) can be solved for the §*, the resulting second-order vector field I’
living on J! can be obtained directly from the kernel of a certain 2-form ;.
Clearly, if this route is taken towards the construction of the equations of motion,
no regularity of the unconstrained Lagrangian L has to be assumed: we need only
that the Hessian of L is non-singular.

In [22], we consider the more general set-up of m linear (or, more precisely, affine)
constraints
Aaa(t, Q)" +ba(t,q) =0,  a=1,....m,
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where the usual assumption is that the matrix (A,4) has rank m. Locally, there-
fore, we can always write the constraints in a form such as (1), but no fibration
is assumed to be given a priori. Considering a Lagrangian L on J'7 with its
associated Poincaré-Cartan 1-form and 2-form

oL
0, = Ldt + —(dg* — ¢*dt), wr, = dfy, 3
L By A( q G dt) L L (3)
we show that, starting from the pullback 7*w;, on the constraint submanifold, there
is a unique constraint 1-form 7 such that the 2-form

Q=1i'wr, —dtAn

has just one second-order differential equation field (SODE field) T" in its kernel. If
a fibration £ — M is chosen, this I' is the same as the one spanning the kernel
of the corresponding 2, mentioned above. The regularity assumption we take in
this construction is that the unconstrained L should be positive definite (a common
assumption, see e.g. [24, 25]).

Many authors have already discussed how one can set up a Hamiltonian theory of
non-holonomic systems geometrically (see e.g. [1, 2, 3, 5, 7, 9, 23, 26]). In spite
of certain differences in the general approach, what most of these treatments have
in common is that the Legendre transform related to the original unconstrained
Lagrangian is the starting point of the analysis, and a reduction process to the dy-
namics on the constraint submanifold (similar to the one described above) is then
repeated on the Hamiltonian side. This means, in particular, that a form of regu-
larity will be needed for L, possibly supplemented by further conditions required
for the reduction. If, however, there is a direct geometrical way of producing the
right reduced Lagrangian picture, then it is natural to wonder whether the Hamil-
tonisation procedure cannot be started directly from there. This would then be
in accordance with the remark made in [5] that, strictly speaking, we should be
concerned only with the regularity of the restriction of the Legendre transform to
the constraint submanifold.

To make this idea more concrete, assume we are again in the situation of a system
with constraints of the form (1), and know of the reduced second-order equations
(2) which complete the dynamical equations. Then, naively, what we would do from
an analytical perspective to arrive at Hamilton’s equations would go as follows.
Define momentum variables .
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and assume these relations can be inverted to obtain the ¢%, say as

P, =
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Define the reduced Hamiltonian function as
H(t,q", Ps) = Pap® — L(t,¢",7°).
It is then easy to verify that we have the following identities:
oH oL  0H .
ag" ~ ogv  op,

from which it follows that the set of equations (1), (2) can equivalently be written
in the form

.  OoH
“ = 35 (4)
a aaH a

¢ = Baapa+B (5)
. _ oL

P, = —Xa(H)Jr(i* aq,a>(t,q“,ﬁa)c;. (6)

In the functions C? appearing on the right-hand side of (6), which were introduced
above, it is of course understood that the derivatives of the ¢ are replaced by
the right-hand sides of the preceding equations. Note that such a passage to a
“canonical form of the equations of motion” is described in the classical book
[13] for the special case of so-called éaplygin equations, where neither L nor the
constraint equations depend on the variables ¢* (or on time).

The point to observe here is that this transition to Hamilton-like equations is
based on a Legendre transform coming from the reduced Lagrangian L, so that it
requires the non-singularity of the Hessian of L. Part of what we want to achieve
in the present paper is to give a geometrical construction of this transition. But
the ambition is to do it at the same time for the more complicated case of general
non-linear non-holonomic constraints. In that respect, note that in [17], one of us
has generalised the direct geometrical construction

of a reduced second-order vector field to the case of non-linear constraints of the
form

§* = g°(t,q",d").
The regularity assumption which turns out to be relevant for that purpose has the
following rather unfamiliar coordinate expression:

0’L oL\ 0?%g°
0¢*0¢P 9q® ) 0¢*0¢P°
Among other things, we will give here a geometrical interpretation of this regularity
condition, and present a procedure of Hamiltonisation of the dynamics which works
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under this assumption only, without recourse to the unconstrained Lagrangian L.
At the same time, we shall extend the results of [22] to the case of non-linear
constraints, and in fact show also that this construction can be carried out under
milder regularity assumptions than those of [22].

We should remark that non-linear non-holonomic constraints do not occur fre-
quently in real physical problems and there is little agreement in the literature
about the right mathematical model to incorporate them. The most widely used
model is one which makes use of a formulation called “Chetaev’s rule”. In classical
terms, this rule can be interpreted as extending the definition of the concept of
“virtual velocities” to the case where non-linear constraints are present. If these
constraints are described by relations of the form G4(t, ¢*, ¢*) = 0, Chetaev’s rule
stipulates that virtual velocities w* should satisfy (0G*/9¢*)w” = 0; the assump-
tion is then that d’Alembert’s principle remains valid, stating that the total virtual
power of all reaction forces is zero. The least one can say is that this model incor-
porates those for linear or affine non-holonomic constraints which are commonly
accepted as appropriate for many circumstances. Most authors also accept the
more general model, but criticism about its physical correctness has been formu-
lated by, for example, Pironneau [15]: a similar criticism can be found in recent
work by Marle [10], who also formulates some interesting alternatives. Neverthe-
less, the model we adopt in the present paper is the one associated with Chetaev’s
rule. Its geometrical implementation is carried out by the construction of the so-
called “Chetaev bundle”, a terminology introduced in [12]. This terminology is
in common use for the case of affine constraints, and the fact that one basically
carries out the same construction for non-linear constraints can be seen as a good
reason for examining this model from a purely mathematical perspective.

The scheme of the present paper is as follows. In Section 2 we recall a geometrical
way of modelling velocity-dependent constraints for time-dependent second-order
dynamical systems. First, with a view to the later discussion of the Hamiltonisa-
tion of constrained Lagrangian systems, we review some generalities concerning jet
spaces and their duals. Next we consider affine constraints, and then we discuss
how this picture is amended for general (non-linear) constraints. In Section 3 we
state and prove, for Lagrangian systems with non-holonomic constraints, a gener-
alisation of the main result of [22]: this concerns a characterisation of the reduced
second-order dynamics on the constraint submanifold as the unique SODE in the
1-dimensional kernel of a certain 2-form. In Section 4, we recall first the standard
procedure of passing from Lagrange’s to Hamilton’s equations for time-dependent
systems. We then see how this procedure can be adapted to pass from a reduced
Lagrangian dynamics on the constraint submanifold C' to a Hamilton-like system
on legr,(C'). We shall of course verify that these geometrical constructions match
the observations made in this introduction. In Section 5, we consider more partic-
ularly the case where the constraints are defined by a connection (or “parametrised



connection”). The last two sections contain considerations on the coordinate cal-
culations involved and some illustrative examples.

2 Time-dependent non-holonomic constraints

Let 7 : E — IR be a bundle, and let J'7 be its first jet manifold. J'7 provides
the natural framework for describing the dynamics of a time-dependent mechanical
system, with E representing the configuration space-time manifold of the system.
Before discussing the notion of (velocity-dependent) constraint, we first review
some aspects concerning jet spaces and their duals, thereby fixing some notation
that will be used later on. For more details we refer to [20, 21].

2.1 Jets and duals

;From the general theory of jet bundles we know that 7y : J'7 — F is an affine
bundle modelled on the vector bundle V7 — E of tangent vectors on F that are
vertical to 7. Alternatively, we may consider it as an affine sub-bundle of the
tangent bundle TE — E. With coordinates (¢,¢*) on E, (t,¢*,¢*) on J'7 and
(t,q",1,¢*) on TE, we may describe .J'7 as the submanifold of TFE given by = 1.
If dimE = n + 1, then dim.J'7 = 2n + 1 and dimTE = 2n + 2. We also recall
that J'7 admits a canonical vector valued 1-form S, which generalises the “vertical
endomorphism” on a tangent bundle and is given by

)
__ pA
S=0"® 5o, (8)

where 64 = dg* — ¢*dt are the contact forms.

For any affine space A of dimension n, its ertended dual AT is the (n+1)-dimensional
vector space of all real-valued affine functions on A. If A is an affine subspace of the
(n+1)-dimensional vector space V then AT 22 V* because for each linear functional
a € V* the restriction «|, is an affine function on A, and this correspondence is
an isomorphism. The dual of A is then the n-dimensional vector space A* defined
by A* = AT/A°, where A° is the 1-dimensional vector subspace of A’ containing
the constant functions on A.

We may now apply this to J'7 and TE. The (2n + 2)-dimensional extended dual
of J'r, with fibre dimension (n + 1), is just the cotangent bundle T*FE, and the
(2n + 1)-dimensional dual J'7* is the quotient of T*F by functions constant on
the fibres of J'7, so that we may write J'7* = T*E/(dt) = V*r. Here, (dt)
stands for the bundle over E whose fibre at a € E is the one-dimensional vector
space spanned by the cotangent vector dt,, so that V*7 is the bundle of “vertical



cotangent vectors” on E. There are clearly natural projections T"E — J'7* — E.
With coordinates (¢,¢4) on E, the coordinates on T*E are (t,q”,p,p4) and those
on J'7* are (t,q%,pa).

2.2 Affine constraints

Let C — E be an affine sub-bundle of J'7 — E with fibre dimension n — m. We
shall call C a constraint submanifold of J'r: this reflects the fact that, later on, C
will be interpreted as representing some external (velocity-dependent) constraints
imposed on a Lagrangian system defined on J'7.

The sub-bundle C' — E gives rise to a distribution C' on F in a very straightforward
and geometric way. The inclusion J'7 C TE

means that C' — F is also an affine sub-bundle of TE' — E, and so we may let
C — E be the vector sub-bundle spanned by C; C has fibre dimension n —m + 1.
Now choose coordinates (t,¢%, ¢*) on E such that C is described by equations of
the form

§* = Bi(t,¢",¢")q* + B*(t, 4", ¢"),

where the functions B2 and B® are defined locally on E. (We do not at this stage
suppose that FE is fibred over another manifold M, but we may verify that the
bundle condition on C' guarantees the existence of suitable local coordinates.) In

such a coordinate system, the points of C' may be described as tangent vectors on
E of the form

0 0 0
-~ e R o pa B®
vl aqa+(q ot )aqa
so that the vector sub-bundle C' is spanned by
0 0 0 0

9 | pa 9 g9
ot TP 9 9 T Cegge

The annihilator C° ¢ T*E is then spanned by the constraint forms
n" =dq" — Bydq® — B“dt.

Of course we can also obtain C* using the “Chetaev bundle” approach (see e.g.
[11, 12]), by noting that i*S*T°C' is a co-distribution on C' that (in this affine case)
is basic over E, and so projects to the same co-distribution C*. Here, i : C' < J'r
denotes the natural inclusion map, S is the vertical endomorphism (8) and T°C'is
the annihilator of TC in T*J'7. The relationship between the two approaches for
obtaining C° will become clearer when we look at general constraints.

One property of C' worth noting is that it is always “transverse to the fibration
E — IR” — that is, C' 4+ V1 = TFE, so that the fibre dimension of C' N V7 is
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n —m. The dual statement is that C° N (dt) = {0}, so that the fibre dimension
of C° @ (dt) is m + 1. These observations tell us how to run the construction in
the opposite direction: given a vector sub-bundle C C TE of appropriate fibre
dimension transverse to the fibration £ — IR, or of course a suitable dual bundle
spanned by some “constraint forms”, we reconstruct the constraint submanifold C
by defining C = C N J'r.

We can now see how to represent the extended dual CT of the constraint subman-
ifold: it is simply the total space of the dual vector bundle C° — E, and we may
observe that this is naturally isomorphic to the quotient bundle T*E /UO — F
by the following argument. If jly € C and [¢] € T*E/C”, let € € T;, E be a
representative of [¢]; any other representative is of the form € + 1 where n € C”,
so we may define (j}7, [¢]) without ambiguity to equal (j}v,€). With coordinates
(t,q“, q", p,pa) on the quotient bundle,

(i, €y = ¢4/ v)pale) + ple),

which shows indeed that [¢] defines an affine function on the fibre of C over v(t) € E
and, hence, belongs to C'f. Once again, all this projects to J'7:

T*E Jir* = T*E/(dt)

Ct=C" =TE/C° C* = T*E/(C° @ (dt))

2.3 General constraints

For the general case we let C' — E be a (not necessarily affine) sub-bundle of
J'r with fibre dimension n — m and natural inclusion map again denoted by i :
C < J'r, and we write p : C — F for the restriction of 71 to the constraint
submanifold C'. This will give rise to a “distribution along p”: a correspondence
assigning, to each point j;v of C, a subspace of T, E. We may also regard this
correspondence as determining a sub-bundle C' of the pull-back bundle p*TFE.
The “Chetaev bundle” approach to this is straightforward: *S*7T°C is a co-
distribution on C that is, in general, semi-basic rather than basic over E. If we
are able to choose coordinates (¢, ¢%,¢*) on E such that, in terms of the induced
bundle coordinates on J'7, the fibres of C' are determined by equations in solved
form as

i = g"(t,q", q", ") (9)
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(note that it may not always be possible to find such coordinates on FE), then the
co-distribution is spanned locally by the constraint forms

ga . 8ga
@ = dg" — =dg® — | ¢° — ¢* == ) dt. 10
n" =dq —dg (g q aq'a> (10)

We may clearly regard this as a co-distribution along p (or, in other words, a
sub-bundle C° of p*T*E); its kernel is spanned by

_ 0 0¢" 9 _ 9 o 009"\ O (11)
=9 040 oge 0= Bt 940 ) g0

Xa

which are vector fields along p; they locally generate the distribution C'. Note that
we may replace X, by

9 9 9
X X, = — o Y a
0 +d ot Tl o T o

which is just the total time derivative d/dt restricted to C.

The distribution C' can also be obtained without looking at dual structures, by
using the following approach. At each point of .J'7, the vertical tangent space over
E is isomorphic to the vector space upon which the affine fibre of J'7 through
the chosen point is modelled: in other words, V719 = 7(V7) as bundles over E.
We may therefore consider the image of T'C' N V1 ¢ under this isomorphism: it is

the sub-bundle of Tio(VT)‘C = p*(V'7) spanned locally by the X,, and so is just
C N p* (V7). We may then recover C from this by its direct sum with (d/d¢|.).

Although these two approaches may seem quite distinct, they are actually dual to
each other. The isomorphism V7o = 7{(V7) is just the inverse of the vertical
lift (in the context of affine bundles rather than vector bundles) and so it is the
essential ingredient of the S tensor whose action on cotangent vectors is used to
construct the Chetaev bundle. In the special case when the constraints are affine,
the fibres of the sub-bundle C' C p*TE = C x i TE do not depend on the choice of
point in any given fibre of C' and, therefore, we may regard C as a sub-bundle of
TE and construct it directly as described in the previous section. To summarise,
we have

Ccp'TE, C° Cp'T'E
in the general case, and

CcTE, C CcTE

in the affine case.

As mentioned above, it may not always be possible to find coordinates on E such
that the expression (9) for C in solved form is valid for complete fibres of p:
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consider, for example, £ = R x R* with coordinates (¢, z,y, z) and let C' be the
submanifold of J'7 given by 22 + %> = 1 + 22, In such a case we cannot find
constraint forms n® defined on complete fibres of p. (This topological complication
does not arise for affine constraints.) We may nevertheless, even in the general
case, find forms spanning the Chetaev bundle locally on C. Indeed, take a point
¢ € C and suppose that C' is defined in a neighbourhood of ¢ by m relations
G*(t,q*, ¢*) = 0, where the superscript a simply numbers the equations and does
not refer to a particular choice of coordinates on E. At points of C' belonging to
that neighbourhood of &, the Chetaev bundle is spanned by the forms *S*dG?,

namely
+ [O0G* 4
i ( i 0 ) .

In the example given above, the Chetaev bundle would be one-dimensional and
spanned by the single form i*(2dx + ydy — (2% + §?)dt). As C — FE is a sub-bundle
of J'7 — E, the rank of the matrix (0G*/9¢?) in the neighbourhood of ¢ must
be m. If, further, we suppose that we have ordered the ¢* coordinates so that the
rank of the sub-matrix (0G*/3¢), for a,b = 1,...,m, is m at the point ¢ itself,
then this condition must also hold in a (possibly smaller) neighbourhood U of &.
Putting Cy = U N C, it follows from the above that the Chetaev bundle on Cy is

spanned by the 1-forms
oG* oG*
* 9+ —6° ).
(G a5

As (0G*/84") is non-singular on U, we may define functions B} on U by

oGe . 0Ge

aq'b B — _aq-/j

so that, on Cy, the Chetaev bundle is spanned by the equivalent set of 1-forms
n® =i*(0* — B§o").

The regularity of the matrix (0G%/3¢") further implies that the relations G® = 0
can be solved for the ¢* so that, upon further restricting U if necessary, Cy is
determined by relations of the form ¢* = ¢(, ¢%, ¢%, ¢*). It is then straightforward
to check that the functions B? are given explicitly by

pe ="
0G*

and so we see again that the constraint 1-forms n® on Cy can be given by the
expression (10).
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To summarise, the previous discussion shows that, in the case of general con-
straints, the constraint relations and the generating forms of the corresponding
Chetaev bundle can always be represented by expressions of the form (9) and (10)
respectively. However, depending on the topology of the constraint submanifold,
these expressions may be valid for complete fibres of C', or merely in an open
neighbourhood of each of its points.

Finally, we note also that, for general non-linear constraints, it does not make sense
to work backwards from the distribution C' to the constraint manifold (or from the
Chetaev bundle to the constraint manifold) because both have to be specified at
points of C',; and so carry the manifold with them automatically.

3 Lagrangians and constraints

Now suppose we are given a Lagrangian system, with Lagrangian L : J'7 — R,
which is subjected to m velocity-dependent constraints modelled by a constraint
manifold C' C J'7 as described in the previous section. In [22] we saw that, in
the affine case, if L satisfies a certain regularity condition then there is a unique
constraint form 7 on C such that the 2-form i*(wy) — dt A n contains a unique
SODE field I" in its kernel. In that paper, we required the Hessian of L to be
positive definite, although the proof of the theorem required only that the Hessian
of L|, be non-degenerate. The purpose of this present section is twofold: first, we
shall show that it is possible to amend that proof carefully so that it also applies
to the case of general constraints; and secondly, we shall derive weaker regularity
conditions under which the theorem still holds. In addition, we shall see that the
second-order nature of the vector field we obtain is a consequence of regularity,
and does not need to be assumed a priori.

According to the discussion in the previous section, in the case of general (non-
linear) constraints we can always find an open neighbourhood of any point of C
on which the constraints can be represented by equations of the form (9). In this
section we restrict consideration to such a neighbourhood U, and to its intersection
Cy with C. The Chetaev bundle is spanned on Cyy by the m 1-forms (10). In what
follows we shall always use the shorthand notation

B = 99 :
0G*

B® = ¢" — B%j" (12)

which is in agreement with the notation in the affine case.

The essential tool we use in our discussion is an (n — m) x (n — m) matrix which
turns out to be as important to the study of constrained systems as the Hessian of
L is to unconstrained systems, and which we will
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call the k-matriz of the system (L,C'). In geometrical terms, we consider the sym-
metric bilinear form g derived from L and written in coordinates as ¢ = gapf1®67,
where
9L
48 = Diraqr

is the Hessian of L (see, for example, [19]). The k-matrix of (L, C) is the coordinate
representation obtained when the action of i*g, regarded as a 2-covariant tensor
field along p, is restricted to vector fields along p whose vertical lifts are tangent
to C' and which are annihilated by dt. The vector fields X, (see (11)) form a basis
for these, and the k-matrix of (L, C') is therefore given by

kap = (1"9)(Xa;, Xp).

In terms of the Hessian, if we define hag = i*(gap) + Bji*(gas) and hag = i*(gas) +
Bgi* (gap) then kos = hos + B2hes. For affine constraints, ks is just the Hessian
of the constrained Lagrangian L, whereas for general constraints this is no longer
the case and we find instead that

L 0T (.01 &g
“* 7 0¢°0¢?  \' 04" ) 0g°04”

which is precisely the matrix mentioned in the Introduction (see (7)).

Before stating the main result of this section, let us first fix some terminology.
Assuming the constraints are written in the form (9), a vector field T on the
constraint manifold C' will be called a second-order differential equation (SODE)
field on C'if it satisfies the following conditions:

(T,dty=1, (T,i*0*y=0, (T,n")=0.

The last of these restrictions merely expresses the fact that we want I’ to be a
vector field living on the constraint manifold, so that its integral curves will be
curves in E whose prolongations lie in C'. The true second-order character is
therefore expressed by the middle condition.

Note that such a vector field can always be extended locally to a genuine second-
order vector field on J'7, defined on a neighbourhood of C, which

at each point of C' is tangent to C.

Theorem 1. Let L : J't — R define a Lagrangian system, subject to constraints
C. If the k-matriz of the system (L,C) is non-singular then there is a unique
vector field T' on C' satisfying the conditions

1. (T,dt) = 1;

2. (T',n) =0 for every constraint form n;
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and such that

3. T Ji*wy, is a constraint form, where wy, is the Poincaré-Cartan 2-form of L
and i : C — J'7 is the inclusion.

In addition, T is then necessarily a SODE field on C.

Proof. To prove this result, note that (in coordinates on U) the Poincaré-Cartan
2-form w;, may be written as
O*L
Wwr =
b 9g40¢P

04 A OB + gapdd® A OP + Trdt A O°

for some functions T, the explicit form of which is of no importance here. If T is a
vector field on C satisfying the first two conditions of the theorem then, at points
of CU,

- 0 0 0 —a O
I'\ [ Fa_ a Ba FCM _ e F _
vl aqa+(g + Ba( q")) o T o
so that
TJZ*QJL mOdi}A,dt i (gAB) <F, Z*9B>Z*qu

= —("(gap) + By i"(gm)) (17 = ¢7) i*dg"
—(T? = 68)(hag *dd™ + hag i*dG®) .
Since i*(d¢® — dg®) = 0, we find that

A
Z'*dq-a mod dgq**,dt Bg; Z*dqa ,
so that

mod dg*,dt

T Ji*wy, — (TP — ¢7) (hag + B%hes)i*dg®

— — (TP — kg i*dg™ .

As T _i*wy, is required to be a constraint form, the terms in i*d¢® should vanish.
The non-singularity of the k-matrix therefore implies that ' = ¢° so that the
vector field T, if it exists, is necessarily a SODE. The contraction of T’ with i*w;,
now written out in full, therefore becomes

T itwy, = (i*(9a) (T, i"dg™) + (i"Tp)) i*6”
and the only undetermined components of T are the “force functions” F* given by
F* = (T,i*dq%).
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We find that
(T,i*d¢") = B*F" +W*®

where the functions W* do not depend on the yet to be determined functions F*,
and we obtain

Tairdd, = (i*(ga) (BaF" + W) + i (gan) F* +i*(Ty)) (0" + B}i*0%)
+ (i*(9ap) (BEF" + W*) + i (gag) F" +i*(Ty) ) i°60°

mod 7

=T (kagF" + 1" (Tp) + Bhi*(Ty) + hasW*)i*0" .

With a regular system, we see that we can make a unique choice of force functions
F“ so that the coefficients of the i*07 in the above expression for T _li*w,, vanish.
For this choice of F* we then find

fJi*dﬁL =7

for some constraint form 7 which is a linear combination of the n®.

To summarise, we have shown that under a certain regularity condition we can
locally construct a unique constraint 1-form 1 and a unique SODE field T such that
T J(i*dfr, — dt An) = 0. Uniqueness implies that we may glue together these local
solutions to give a global constraint form and SODE field on C. O

We shall say that the constrained Lagrangian system is regular at a point of C
if the matrix (k,3) has maximal rank (n — m) at that point. The constrained
Lagrangian system will be called regular if it is regular at each point of C'.

One further remark on regularity is perhaps worth making here. If the Hessian
of L is non-degenerate then we may find the unconstrained Euler-Lagrange field
Iz on J'7. The difference I'z|, — T is then a vector field V along C satisfying
V 1df.|, =, where 1 represents the force exerted by the constraint. We cannot
carry out the construction in this way if the Hessian of L is degenerate at points of
C': although the constraint form 7 is well-defined, the corresponding vector field V'
might not be. A similar comment also applies, for instance, to the approach using
almost-product structures (cf. [7, 8]); this also requires the

Hessian of L to be non-degenerate at points of C'. Specifying that L be

positive-definite, as is frequently done in treatments of non-holonomic mechanics,
is a convenient way of ensuring that both g4p and k.4 are non-degenerate, although
of course it is not a necessary condition.
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4 The Hamiltonian description of constrained sys-
tems

Before studying the transition from the reduced Lagrangian dynamics of a con-
strained system to an equivalent Hamiltonian description, we first recall some
general aspects concerning the passage from the Lagrangian to the Hamiltonian
description of a time-dependent system in the jet bundle formalism (see also e.g.
[4, 6]).

4.1 General Hamiltonian systems

A Hamiltonian system on a bundle 7 : E — R is given by a section h of the line
bundle T*E — J'7*. If w is the canonical symplectic form on T*E then h*w is a
2-form on J'7*, and a Hamiltonian vector field X} for h satisfies X, Jh*w = 0,
(Xp,,dt) = 1. In coordinates (t,q*, p,p?t) on T°E, if H = —p o h is the (locally-
defined) Hamiltonian function then

h*w = —dH A dt + dps A dg?

so that
0, 0H 0 0H 9
ot Ops0gh  Ogrops

The Hamiltonian flow is given by the equations

A_oH . om
q _apAa ba = ana

Xp =

t=1.

In the special case where there is a global trivialisation of £ = IR x Q — R, the
canonical global fibre coordinate p on T*E yields a global Hamiltonian function
H = —p o h for each Hamiltonian h, and then

h'w = —dH A dt + v wy

where wy is the canonical symplectic form on T*Q and v : J'7* — T*Q is the
projection on the second factor of J'7* = IR x T*(Q. Since in this case T*E =
T*IR x T*(Q), there exists a canonical Hamiltonian hy, induced by the zero section
of T*IR — IR, which corresponds to the Hamiltonian function H = 0.

4.2 Hamiltonian systems derived from Lagrangian systems

Under certain regularity conditions, a Lagrangian can give rise to a Hamiltonian
system via the Legendre map. Any Lagrangian function L : J'7 — IR gives rise
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to the Legendre map Leg; : J'7 — T*E. this may be defined either as the best
fibre-wise approximation to L, or alternatively as the representation of the Cartan
1-form 67, as a differential form along the map J'7 — E (rather than, as is more
usual, a differential form on J'7). With the coordinate expression (3) for 6, we
then obtain

4 OL

poLeg, = L—qAW
oL
pao Leg, EYES

The map Leg; is the “big Legendre map”; the corresponding “little Legendre map”
leg; : J'7 — Jlr* is the composition of Leg; with the projection T*E — J'7*.
We may check that

g (a 9 . 2L 9
L« ar - . ‘B
Ot 1, Otlleg, (jiy 104" |;1, OPB lleg, (i)
| ( ) ) . 2L )
€8L« | 5 4 - 5A AH;B
0g* |1, 00" Nleg, iy 947047 |1, OPB lleg, (i)
g ( 9 8L 9
Lx \ A = 90A9B
94 |1, 94494 | 1., Opp leg, (i)

and

legy (dt) = dt
leg; (dg?) = dg*
9L 9L 92
dt B, 9L B
I T T i MR P

legy (dpa)

We say that L is regular if leg;, has maximal rank 2n at each point (so that
leg; , restricted to a fibre of J'7 — FE has maximal rank n), and that L is hyper-
reqular if leg; is a diffeomorphism. Any hyper-regular Lagrangian then defines a
Hamiltonian system by setting h = Leg, oleg;' : J'7* — T*E. If we let 'z, be the
SODE field corresponding to L then ['; and X, are leg, -related:

legL*

TJ'r TJ ' r*
FL Xh
Jr Jir*
leg;
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A Lagrangian that is regular but not hyper-regular defines a local Hamiltonian
system in the same way. The significance of a regular Lagrangian is that the
corresponding Euler-Lagrange equations are regular: that is, they may be solved
for §4. Put another way, a regular Lagrangian defines a unique SODE field T';.

4.3 Hamiltonian representation of constrained Lagrangian
systems

Let us now consider a constrained Lagrangian system on J'7, with general con-
straints determining a constraint submanifold C'. In the previous section we have
seen that, in a neighbourhood of a point £ of C', the constraint relations can always
be written in the solved form (9) in terms of some appropriate bundle coordinates
(t, ¢, 4% ¢*) on J'7, with A = 1,...,n;a = 1,...m;a = m + 1,...n. Suppose
that at each point of C, rank k,5(§) = n —m, so that the constrained system is
regular in the sense of Section 3. One consequence of this regularity is that the
restriction leg; |, is an immersion. Indeed, consider an arbitrary point £ € C' and
note that, in a neighbourhood of £, a local basis for the vector fields along C' that
are tangent to C' is given by

9 9 9 9 9 9
wo=-2 g9 vy, =% g 0 el
ggn T Peggar 1A gaa T MAaG5 ot T o

with H% = 0¢?/0q*, H* = 0g®/0t and, as before, B® = 9g®/0¢*. Note that the
W, are just the vertical lifts of the vector fields X, introduced earlier (see (11)).
Using the expressions for the action of leg; . on the coordinate vector fields, listed
above, and putting £ = leg; (£), we find after a straightforward computation

0 0 P
e Walg) = ks () Ops é+ ) (8pb ¢ #&) Ops s) |
0 ]
legL*(YA|£): dgA R legL*(Z|§): N BERRE
¢ €

with hap = gap + Bagap, and where the dots on the right-hand sides represent terms
in (0/0pp)e. In view of the assumed regularity of (kas()) it is readily seen that
leg; ., restricted to T¢C, has rank 2n 4+ 1 —m at { and is, therefore, injective.
Since this holds for all £ € C, leg;|. is indeed an immersion. (Note that the
converse is not true: leg;|, may be an immersion even though the constrained
Lagrangian system is not regular, because the image of a vector tangent to C' at &
might nevertheless be in the annihilator of T,C' C T¢J'7.) We shall say that the
constrained system is hyper-regular if it is regular and if leg, (C') is an embedded
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sub-manifold. The latter in particular implies that leg,|, : C — J'7* is an
injective immersion and a homeomorphism onto its image.

Let T' denote the SODE field on C' describing the constrained Lagrangian dynam-
ics, and assume the constrained system is hyper-regular. We may then define a
vector field X on leg; (C) by setting X = leg; .I. We may also define a restricted
Hamiltonian A : leg; (C) — Leg; (C) C T*E by

h = Tegg o (legL|C’)_1
and, hence, a 2-form w; = h*(w) on leg; (C) such that X _Jwj, then satisfies
legy, (X Juwy) =1,

where 7 is the constraint form given by T’ _li*w; = 7 as in the previous section. The
Hamiltonian picture is therefore a mirror image of the Lagrangian one. Indeed,
we can use the Legendre map to obtain an immediate proof of the Hamiltonian
version of our regularity theorem.

Theorem 2. Let L : J't — R define a Lagrangian system, subject to constraints
C. If the constrained system is hyper-reqular then there is a unique vector field X
on leg; (C) satisfying the conditions

1. (X, dt)y =1;

2. (X,m) =0 for all 1-formsn on leg; (C) such that leg; () is a constraint form
on C;

3. legy (X Jwy,) is a constraint form.

In these circumstances, X = leg; ,(T') whereT is the SODE field on C obtained from
the system (L,C) by Theorem 1. If the system is reqular rather than hyper-regular,
then a similar result holds locally.

5 Connections

We have seen that a constraint submanifold C gives rise to a distribution, either
on E (in the case of affine constraints) or along p : C' — E (in the case of general
constraints) and that, as a partial converse, a distribution on F transverse to the
fibration over IR gives rise to an affine constraint manifold. There are, however, cir-
cumstances where some additional structure in the problem allows us to say rather
more about these distributions: these circumstances arise when the configuration
space F is itself fibred over some other manifold.
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So suppose we have two bundles 7 : F — M and 75 : M — IR, such that 7 =
wom: EF — IR. We shall let the dimension of £ be n 4+ 1 as before, and the
dimension of M be (n —m) + 1. The projection 7 gives rise to the tangent map
7. : TE — TM and its restriction yields the prolongation j'z : J'7 — J'7y: these
are both projections. On the other hand,

the dual map 7* : 7*T*M — T*F is an injection on each fibre, so we may regard the
pull-back bundle 7*T*M as a sub-bundle of T*E. With coordinates (¢,¢%*) on M
and (¢,¢%, ¢*) on E, and corresponding coordinates (¢, ¢%, ¢%, p, Pa, Pa) o0 T*E, the
sub-bundle 7*T™*M is described by the m equations p, = 0. All this projects onto
J'7*: we have a sub-bundle 7*.J'7§ C J'7* described by the same m equations
Do = 0.

The prolonged map j'm gives rise to a projection

peJr s 'y =E x J'1

defined by u = (71,0, j'7). Note that p is always an affine bundle, modelled on the
vector bundle pri(Vm) — 7*J'75. This is because the difference between two jets
7i71, 472 in the same fibre of J'7 over F is just a tangent vector to E vertical over
R, and if the jets project to the same point of 7*.J'7y under . then the tangent
vector is also vertical over M. In coordinates, we have

. . 0 o 0
dtm = ive = (4°Gim) — d"Gil) 0

71 (%)

Any section o : 7 J'1y — J'7 of p will define a constraint manifold C' by setting
C = o(r*J'7). Conversely, given an affine constraint submanifold C' of fibre
dimension n — m, it is always possible to find a local fibration of F such that C'is
locally the image of a section of the corresponding induced fibration .

Indeed, starting from a local bundle chart V' C E, we simply write the equations
of C in solved form with respect to m of the induced velocity variables and then
map V to the appropriate open subset of R™™*! using the coordinate functions.
It may, however, not be possible to find a global fibration of E, as the example of
E = IR x S? shows. If C is not affine then there may not even be a local fibration of
E: with our earlier example of F = RxIR? and C given by i2+7? = 1+22, any such
local fibration would yield a local projection y which, on a fibre of J'7 — E, would
have to map R?* — S' x R. Both these obstructions are, of course, topological in
nature.

When a constraint manifold is the image of an affine section, the corresponding
distribution will become the horizontal bundle of a connection on 7. (It is com-
plementary to the vertical bundle V7 precisely because it is the linear span of
the image of a section, rather than an arbitrary vector sub-bundle of TE.) For

19



the image of a section which is not affine, the situation is more complicated: we
now have a distribution along p, and this will become the horizontal bundle of a
“parametrised connection” in the sense described in [18].

In this situation, we take local coordinates (¢,¢*) on M, and (¢, ¢%, ¢*) on E. Put
g® = ¢% o 0, so that g% are functions on 7*J'7y; the image C of o is then defined
locally by ¢* = g%(t,¢*,¢*). The distribution along p is then spanned by vector
fields given in coordinates by
0 0 0 0
B

a a

Y P T P

where B2, B® are functions defined on C' (cf. (12)); hence

9 9 9
v *(B®
A A R

0
o T ° “(Bg)
are vector fields along 7* J'7y — E and span the horizontal bundle of a parametrised
connection on 7. If the functions g* are affine in ¢* then B2, B® are the pullbacks
of functions on £, and so we obtain a true connection on .

To see how the relationship between connections and constraint manifolds af-
fects the dual bundle, suppose first that we have a fibration 7 : £ — M and
affine constraints given by a true connection on 7. In this situation, the hori-
zontal bundle C of the connection is isomorphic (as a vector bundle over F) to
7*T'M, and this isomorphism restricts to an isomorphism of affine sub-bundles
C = 1*J'7y; consequently it defines a projection J'7 — C. The dual isomorphism
C" = m*T*M then allows us to identify the quotient bundle 7*E/C” with the sub-
bundle 7*T*M C T*E, and hence defines a section of T*F — T*E/@o. Similarly,
we obtain a section of J'7* — T*E/(C" & (dt)) whose image is 7*.J'7¢. In other
words, we may write
TE=C" &7 TM

and

J'r* = (C° mod dt) @ n*J' 7],
The local coordinates on 7*T*M are (t,q", pa,p) and those on T*E are given by
(t, ¢, Pa, Das ), but the latter are not adapted to the direct sum decomposition of
T*E. To define adapted coordinates, we set

Py =po+ Baps, P, =p.,, P = p+Bp, (13)

on T*E. A similar definition (omitting the coordinate P) may be used on .J'7*.
As will be seen in Section 6, in the case of a hyper-regular constrained Lagrangian
system (L, C), the coordinates (¢,¢”, P,) provide a set of natural coordinates on
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leg, (C) in terms of which one can write down an explicit expression for the vector
field X = leg; (T).

With a general constraint manifold C', we have a rather more unusual situation:
each cotangent space T'E may still be written as a direct sum of two subspaces,
one of which is (7*T*M),, but this direct sum is parametrised by points of C' (the
other subspace is the fibre of the Chetaev bundle over a determined by the point in
(). We can express this by defining a function ® : C' x g T*E — 7*T*M to replace
the projection pry : T*E — 7*T*M available in the affine case. In coordinates,

Pa o ®(jyv,€) = pal€) +pal€)Ba(5i7)
po®(jyv,e) = ple) +pal€)B* (7).

This projects down to a function @y : C' xg J'7* — 7*J'7¢ which, in coordi-
nates, is given by p, o ®g = p, o ®. It is evident that we may use these func-
tions to give “adapted” local coordinates on C' xz T*E and C xg J'7*, namely
(t,q*, 4%, P, P,, P) and (t,q%,¢%, Py, P,), tespectively. But that is quite differ-
ent still from having adapted coordinates on T*E and J'7*. As a result, given a
hyper-regular constrained Lagrangian system with Lagrangian L and non-linear
constraints C', the previous construction in general does not lead to a well-defined
coordinate system on leg; (C).

6 Coordinate expressions for the Hamiltonian rep-
resentation

The purpose of this section is to discuss how the vector field X = leg; . can
be represented in coordinates on leg; (C) and to compare this (where possible)
with the analytical considerations of the Introduction. Recall that X has a global
meaning when the constrainted system is hyper-regular, and is defined locally when
it is merely assumed that the k-matrix of the system (L, C) is regular. Since we
are interested here only in the local coordinate representation of X, the distinction
between regularity and hyper-regularity is not very relevant for the subsequent
discussion.

Throughout our analysis, we have represented the constraint equations defining C'
in the form ¢ = ¢%(t,¢",¢®). In the most general case, this can be done only in
a neighbourhood of each point of C' (resulting from the assumption that C is a
sub-bundle of J'7). There may be situations where such neighbourhoods contain
complete fibres of C'. As discussed in the previous section, a particular case where
the latter situation is guaranteed to apply is the case where there is an extra
fibration 7 : E — M, and the constraints are then defined by a (parametrised)
connection associated to a section o : 7*J'my — Jl7. If that section is affine,
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so that we are in the case of a true connection on 7, the right-hand sides of the
constraint equations have the affine form ¢g* = B%(t, ¢*)¢*+ B“(t, ¢**). We consider
this simpler case first.

Points on leg; (C) are defined by

oL oL

pa:ia—q-av pa:iaq.a

or, passing to the adapted fibre coordinates P,, P,, as defined by (13),
oL OL

Pa — a0 a — ca " 14
e " B (14)
We have
or, I
0q°

so that, in view of the assumed regularity, the first of the relations (14) can be
solved for the ¢¢, yielding relations of the form

i =7p"(t, q*, Ps) (15)

as in the Introduction. In the hyper-regular case, these essentially make up

the map legL|C_1, which we give a corresponding name for shorthand:
p=leg;|c " :leg, (C) — C.

If the constrained system is merely regular, p is defined only locally. Upon sub-
stituting the relations (15) into the defining equations (14) of leg; (C'), we obtain
explicit expressions for the equations defining leg; (C) as a submanifold of J'7*
and, just as the defining equations for C, they are solved for a well identified set

of variables, namely:
... OL
P.,(=p.) =7"1 i (16)
As mentioned in the previous section, this shows indeed that we can use (t, qt, Ps)
as coordinates on leg; (C'). Computing the restricted Hamiltonian h = Leg; o p in

the adapted coordinates (13) on T*FE, we find

Poh = p*(Poleg|c)

oL oL
— | gx L— SA _Ba~* -
= p'L—7p*Py = —H,

where the Hamiltonian function H matches the one given in the Introduction.

22



We next compute the vector field X which is uniquely determined by the conditions
of Theorem 2. Starting from

w = dpa Ndq® + dpg A dq® + dp A dt
= dP,ANdq* +dP, An® +dP N dt
— P, (dB§ A dqg® + dB® A dt)

(the constraint forms n®, being basic forms in this affine case, look the same on
T*E as on J'7), we obtain

wp, = dP,ANdq*+dP, An®—dH A dt
— P, (dBj A\ dq® + dB® A dt).

The notation for the coordinate functions P, is maintained here for shorthand,
but they should of course be replaced by the right-hand sides of the constraint
equations (16). If we take X to be a vector field on leg, (C') of the form

- 0 o 0 0o a0 0

X = T + X o + (BSX“+ B )8q“ +Y“8Pa’
where the X* and Y, are as yet undetermined functions of (¢,¢*, Ps), we will
ensure that X satisfies the first two requirements of Theorem 2. If in addition we
want X _lwy, to be zero modulo constraint forms 7%, the coefficients of dP, and
dq® fix the components X and Y,, which are found to be given exactly by the
expressions on the right-hand sides of equations (4) and (6) in the Introduction.
At first sight, there are then still terms in dt to be taken care of: but Theorem 2
ensures that X exists and there is no more freedom left, so these terms are bound
to vanish identically; one can verify that this is indeed the case. Recall that these
considerations apply to all systems with affine non-holonomic constraints, in the
hyper-regular case (with X being globally defined on leg; (C)) as well as in the
regular case (with X defined locally).

For non-linear constraints, it is not possible to give a similar general prescription
for the computation of the “constrained Hamiltonian vector field X” on leg; (C),
even if we assume that the constraints come from a (parametrised) connection and
are hyper-regular. The relevance of the results of Section 4 is that Theorem 2
still applies, so that regularity of the k-matrix is sufficient for the (local) existence
and uniqueness of X — and therefore there will be local coordinates in which an
expression for X can be written down. The problem is to describe such coordinates
in a way which is valid for all systems, rather than constructing them case by case.
To give an idea of the difficulty observe that, under regularity of the k-matrix, it
is possible to obtain an explicit representation of p = legL|C_1, via relations of the
form ¢% = p®(t, ¢, p4). But, as we have indicated, the right-hand sides will depend
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on all momentum variables. One could then still obtain defining equations for
leg; (C) of the form p, = p*i*(0L/0¢"), but again with right-hand sides depending
on both the p, and p,, so the equations would not be solved explicitly for the
Pa. In fact, the domain of p can be extended to a neighbourhood of leg; (C) in
J'7*, leading to a function H in the same neighbourhood. A computation of (an
extension of) X in such a neighbourhood, roughly along the lines indicated above,
can then be carried out modulo the differentials of the constraint functions. Since
the constraint equations are not available in solved form, such a procedure relies
on the use of Lagrange multipliers. This, of course, is precisely what we wished to
avoid by starting the Hamiltonisation process directly from the reduced Lagrange
equations on the constraint submanifold C.

In view of these considerations, one may wonder whether passing from the La-
grangian to a Hamiltonian context on leg, (C), in the case of general non-linear
constraints, is actually worth the effort: if no natural adapted coordinates present
themselves, additional structural benefits from a “Hamilton-like environment” are
not likely to be abundant. Needless to say, however, a general procedure for the
computation of X may exist if additional regularity assumptions would be ac-
cepted. For example, if not only the k-matrix but also the Hessian of L is assumed
to be regular, then it turns out that (¢,¢, P,) can be used again as coordinates
on leg; (C') and X can be computed explicitly in terms of these coordinates.

7 Illustrative examples

We shall now discuss three simple examples of (hyper-) regular constrained systems,
illustrating some of the characteristic features of the formalism developed in this
paper. The first two examples deal with affine constraints. In Example 1, the
unconstrained Lagrangian is regular, whereas in Example 2 we start from a singular
Lagrangian. Example 3 deals with a singular Lagrangian system subjected to a
non-linear constraint. The second and third examples are merely mathematical
constructs to illustrate the various subtle points which our general theory has
revealed. For instance, we need to illustrate that the procedure for passing from
the reduced Lagrangian description to an equivalent system of first-order equations
really works under the regularity of only the k-matrix. In addition, we wish to
illustrate the various points made about the role which the adapted momentum
variables P, can or cannot play in setting up Hamilton-type equations.

Example 1 The curve of pursuit (see e.g. [14], p. 17)

Consider a point A moving along the z-axis of a cartesian reference frame in a
plane, which we take to be the xy-plane, and let its distance from the origin O be
given by a prescribed function f(t). A particle with unit mass moves in the plane
and is constrained by its velocity being always directed towards the point A.
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Here we have £ =2 R x R?, with coordinates (t,7,y). The Lagrangian of the
particle is simply its kinetic energy L = %(:E2 +9?%) and the constraint submanifold
C' is defined by the equation yi + (f(t) — x)y = 0. Note that we do not have a
global fibration £ — M adapted to the

constraint, but we can always solve the constraint equation locally with respect to
one of the velocities & or g. In particular, in a domain where y # 0, we can write
the constraint equation in the form

¢:<£1ﬂﬁ>y
y

iy
Y

The constraint form is then

n=dx — Y .

For the pull-back of L to the constraint submanifold we immediately obtain
To_1.2 (z — f(t)”

The k-matrix reduces here to a scalar and, since we are dealing with an affine
constraint, we have that

_ 0L (z—f(#)?
dy° y?

k +14£0,

so that the constrained system is regular. Computing the vector field T' on the
constraint submanifold along the lines indicated in the proof of Theorem 1, one
easily finds that

o x—f.0 .0 (@—f)yf 0

ey e ey T - Ry

It is interesting to compare this approach to the one described, for instance, in
[7], where the constrained dynamics is obtained by taking the projection (of the
restriction to C') of the unconstrained Euler-Lagrange vector field with respect to
an almost product structure defined along C'. As pointed out at the end of Section
3, that technique relies on the regularity of the given Lagrangian.

Passing now to the Hamiltonian framework, we follow the procedure outlined in
the previous section. In terms of the ‘adapted’ momentum variables, the points on
leg; (C) are given by
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Note that we can solve the first of these relations for 3, namely
. y?
y=pt,zy F) = Gt
which, upon substitution in the expression for P,, leads to the constraint equation
(= fy
(= frP+y 7

The Hamiltonian function H and the 2-form wj; become, respectively,

P, =

H:ﬁPy—f(t,x,y,ﬁ):%( _f)2+y2Pg/2
and
—f
(x—f)y {E—f N l y2 2
_[—(x—f)Q—i—yZPy]d(—y )/\dy d[Z—(x—f)Zqu?Py Adt .

Putting

Y

and requiring X _lw;, = 0(modn), we obtain, after a rather tedious but straight-
forward calculation,

X = y°ry Y:_(x_f)fpy

(x=f)+y*’ (= f)+y>

Example 2

For this example we take £ = R x R? with coordinates (¢,z,y,z). Consider a
system with Lagrangian L = £(i?+y+22), subject to the constraint z = (1+x%)y.
Here we do have a global fibration E — R x R?, (t,2,y, 2) — (t,2,%), with (z,y)
playing the role of the ¢® in our discussion of the general theory. Note that L is
singular and, with the notations of Section 3, we have ¢g,, = g,, = 1, hyy = hyy = 1,
h., = 1+ 2%, whereas the other entries of g and h are zero. The components of
the k-matrix then become: kyp =1, kyy = 14 (14 22)?%, kyy = by = 0

so that det £ > 0 and, hence, the constrained system is found to be regular. The
function L is given by

L=1(@+y+ (1+2%%
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and its Hessian is precisely the k-matrix (as it should be, since we are in the affine
case). The constraint forms are multiples of n = dz — (1 + 2?)dy. The SODE-field
T on the constraint manifold C' here becomes

.0 2xxy O

- 0
T= 4io 1yt (14— — 2 Y
+xx+yy+(+x)y8z 14+ 220y

The Legendre transformation gives p, = %, p, = %, p, = Z, so that clearly the
momenta p,, p, cannot be used as coordinates on the constraint manifold leg, (C'):
in fact, in this case we have that leg, (C) = leg,(J'7) = {p, = 3}. Following
the general procedure outlined in the previous section, we introduce the adapted
coordinates Py, P,, P, in terms of which the points of leg; (C') are now determined
by

oL

oL
== =1+ (1+2*% Pz:i*<—>:(1+x2)g)

=5 =

oL

P, - -
oy

;P
Tty EE

. From these relations we can eliminate £ and y and the constraint equation then
becomes

2P, — 1
Pz — Pz) — 1 z
For the Hamiltonian function H we obtain
;L ((1+2)?P2+ P =P, +1)
—2(1 + 22)2 Tt y oo

Computation of X gives

X = 2+P3+l 42Py_1 £_l<2py_1>£
oy 2

ot Tor 2\ (1+a22)2 1422 ) 0z
(1-2)2P,—1)*> 9  z2P,—1)P, 0
(14 22)3 0P, 1+22 0P,

Observe here that the given constraint equation could also have been written in
the form )

z
1+a22’
which suggests another possible fibration of E, corresponding to the projection
(t,x,y,z) — (t,x,z). Tt so happens that there would be no need to pass to the
adapted fibre coordinates P, P, here, as (¢, x, z, ps, p,) provides a suitable set of
coordinates in its own right. The point to make, however, is that the p, coordinates
cannot always be used, as the first choice of a fibration has clearly illustrated,
whereas the P, always work.

Y=
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Example 3

Take L = %(x2 + 9% + 2), subject to the non-linear constraint z = —g?. Again,
the given Lagrangian is singular and we have that ¢,, = g,, = 1, the other entries
in g being zero. The only nonzero entries of h are hy, = hy, = 1. We therefore
obtain kg, = kyy, = 1, kyy = Ky, = 0 so that det &k = 1 and the constrained system
is regular. Note that even L = %{t2 is singular here! Nevertheless, the regularity of
the k-matrix still guarantees the existence of a unique SODE-field describing the
constrained dynamics. The constraint forms are multiples of n = dz + 2ydy — 3%dt
and, with the Poincaré-Cartan 2-form being given by w;, = d A 0, +dy A 0, a
straightforward computation leads to

r=2 ;9,0 p?
“ot Tor Yoy Y oz

The Legendre transformation becomes p, = &, p, = v, p, = % and the constraint
manifold on the Hamiltonian side is given by leg, (C') = leg, (J'7) = {p. = i}.
In agreement with the discussion in the previous section, and contrary to the sit-
uation in the affine case, there is no general procedure available here for selcting
‘adapted coordinates’. As a matter of fact, an attempt to introduce P, coordinates
as before would lead to P, = p,, P, = 0 which, obviously, is not an appropriate
set of coordinates. On the other hand, a coordinate representation of the Hamil-
tonian picture which does work for this example, is the following. In the original
coordinates we find that

h*w = dp, A dz + dp, Ady — dH A dt ,

where

L+ '8Z+ '8Z+ 2
oi Yoy Y

= Rt

SN
I

We then obtain for the constrained Hamiltonian dynamics:

< _ 0 0 0 5 0
= &+px£ +pya—y —py% .
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