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Abstra
t. We dis
uss various aspe
ts of the transition from Lagrangianto Hamiltonian equations for systems with general (non-linear) non-holonomi
 
onstraints. The emphasis is �rst on 
onstru
ting the re-du
ed dynami
s on the 
onstraint submanifold, and then trying to starta Hamiltonisation pro
edure from there. We prove theorem 
on
ern-ing the regularity whi
h is required to obtain a unique se
ond-orderdynami
s on the 
onstraint submanifold, and we show that the same
ondition allows the transition to a Hamiltonian pi
ture. Throughoutthe analysis, di�erent degrees of generality are dis
ussed.1 Introdu
tionIn a number of re
ent 
ontributions, we have analysed various aspe
ts of the geome-try of non-holonomi
 systems. In [16℄, we 
onsidered Lagrangian systems subje
tedto generalised �Caplygin-type 
onstraints. To be pre
ise, let L(t; qA; _qA) be the La-grangian, with A = 1; : : : ; n, and assume m of the velo
ities _qa are given in termsof the n�m remaining _q� by relations of the form_qa = Ba�(t; q) _q� +Ba(t; q); a = 1; : : : ; m: (1)�Senior Resear
h Asso
iate at the Fund for S
ienti�
 Resear
h, Flanders (Belgium)1



Classi
ally, we would then make use of Lagrange multipliers to write equations ofmotion of the form ddt  �L� _q�!� �L�q� = ��aBa�;ddt  �L� _qa!� �L�qa = �a:But if we are not interested in the rea
tion for
es 
aused by the 
onstraints, it isvery easy to eliminate the multipliers �a. WithL(t; qA; _q�) = L(t; qA; _q�; Ba� _q� +Ba);we obtain a redu
ed dynami
al problem des
ribed by the 
onstraints, together withthe se
ond-order equationsddt  �L� _q�! = X�(L) + Ca� �L� _qa ; (2)where X� = ��q� +Ba� ��qa ;Ca� = _Ba� �X�(Ba� _q� +Ba):and the 
onstraints are also used to substitute for the _qb in �L=� _qa and Ca�. Thispro
edure is des
ribed, for example, in the 
lassi
al textbook of Neimark and Fu-faev [13℄ for a generalisation of �Caplygin's equations whi
h is attributed to Vorone
.In [16℄, we des
ribe a geometri
al framework for this situation. We assume thatthe spa
e E with 
oordinates (t; qA) is �bred over a manifold M with 
oordinates(t; q�), su
h that both E and M are �bred over IR, so that we have �brations� : E ! M , �0 : M ! IR and � = �0 Æ � : E ! IR. The 
onstraints 
an then be
onsidered as being de�ned by a 
onne
tion � on �, whi
h determines a se
tionof the bundle J1� ! ��J1�0 whose image J1� is the 
onstraint submanifold wherethe redu
ed dynami
s takes pla
e. The purpose of [16℄ was to show that, if theequations (2) 
an be solved for the �q�, the resulting se
ond-order ve
tor �eld �living on J1� 
an be obtained dire
tly from the kernel of a 
ertain 2-form 
M .Clearly, if this route is taken towards the 
onstru
tion of the equations of motion,no regularity of the un
onstrained Lagrangian L has to be assumed: we need onlythat the Hessian of L is non-singular.In [22℄, we 
onsider the more general set-up of m linear (or, more pre
isely, aÆne)
onstraints AaA(t; q) _qA + ba(t; q) = 0; a = 1; : : : ; m;2



where the usual assumption is that the matrix (AaA) has rank m. Lo
ally, there-fore, we 
an always write the 
onstraints in a form su
h as (1), but no �brationis assumed to be given a priori. Considering a Lagrangian L on J1� with itsasso
iated Poin
ar�e-Cartan 1-form and 2-form�L = Ldt + �L� _qA (dqA � _qAdt); !L = d�L; (3)we show that, starting from the pullba
k i�!L on the 
onstraint submanifold, thereis a unique 
onstraint 1-form � su
h that the 2-form
 = i�!L � dt ^ �has just one se
ond-order di�erential equation �eld (Sode �eld) � in its kernel. Ifa �bration E ! M is 
hosen, this � is the same as the one spanning the kernelof the 
orresponding 
M mentioned above. The regularity assumption we take inthis 
onstru
tion is that the un
onstrained L should be positive de�nite (a 
ommonassumption, see e.g. [24, 25℄).Many authors have already dis
ussed how one 
an set up a Hamiltonian theory ofnon-holonomi
 systems geometri
ally (see e.g. [1, 2, 3, 5, 7, 9, 23, 26℄). In spiteof 
ertain di�eren
es in the general approa
h, what most of these treatments havein 
ommon is that the Legendre transform related to the original un
onstrainedLagrangian is the starting point of the analysis, and a redu
tion pro
ess to the dy-nami
s on the 
onstraint submanifold (similar to the one des
ribed above) is thenrepeated on the Hamiltonian side. This means, in parti
ular, that a form of regu-larity will be needed for L, possibly supplemented by further 
onditions requiredfor the redu
tion. If, however, there is a dire
t geometri
al way of produ
ing theright redu
ed Lagrangian pi
ture, then it is natural to wonder whether the Hamil-tonisation pro
edure 
annot be started dire
tly from there. This would then bein a

ordan
e with the remark made in [5℄ that, stri
tly speaking, we should be
on
erned only with the regularity of the restri
tion of the Legendre transform tothe 
onstraint submanifold.To make this idea more 
on
rete, assume we are again in the situation of a systemwith 
onstraints of the form (1), and know of the redu
ed se
ond-order equations(2) whi
h 
omplete the dynami
al equations. Then, naively, what we would do froman analyti
al perspe
tive to arrive at Hamilton's equations would go as follows.De�ne momentum variables P� = �L� _q� ;and assume these relations 
an be inverted to obtain the _q�, say as_q� = ��(t; qA; P�):3



De�ne the redu
ed Hamiltonian fun
tion asH(t; qA; P�) = P��� � L(t; qA; ��):It is then easy to verify that we have the following identities:�H�qA � � �L�qA ; �H�P� � ��;from whi
h it follows that the set of equations (1), (2) 
an equivalently be writtenin the form _q� = �H�P� (4)_qa = Ba� �H�P� +Ba (5)_P� = �X�(H) +  i� �L� _qa! (t; qA; ��)Ca�: (6)In the fun
tions Ca� appearing on the right-hand side of (6), whi
h were introdu
edabove, it is of 
ourse understood that the derivatives of the qA are repla
ed bythe right-hand sides of the pre
eding equations. Note that su
h a passage to a\
anoni
al form of the equations of motion" is des
ribed in the 
lassi
al book[13℄ for the spe
ial 
ase of so-
alled �Caplygin equations, where neither L nor the
onstraint equations depend on the variables qa (or on time).The point to observe here is that this transition to Hamilton-like equations isbased on a Legendre transform 
oming from the redu
ed Lagrangian L, so that itrequires the non-singularity of the Hessian of L. Part of what we want to a
hievein the present paper is to give a geometri
al 
onstru
tion of this transition. Butthe ambition is to do it at the same time for the more 
ompli
ated 
ase of generalnon-linear non-holonomi
 
onstraints. In that respe
t, note that in [17℄, one of ushas generalised the dire
t geometri
al 
onstru
tionof a redu
ed se
ond-order ve
tor �eld to the 
ase of non-linear 
onstraints of theform _qa = ga(t; qA; _q�):The regularity assumption whi
h turns out to be relevant for that purpose has thefollowing rather unfamiliar 
oordinate expression:det �2L� _q�� _q� �  i� �L� _qa! �2ga� _q�� _q�! 6= 0: (7)Among other things, we will give here a geometri
al interpretation of this regularity
ondition, and present a pro
edure of Hamiltonisation of the dynami
s whi
h works4



under this assumption only, without re
ourse to the un
onstrained Lagrangian L.At the same time, we shall extend the results of [22℄ to the 
ase of non-linear
onstraints, and in fa
t show also that this 
onstru
tion 
an be 
arried out undermilder regularity assumptions than those of [22℄.We should remark that non-linear non-holonomi
 
onstraints do not o

ur fre-quently in real physi
al problems and there is little agreement in the literatureabout the right mathemati
al model to in
orporate them. The most widely usedmodel is one whi
h makes use of a formulation 
alled \Chetaev's rule". In 
lassi
alterms, this rule 
an be interpreted as extending the de�nition of the 
on
ept of\virtual velo
ities" to the 
ase where non-linear 
onstraints are present. If these
onstraints are des
ribed by relations of the form Ga(t; qA; _qA) = 0, Chetaev's rulestipulates that virtual velo
ities wA should satisfy (�Ga=� _qA)wA = 0; the assump-tion is then that d'Alembert's prin
iple remains valid, stating that the total virtualpower of all rea
tion for
es is zero. The least one 
an say is that this model in
or-porates those for linear or aÆne non-holonomi
 
onstraints whi
h are 
ommonlya

epted as appropriate for many 
ir
umstan
es. Most authors also a

ept themore general model, but 
riti
ism about its physi
al 
orre
tness has been formu-lated by, for example, Pironneau [15℄: a similar 
riti
ism 
an be found in re
entwork by Marle [10℄, who also formulates some interesting alternatives. Neverthe-less, the model we adopt in the present paper is the one asso
iated with Chetaev'srule. Its geometri
al implementation is 
arried out by the 
onstru
tion of the so-
alled \Chetaev bundle", a terminology introdu
ed in [12℄. This terminology isin 
ommon use for the 
ase of aÆne 
onstraints, and the fa
t that one basi
ally
arries out the same 
onstru
tion for non-linear 
onstraints 
an be seen as a goodreason for examining this model from a purely mathemati
al perspe
tive.The s
heme of the present paper is as follows. In Se
tion 2 we re
all a geometri
alway of modelling velo
ity-dependent 
onstraints for time-dependent se
ond-orderdynami
al systems. First, with a view to the later dis
ussion of the Hamiltonisa-tion of 
onstrained Lagrangian systems, we review some generalities 
on
erning jetspa
es and their duals. Next we 
onsider aÆne 
onstraints, and then we dis
usshow this pi
ture is amended for general (non-linear) 
onstraints. In Se
tion 3 westate and prove, for Lagrangian systems with non-holonomi
 
onstraints, a gener-alisation of the main result of [22℄: this 
on
erns a 
hara
terisation of the redu
edse
ond-order dynami
s on the 
onstraint submanifold as the unique Sode in the1-dimensional kernel of a 
ertain 2-form. In Se
tion 4, we re
all �rst the standardpro
edure of passing from Lagrange's to Hamilton's equations for time-dependentsystems. We then see how this pro
edure 
an be adapted to pass from a redu
edLagrangian dynami
s on the 
onstraint submanifold C to a Hamilton-like systemon legL(C). We shall of 
ourse verify that these geometri
al 
onstru
tions mat
hthe observations made in this introdu
tion. In Se
tion 5, we 
onsider more parti
-ularly the 
ase where the 
onstraints are de�ned by a 
onne
tion (or \parametrised5




onne
tion"). The last two se
tions 
ontain 
onsiderations on the 
oordinate 
al-
ulations involved and some illustrative examples.2 Time-dependent non-holonomi
 
onstraintsLet � : E ! IR be a bundle, and let J1� be its �rst jet manifold. J1� providesthe natural framework for des
ribing the dynami
s of a time-dependent me
hani
alsystem, with E representing the 
on�guration spa
e-time manifold of the system.Before dis
ussing the notion of (velo
ity-dependent) 
onstraint, we �rst reviewsome aspe
ts 
on
erning jet spa
es and their duals, thereby �xing some notationthat will be used later on. For more details we refer to [20, 21℄.2.1 Jets and duals>From the general theory of jet bundles we know that �1;0 : J1� ! E is an aÆnebundle modelled on the ve
tor bundle V � ! E of tangent ve
tors on E that areverti
al to � . Alternatively, we may 
onsider it as an aÆne sub-bundle of thetangent bundle TE ! E. With 
oordinates (t; qA) on E, (t; qA; _qA) on J1� and(t; qA; _t; _qA) on TE, we may des
ribe J1� as the submanifold of TE given by _t = 1.If dimE = n + 1, then dimJ1� = 2n + 1 and dimTE = 2n + 2. We also re
allthat J1� admits a 
anoni
al ve
tor valued 1-form S, whi
h generalises the \verti
alendomorphism" on a tangent bundle and is given byS = �A 
 �� _qA ; (8)where �A = dqA � _qAdt are the 
onta
t forms.For any aÆne spa
e A of dimension n, its extended dual Ay is the (n+1)-dimensionalve
tor spa
e of all real-valued aÆne fun
tions on A. If A is an aÆne subspa
e of the(n+1)-dimensional ve
tor spa
e V then Ay �= V �, be
ause for ea
h linear fun
tional� 2 V � the restri
tion �jA is an aÆne fun
tion on A, and this 
orresponden
e isan isomorphism. The dual of A is then the n-dimensional ve
tor spa
e A� de�nedby A� = Ay=AÆ, where AÆ is the 1-dimensional ve
tor subspa
e of Ay 
ontainingthe 
onstant fun
tions on A.We may now apply this to J1� and TE. The (2n + 2)-dimensional extended dualof J1� , with �bre dimension (n + 1), is just the 
otangent bundle T �E, and the(2n + 1)-dimensional dual J1� � is the quotient of T �E by fun
tions 
onstant onthe �bres of J1� , so that we may write J1� � �= T �E=hdti = V �� . Here, hdtistands for the bundle over E whose �bre at a 2 E is the one-dimensional ve
torspa
e spanned by the 
otangent ve
tor dta, so that V �� is the bundle of \verti
al6




otangent ve
tors" on E. There are 
learly natural proje
tions T �E ! J1� � ! E.With 
oordinates (t; qA) on E, the 
oordinates on T �E are (t; qA; p; pA) and thoseon J1� � are (t; qA; pA).2.2 AÆne 
onstraintsLet C ! E be an aÆne sub-bundle of J1� ! E with �bre dimension n �m. Weshall 
all C a 
onstraint submanifold of J1� : this re
e
ts the fa
t that, later on, Cwill be interpreted as representing some external (velo
ity-dependent) 
onstraintsimposed on a Lagrangian system de�ned on J1� .The sub-bundle C ! E gives rise to a distribution C on E in a very straightforwardand geometri
 way. The in
lusion J1� � TEmeans that C ! E is also an aÆne sub-bundle of TE ! E, and so we may letC ! E be the ve
tor sub-bundle spanned by C; C has �bre dimension n�m+ 1.Now 
hoose 
oordinates (t; q�; qa) on E su
h that C is des
ribed by equations ofthe form _qa = Ba�(t; q�; qb) _q� +Ba(t; q�; qb);where the fun
tions Ba� and Ba are de�ned lo
ally on E. (We do not at this stagesuppose that E is �bred over another manifold M , but we may verify that thebundle 
ondition on C guarantees the existen
e of suitable lo
al 
oordinates.) Insu
h a 
oordinate system, the points of C may be des
ribed as tangent ve
tors onE of the form ��t + _q� ��q� + ( _q�Ba� +Ba) ��qaso that the ve
tor sub-bundle C is spanned by��t +Ba ��qa ; ��q� +Ba� ��qa :The annihilator CÆ � T �E is then spanned by the 
onstraint forms�a = dqa �Ba�dq� � Badt:Of 
ourse we 
an also obtain CÆ using the \Chetaev bundle" approa
h (see e.g.[11, 12℄), by noting that i�S�T ÆC is a 
o-distribution on C that (in this aÆne 
ase)is basi
 over E, and so proje
ts to the same 
o-distribution CÆ. Here, i : C ,! J1�denotes the natural in
lusion map, S is the verti
al endomorphism (8) and T ÆC isthe annihilator of TC in T �J1� . The relationship between the two approa
hes forobtaining CÆ will be
ome 
learer when we look at general 
onstraints.One property of C worth noting is that it is always \transverse to the �brationE ! IR" | that is, C + V � = TE, so that the �bre dimension of C \ V � is7



n � m. The dual statement is that CÆ \ hdti = f0g, so that the �bre dimensionof CÆ � hdti is m + 1. These observations tell us how to run the 
onstru
tion inthe opposite dire
tion: given a ve
tor sub-bundle C � TE of appropriate �bredimension transverse to the �bration E ! IR, or of 
ourse a suitable dual bundlespanned by some \
onstraint forms", we re
onstru
t the 
onstraint submanifold Cby de�ning C = C \ J1� .We 
an now see how to represent the extended dual Cy of the 
onstraint subman-ifold: it is simply the total spa
e of the dual ve
tor bundle C� ! E, and we mayobserve that this is naturally isomorphi
 to the quotient bundle T �E=CÆ ! Eby the following argument. If j1t 
 2 C and [�℄ 2 T �E=CÆ, let � 2 T �
(t)E be arepresentative of [�℄; any other representative is of the form � + � where � 2 CÆ,so we may de�ne hj1t 
; [�℄i without ambiguity to equal hj1t 
; �i. With 
oordinates(t; q�; qa; p; p�) on the quotient bundle,hj1t 
; �i = _q�(j1t 
)p�(�) + p(�);whi
h shows indeed that [�℄ de�nes an aÆne fun
tion on the �bre of C over 
(t) 2 Eand, hen
e, belongs to Cy. On
e again, all this proje
ts to J1� :T �E J1� � �= T �E=hdti
Cy �= C� �= T �E=CÆ C� �= T �E=(CÆ � hdti)

-
-? ?

2.3 General 
onstraintsFor the general 
ase we let C ! E be a (not ne
essarily aÆne) sub-bundle ofJ1� with �bre dimension n � m and natural in
lusion map again denoted by i :C ,! J1� , and we write � : C ! E for the restri
tion of �1;0 to the 
onstraintsubmanifold C. This will give rise to a \distribution along �": a 
orresponden
eassigning, to ea
h point j1t 
 of C, a subspa
e of T
(t)E. We may also regard this
orresponden
e as determining a sub-bundle C of the pull-ba
k bundle ��TE.The \Chetaev bundle" approa
h to this is straightforward: i�S�T ÆC is a 
o-distribution on C that is, in general, semi-basi
 rather than basi
 over E. If weare able to 
hoose 
oordinates (t; q�; qa) on E su
h that, in terms of the indu
edbundle 
oordinates on J1� , the �bres of C are determined by equations in solvedform as _qa = ga(t; q�; qb; _q�) (9)8



(note that it may not always be possible to �nd su
h 
oordinates on E), then the
o-distribution is spanned lo
ally by the 
onstraint forms�a = dqa � �ga� _q�dq� �  ga � _q� �ga� _q�! dt: (10)We may 
learly regard this as a 
o-distribution along � (or, in other words, asub-bundle CÆ of ��T �E); its kernel is spanned byX� = ��q� + �ga� _q� ��qa ; X0 = ��t +  ga � _q� �ga� _q�! ��qa ; (11)whi
h are ve
tor �elds along �; they lo
ally generate the distribution C. Note thatwe may repla
e X0 by X0 + _q�X� = ��t + _q� ��q� + ga ��qawhi
h is just the total time derivative d=dt restri
ted to C.The distribution C 
an also be obtained without looking at dual stru
tures, byusing the following approa
h. At ea
h point of J1� , the verti
al tangent spa
e overE is isomorphi
 to the ve
tor spa
e upon whi
h the aÆne �bre of J1� throughthe 
hosen point is modelled: in other words, V �1;0 �= � �1;0(V �) as bundles over E.We may therefore 
onsider the image of TC \ V �1;0 under this isomorphism: it isthe sub-bundle of � �1;0(V �)���C = ��(V �) spanned lo
ally by the X�, and so is justC \ ��(V �). We may then re
over C from this by its dire
t sum with hd=dtjCi.Although these two approa
hes may seem quite distin
t, they are a
tually dual toea
h other. The isomorphism V �1;0 �= � �1;0(V �) is just the inverse of the verti
allift (in the 
ontext of aÆne bundles rather than ve
tor bundles) and so it is theessential ingredient of the S tensor whose a
tion on 
otangent ve
tors is used to
onstru
t the Chetaev bundle. In the spe
ial 
ase when the 
onstraints are aÆne,the �bres of the sub-bundle C � ��TE = C �E TE do not depend on the 
hoi
e ofpoint in any given �bre of C and, therefore, we may regard C as a sub-bundle ofTE and 
onstru
t it dire
tly as des
ribed in the previous se
tion. To summarise,we have C � ��TE; CÆ � ��T �Ein the general 
ase, and C � TE; CÆ � T �Ein the aÆne 
ase.As mentioned above, it may not always be possible to �nd 
oordinates on E su
hthat the expression (9) for C in solved form is valid for 
omplete �bres of �:9




onsider, for example, E = IR � IR3 with 
oordinates (t; x; y; z) and let C be thesubmanifold of J1� given by _x2 + _y2 = 1 + z2. In su
h a 
ase we 
annot �nd
onstraint forms �a de�ned on 
omplete �bres of �. (This topologi
al 
ompli
ationdoes not arise for aÆne 
onstraints.) We may nevertheless, even in the general
ase, �nd forms spanning the Chetaev bundle lo
ally on C. Indeed, take a point� 2 C and suppose that C is de�ned in a neighbourhood of � by m relationsGa(t; qA; _qA) = 0, where the supers
ript a simply numbers the equations and doesnot refer to a parti
ular 
hoi
e of 
oordinates on E. At points of C belonging tothat neighbourhood of �, the Chetaev bundle is spanned by the forms i�S�dGa,namely i�  �Ga� _qA �A! :In the example given above, the Chetaev bundle would be one-dimensional andspanned by the single form i�( _xdx+ _ydy� ( _x2+ _y2)dt). As C ! E is a sub-bundleof J1� ! E, the rank of the matrix (�Ga=� _qB) in the neighbourhood of � mustbe m. If, further, we suppose that we have ordered the qA 
oordinates so that therank of the sub-matrix (�Ga=� _qb), for a; b = 1; : : : ; m, is m at the point � itself,then this 
ondition must also hold in a (possibly smaller) neighbourhood U of �.Putting CU = U \ C, it follows from the above that the Chetaev bundle on CU isspanned by the 1-forms i�  �Ga� _qb �b + �Ga� _q� ��! :As (�Ga=� _qb) is non-singular on U , we may de�ne fun
tions Bb� on U by�Ga� _qb Bb� = ��Ga� _q�so that, on CU , the Chetaev bundle is spanned by the equivalent set of 1-forms�a = i�(�a �Ba���):The regularity of the matrix (�Ga=� _qb) further implies that the relations Ga = 0
an be solved for the _qa so that, upon further restri
ting U if ne
essary, CU isdetermined by relations of the form _qa = ga(t; q�; qb; _q�). It is then straightforwardto 
he
k that the fun
tions Ba� are given expli
itly byBa� = �ga� _q� ;and so we see again that the 
onstraint 1-forms �a on CU 
an be given by theexpression (10). 10



To summarise, the previous dis
ussion shows that, in the 
ase of general 
on-straints, the 
onstraint relations and the generating forms of the 
orrespondingChetaev bundle 
an always be represented by expressions of the form (9) and (10)respe
tively. However, depending on the topology of the 
onstraint submanifold,these expressions may be valid for 
omplete �bres of C, or merely in an openneighbourhood of ea
h of its points.Finally, we note also that, for general non-linear 
onstraints, it does not make senseto work ba
kwards from the distribution C to the 
onstraint manifold (or from theChetaev bundle to the 
onstraint manifold) be
ause both have to be spe
i�ed atpoints of C, and so 
arry the manifold with them automati
ally.3 Lagrangians and 
onstraintsNow suppose we are given a Lagrangian system, with Lagrangian L : J1� ! IR,whi
h is subje
ted to m velo
ity-dependent 
onstraints modelled by a 
onstraintmanifold C � J1� as des
ribed in the previous se
tion. In [22℄ we saw that, inthe aÆne 
ase, if L satis�es a 
ertain regularity 
ondition then there is a unique
onstraint form � on C su
h that the 2-form i�(!L) � dt ^ � 
ontains a uniqueSode �eld � in its kernel. In that paper, we required the Hessian of L to bepositive de�nite, although the proof of the theorem required only that the Hessianof LjC be non-degenerate. The purpose of this present se
tion is twofold: �rst, weshall show that it is possible to amend that proof 
arefully so that it also appliesto the 
ase of general 
onstraints; and se
ondly, we shall derive weaker regularity
onditions under whi
h the theorem still holds. In addition, we shall see that these
ond-order nature of the ve
tor �eld we obtain is a 
onsequen
e of regularity,and does not need to be assumed a priori.A

ording to the dis
ussion in the previous se
tion, in the 
ase of general (non-linear) 
onstraints we 
an always �nd an open neighbourhood of any point of Con whi
h the 
onstraints 
an be represented by equations of the form (9). In thisse
tion we restri
t 
onsideration to su
h a neighbourhood U , and to its interse
tionCU with C. The Chetaev bundle is spanned on CU by the m 1-forms (10). In whatfollows we shall always use the shorthand notationBa� = �ga� _q� ; Ba = ga � Ba� _q� (12)whi
h is in agreement with the notation in the aÆne 
ase.The essential tool we use in our dis
ussion is an (n�m)� (n�m) matrix whi
hturns out to be as important to the study of 
onstrained systems as the Hessian ofL is to un
onstrained systems, and whi
h we will11




all the k-matrix of the system (L;C). In geometri
al terms, we 
onsider the sym-metri
 bilinear form g derived from L and written in 
oordinates as g = gAB�A
�B ,where gAB = �2L� _qA� _qBis the Hessian of L (see, for example, [19℄). The k-matrix of (L;C) is the 
oordinaterepresentation obtained when the a
tion of i�g, regarded as a 2-
ovariant tensor�eld along �, is restri
ted to ve
tor �elds along � whose verti
al lifts are tangentto C and whi
h are annihilated by dt. The ve
tor �elds X� (see (11)) form a basisfor these, and the k-matrix of (L;C) is therefore given byk�� = (i�g)(X�; X�):In terms of the Hessian, if we de�ne h�� = i�(g��)+Bb�i�(g�b) and ha� = i�(ga�)+Bb�i�(gab) then k�� = h�� + Ba�ha�. For aÆne 
onstraints, k�� is just the Hessianof the 
onstrained Lagrangian L, whereas for general 
onstraints this is no longerthe 
ase and we �nd instead thatk�� = �2L� _q�� _q� �  i� �L� _qa! �2ga� _q�� _q�whi
h is pre
isely the matrix mentioned in the Introdu
tion (see (7)).Before stating the main result of this se
tion, let us �rst �x some terminology.Assuming the 
onstraints are written in the form (9), a ve
tor �eld � on the
onstraint manifold C will be 
alled a se
ond-order di�erential equation (Sode)�eld on C if it satis�es the following 
onditions:h�; dti = 1 ; h�; i���i = 0 ; h�; �ai = 0 :The last of these restri
tions merely expresses the fa
t that we want � to be ave
tor �eld living on the 
onstraint manifold, so that its integral 
urves will be
urves in E whose prolongations lie in C. The true se
ond-order 
hara
ter istherefore expressed by the middle 
ondition.Note that su
h a ve
tor �eld 
an always be extended lo
ally to a genuine se
ond-order ve
tor �eld on J1� , de�ned on a neighbourhood of C, whi
hat ea
h point of C is tangent to C.Theorem 1. Let L : J1� ! IR de�ne a Lagrangian system, subje
t to 
onstraintsC. If the k-matrix of the system (L;C) is non-singular then there is a uniqueve
tor �eld � on C satisfying the 
onditions1. h�; dti = 1;2. h�; �i = 0 for every 
onstraint form �;12



and su
h that3. � i�!L is a 
onstraint form, where !L is the Poin
ar�e-Cartan 2-form of Land i : C ! J1� is the in
lusion.In addition, � is then ne
essarily a Sode �eld on C.Proof. To prove this result, note that (in 
oordinates on U) the Poin
ar�e-Cartan2-form !L may be written as!L = �2L�qA� _qB �A ^ �B + gABd _qA ^ �B + TBdt ^ �Bfor some fun
tions TB, the expli
it form of whi
h is of no importan
e here. If � is ave
tor �eld on C satisfying the �rst two 
onditions of the theorem then, at pointsof CU , � = ��t + �� ��q� + (ga +Ba�(�� � _q�)) ��qa + F � �� _q�so that � i�!L mod dqA;dt= �i�(gAB)h�; i��Bii�d _qA= �(i�(gA�) +Bb� i�(gAb))(�� � _q�) i�d _qA= �(�� � _q�)(h�� i�d _q� + ha� i�d _qa) :Sin
e i�(d _qa � dga) = 0, we �nd thati�d _qa mod dqA;dt= Ba� i�d _q� ;so that � i�!L mod dqA;dt= �(�� � _q�)(h�� +Ba�ha�)i�d _q�= �(�� � _q�)k�� i�d _q� :As � i�!L is required to be a 
onstraint form, the terms in i�d _q� should vanish.The non-singularity of the k-matrix therefore implies that �� = _q� so that theve
tor �eld �, if it exists, is ne
essarily a Sode. The 
ontra
tion of � with i�!L,now written out in full, therefore be
omes� i�!L = �i�(gAB)h�; i�d _qAi+ (i�TB)� i��B ;and the only undetermined 
omponents of � are the \for
e fun
tions" F� given byF � = h�; i�d _q�i:13



We �nd that h�; i�d _qai = Ba�F � +W awhere the fun
tions W a do not depend on the yet to be determined fun
tions F�,and we obtain� i�d�L = �i�(gab)(Ba�F� +W a) + i�(g�b)F � + i�(Tb)� (�b +Bb�i���)+ �i�(ga�)(Ba�F � +W a) + i�(g��)F � + i�(T�)� i���mod �b= (k��F � + i�(T�) +Bb�i�(Tb) + ha�W a)i��� :With a regular system, we see that we 
an make a unique 
hoi
e of for
e fun
tionsF � so that the 
oeÆ
ients of the i��� in the above expression for � i�!L vanish.For this 
hoi
e of F � we then �nd� i�d�L = �for some 
onstraint form � whi
h is a linear 
ombination of the �a.To summarise, we have shown that under a 
ertain regularity 
ondition we 
anlo
ally 
onstru
t a unique 
onstraint 1-form � and a unique Sode �eld � su
h that� (i�d�L � dt ^ �) = 0. Uniqueness implies that we may glue together these lo
alsolutions to give a global 
onstraint form and Sode �eld on C. 2We shall say that the 
onstrained Lagrangian system is regular at a point of Cif the matrix (k��) has maximal rank (n � m) at that point. The 
onstrainedLagrangian system will be 
alled regular if it is regular at ea
h point of C.One further remark on regularity is perhaps worth making here. If the Hessianof L is non-degenerate then we may �nd the un
onstrained Euler-Lagrange �eld�L on J1� . The di�eren
e �LjC � � is then a ve
tor �eld V along C satisfyingV d�LjC = �, where � represents the for
e exerted by the 
onstraint. We 
annot
arry out the 
onstru
tion in this way if the Hessian of L is degenerate at points ofC: although the 
onstraint form � is well-de�ned, the 
orresponding ve
tor �eld Vmight not be. A similar 
omment also applies, for instan
e, to the approa
h usingalmost-produ
t stru
tures (
f. [7, 8℄); this also requires theHessian of L to be non-degenerate at points of C. Spe
ifying that L bepositive-de�nite, as is frequently done in treatments of non-holonomi
 me
hani
s,is a 
onvenient way of ensuring that both gAB and k�� are non-degenerate, althoughof 
ourse it is not a ne
essary 
ondition.
14



4 The Hamiltonian des
ription of 
onstrained sys-temsBefore studying the transition from the redu
ed Lagrangian dynami
s of a 
on-strained system to an equivalent Hamiltonian des
ription, we �rst re
all somegeneral aspe
ts 
on
erning the passage from the Lagrangian to the Hamiltoniandes
ription of a time-dependent system in the jet bundle formalism (see also e.g.[4, 6℄).4.1 General Hamiltonian systemsA Hamiltonian system on a bundle � : E ! IR is given by a se
tion h of the linebundle T �E ! J1� �. If ! is the 
anoni
al symple
ti
 form on T �E then h�! is a2-form on J1� �, and a Hamiltonian ve
tor �eld Xh for h satis�es Xh h�! = 0,hXh; dti = 1. In 
oordinates (t; qA; p; pA) on T �E, if H = �p Æ h is the (lo
ally-de�ned) Hamiltonian fun
tion thenh�! = �dH ^ dt+ dpA ^ dqAso that Xh = ��t + �H�pA ��qA � �H�qA ��pA :The Hamiltonian 
ow is given by the equations_qA = �H�pA ; _pA = � �H�qA ; _t = 1:In the spe
ial 
ase where there is a global trivialisation of E = IR � Q ! IR, the
anoni
al global �bre 
oordinate p on T �E yields a global Hamiltonian fun
tionH = �p Æ h for ea
h Hamiltonian h, and thenh�! = �dH ^ dt+ ��!0where !0 is the 
anoni
al symple
ti
 form on T �Q and � : J1� � ! T �Q is theproje
tion on the se
ond fa
tor of J1� � �= IR � T �Q. Sin
e in this 
ase T �E �=T �IR� T �Q, there exists a 
anoni
al Hamiltonian h0, indu
ed by the zero se
tionof T �IR! IR, whi
h 
orresponds to the Hamiltonian fun
tion H = 0.4.2 Hamiltonian systems derived from Lagrangian systemsUnder 
ertain regularity 
onditions, a Lagrangian 
an give rise to a Hamiltoniansystem via the Legendre map. Any Lagrangian fun
tion L : J1� ! IR gives rise15



to the Legendre map LegL : J1� ! T �E. this may be de�ned either as the best�bre-wise approximation to L, or alternatively as the representation of the Cartan1-form �L as a di�erential form along the map J1� ! E (rather than, as is moreusual, a di�erential form on J1�). With the 
oordinate expression (3) for �L, wethen obtain p Æ LegL = L� _qA �L� _qApA Æ LegL = �L� _qA :The map LegL is the \big Legendre map"; the 
orresponding \little Legendre map"legL : J1� ! J1� � is the 
omposition of LegL with the proje
tion T �E ! J1� �.We may 
he
k thatlegL�0� ��t �����j1t 
1A = ��t �����legL(j1t 
) + �2L�t� _qB �����j1t 
 ��pB �����legL(j1t 
)legL�0� ��qA �����j1t 
1A = ��qA �����legL(j1t 
) + �2L�qA� _qB �����j1t 
 ��pB �����legL(j1t 
)legL�0� �� _qA �����j1t 
1A = �2L� _qA� _qB �����j1t 
 ��pB �����legL(j1t 
)and leg�L(dt) = dtleg�L(dqA) = dqAleg�L(dpA) = �2L� _qA�tdt+ �2L� _qA�qB dqB + �2L� _qA� _qB d _qB:We say that L is regular if legL� has maximal rank 2n at ea
h point (so thatlegL� restri
ted to a �bre of J1� ! E has maximal rank n), and that L is hyper-regular if legL is a di�eomorphism. Any hyper-regular Lagrangian then de�nes aHamiltonian system by setting h = LegL Æ leg�1L : J1� � ! T �E. If we let �L be theSode �eld 
orresponding to L then �L and Xh are legL-related:TJ1� TJ1� �
J1� J1� �

-
-6 6legL�

legL�L Xh
16



A Lagrangian that is regular but not hyper-regular de�nes a lo
al Hamiltoniansystem in the same way. The signi�
an
e of a regular Lagrangian is that the
orresponding Euler-Lagrange equations are regular: that is, they may be solvedfor �qA. Put another way, a regular Lagrangian de�nes a unique Sode �eld �L.4.3 Hamiltonian representation of 
onstrained LagrangiansystemsLet us now 
onsider a 
onstrained Lagrangian system on J1� , with general 
on-straints determining a 
onstraint submanifold C. In the previous se
tion we haveseen that, in a neighbourhood of a point � of C, the 
onstraint relations 
an alwaysbe written in the solved form (9) in terms of some appropriate bundle 
oordinates(t; qA; _q�; _qa) on J1� , with A = 1; : : : ; n; a = 1; : : :m;� = m + 1; : : : n. Supposethat at ea
h point of C, rank k��(�) = n �m, so that the 
onstrained system isregular in the sense of Se
tion 3. One 
onsequen
e of this regularity is that therestri
tion legLjC is an immersion. Indeed, 
onsider an arbitrary point � 2 C andnote that, in a neighbourhood of �, a lo
al basis for the ve
tor �elds along C thatare tangent to C is given byW� = �� _q� +Ba� �� _qa ; YA = ��qA +HaA �� _qa ; Z = ��t +Ha �� _qa ;with HaA = �ga=�qA, Ha = �ga=�t and, as before, Ba� = �ga=� _q�. Note that theW� are just the verti
al lifts of the ve
tor �elds X� introdu
ed earlier (see (11)).Using the expressions for the a
tion of legL� on the 
oordinate ve
tor �elds, listedabove, and putting �� = legL(�), we �nd after a straightforward 
omputationlegL�(W�j�) = k��(�) ��p� ������� + h�b(�)0� ��pb ������� � Bb�(�) ��p� �������1A ;legL�(YAj�) = ��qA ������� + : : : ; legL�(Zj�) = ��t ������� + : : : ;with h�b = g�b+Ba�gab, and where the dots on the right-hand sides represent termsin (�=�pB)��. In view of the assumed regularity of (k��(�)) it is readily seen thatlegL�, restri
ted to T�C, has rank 2n + 1 � m at � and is, therefore, inje
tive.Sin
e this holds for all � 2 C, legLjC is indeed an immersion. (Note that the
onverse is not true: legLjC may be an immersion even though the 
onstrainedLagrangian system is not regular, be
ause the image of a ve
tor tangent to C at �might nevertheless be in the annihilator of T�C � T�J1� .) We shall say that the
onstrained system is hyper-regular if it is regular and if legL(C) is an embedded17



sub-manifold. The latter in parti
ular implies that legLjC : C ! J1� � is aninje
tive immersion and a homeomorphism onto its image.Let � denote the Sode �eld on C des
ribing the 
onstrained Lagrangian dynam-i
s, and assume the 
onstrained system is hyper-regular. We may then de�ne ave
tor �eld X on legL(C) by setting X = legL��. We may also de�ne a restri
tedHamiltonian �h : legL(C)! LegL(C) � T �E by�h = LegL Æ ( legLjC)�1and, hen
e, a 2-form !�h = �h�(!) on legL(C) su
h that X !�h then satis�esleg�L(X !�h) = �;where � is the 
onstraint form given by � i�!L = � as in the previous se
tion. TheHamiltonian pi
ture is therefore a mirror image of the Lagrangian one. Indeed,we 
an use the Legendre map to obtain an immediate proof of the Hamiltonianversion of our regularity theorem.Theorem 2. Let L : J1� ! IR de�ne a Lagrangian system, subje
t to 
onstraintsC. If the 
onstrained system is hyper-regular then there is a unique ve
tor �eld Xon legL(C) satisfying the 
onditions1. hX; dti = 1;2. hX; �i = 0 for all 1-forms � on legL(C) su
h that leg�L(�) is a 
onstraint formon C;3. leg�L(X !�h) is a 
onstraint form.In these 
ir
umstan
es, X = legL�(�) where � is the Sode �eld on C obtained fromthe system (L;C) by Theorem 1. If the system is regular rather than hyper-regular,then a similar result holds lo
ally.5 Conne
tionsWe have seen that a 
onstraint submanifold C gives rise to a distribution, eitheron E (in the 
ase of aÆne 
onstraints) or along � : C ! E (in the 
ase of general
onstraints) and that, as a partial 
onverse, a distribution on E transverse to the�bration over IR gives rise to an aÆne 
onstraint manifold. There are, however, 
ir-
umstan
es where some additional stru
ture in the problem allows us to say rathermore about these distributions: these 
ir
umstan
es arise when the 
on�gurationspa
e E is itself �bred over some other manifold.18



So suppose we have two bundles � : E ! M and �0 : M ! IR, su
h that � =�0 Æ � : E ! IR. We shall let the dimension of E be n + 1 as before, and thedimension of M be (n �m) + 1. The proje
tion � gives rise to the tangent map�� : TE ! TM and its restri
tion yields the prolongation j1� : J1� ! J1�0: theseare both proje
tions. On the other hand,the dual map �� : ��T �M ! T �E is an inje
tion on ea
h �bre, so we may regard thepull-ba
k bundle ��T �M as a sub-bundle of T �E. With 
oordinates (t; q�) on Mand (t; q�; qa) on E, and 
orresponding 
oordinates (t; q�; qa; p; p�; pa) on T �E, thesub-bundle ��T �M is des
ribed by the m equations pa = 0. All this proje
ts ontoJ1� �: we have a sub-bundle ��J1� �0 � J1� � des
ribed by the same m equationspa = 0.The prolonged map j1� gives rise to a proje
tion� : J1� ! ��J1�0 = E �M J1�0de�ned by � = (�1;0; j1�). Note that � is always an aÆne bundle, modelled on theve
tor bundle pr�1(V �) ! ��J1�0. This is be
ause the di�eren
e between two jetsj1t 
1, j1t 
2 in the same �bre of J1� over E is just a tangent ve
tor to E verti
al overIR, and if the jets proje
t to the same point of ��J1�0 under � then the tangentve
tor is also verti
al over M . In 
oordinates, we havej1t 
1 � j1t 
2 = � _qa(j1t 
1)� _qa(j1t 
2)� ��qa �����
1(t) :Any se
tion � : ��J1�0 ! J1� of � will de�ne a 
onstraint manifold C by settingC = �(��J1�0). Conversely, given an aÆne 
onstraint submanifold C of �bredimension n�m, it is always possible to �nd a lo
al �bration of E su
h that C islo
ally the image of a se
tion of the 
orresponding indu
ed �bration �.Indeed, starting from a lo
al bundle 
hart V � E, we simply write the equationsof C in solved form with respe
t to m of the indu
ed velo
ity variables and thenmap V to the appropriate open subset of IR(n�m)+1 using the 
oordinate fun
tions.It may, however, not be possible to �nd a global �bration of E, as the example ofE = IR�S2 shows. If C is not aÆne then there may not even be a lo
al �bration ofE: with our earlier example of E = IR�IR3 and C given by _x2+ _y2 = 1+z2, any su
hlo
al �bration would yield a lo
al proje
tion � whi
h, on a �bre of J1� ! E, wouldhave to map IR3 ! S1 � IR. Both these obstru
tions are, of 
ourse, topologi
al innature.When a 
onstraint manifold is the image of an aÆne se
tion, the 
orrespondingdistribution will be
ome the horizontal bundle of a 
onne
tion on �. (It is 
om-plementary to the verti
al bundle V � pre
isely be
ause it is the linear span ofthe image of a se
tion, rather than an arbitrary ve
tor sub-bundle of TE.) For19



the image of a se
tion whi
h is not aÆne, the situation is more 
ompli
ated: wenow have a distribution along �, and this will be
ome the horizontal bundle of a\parametrised 
onne
tion" in the sense des
ribed in [18℄.In this situation, we take lo
al 
oordinates (t; q�) on M , and (t; q�; qa) on E. Putga = _qa Æ �, so that ga are fun
tions on ��J1�0; the image C of � is then de�nedlo
ally by _qa = ga(t; qA; _q�). The distribution along � is then spanned by ve
tor�elds given in 
oordinates by��q� +Ba� ��qa ; ��t +Ba ��qawhere Ba�, Ba are fun
tions de�ned on C (
f. (12)); hen
e��q� + ��(Ba�) ��qa ; ��t + ��(Ba) ��qaare ve
tor �elds along ��J1�0 ! E and span the horizontal bundle of a parametrised
onne
tion on �. If the fun
tions ga are aÆne in _q� then Ba�, Ba are the pullba
ksof fun
tions on E, and so we obtain a true 
onne
tion on �.To see how the relationship between 
onne
tions and 
onstraint manifolds af-fe
ts the dual bundle, suppose �rst that we have a �bration � : E ! M andaÆne 
onstraints given by a true 
onne
tion on �. In this situation, the hori-zontal bundle C of the 
onne
tion is isomorphi
 (as a ve
tor bundle over E) to��TM , and this isomorphism restri
ts to an isomorphism of aÆne sub-bundlesC �= ��J1�0; 
onsequently it de�nes a proje
tion J1� ! C. The dual isomorphismC� �= ��T �M then allows us to identify the quotient bundle T �E=CÆ with the sub-bundle ��T �M � T �E, and hen
e de�nes a se
tion of T �E ! T �E=CÆ. Similarly,we obtain a se
tion of J1� � ! T �E=(CÆ � hdti) whose image is ��J1� �0 . In otherwords, we may write T �E = CÆ � ��T �Mand J1� � = (CÆ mod dt)� ��J1� �0 :The lo
al 
oordinates on ��T �M are (t; qA; p�; p) and those on T �E are given by(t; qA; p�; pa; p), but the latter are not adapted to the dire
t sum de
omposition ofT �E. To de�ne adapted 
oordinates, we setP� = p� +Ba�pa; Pa = pa; P = p+Bapa (13)on T �E. A similar de�nition (omitting the 
oordinate P ) may be used on J1� �.As will be seen in Se
tion 6, in the 
ase of a hyper-regular 
onstrained Lagrangiansystem (L;C), the 
oordinates (t; qA; P�) provide a set of natural 
oordinates on20



legL(C) in terms of whi
h one 
an write down an expli
it expression for the ve
tor�eld X = legL�(�).With a general 
onstraint manifold C, we have a rather more unusual situation:ea
h 
otangent spa
e T �aE may still be written as a dire
t sum of two subspa
es,one of whi
h is (��T �M)a, but this dire
t sum is parametrised by points of C (theother subspa
e is the �bre of the Chetaev bundle over a determined by the point inC). We 
an express this by de�ning a fun
tion � : C �E T �E ! ��T �M to repla
ethe proje
tion pr2 : T �E ! ��T �M available in the aÆne 
ase. In 
oordinates,p� Æ �(j1t 
; �) = p�(�) + pa(�)Ba�(j1t 
)p Æ �(j1t 
; �) = p(�) + pa(�)Ba(j1t 
):This proje
ts down to a fun
tion �0 : C �E J1� � ! ��J1� �0 whi
h, in 
oordi-nates, is given by p� Æ �0 = p� Æ �. It is evident that we may use these fun
-tions to give \adapted" lo
al 
oordinates on C �E T �E and C �E J1� �, namely(t; qA; _q�; P�; Pa; P ) and (t; qA; _q�; P�; Pa), respe
tively. But that is quite di�er-ent still from having adapted 
oordinates on T �E and J1� �. As a result, given ahyper-regular 
onstrained Lagrangian system with Lagrangian L and non-linear
onstraints C, the previous 
onstru
tion in general does not lead to a well-de�ned
oordinate system on legL(C).6 Coordinate expressions for the Hamiltonian rep-resentationThe purpose of this se
tion is to dis
uss how the ve
tor �eld X = legL�� 
anbe represented in 
oordinates on legL(C) and to 
ompare this (where possible)with the analyti
al 
onsiderations of the Introdu
tion. Re
all that X has a globalmeaning when the 
onstrainted system is hyper-regular, and is de�ned lo
ally whenit is merely assumed that the k-matrix of the system (L;C) is regular. Sin
e weare interested here only in the lo
al 
oordinate representation of X, the distin
tionbetween regularity and hyper-regularity is not very relevant for the subsequentdis
ussion.Throughout our analysis, we have represented the 
onstraint equations de�ning Cin the form _qa = ga(t; qA; _q�). In the most general 
ase, this 
an be done only ina neighbourhood of ea
h point of C (resulting from the assumption that C is asub-bundle of J1�). There may be situations where su
h neighbourhoods 
ontain
omplete �bres of C. As dis
ussed in the previous se
tion, a parti
ular 
ase wherethe latter situation is guaranteed to apply is the 
ase where there is an extra�bration � : E ! M , and the 
onstraints are then de�ned by a (parametrised)
onne
tion asso
iated to a se
tion � : ��J1�0 ! J1� . If that se
tion is aÆne,21



so that we are in the 
ase of a true 
onne
tion on �, the right-hand sides of the
onstraint equations have the aÆne form ga = Ba�(t; qA) _q�+Ba(t; qA). We 
onsiderthis simpler 
ase �rst.Points on legL(C) are de�ned byp� = i� �L� _q� ; pa = i� �L� _qaor, passing to the adapted �bre 
oordinates P�; Pa, as de�ned by (13),P� = �L� _q� ; Pa = i� �L� _qa : (14)We have �P�� _q� = k��so that, in view of the assumed regularity, the �rst of the relations (14) 
an besolved for the _q�, yielding relations of the form_q� = ��(t; qA; P�) (15)as in the Introdu
tion. In the hyper-regular 
ase, these essentially make upthe map legLjC�1, whi
h we give a 
orresponding name for shorthand:� = legLjC�1 : legL(C)! C:If the 
onstrained system is merely regular, � is de�ned only lo
ally. Upon sub-stituting the relations (15) into the de�ning equations (14) of legL(C), we obtainexpli
it expressions for the equations de�ning legL(C) as a submanifold of J1� �and, just as the de�ning equations for C, they are solved for a well identi�ed setof variables, namely: Pa(= pa) = ��i� �L� _qa : (16)As mentioned in the previous se
tion, this shows indeed that we 
an use (t; qA; P�)as 
oordinates on legL(C). Computing the restri
ted Hamiltonian �h = LegL Æ � inthe adapted 
oordinates (13) on T �E, we �ndP Æ �h = ��(P Æ LegLjC)= �� "i�(L� _qA �L� _qA )� Bai�( �L� _qa )#= ��L� ��P� = �H;where the Hamiltonian fun
tion H mat
hes the one given in the Introdu
tion.22



We next 
ompute the ve
tor �eldX whi
h is uniquely determined by the 
onditionsof Theorem 2. Starting from! = dp� ^ dq� + dpa ^ dqa + dp ^ dt= dP� ^ dq� + dPa ^ �a + dP ^ dt� Pa (dBa� ^ dq� + dBa ^ dt)(the 
onstraint forms �a, being basi
 forms in this aÆne 
ase, look the same onT �E as on J1�), we obtain!�h = dP� ^ dq� + dPa ^ �a � dH ^ dt� Pa (dBa� ^ dq� + dBa ^ dt):The notation for the 
oordinate fun
tions Pa is maintained here for shorthand,but they should of 
ourse be repla
ed by the right-hand sides of the 
onstraintequations (16). If we take X to be a ve
tor �eld on legL(C) of the formX = ��t +X� ��q� + (Ba�X� +Ba) ��qa + Y� ��P� ;where the X� and Y� are as yet undetermined fun
tions of (t; qA; P�), we willensure that X satis�es the �rst two requirements of Theorem 2. If in addition wewant X !�h to be zero modulo 
onstraint forms �a, the 
oeÆ
ients of dP� anddq� �x the 
omponents X� and Y�, whi
h are found to be given exa
tly by theexpressions on the right-hand sides of equations (4) and (6) in the Introdu
tion.At �rst sight, there are then still terms in dt to be taken 
are of: but Theorem 2ensures that X exists and there is no more freedom left, so these terms are boundto vanish identi
ally; one 
an verify that this is indeed the 
ase. Re
all that these
onsiderations apply to all systems with aÆne non-holonomi
 
onstraints, in thehyper-regular 
ase (with X being globally de�ned on legL(C)) as well as in theregular 
ase (with X de�ned lo
ally).For non-linear 
onstraints, it is not possible to give a similar general pres
riptionfor the 
omputation of the \
onstrained Hamiltonian ve
tor �eld X" on legL(C),even if we assume that the 
onstraints 
ome from a (parametrised) 
onne
tion andare hyper-regular. The relevan
e of the results of Se
tion 4 is that Theorem 2still applies, so that regularity of the k-matrix is suÆ
ient for the (lo
al) existen
eand uniqueness of X | and therefore there will be lo
al 
oordinates in whi
h anexpression for X 
an be written down. The problem is to des
ribe su
h 
oordinatesin a way whi
h is valid for all systems, rather than 
onstru
ting them 
ase by 
ase.To give an idea of the diÆ
ulty observe that, under regularity of the k-matrix, itis possible to obtain an expli
it representation of � = legLjC�1, via relations of theform _q� = ��(t; qA; pA). But, as we have indi
ated, the right-hand sides will depend23



on all momentum variables. One 
ould then still obtain de�ning equations forlegL(C) of the form pa = ��i�(�L=� _qa), but again with right-hand sides dependingon both the p� and pb, so the equations would not be solved expli
itly for thepa. In fa
t, the domain of � 
an be extended to a neighbourhood of legL(C) inJ1� �, leading to a fun
tion H in the same neighbourhood. A 
omputation of (anextension of) X in su
h a neighbourhood, roughly along the lines indi
ated above,
an then be 
arried out modulo the di�erentials of the 
onstraint fun
tions. Sin
ethe 
onstraint equations are not available in solved form, su
h a pro
edure relieson the use of Lagrange multipliers. This, of 
ourse, is pre
isely what we wished toavoid by starting the Hamiltonisation pro
ess dire
tly from the redu
ed Lagrangeequations on the 
onstraint submanifold C.In view of these 
onsiderations, one may wonder whether passing from the La-grangian to a Hamiltonian 
ontext on legL(C), in the 
ase of general non-linear
onstraints, is a
tually worth the e�ort: if no natural adapted 
oordinates presentthemselves, additional stru
tural bene�ts from a \Hamilton-like environment" arenot likely to be abundant. Needless to say, however, a general pro
edure for the
omputation of X may exist if additional regularity assumptions would be a
-
epted. For example, if not only the k-matrix but also the Hessian of L is assumedto be regular, then it turns out that (t; qA; P�) 
an be used again as 
oordinateson legL(C) and X 
an be 
omputed expli
itly in terms of these 
oordinates.7 Illustrative examplesWe shall now dis
uss three simple examples of (hyper-) regular 
onstrained systems,illustrating some of the 
hara
teristi
 features of the formalism developed in thispaper. The �rst two examples deal with aÆne 
onstraints. In Example 1, theun
onstrained Lagrangian is regular, whereas in Example 2 we start from a singularLagrangian. Example 3 deals with a singular Lagrangian system subje
ted to anon-linear 
onstraint. The se
ond and third examples are merely mathemati
al
onstru
ts to illustrate the various subtle points whi
h our general theory hasrevealed. For instan
e, we need to illustrate that the pro
edure for passing fromthe redu
ed Lagrangian des
ription to an equivalent system of �rst-order equationsreally works under the regularity of only the k-matrix. In addition, we wish toillustrate the various points made about the role whi
h the adapted momentumvariables P� 
an or 
annot play in setting up Hamilton-type equations.Example 1 The 
urve of pursuit (see e.g. [14℄, p. 17)Consider a point A moving along the x-axis of a 
artesian referen
e frame in aplane, whi
h we take to be the xy-plane, and let its distan
e from the origin O begiven by a pres
ribed fun
tion f(t). A parti
le with unit mass moves in the planeand is 
onstrained by its velo
ity being always dire
ted towards the point A.24



Here we have E �= IR � IR2, with 
oordinates (t; x; y). The Lagrangian of theparti
le is simply its kineti
 energy L = 12( _x2+ _y2) and the 
onstraint submanifoldC is de�ned by the equation y _x + (f(t) � x) _y = 0. Note that we do not have aglobal �bration E !M adapted to the
onstraint, but we 
an always solve the 
onstraint equation lo
ally with respe
t toone of the velo
ities _x or _y. In parti
ular, in a domain where y 6= 0, we 
an writethe 
onstraint equation in the form_x =  x� f(t)y ! _y :The 
onstraint form is then � = dx� x� f(t)y dy :For the pull-ba
k of L to the 
onstraint submanifold we immediately obtainL = 12 _y2 "(x� f(t))2y2 + 1# :The k-matrix redu
es here to a s
alar and, sin
e we are dealing with an aÆne
onstraint, we have that k = �2L� _y2 = (x� f(t))2y2 + 1 6= 0 ;so that the 
onstrained system is regular. Computing the ve
tor �eld � on the
onstraint submanifold along the lines indi
ated in the proof of Theorem 1, oneeasily �nds that � = ��t + x� fy _y ��x + _y ��y + (x� f) _y _fy2 + (x� f)2 �� _y :It is interesting to 
ompare this approa
h to the one des
ribed, for instan
e, in[7℄, where the 
onstrained dynami
s is obtained by taking the proje
tion (of therestri
tion to C) of the un
onstrained Euler-Lagrange ve
tor �eld with respe
t toan almost produ
t stru
ture de�ned along C. As pointed out at the end of Se
tion3, that te
hnique relies on the regularity of the given Lagrangian.Passing now to the Hamiltonian framework, we follow the pro
edure outlined inthe previous se
tion. In terms of the `adapted' momentum variables, the points onlegL(C) are given byPy = �L� _y = _y "(x� f(t))2y2 + 1# ; Px = i�  �L� _x! = x� fy _y :25



Note that we 
an solve the �rst of these relations for _y, namely_y = �(t; x; y; Py) = y2(x� f)2 + y2whi
h, upon substitution in the expression for Px, leads to the 
onstraint equationPx = (x� f)y(x� f)2 + y2 Py :The Hamiltonian fun
tion H and the 2-form !�h be
ome, respe
tively,H = �Py � L(t; x; y; �) = 12 y2(x� f)2 + y2 P 2yand!�h = dPy ^ dy + d " (x� f)y(x� f)2 + y2 Py# ^ d�� " (x� f)y(x� f)2 + y2 Py# d x� fy ! ^ dy � d "12 y2(x� f)2 + y2 P 2y # ^ dt :Putting X = ��t +X ��y +  x� fy X! ��x + Y ��Pyand requiring X !�h = 0(mod �), we obtain, after a rather tedious but straight-forward 
al
ulation,X = y2Py(x� f)2 + y2 ; Y = � (x� f) _fPy(x� f)2 + y2 :Example 2For this example we take E �= IR � IR3 with 
oordinates (t; x; y; z). Consider asystem with Lagrangian L = 12( _x2+ _y+ _z2), subje
t to the 
onstraint _z = (1+x2) _y.Here we do have a global �bration E ! IR� IR2; (t; x; y; z) 7! (t; x; y), with (x; y)playing the role of the q� in our dis
ussion of the general theory. Note that L issingular and, with the notations of Se
tion 3, we have gxx = gzz = 1, hxx = hyy = 1,hzy = 1 + x2, whereas the other entries of g and h are zero. The 
omponents ofthe k-matrix then be
ome: kxx = 1, kyy = 1 + (1 + x2)2, kxy = kyx = 0so that det k > 0 and, hen
e, the 
onstrained system is found to be regular. Thefun
tion L is given by L = 12( _x2 + _y + (1 + x2)2 _y2)26



and its Hessian is pre
isely the k-matrix (as it should be, sin
e we are in the aÆne
ase). The 
onstraint forms are multiples of � = dz � (1 + x2)dy. The Sode-�eld� on the 
onstraint manifold C here be
omes� = ��t + _x ��x + _y ��y + (1 + x2) _y ��z � 2x _x _y1 + x2 �� _y :The Legendre transformation gives px = _x, py = 12 , pz = _z, so that 
learly themomenta px; py 
annot be used as 
oordinates on the 
onstraint manifold legL(C):in fa
t, in this 
ase we have that legL(C) = legL(J1�) = fpy = 12g. Followingthe general pro
edure outlined in the previous se
tion, we introdu
e the adapted
oordinates Px; Py; Pz in terms of whi
h the points of legL(C) are now determinedby Px = �L� _x = _x; Py = �L� _y = 12 + (1 + x2)2 _y Pz = i�  �L� _z ! = (1 + x2) _y>From these relations we 
an eliminate _x and _y and the 
onstraint equation thenbe
omes Pz(= pz) = 12 2Py � 11 + x2 :For the Hamiltonian fun
tion H we obtainH = 12(1 + x2)2 �(1 + x2)2P 2x + P 2y � Py + 14� :Computation of X givesX = ��t + Px ��x + 12  2Py � 1(1 + x2)2! ��y � 12 �2Py � 11 + x2 � ��z+(1� x)(2Py � 1)2(1 + x2)3 ��Px � x(2Py � 1)Px1 + x2 ��Py :Observe here that the given 
onstraint equation 
ould also have been written inthe form _y = _z1 + x2 ;whi
h suggests another possible �bration of E, 
orresponding to the proje
tion(t; x; y; z) 7! (t; x; z). It so happens that there would be no need to pass to theadapted �bre 
oordinates Px; Pz here, as (t; x; z; px; pz) provides a suitable set of
oordinates in its own right. The point to make, however, is that the p� 
oordinates
annot always be used, as the �rst 
hoi
e of a �bration has 
learly illustrated,whereas the P� always work. 27



Example 3Take L = 12( _x2 + _y2 + _z), subje
t to the non-linear 
onstraint _z = � _y2. Again,the given Lagrangian is singular and we have that gxx = gyy = 1, the other entriesin g being zero. The only nonzero entries of h are hxx = hyy = 1. We thereforeobtain kxx = kyy = 1, kxy = kyx = 0 so that det k = 1 and the 
onstrained systemis regular. Note that even L = 12 _x2 is singular here! Nevertheless, the regularity ofthe k-matrix still guarantees the existen
e of a unique Sode-�eld des
ribing the
onstrained dynami
s. The 
onstraint forms are multiples of � = dz+ 2 _ydy� _y2dtand, with the Poin
ar�e-Cartan 2-form being given by !L = d _x ^ �x + d _y ^ �y, astraightforward 
omputation leads to� = ��t + _x ��x + _y ��y � _y2 ��z :The Legendre transformation be
omes px = _x, py = _y, pz = 12 and the 
onstraintmanifold on the Hamiltonian side is given by legL(C) = legL(J1�) = fpz = 12g.In agreement with the dis
ussion in the previous se
tion, and 
ontrary to the sit-uation in the aÆne 
ase, there is no general pro
edure available here for sel
ting`adapted 
oordinates'. As a matter of fa
t, an attempt to introdu
e P� 
oordinatesas before would lead to Px = px, Py = 0 whi
h, obviously, is not an appropriateset of 
oordinates. On the other hand, a 
oordinate representation of the Hamil-tonian pi
ture whi
h does work for this example, is the following. In the original
oordinates we �nd that�h�! = dpx ^ dx+ dpy ^ dy � dH ^ dt ;where H = �L + _x�L� _x + _y�L� _y + _y2pz= 12p2x + 12p2y :We then obtain for the 
onstrained Hamiltonian dynami
s:X = ��t + px ��x + py ��y � p2y ��z :A
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